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Abstract

Secret sharing schemes usually have perfect information theoretic se-
curity. This implies that each share must be as large as the secret. In this
work we propose a scheme where the shares are smaller, while the security
becomes computational. The computational security assumption is hard-
ness of factorization, which is a simple and rather standard assumption in
cryptography. In our scheme, the shared secret can only be a set of prime
numbers.

1 Introduction

Secret sharing schemes usually have information theoretic security [2]. Compu-
tational security is rarely considered as it is not as good as information theoretic
security. But this implies that each share must be as large as the secret. In
this paper, we work on the computational security basis and propose a scheme
where each share is smaller than the secret.

In a case where the secret is N bits and is shared among k people who must
all come together to recover the secret, it is clear that the average share size
must be at least N/k just for correctness of the recovered secret. For security
in information theoretic sense, each share must be at least N bits, because it
is required that information obtained must be zero by any k& — 1 users working
together. Any scheme to overcome this bound must leak partial information
of the secret. In the ideal case, the information leakage is uniform and can be
controlled, as in the Ramp Secret Sharing (RSS) method [1]. Note that some
kind of trivial RSS can be done by literally breaking the secret into k parts as
a string, without any transformation. If computational security is used instead,
there is no such restriction. The shares may be sized between N/k and N, and
the secret is completely protected as long as it is computationally infeasible to
obtain the secret from any k — 1 shares.
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In this work we proposed a special scheme to share 2¥ — 1 prime numbers. It
is not a general secret sharing scheme, but since prime numbers are often used
in cryptography, this scheme can be used in many situations. The share size is
about half of the secret size. The computational assumption is the hardness of
factorization and nothing else.

2 Size of input and output of the scheme

In our arguments about the size of secrets and shares, we note the following
facts. First, the product of two n-bit numbers is a number of 2n bits. In terms
of information, the product does not really have 2n bits because, while there are
indeed 2n bits of information before the multiplication, some information is lost
after the multiplication, as the product may have other forms of factorization.
On the other hand, some 2n-bit numbers are primes and have no factorization.
But anyway the space required to store a product of two n-bit numbers is 2n
bits. We call this the size, without regarding to the real information content.
The same general argument applies to products of more numbers. This is how
we define the size of share in our scheme.

Second, our secret is a set of prime numbers of n bits each. One may argue
that there are less than n bits of information in one such prime number, because
of the restriction that it be prime. The prime number theorem states that the
number of primes smaller than z is approximately z/Inz. It means that we
need about n — log, n bits to address the list of primes up to n bits in their
plain numerical values. Therefore it can be justified that prime numbers need
not be encoded because the space saving would not be significant, and we argue
that an n-bit prime number has close to n bits of information.

3 The secret sharing method

To begin with, a list of 2 — 1 prime numbers, each about n-bit, is generated.
They are called p; where 1 < j < 2F — 1. Next, define B(j, i) as a function such
that bit i of the binary expression of integer j is extracted, counting from the
most significant bit. For example, B(6,1) = 1 and B(6,3) = 0.

Next, for each user i, where 1 < i < k, calculate s; = H;’;}l B(j.i)p;. This
is the share to be given to user i. Note that each share is the product of about
half of the secret prime numbers. So the share size is about half of total secret
size, which is N = n(2F — 1) bits. To be more precise, each share is at most
n2*=1 bits. Hardness of factorization is required for security, as the shares are
just products of the secret prime numbers.

As an example, assume that k = 3. Then s; = pypspspr. 52 = papapspr. and
83 = P1P3PsP7-



4 The secret recovery method

First, all possible subsets of user shares are listed in the following manner.
The set S; includes s; if and only if B(j,i) = 1. Sort these sets in order of
descending size. The order for those with the same size is not important. For
example, when k& = 3, then the sorted list can be (S7, Ss, S5, S3, Sy, Sa, S1),
where S; = {s1, 82,53} and Sg = {s1,s2}, etec.

Let the items in this sorted list be S, for j from 1 to 2k —1. In our example,
o1 =T, 02 = 6, etc. Next, the following iteration is done for j starting from 1
until j = 2F —1:

1. Calculate the GCD of the shares in S, . The result would be p,,.
2. Update the shares in S,; by dividing each share by p,, .
3. Increase j by 1 and repeat the process.

At the end of this process, all the prime numbers p; are recovered. In our
example, the sequence of primes recovered is (pr, pe. Ps, P3, P4, P2, P1)-

5 Security proof

In the following we say that breaking the scheme is equivalent to factorization.
Let there be an oracle which gives one p; with non-negligible probability, by
using an input of any k — 1 shares in the secret sharing scheme. This can be
seen as the weakest oracle capable of breaking the scheme. Then we can try to
solve the factorization problem.

First, the correctness of the number given by the oracle can be checked easily.
So we can assume that there is no false-positive solution. Now let us say we
are given a product m = pg where p and g are primes. We create primes p; to
por_; randomly, except that we define p, = p and p,,; = ¢ without knowing
them, for some random r such that r and r + 1 differ only on the last bit. This
only requires that r is an even number.

Note that it is possible to create shares for user 1 to user k — 1 by knowing
m but not p or g. These shares are the input to the oracle. If the oracle can
randomly return one prime number, there is non-negligible probability that it is
either p or q. Therefore the factorization problem can be solved in probabilistic
polynomial time, where polynomial time means a polynomial in n, which is the
size of the prime numbers p and q.

There seems to be a problem remaining. The oracle may require a particular
set of shares rather than a random set of size k — 1. But our observation is that
the scheme is actually symmetric for the users. Any permutation of the shares
can be achieved through some permutation of the secret prime numbers. That
means all shares are the same and the oracle cannot be designed to distinguish
them. Therefore it must be that any k& — 1 shares can be used as the input to
the oracle.



6 Conclusion

The application of this scheme is limited to the case where the secrets are
2% — 1 prime numbers where k is the number of users, who must all be present
to reconstruct the secrets. The computational assumption for security is the
standard assumption on the hardness of factorization. The saving of space is
an important feature of this scheme, where the share size is about half the total
secret size. It is also important to note that the scheme is symmetric. That
means the computational difficulty to break the scheme is the same for subsets
of user of the same size.
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