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Abstract

We consider secure multi-party computation (MPC) in a setting where the adversary can sepa-
rately corrupt not only the parties (nodes) but also the communication channels (edges), and can
furthermore choose selectively and adaptively which edges or nodes to corrupt. Note that if an
adversary corrupts an edge, even if the two nodes that share that edge are honest, the adversary can
control the link and thus deliver wrong messages to both players. We consider this question in the
information-theoretic setting, and require security against a computationally unbounded adversary.

In a fully connected network the above question is simple (and we also provide an answer that
is optimal up to a constant factor). What makes the problem more challenging is to consider the
case of sparse networks. Partially connected networks are far more realistic than fully connected
networks, which led Garay and Ostrovsky [Eurocrypt’08] to formulate the notion of (unconditional)
almost everywhere (a.e.) secure computation in the node-corruption model, i.e., a model in which
not all pairs of nodes are connected by secure channels and the adversary can corrupt some of the
nodes (but not the edges). In such a setting, MPC amongst all honest nodes cannot be guaranteed
due to the possible poor connectivity of some honest nodes with other honest nodes, and hence some
of them must be “given up” and left out of the computation. The number of such nodes is a function
of the underlying communication graph and the adversarial set of nodes.

In this work we introduce the notion of almost-everywhere secure computation with edge corrup-
tions, which is exactly the same problem as described above, except that we additionally allow the
adversary to completely control some of the communication channels between two correct nodes—i.e.,
to “corrupt” edges in the network. While it is easy to see that an a.e. secure computation protocol
for the original node-corruption model is also an a.e. secure computation protocol tolerating edge
corruptions (albeit for a reduced fraction of edge corruptions with respect to the bound for node
corruptions), no polynomial-time protocol is known in the case where a constant fraction of the
edges can be corrupted (i.e., the maximum that can be tolerated) and the degree of the network is
sub-linear.

We make progress on this front, by constructing graphs of degree O(nε) (for arbitrary constant
0 < ε < 1) on which we can run a.e. secure computation protocols tolerating a constant fraction
of adversarial edges. The number of given-up nodes in our construction is µn (for some constant
0 < µ < 1 that depends on the fraction of corrupted edges), which is also asymptotically optimal.
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1 Introduction

Secure multi-party computation (MPC) [27, 16, 3, 7] is perhaps the most popular paradigm in the
area of cryptographic protocols. It requires that n parties compute some function f of their inputs
without revealing any additional information, even when some of them may behave arbitrarily. More
specifically, n parties P1, · · · , Pn, each holding input xi, must run a protocol such that at the end of the
protocol, all “honest” (i.e., not misbehaving) parties obtain f(x1, · · · , xn), while any set of colluding
malicious parties Tnodes ⊂ [n] learn nothing more than what can be learnt from f(x1, · · · , xn) and the
xi values for all Pi ∈ Tnodes.

Traditionally, MPC protocols assume that any two of the n parties share a private and authenticated
channel which they can use for communication. In the case of information-theoretic MPC, the channel
between two honest nodes is assumed to be a secure physical link which the adversary cannot eavesdrop
nor tamper with; in the computational case, this channel is provided via a public-key infrastructure.

However, in many settings, the assumption of incorruptible pair-wise secure chanels might be unreal-
istic and overoptimistic. Think for example, of the communication subsystem of a networked computer
(e.g., network interface controller card) being infected by malicious software designed to disrupt or alter
operation. This would affect the communication between honest parties. Or worse, of a scenario where
the secret keys shared by two parties in the system is compromised, yet the parties themselves are
honest. In light of this, one first question we can ask is whether we can obtain MPC protocols when
both parties as well as communication channels are corrupted.

Naturally, we must assume some bound on the number of parties as well as the number of com-
munication channels that the adversary can corrupt. First, observe that we cannot hope to obtain a
protocol that is secure against an adversary that corrupts at least n2

3 + n of the n2 communication
channels1 (a constant fraction of the edges in the network), even if all the parties are honest. This
is because, such an adversary can effectively “simulate” the corruption of n

3 + 1 out of the n parties
(in the standard setting where only parties can be corrupted). and in this case MPC is known to be
impossible [3]. (In this work, we focus on information-theoretic MPC.) On the positive side, it is quite
easy to construct protocols that asymptotically match these bounds of edge corruptions; i.e., protocols
tolerating corruption of a constant fraction of communication channels as well as a constant fraction of
parties (for constants < 1

3)2.
However, all the protocols discussed so far assume that any two parties share a secure channel to

begin with! (These channels may later on be corrupted, but the connectivity of every party is still n.)
For protocols that are executed over large networks such as the Internet, in which nodes are typically
connected by a communication graph of small degree, this assumption is unreasonable. Thus, we turn
our attention to the problem of constructing MPC protocols (secure against corruption of both parties
and communication channels) in which parties (or nodes) have low connectivity.

1.1 Almost-everywhere secure computation

Before we describe our model in more detail, we remark that the setting of constructing protocols
on networks that are not fully connected is not new. Obtaining protocols on networks that are of

1For ease of exposition, we will assume that the total number of communication channels between the n parties is n2

(i.e., we assume a “self-channel”).
2Note that such a protocol will, unavoidably,“leave out” certain honest parties from the computation. We will discuss

this in more detail later on.
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low degree (in the presence of node corruptions alone), was first considered for the task of Byzantine
agreement [20, 19] in the seminal work of Dwork, Peleg, Pippenger, and Upfal [12]. More formally,
in the Dwork et al. formulation, the n parties (or nodes) are connected by a communication network
G. Nodes that are connected by an edge in G share a reliable and authentic channel, but other nodes
must communicate via paths in the graphs that may not be available to them (due to the adversarial
“corruption” of some of the nodes).

Naturally, in such a setting, one may not be able to guarantee agreement amongst all honest
parties; for example, one cannot hope to be able to communicate at all with an honest party whose
neighbors are all adversarial. Given this fact—and ubiquitously—Dwork et al. termed the new problem
almost-everywhere (a.e.) agreement, wherein the number of such abandoned nodes (which henceforth
will be called “doomed”) introduces another parameter of interest, in addition to the degree of the
communication graph (which we wish to minimize), and the number of adversarial nodes that can be
tolerated (which we wish to maximize) in reaching agreement.

Indeed, in [12], Dwork et al. provide a.e. agreement protocols for various classes of low-degree
graphs and bounds on the number of adversarial nodes as well as abandoned nodes. For example, they
construct a graph of constant degree and show an agreement protocol on this graph tolerating a α

logn
fraction of corrupted nodes (for constant 0 < α < 1), guaranteeing agreement amongst (1 − α − µ)n
of the honest nodes (for constant 0 < µ < 1). In another construction, they give a graph of degree
O(nε) (for constant 0 < ε < 1) and show an agreement protocol on this graph tolerating a constant α
(0 < α < 1) fraction of corrupted nodes, and again guaranteeing agreement amongst (1−α−µ)n nodes.
In a subsequent and remarkable result, Upfal [23] constructed a constant-degree graph and showed the
existence of an a.e. agreement protocol on this graph tolerating a constant fraction of corrupted nodes,
while giving up a constant fraction of the honest nodes. Unfortunately, the protocol of [23] runs in
exponential time (in n).

Garay and Ostrovsky [15] were the first to consider the problem of unconditional MPC in the context
of partially connected networks with adversarial nodes, and obtained results with bounds similar to those
in [12]. More recently, Chandran, Garay, and Ostrovsky [6] constructed a graph of degree O(logk n)
(for constant k > 1) and show an agreement, as well as an MPC protocol on this graph tolerating a
constant fraction of corrupted nodes, while giving up only O( n

logn) of the honest nodes.

1.2 Almost-everywhere secure computation with edge corruptions

All existing work on a.e. agreement and a.e. secure computation mentioned above considers the
case where only nodes may be corrupted and misbehave 3. Furthermore, all existing work, construct
specific graphs (of low degree) on which one can obtain an a.e. secure computation protocol. In an
ideal scenario, we would like to construct a.e. computation protocols on arbitrary adversarially chosen
communication networks. Unfortunately, this is impossible in general4 . However, we can take a step
in this direction by allowing the adversary to corrupt edges in the network that we design. That is, we
will still construct a specific graph (on which we will obtain a.e. computation protocols); however, we
will allow the adversary to “modify” this graph by corrupting a constant fraction of edges in it, thereby
taking down (and even actively corrupting) certain channels in the communication network.

In more detail, in this work we will endow the adversary with additional powers which allow him,
in addition to corrupting nodes, to corrupt some of the edges in the network—i.e., we consider a.e.
agreement and computation with edge corruptions. When he does (corrupt an edge), he is able to

3In the closely related problem of secure message transmission [11] (and its variants), however, it is assumed that the
“wires” (abstraction of paths in a network) connecting sender and receiver might be corrupted and misbehave.

4The adversary could simply design networks where several nodes have extremely poor connectivity and hence corrupt-
ing a few edges could create several disconnected components in the network of small size.
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completely control the communication channel between the two honest nodes, from simply preventing
them to communicate, to injecting arbitrary messages that the receiving end will accept as valid. As
in the node-only corruption case, in this case also some of the honest nodes in the network must be
abandoned. In this work, we ask the following question:

Can we obtain a.e. secure computation protocols on networks of low (i.e., sublinear) degree
when a constant fraction of nodes as well as communication channels are corrupted?

Which we answer in the affirmative. To put things in perspective, observe that an a.e. agreement or
a.e. secure computation protocol for node corruptions can be readily transformed into a corresponding
a.e. protocol also tolerating edge corruptions, albeit for a reduced fraction of edge corruptions. More
specifically, let d be the maximum degree of any node in a graph G on n nodes that admits an a.e.
agreement (a.e. computation) protocol Π amongst p < n nodes, in the presence of x corrupt nodes.
Then, it is easy to see that G admits an a.e. agreement (a.e. computation) protocol Π′ amongst p
nodes in the presence of x corrupt edges5. However, this means that the graph will only admit an
agreement/computation protocol for an x

nd fraction of corrupted edges, as opposed to an x
n fraction

of corrupted nodes in the former case. Therefore, the result that we get for the case of edge corrup-
tions using this näıve method is asymptotically weaker than in the case of node corruptions (except
when d is a constant). Indeed, by applying this method, none of the existing protocols for a.e. agree-
ment/computation against node corruptions give us a solution tolerating a constant fraction of edge
corruptions. This is depicted in Table 1, where we outline the results one would obtain by applying this
approach to the a.e. agreement/computation protocols for node corruptions of [12, 23, 18, 15, 6], and
compare them with the results we obtain in this work. In all the results listed in the table, 0 < α < 1
is a constant, 0 < ε < 1 can be any arbitrary constant, and k > 1 is a constant.

Reference Graph degree Frac. of corrupt edges Graph/Protocol Running time

[12, 15] O(nε) α
nε ; adaptive Explicit/Deterministic Polynomial

[12, 15] O(1) α
logn ; adaptive Explicit/Deterministic Polynomial

[23] O(1) α; adaptive Explicit/Deterministic Exponential

[18] O(logk n) α
logk n

; static Explicit/Randomized Polynomial

[6] O(logk n) α
logk n

; adaptive Explicit/Deterministic Polynomial

[This work] O(nε) α; adaptive Randomized/Deterministic Polynomial

Table 1: A.e. secure computation against edge corruptions from a.e. secure computation against node
corruptions.

Note that all the previous results (except for the result obtained as a corollary to [23], in which
the protocol’s running time is exponential) cannot handle the case where we have a constant fraction
of corrupted edges. Here we are precisely interested in this case. Specifically, we construct the first
protocols for a.e. agreement and a.e. secure computation on graphs with sub-linear degree that can
tolerate a constant fraction of edge corruptions. We remark that while the above graph constructions
are deterministic, we construct our graph probabilistically, and our result holds with high probability.
However, a graph satisfying the conditions required for our protocols to be successful can be sampled
with probability 1−neg(n), where neg(n) denotes a function that is negligible in n, and furthermore, one
can also efficiently check if the graph thus sampled satisfies the necessary conditions for our protocols.

5To simulate an adversary that corrupts an edge (u, v), simply corrupt either node u or v.

4



1.3 Overview of our results

We show that for every constant ε, 0 < ε < 1, there exists a graph, call it Gmain, on n nodes, with
maximum degree dm = O(nε), and such that it admits a.e. agreement and a.e. secure computation
protocols that guarantee agreement/computation amongst γmn honest nodes (for some constant 0 <
γm < 1), even in the presence of an αm fraction of corrupted edges (i.e., at most αmndm

2 corrupted
edges), for some constant 0 < αm < 1. Our protocols work against an adversary that is adaptive (i.e.,
the adversary can decide which edges to corrupt on the fly during the protocol after observing messages
of honest parties) and rushing (i.e., in every round, the adversary can decide on its messages after
seeing the messages from the honest parties).

First, note that the problem of a.e. secure computation can be reduced to the problem of obtaining
a public and authentic channel between any two pair of nodes in the set of privileged nodes (i.e., the set
of honest nodes from which the set of doomed nodes have been excluded), due to techniques developed
in [15]; and the problem of a.e. agreement trivially reduces to the problem of obtaining such a public
channel. Hence, our main focus will be on constructing a protocol for this task. We now outline the
high-level ideas behind our construction:

1. The first step in our construction is to build a graph with higher degree, O(
√
n log n), on which

we can have obtain a public channel (between any two nodes in a set of size O(n)) tolerating a
constant fraction of corrupted edges.

To do this, we first observe a property of a graph that is sufficient for such a construction
(besides, obviously, every node having degree O(

√
n log n)), namely, that any two nodes in the

graph have O(log2 n) number of paths of length 2 between them.

Second, we observe that the Erdős-Renyi random graph G(n, logn√
n

) satisfies the above two

properties with high probability. That is, a graph G on n nodes satisfying the above two
properties can be easily sampled by putting an edge (u, v) in G, independently, with probability
p = logn√

n
.

Once we have a graph satisfying these properties, the construction is fairly straightforward: to
obtain a public channel between any two nodes, say, u and v, u simply sends the message to
all nodes in the network via all the paths of length 2, and all the nodes then send the message
to v, again via all their paths of length 2. One can then show that if v takes a simple majority
of the received values, then a constant fraction of the nodes can build a public channel even in
the presence of a constant fraction of corrupted edges.

2. Next, we show how to construct a graph, G′, recursively from G ← G(n, logn√
n

) above such that the

new graph is of size n2 and its degree at most twice that of G, and yet we can have a public channel
on G′ (between every pair of privileged nodes) tolerating a constant fraction of corrupted edges.

We construct G′ by taking n “copies” of G to form n “clouds,” and then connecting the clouds
using another copy of G. We connect two clouds by connecting the ith node in one cloud with
the ith node in the other.

Now our hope is to be able to simulate the communication between two nodes u and v in the
following way: u will send the message to all nodes in its cloud (call this cloud Cu). Cloud
Cu will then send the message to cloud Cv (the cloud which v is a part of). Finally, v will
somehow receive the message from cloud Cv.

The problem with this approach is that we need to have a protocol that will allow two clouds to
communicate reliably. But clouds themselves are comprised of nodes, some of which might be
corrupted or doomed; hence, the transmission from cloud Cu to cloud Cv might end up being
unreliable. To get over this problem, we make use of a specific type of agreement protocol
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known as differential agreement [13], which, informally and whenever possible, allows parties
to agree on the majority value of the honest parties’ inputs. Careful application of this protocol
allows us to perform a type of “error-correction” of the message when it is being transferred
from one cloud to another.

Combining the above techniques leads us to our main result, the construction of a public
channel between any two nodes in a set of size O(n), on graphs of degree O(nε) (for all
constants 0 < ε < 1), tolerating a constant fraction of corrupted edges, while giving up µn
honest nodes (for a constant 0 < µ < 1).

Our new public channel construction directly gives us an a.e. agreement protocol tolerating both
node and edge corruptions (with the required parameters), and by applying our protocol to the con-
struction in [15], we also obtain an a.e. MPC protocol tolerating both node and edge corruptions for
graphs of degree O(nε) and same parameters as above.

1.4 Related work

As mentioned above, the problem we consider is most closely related to the problem of almost-
everywhere agreement tolerating node corruptions [12, 5, 23, 6]. To our knowledge, the problem of
agreement or computation on networks with faulty (either Byzantine or not) edges has been only con-
sidered before either in the setting of random faults or where there are limited edge faults in a complete
network. We now present a brief overview.

The work of Diks and Pelc [9] considers the problem of obtaining an agreement protocol (amongst
all nodes) in a complete network when every edge in the network can fail independently with constant
probability pf (this in turn means that the expected degree of every node is linear (in n)). This work
also deals only with non-Byzantine faults. The work of Pelc [21] also considers only probabilistic edge
faults (where the failure probability is a constant less than 0.29), but considers Byzantine faulty edges.
The work of Chlebus et al. [8] considers the round complexity of agreement protocols in the presence of
probabilistic, non-Byzantine edge faults (where the failure probability is a constant). Shanbhogue and
Yung [22] study the necessary and sufficient conditions for asynchronous agreement protocols amongst
n nodes on a complete graph in the presence of Byzantine edges (and show a tight upper and lower
bound of bn−2

2 c on the total number of corrupted edges). Similarly, the work of Yan et al. [26, 24]
also considers malicious faulty links in complete networks with the aim of constructing protocols for
optimal-round Byzantine agreement, while Wang and Yan [25] additionally consider fault detection in
a similar setting. Berman et al. [4] consider agreement on protocols with random Byzantine edge faults
(with a probability of failure < 1

2) and show a broadcasting algorithm that works for n nodes in time
O(log n), with probability of correctness 1− 1

n .
The work of Barak et al. [1] considered the problem of secure computation in the computational

setting without authentication. In this setting, parties wish to run secure computation protocols when
no two of them share an authenticated channel, and, furthermore, the adversary controls the delivery
of messages. In this setting, the adversary can trivially partition the parties into various sets of parties,
with each set running its own “secure” computation protocol. Barak et al. show that, essentially,
this is all that an adversary can do. We remark that our setting is different – while some pairs of
parties share authenticated channels in our setting (namely those that are connected by an edge in the
communication network), we wish to include a much larger fraction of honest nodes in the computation
protocol (by making use of other nodes in the network to perform secure message transmission).

The work of Gordon et al. [17] considered the problem of broadcast with a partially compromised
public-key infrastructure. Their work is limited to networks that are initially fully connected, and are
furthermore, in the computational setting. Zikas et al. [28] considered a model of secure computation,
where an adversary, can in addition to corrupting parties, can also block outgoing or incoming messages
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of honest parties. Their setting differs from ours in the following two ways. Their work permits the
adversary to only block messages of honest parties, whereas, in our setting, when an adversary takes
over a channel, he completely controls all messages on it. Secondly, their setting allows the adversary to
block only either all incoming or outgoing messages of a party, or none, whereas, we allow the adversary
to selectively corrupt the edges incident on any node.

Dolev [10] and Dolev et al. [11] showed that if there are t faulty processors in a network, then every
pair of processors can communicate reliably if and only if every node has connectivity at least 2t + 1.
This work also assumes that whenever a connection is present between two nodes, the connection is
reliable and not under the control of an adversary (unlike in our work). In order to overcome the barrier
on the maximum number of adversaries that can be corrupted, Beimel and Franklin [2], considered a
model in which some pairs of processors (other than the pairs that are already connected by reliable
channels), are also given authentication keys. The reliable channels defines a natural “communication
graph” and the pairs of parties sharing authentication keys define a natural “authentication graph”.
Beimel and Franklin showed that every pair of processors can communicate reliably if and only if all
nodes in the communication graph have connectivity at least t+ 1 and the union of the two graphs has
connectivity at least 2t+ 1.

2 Model, Definitions and Building Blocks

Let G = (V, E) denote a graph with n nodes (i.e., |V| = n). The nodes of the graph represent the
processors (parties) participating in the protocol, while the edges represent the communication links
connecting them. We assume a synchronous network and that the protocol communication is divided
into rounds. In every round, all parties can send a message on all of their communication links (i.e., on
all edges incident on the corresponding node); these messages are delivered before the next round.

An adversary A can “corrupt” a set of nodes (as in taking over them and completely control their
behavior), Tnodes ⊂ V, as well as a set of edges, Tedges ⊂ E , in the network such that |Tnodes| ≤ tn and
|Tedges| ≤ te. A has unbounded computational power and can corrupt both nodes and edges adaptively
(that is, the adversary can decide which nodes and edges to corrupt on the fly during the course of the
protocol, after observing the messages from honest parties). Furthermore, A is rushing, meaning that
it can decide the messages to be sent by adversarial parties (or on adversarial edges) in a particular
round after observing the messages sent by honest parties in the same round.

Almost-everywhere agreement. The problem of almost-everywhere agreement (“a.e. agreement”
for short) was introduced by Dwork et al. [12] in the (traditional) context of node corruptions. A.e.
agreement “gives up” some of the non-faulty nodes in the network from reaching agreement, which is
unavoidable due to their poor connectivity with other non-faulty nodes. We refer to the given-up nodes
as doomed nodes, and to the honest nodes for which we guarantee agreement as privileged nodes. Let
the set of doomed nodes be denoted by X and the set of privileged nodes by P; note that the sets P
and X are a function of the set of corrupted nodes (Tnodes) and the underlying graph. Let |X | = x and
|P| = p. Clearly, we have p+ x+ t = n. We now present a definition of a.e. agreement.

Definition 1 A protocol for parties {P1, P2, · · · , Pn}, each holding initial value vi, is an almost-
everywhere agreement protocol for node corruptions if the following conditions hold for any adversary
A that corrupts a set of nodes Tnodes with |Tnodes| ≤ t:

Agreement: All nodes in P output the same value.

Validity: If for all nodes in P, vi = v, then all nodes in P output v.
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The difference with respect to standard Byzantine agreement [20, 19] is that in the latter the two
conditions above are enforced on all honest nodes, as opposed to only the nodes in P. For brevity, we
keep the same names.

In the context of a.e. agreement, one would like the graph G to have as small a degree as possible
(in relation to the size of the graph and to the number of corrupted parties), while tolerating a high
value for tn (a constant fraction of n is the best possible), while minimizing x.

In [12], Dwork et al. construct graphs with degree O(nε) (for constant 0 < ε < 1) tolerating at most
tn = αnn (for constant 0 < αn < 1) corruptions and at the same time guaranteeing agreement amongst
n−O(tn) nodes in the network, with a number of doomed nodes a constant times tn; call such a graph
GDPPU = (VDPPU, EDPPU). The idea behind the a.e. agreement protocol is to simulate a complete graph
on the set of privileged nodes. The theorem from [12] is as follows:

Theorem 1 [12] There exist constants 0 < α, µ < 1 independent of n and tn, an n-vertex O(nε)-
regular graph GDPPU which can be explicitly constructed, and a communication protocol (transmission
scheme) TSDPPU, such that for any set of adversarial nodes Tnodes in GDPPU such that |Tnodes| = tn = αnn,
TSDPPU guarantees reliable communication between all pairs of nodes in a set of non-faulty nodes P
of size |P| ≥ n − tn − µn. The protocol generates a polynomial (in n) number of messages and has
polynomial (in n) running time.

Given the above theorem, Dwork et al. observe that one can run any Byzantine agreement protocol
designed for a fully connected graph on GDPPU by simulating all communication between nodes in the
network with the communication protocol TSDPPU. We refer the reader to [12] for further details.

As a result, let µ, d, and tn be as defined above and let BA(n, t′n) be a Byzantine agreement protocol
for a complete network tolerating up to t′n = µn+ tn faulty processors. Then, simulating the protocol
BA(n, t′n) on the network GDPPU using the communication protocol TSDPPU, guarantees agreement among
at least n− tn − µn honest nodes in the presence of up to tn = αnn faulty nodes.

Differential agreement. In [13], Fitzi and Garay introduced the problem of δ-differential agreement.
In the standard Byzantine agreement problem, n parties attempt to reach agreement on some value v
(for simplicity, we assume v ∈ {0, 1}). Let cv denote the number of honest parties whose initial value
is v, and δ be a non-negative integer. δ-differential agreement is defined as follows:

Definition 2 A protocol for parties {P1, P2, · · · , Pn}, each holding initial value vi, is a δ-differential
agreement protocol if the following conditions hold for any adversary A that corrupts a set Tnodes of
parties with |Tnodes| ≤ tn:

Agreement: All honest parties output the same value.

δ-Differential Validity: If the honest parties output v, then cv + δ ≥ cv̄.

Theorem 2 [13] In a synchronous, fully connected network, δ-differential agreement is impossible if
n ≤ 3tn or δ < tn. On the other hand, there exists an efficient (i.e., polynomial-time) protocol that
achieves tn-differential agreement for n > 3tn in tn + 1 rounds.

We will use DA(n, tn, δ) to denote a δ-differential agreement protocol for a fully connected network
tolerating up to tn faulty processors.

8



The edge-corruption model. In this work we additionally allow the adversary to corrupt edges on
the network graph—the set Tedges ⊂ E , |Tedges| ≤ te. We will bound this quantity, as well as the total
number of nodes that the adversary can corrupt, and attempt to construct a network graph G of small
(sublinear) degree on which a significant number of honest nodes can still perform MPC. We now give
some definitions and make some remarks about a.e. agreement and a.e. MPC for this setting.

We first observe that since we are working with (asymptotically) regular graphs, obtaining an a.e.
(agreement, MPC) protocol in the presence of a constant fraction of corrupted edges will also imply a
protocol in the presence of a constant fraction of corrupted edges and a constant fraction of corrupted
nodes nodes, as every corrupted node can be “simulated” by corrupting all the edges incident on this
node. Thus, we will henceforth consider only adversarial edges and assume that all the nodes are honest.

As in the case of a.e. MPC on sparse networks in the presence of adversarial nodes, a.e. MPC in
the presence of adversarial edges also “gives up” certain honest nodes in the network, which, as argued
before, is unavoidable due to their poor connectivity with other honest nodes. Let the set of such
doomed nodes be denoted by X and the set of privileged nodes by P. Note that the sets P and X are
a function of both the set of corrupted edges (Tedges) and the underlying graph. Let |X | = x and |P| =
p; we let the fraction of corrupt edges be αe. The definition of a.e. agreement with corrupted edges, in
particular, now readily follows in the same manner as in Definition 1.

Next, we remark that the problem of a.e. agreement for edge corruptions also reduces to that of
constructing a reliable and authentic channel between any two nodes u, v ∈ P, in particular those which
are not directly connected by an edge in E . (With foresight, we will be calling such a channel a public
channel.) Furthermore, Garay and Ostrovsky showed that, given such a public channel between two
nodes u and v ∈ P, plus some additional paths, most of which (i.e., all but one) might be corrupted,
it is possible to construct a (unidirectional) secure (i.e., private and reliable) channel between them.
The construction is via a protocol known as secure message transmission by public discussion (SMT-
PD) [15, 14]. In turn, from the protocol for a secure channel, an a.e. MPC protocol amongst the nodes
in P, satisfying the same notion of security as in [15], readily follows (see Theorem 7 in Appendix A).

The definition of a secure channel between two nodes, which are not necessarily directly connected,
and in the presence of adversarial edges, essentially paraphrases the more general definition of secure
message transmission (see, e.g., [14]), where the channel is parameterized by a privacy error (κ1) and a
reliability error (κ2).

More formally, an execution of a (unidirectional) secure channel protocol between two nodes u, v ∈ V,
with u as the sender and u as the receiver, is determined by the random coins of the two nodes and the
adversary A controlling the set of edges Tedges, and the message m (without loss of generality, we will
assume that m ∈ {0, 1}). Let ViewA denote the view of the adversary in the execution of the protocol
between u and v; this view includes all messages seen by A (on edges in the set Tedges), as well as the
adversary’s random coins. Let ViewA(b) denote the view of the adversary. In each execution, v will
output a message mv. We now describe the security of secure-channel protocol:

Definition 3 We say that a protocol Π between nodes u, v ∈ P, is a (κ1, κ2)-secure channel protocol if
it satisfies:

Privacy: ViewA(0) and ViewA(1) are κ1-close.

Reliability: For m ∈ {0, 1}, Pr[mv = m] ≥ 1 − κ2. (The probability is taken over all players’
coins.)

Similarly, we say a protocol Π between nodes u, v ∈ P, is a κ-public channel protocol between u
and v if it satisfies the reliability property (as defined above) with probability at least 1− κ.

For completeness, we also provide the security definition of a.e. MPC (for node-corruptions) given
in [15] in Appendix A.
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Finally, we remark that one can define the notion of a.e. differential agreement (for edge corruptions)
in the same manner as a.e. agreement by replacing the set of honest parties with the set of privileged
parties in Definition 2 (i.e., by treating doomed parties also as adversarial). Furthermore, note that
one can also obtain an a.e. differential agreement protocol (for edge corruptions) from the construction
of a public channel between any two nodes u, v ∈ P: simply, execute a standard differential agreement
protocol and replace every communication between nodes with an execution of the public channel
protocol. We will use AE-DA(n, tn, δ) to denote an a.e. δ-differential agreement protocol for a partially
connected network where the number of privileged parties is n− tn.

3 Remote and Secure Channels on Low-Degree Networks

In this section we construct a graph in which the maximum degree of any node is low, and yet, there
exists a set of nodes (of size a constant times the total number of nodes), such that any two nodes in
this set can communicate with each other privately and reliably, even a constant fraction of the edges
in the graph are corrupted. More specifically, our goal is to construct a graph G = (V, E) on n nodes
with maximum degree d, and a protocol for a secure channel, SCu,v(m), with the following properties.
Let the set of edges that are corrupted by an adversary be denoted by Tedges ⊂ E , |Tedges| ≤ αnd. We
shall show that there exists a set of nodes P ⊆ V, such that |P| ≥ γn, and any two nodes u, v ∈ P can
communicate using SCu,v(m). As mentioned earlier, our main focus will be on building a public channel
PCGu,v(m) that can be used by any two nodes u, v ∈ P to communicate authentically, but publicly, as
this will be sufficient to obtain a protocol for secure channel using the techniques from Garay and
Ostrovsky [15]. Our graph will have maximum degree O(nε), for arbitrary constants 0 < ε < 1, such
that |P| ≥ γn, for constant 0 < γ < 1.

We begin this section by constructing such a public channel scheme on a graph of larger degree,
O(
√
n log n), and then show how to use that construction to obtain a scheme on a graph of maximum

degree O(nε) . Finally, we show how to obtain a secure channel between any two nodes in P.

3.1 Public channels on O(
√
n log n)-degree graphs

We now show how to construct a graph of maximum degree O(
√
n log n), and then present a protocol for

a public channel between any two nodes u, v ∈ P, tolerating a constant fraction of corrupted edges. For
simplicity, we will assume that all messages in our protocols are binary. We remark that this restriction
can be easily removed.

Let G = (V, E) denote a graph on n nodes, dv the degree of vertex v ∈ V, and Paths2(u, v) the
set of all paths between any two vertices u, v ∈ V of length exactly 2. Let G satisfy the following two
properties:

1.
√
n logn

2 ≤ dv ≤ 2
√
n log n for all v ∈ V; and

2. |Paths2(u, v)| ≥ log2 n
2 for all u, v ∈ V.

We will construct our public channel on any graph G satisfying the above properties. We first
observe that such a graph is easy to construct probabilistically. Consider the Erdős-Renyi random
graph G(n, p), with p = logn√

n
; that is, construct the graph G such that there is an edge between every

pair of nodes u and v, independently with probability p = logn√
n

(for simplicity, we allow self-edges).

Then, except with negligible (in n) probability, G(n, p) satisfies the conditions that we require of graph
G. (For completeness, we provide the proof of this in Appendix B.) For brevity, sometimes we will
denote this process by G ← G(n, p). We now present two lemmas for graph G satisfying the two
properties above.
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Lemma 1 In graph G, no edge participates in more than 4
√
n log n paths of length exactly 2 (Paths2(u, v))

between any two vertices u, v ∈ V.

Proof. Since paths in any Paths2(u, v) are of length exactly 2, an edge (w, t) can participate only in
paths of the form {x, y, z} where either (x, y) = (w, t) or (y, z) = (w, t). From graph G’s property 1
above, every vertex has degree ≤ 2

√
n log n. Hence, edge (w, t) participates in no more than 4

√
n log n

paths. �

Let 0 < αe, αn < 1 be constants denoting the fraction of corrupt edges and corrupt nodes in the
graph, respectively. Note that if we are able to design a protocol that can tolerate αe

√
n(n− 1) log n+

2αn
√
n(n − 1) log n edge corruptions, then we will automatically get a protocol that can tolerate an

αe fraction of corrupt edges and an αn fraction of corrupt nodes. Hence, let α = αe + 2αn; we will
construct a protocol that can tolerate an α fraction of corrupt edges (and no corrupt nodes). The next
lemma bounds the number of nodes in G with poor connectivity.

Lemma 2 Let Yu denote the set of nodes v such that the fraction of paths in Paths2(u, v) with no
corrupt edges is ≤ 1

2 . We say that a node u ∈ V is doomed if |Yu| ≥ n
4 . Then, in graph G, at most

64αn nodes are doomed.

Proof. Consider a particular node u. In order to make u doomed, an adversary must corrupt at least
log2 n

4 · n4 paths. Recall (Lemma 1) that every edge can participate in at most 4
√
n log n paths. Since

at most α
√
n(n − 1) log n edges can be corrupt, this contributes to at most 4αn(n − 1) log2 n corrupt

paths. Hence, the total number of nodes that can be doomed is at most 64α(n− 1) < 64αn. �

The set of privileged nodes P in G will simply be the nodes that are not doomed. By Lemma
2 above, we have that |P| ≥ (1 − 64α)n = γn (for some constant 0 < γ < 1). We now present the
construction of a public channel between any two nodes u, v ∈ P:

PCGu,v(m)

1. For every node w ∈ V, u sends m over all paths in Paths2(u,w).

2. Every node w ∈ V, upon receiving m over the different paths, takes the majority of the values
received, and sends this value to v over all paths in Paths2(w, v).

3. For every w, v takes the majority value of all messages received over Paths2(w, v) as the message
received from w. Then, v takes the majority (over all w) of the received values as the value sent
by u.

We now show that if nodes u and v are not doomed, then the protocol described above is a 0-public
channel protocol.

Lemma 3 Let u, v ∈ P (i.e., any two nodes in G that are not doomed), Then, after an execution of
PCGu,v(m), v outputs m with probability 1.

Proof. Since u is not doomed, when u sends m to every node w in the first step of the protocol, the
number of nodes that will receive the value m correctly is more than 3n

4 (since more than half of the
paths from u to each of these nodes is not corrupted). Consider now one of these nodes w that receives
the value correctly from u. Let us discount those nodes w that do not have a majority of uncorrupted
paths to v. Since there can be only less than n

4 such nodes (as otherwise, v would be doomed), this
leaves us with > 3n

4 −
n
4 = n

2 nodes. Each of these nodes have a majority of uncorrupted paths to v and
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hence values sent by these nodes to v in step 2 will be received correctly by v. Hence, v will receive, out
of the n values6, more than n

2 values correctly, and hence when v takes the majority of values received
in step 3 it will output m correctly. Note also, that our protocol is deterministic, and hence v will
furthermore output m correctly with probability 1 when it takes the majority of values received. �

3.2 Public channels and secure channels on O(nε)-degree graphs

In this section we present our main technical result: we show how to recursively increase the number of
nodes in graph G from the previous section, while not increasing its degree (asymptotically), and show
how to implement a public channel on such graphs. We will do this in two steps. Let γ = (1 − 64α).
We will first show the following:

Lemma 4 Let G be a graph on n nodes with maximum degree d. Furthermore, let G be such that it
admits a public channel protocol, PCGu,v(·), between any two nodes u and v from a set of size at least γn
nodes even in the presence of αnd corrupt edges. Then, there exists a graph G′ on n2 nodes of maximum
degree 2d, such that G′ admits a public channel protocol between any two nodes u and v from a set of
size at least γ2n2 nodes even in the presence of α2n2d corrupt edges.

Later on, we will show how to apply the G′ construction from G recursively to obtain the desired
result on graphs of degree O(nε).

Construction of G′. We construct G′ as follows. Take n copies of graph G; we will call each copy a
cloud, and denote them C1, · · · , Cn. Connect the n clouds using another copy of graph G. We do this
by connecting the ith node in cloud Cj to the ith node in cloud Ck by an edge, whenever there is an
edge between Cj and Ck in G. We will call such a collection of edges between cloud Cj and cloud Ck
as a cloud-edge. Note that the maximum degree of any node in G′ is 2d.

We now describe how a node u in cloud Cj will communicate with a node v in cloud Ck—call

this protocol PCG
′
u,v(m). To do this, we will first describe how two clouds that share a cloud-edge will

communicate. Let every node i ∈ Cj hold a value mi as input (note that every node need not hold the
same value mi) and assume cloud Cj wishes to communicate with cloud Ck. We describe a protocol
such that, assuming a large-enough fraction of nodes in Cj hold the same input value, say m, then at
the end of this protocol’s execution a large-enough fraction of nodes in cloud Ck will output m. We
call this protocol CloudTransmitCj ,Ck(mi). Let δ be such that 64αn < δ < (γ − 130α)n.

CloudTransmitCj ,Ck(mi)

1. For every node 1 ≤ i ≤ n, the ith node in Cj sends m to the ith node in Ck through the edge
connecting these two nodes.

2. The nodes in Ck execute a.e. differential agreement protocol AE-DA(n, 64αn, δ) using the value
they received from their counterpart node in Cj as input. (Recall that the existence of protocol
PCGu,v(m) between privileged nodes in G guarantees that one can construct an a.e. differential
agreement protocol; see Section 4 for more details on constructing an a.e. agreement protocol on
G.)

3. Each node takes the output of protocol AE-DA(n, 64αn, δ) as its output in this protocol.

We are now ready to describe PCG
′
u,v(m):

6v receives values from all nodes, including u as well as v itself. This is because, in the first step, u sends m to all nodes
(including u and v).
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PCG
′
u,v(m)

1. u sends m to i for all nodes i in cloud Cj using PCGu,i(m) from Section 3.1. The ith node in Cj
receives message mi.

2. Clouds Cj and Ck now execute protocol PCGCj ,Ck(mi) over the graph G connecting the n clouds7.
Whenever cloud Cw is supposed to send a message to Cz according to the protocol, they use
protocol CloudTransmitCw,Cz(·) over the cloud-edge connecting Cw and Cz.

3. Node v ∈ Ck takes its output in the protocol PCGCj ,Ck(mi) as the value sent by u.

We prove the correctness of the transmission scheme above through a series of lemmas. At a high
level, our proof goes as follows. We will call a cloud Cj as good if it does not have too many corrupt
edges within it (that is, corrupt edges of the form (u, v) with both u and v in Cj); otherwise we will
call the cloud, bad (Definition 4). We first show that an adversary cannot create too many bad clouds
(Lemma 5). Next, we define what it means for a cloud-edge between two clouds Cj and Ck to be
good in Definition 5 (informally, the cloud-edge is good if both Cj and Ck are good clouds and there
are sufficient number of edges connecting privileged nodes in Cj and Ck). We then show that the
adversary cannot create too many bad cloud-edges (Lemma 6). Next, we show that two good clouds
can communicate reliably across a good cloud-edge (Lemma 7). Finally, we show that there exists a
large set of clouds such that any two privileged nodes in any two clouds from this set, can communicate
reliably (Lemma 8). From this, the proof of Lemma 4 readily follows.

Definition 4 We say that a cloud Cj, 1 ≤ j ≤ n, is good if tCj ≤ αnd. Otherwise, we say that the
cloud is bad.

Lemma 5 The number of bad clouds in G′ is at most b tc
αndc.

Proof. By Lemma 2, in order to make a cloud bad, A must corrupt more than αnd edges within the
cloud. Since the total number of edges that the adversary corrupts within clouds is tc, the total number
of bad clouds is at most b tc

αndc. �

Definition 5 We say that a cloud-edge between two clouds Cj and Ck is good if

1. Both Cj and Ck are good, and

2. the number of nodes i such that the ith node in Cj as well as the ith node in Ck are both not doomed
(in the graph G connecting the nodes in the respective cloud), while the edge connecting these two
nodes is corrupt, is ≤ αn.

Otherwise, we say that the cloud-edge is bad.

Lemma 6 The number of bad cloud-edges is at most b tceαnc.

Proof. In order to make a cloud-edge between two good clouds Cj and Ck bad, A must corrupt at
least αn edges connecting them. Since the total number of corrupt inter-cloud edges is tce, the total
number of bad cloud-edges is at most b tceαnc. �

Lemma 7 Let Cj and Ck be two good clouds connected by a good cloud-edge. Further, let all nodes
in Cj that are not doomed (in G) hold value mi = m as input. Then, after executing protocol
CloudTransmitCj ,Ck(mi), all nodes in Ck that are not doomed (in G) output m.

7We again use mi as the input argument, since the input values to nodes in Cj might be different.
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Proof. Since Cj is a good cloud, at most αnd edges in cloud Cj are corrupt. Hence, there are at least
γn nodes in Cj that are not doomed, and that hold value m as input. When CloudTransmitCj ,Ck(mi) is
executed, all these nodes will send m across their edges to their counterpart nodes in Ck. Now, since
a node that is not doomed in Cj may be connected to a node that is doomed in Ck, and some of the
edges connecting two nodes that are not doomed may also be corrupted, the number of nodes that are
not doomed in Ck that receive the value m correctly is at least γn− 64αn− αn = (γ − 65α)n.

Next, in step 2 of protocol CloudTransmitCj ,Ck(mi), the nodes in Ck execute protocol AE-DA(n,
64αn, δ). In cloud Ck, we shall consider every doomed node as corrupt and every node that is not
doomed as honest. By the property of the a.e. differential agreement protocol (cf. Definition 2), we
have that whenever the honest nodes output a value, say, v, we have cv + δ ≥ cv̄, where cv denotes the
number of honest nodes with initial value v (recall that, for simplicity, we are considering the binary
case). From the calculation above, the number of nodes that are not doomed with the correct value m
is at least (γ − 65α)n. Hence, the number of nodes with the wrong value (m̄) is at most 65αn. Since
65αn+ δ < (γ − 65α)n by the way δ is picked (in transmission scheme for G′), we have that the nodes
that are not doomed will never output m̄ in protocol AE-DA(n, 64αn, δ) and hence all the nodes in Ck
that are not doomed will output m after protocol CloudTransmitCj ,Ck(mi). �

Lemma 8 There exists a set of clouds PC , |PC | = γn, such that for all Cj , Ck ∈ PC and for all nodes

u ∈ Cj and v ∈ Ck that are not doomed, v always outputs m after protocol PCG
′
u,v(m).

Proof. Let us consider the graph G that connects the n clouds in graph G′. By Lemma 5 we know
that at most b tc

αndc clouds are bad. Furthermore, we know by Lemma 6 that in this graph G at most
b tceαnc cloud-edges are bad. Thus, in total, in graph G connecting the n clouds A can corrupt b tc

αndc
clouds and b tceαnc cloud-edges. Now, such an adversary can be perfectly simulated by an adversary that
corrupts tc

αnd ·d+ tce
αn cloud-edges in total. Since, the total number of edges that A is allowed to corrupt

in G′ is tc + tcex and is bounded by α2n2d, we get that this new adversary can corrupt at most αnd
cloud-edges.

Now assume, as in Lemma 4, that the graph G that connects the n clouds, admits a public channel
between any two clouds in a set of clouds of size at least γn (since at most αnd cloud-edges are
corrupted), provided that any two clouds that are connected by a good cloud-edge can communicate
reliably. Let this set of γn clouds be PC . By now applying Lemma 7 which precisely gives us the
guarantee that any two clouds that are connected by a good cloud-edge can communicate reliably, the
lemma follows. �

Public channels and secure channels on O(nε)-degree graphs. We now arrive at our main
result by applying the construction of G′ from G recursively, a constant number of times, beginning
with graph G ← G(n,

√
n log n). We first show:

Theorem 3 For all constants 0 < ε < 1 and sufficiently large n, there exists a graph, call it Gmain, on
n nodes, of degree at most dm = O(nε), admitting a 0-public channel protocol between any two nodes
in a set of size at least γmn (for some constant 0 < γm < 1) even in the presence of an αm fraction of
edge corruptions (for some constant 0 < αm < 1).

Proof. Applying Lemma 4 recursively, in conjunction with Theorem 5 (that states that we can obtain
a.e. agreement on any graph that admits a public channel between the nodes in the privileged set),
we get that there exists a graph G′′ on nk (for constant k ≥ 1) nodes, with maximum degree at most
d′′ = 2k−1√n log n and such that G′′ admits a public channel between any two nodes in a set of size
at least γknk nodes even in the presence of αknkd′′ corrupted edges (for constants 0 < α, γ < 1).
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Setting nm = nk, we get that there exists a graph Gmain on nm nodes, with maximum degree at most

dm = 2k−1

k n
1
2k
m log nm = O(nε) (for all constants k ≥ 1 and appropriately chosen 0 < ε < 1) admitting

a public channel between any two nodes in a set of size at least γmnm nodes even in the presence of
αmnmdm corruptions (for some constants 0 < αm, γn < 1). �

As mentioned in the beginning of the section, the availability of public channels in Gmain for a
constant fraction of nodes, together with the techniques in [15], allow those nodes to communicate
securely even in the presence of a constant fraction of corrupted edges.

Theorem 4 For all constants 0 < ε < 1 and sufficiently large n, there exists a graph, call it Gmain, on
n nodes, of degree at most dm = O(nε), admitting a (0, κ2)-secure channel protocol (for negligible κ2)
between any two nodes in a set of size at least γmn (for some constant 0 < γm < 1) even in the presence
of an αm fraction of edge corruptions (for some constant 0 < αm < 1).

The proof of the theorem follows directly from Theorems 3 and 7 (from [15]). The reliability error, κ2,
comes from the SMT-PD (secure message transmission by public discussion) protocol used in [15], and
it is unavoidable when a majority of paths between sender and receiver are corrupted (see, e.g., [14]),
which is the case for privileged nodes in our low-degree setting.

4 A.E. Agreement and Secure Computation with Edge Corruptions
on Low-Degree Networks

In this section, we describe our protocols and derive our conclusions for a.e. agreement and secure
computation on O(nε)-degree networks, achieving security even in the presence of a constant fraction
of edge corruptions.

We start by showing a.e. agreement on graph G, of degree O(
√
n log n) (Section 3.1). The nodes in

G simply execute any standard Byzantine agreement protocol BA(n, 64αn) (α defined below), executing
PCGu,v(m) whenever node u is supposed to send message m to node v according to BA(n, 64αn). Let
Priv be the set of nodes in V that are not doomed at the end of the execution of the protocol. We then
have the following.

Lemma 9 Let α < 1
192 . Then there exists a set P ⊂ V, |P| ≥ γn (for some constant 0 < γ < 1), such

that all nodes in P can reach agreement in the presence of an α fraction of edge corruptions in G. Since
the number of doomed nodes is 64αn, we can obtain agreement when 64α < 1

3 .

Proof. Let P = Priv. From Lemma 3, we have that any two nodes u, v ∈ P can reliably communi-
cate with each other using protocol PCGu,v(m) in the presence of an α fraction of edge corruptions in
G. Hence, nodes in P can reach agreement by executing any standard Byzantine agreement protocol
BA(n, 64αn) (that is, treating the number of doomed nodes as corrupt nodes—recall Lemma 2) and
by simply executing PCGu,v(m) whenever u is supposed to send message m to v in BA, and provided

that 64α < 1
3 (necessary condition on the number of faulty players for Byzantine agreement in the fully

connected setting, yielding α < 1
192). Hence, we have that |P| ≥ (1− 64α)n = γn. �

Since graph G is constructed probabilistically, the following theorem establishes the soundness of
our construction.

Theorem 5 Except with negligible probability, graph G ← G(n, logn√
n

) is a graph of maximum degree

d = 2
√
n log n such that γn nodes in V can reach agreement even in the presence of an α fraction of

edge corruptions (for constant 0 < α < 1).
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The proof of the theorem follows from Propositions 1 and 2, and Lemma 9. As a corollary, we get:

Corollary 1 Except with negligible probability, graph G ← G(n, logn√
n

) is a graph of maximum degree

d = 2
√
n log n such that γn nodes in V can reach agreement even in the presence of an αe fraction of

edge corruptions and an αn fraction of node corruptions (with αe + 2αn ≤ α).

We now turn to our target degree: O(nε), for constant 0 < ε < 1. We first describe an agreement
protocol on graph G′ (Section 3.2), with n2 nodes and degree same as that of G. Applying this recursively,
we will obtain our agreement protocol on Gmain. To reach agreement on G′, the n2 nodes execute any
standard agreement protocol BA(n2, (1−γ2)n2) for a complete graph, replacing the sending of a message
between any two nodes, say, u and v, by an invocation to protocol PCG

′
u,v(m). We now show that almost

all nodes in G′ can reach agreement.

Lemma 10 There exists a set P ⊂ V, |P| ≥ γ2n2 (for some constant 0 < γ < 1), such that all nodes
in P can reach agreement in the presence of an α2 fraction of edge corruptions in G′.

Proof. We put a vertex u in P if the following conditions hold:

1. u ∈ Cj such that Cj ∈ PC (from Lemma 8), and

2. u is not doomed in graph G which connects Cj .

By Lemma 8, since at most αnd cloud-edges are bad, we get that |PC | ≥ γn. Furthermore, since all
clouds in PC are good, we have (from Definition 4) that for any given cloud in PC at most αnd edges
are corrupted, and therefore at least γn nodes in each cloud in PC are not doomed. Hence, |P| ≥ γ2n2.

Also by Lemma 8, any two nodes in P, say, u and v, can communicate reliably using protocol
PCG

′
u,v(m) in the presence of an α2 fraction of edge corruptions in G′. Hence, nodes in P can reach

agreement by executing any standard Byzantine agreement protocol BA(n2, (1 − γ2)n2) for complete
networks, and simply executing PCG

′
u,v(m) whenever u is supposed to send message m to v in BA. �

Applying this protocol recursively (similarly to what is done in the proof of Theorem 3), we get
our a.e. agreement protocol on Gmain, which is a graph on n nodes with maximum degree O(nε) (for
constant 0 < ε < 1). We now state our main conclusion, whose proof follows from Theorems 3 and 7.

Theorem 6 For all sufficiently large n and all constant 0 < ε < 1, there exists a graph Gmain = (V, E)
with maximum degree O(nε), and a set of nodes P ⊆ V, with |P| ≥ µn (for constant 0 < µ < 1)
such that the nodes in P can execute a secure multi-party computation protocol (satisfying the security
definition of [15]), even in the presence of of an α fraction of edge corruptions in Gmain (for some
constant 0 < α < 1).

5 Summary and Open Problems

In this work, we considered the problem of a.e. secure computation in the presence of edge corruptions,
and in particular focussed on the case when a constant fraction of the edges in the network can be
corrupted. We presented graphs of degree O(nε) (for arbitrary constant 0 < ε < 1) on which such
protocols for a.e. secure computation are possible. Several natural questions remain.

While it is easy to show that one can obtain an a.e. secure computation protocol (amongst a
constant fraction of the honest nodes) in the presence of a constant fraction of corrupted edges when

the network is fully connected, whether one can obtain such a protocol when less than a 1
3

rd
fraction of

the edges are corrupted remains an interesting open problem8.

8It can be easily seen that this fraction of corrupted edges is the best that one could hope for.
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Another interesting question is whether we can obtain polynomial-time protocols for a.e. secure
computation when a constant fraction of the edges are corrupted on constant-degree networks. Together,
the results of Upfal [23] and Garay and Ostrovsky [15] show the existence of such a protocol. The running
time of the parties, however, is exponential (in n).
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A Additional A.E. Definitions and Protocols

Here we present the definition of a.e. computation (in the node-corruptions model) found in [15]. The
definition of a.e. computation (in the edge-corruptions model) follows trivially from this.

Definition 6 [GO08] Let G = (V, E), |V| = n be a network. Let Tnodes ⊂ V be the set of corrupted
nodes and let the privileged set of nodes be denoted by P (i.e., the nodes in P will be the nodes for which
we will guarantee the secure computation). Let |Tnodes| ≤ αn (with α being such that |P| ≥ µn, for some
constant 0 < µ < 1, for all sets Tnodes). An n-player two-phase protocol Π is a secure a.e. multi-party
computation protocol if for all sets of corrupted nodes Tnodes controlled by a single adversary A, and
any probabilistic polynomial-time computable function f , the following two conditions are satisfied at
the end of the respective phases:

Commitment phase: During this phase, all players in V commit to their inputs.

Binding: For all Pi ∈ V, there is a uniquely defined value x∗i ; if Pi ∈ P, then x∗i = xi.

Privacy: For all players Pi ∈ P, x∗i is information-theoretically hidden.

Computation phase:

Correctness: For all players Pi ∈ P, f(x∗1, x
∗
2, · · · , x∗n) is the value output by Pi.

Privacy: Let
−→
x∗S denote the vector of committed inputs corresponding to players in a given

set S, and PrivCompA,Π denote the following indistinguishability experiment:

1. The adversary A specifies a set P and input vectors
−−→
x∗P,0,

−−→
x∗P,1 and

−−→
z∗V\P such that

f(
−−→
x∗P,0,

−−→
z∗V\P) = f(

−−→
x∗P,1,

−−→
z∗V\P).

2. A random bit b ← {0, 1} is chosen (by the challenger). Then Π is executed on inputs
−−→
x∗P,b,

−−→
z∗V\P .

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise; we write
PrivCompA,Π = 1 if the output is 1.

Then it holds that

Pr[PrivCompA,Π = 1] ≤ 1

2
+ ε,

where ε is negligible in the input size.

We next state the result from [15]:

Theorem 7 ([15]—informal) Let G = (V, E) be a graph with maximum degree d, and let P ⊆ V be
such that any two nodes u, v ∈ P can execute a κ-public channel protocol, call it PCGu,v(m) (for negligible
κ). Then, there exists a graph G′ with maximum degree 2d such that there exists a set P ′ in G′, with
|P ′| ≥ θ|P| (for some constant 0 < θ < 1) such that

1. Every pair of nodes in G′ can execute a (κ1, κ2)-secure channel protocol, call it SCu,v(m) (for
negligible κ1, κ2);

2. All nodes in P ′ can execute an a.e. MPC protocol (satisfying Definition 6).

The above theorem, as stated, applies to the node-corruptions model. However, it is easy to see that
one can get an analogous theorem in the edge-corruptions model as well, using the same techniques as
in [15].
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B Properties of Erdős-Renyi Random Graphs

We show below that the Erdős-Renyi random graph G(n, p), with p = logn√
n

satisfies the two properties

we need with high probability.

Proposition 1 Let dv be the degree of vertex v ∈ V. Then, in G(n, p), except with probability pd =
2ne−

pn
3 , we have pn

2 ≤ dv ≤ 2pn for all v ∈ V.

Proof. Let d be the expected degree of a vertex v ∈ V. Then d = pn. By the Chernoff bound,
Pr[dv ≤ pn

2 ] ≤ e−2pn and Pr[dv ≥ 2pn] ≤ e−
pn
3 . So Pr[pn2 ≤ dv ≤ 2pn] ≤ 2e−

pn
3 . Applying the union

bound, we get that except with probability 2ne−
pn
3 , pn2 ≤ dv ≤ 2pn for all v ∈ V. �

Proposition 2 Except with probability pa = n2

e2p2n
, we have |Paths2|(u, v) ≥ p2n

2 for all u, v ∈ V in

graph G(n, p).

Proof. For any given vertex w ∈ V, probability that u−w− v is a path of length 2 in the graph is p2.
Hence, the expected number of paths between u and v is p2n. Hence, by the Chernoff bound, we get

that Pr[|Paths2(u, v)| ≤ p2n
2 ] ≤ e−2p2n. Applying the union bound, we get the required proposition. �

Note, that when p = logn√
n

, both pd and pa are negligible (in n) and hence properties 1 and 2 describe

above hold in G(n, logn√
n

), except with negligible probability.
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