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Abstract. We propose a fully private fingerprint matching protocol that compares two fin-
gerprints based on the most widely-used minutia-based fingerprint matching algorithm. The
protocol enables two parties, each holding a private fingerprint, to find out if their fingerprints
belong to the same individual. Unlike previous works, we do not make any simplifying as-
sumption on the matching algorithm or use generic multiparty computation protocols in our
constructions. We employ a commonly-used algorithm that works by first comparing minutia
pairs from the two fingerprints based on their types, locations, and orientations, and then
checking if the number of matching minutia pairs is more than a threshold, and we propose a
concrete, scalable, and modular protocol. We prove security against honest-but-curious adver-
saries and discuss how security against malicious adversaries can be achieved using standard
cryptographic techniques. Our protocol is realized using common cryptographic primitives
and do not require pairing- or lattice-based cryptography.

1 Introduction

Fingerprints authentication systems are increasingly used as means of verifying the identities of
individuals in everyday life. This trend calls for the invention and deployment of more efficient
privacy enhancing technologies to protect fingerprint privacy. Fundamental to any fingerprint-based
system is the fingerprint matching algorithm which decides whether or not two given fingerprints
belong to the same individual. Often the two fingerprints in question are held by two separate
entities that are not willing to share unnecessary information with each other. Hence, protocols are
required that enable the two parties decide whether or not their private fingerprints match without
revealing any further information about them. We call such a protocol a private fingerprint matching
protocol.

A fingerprint is usually represented by a tuple of minutiae, where each minutia is in the form of a
vector of elements representing e.g. the type, location, and orientation of the minutia. The fingerprint
matching algorithms run in two general steps. First minutia pairs from the two fingerprints are
compared based on e.g. the Euclidean distance of their locations and the angular difference of their
orientations, and matching pairs are identified. Then a decision is made on whether the fingerprints
match based on the outcomes of minutia pair matchings, e.g. based on the number and certain
patterns of matching minutiae.

Applications of private fingerprint matching protocols in fingerprint-based authentication sys-
tems range from the more classic match-on-server applications to the newer match-on-card applica-
tions. The former category of applications employ private fingerprint matching as a building block
and include e.g. biometric authentication systems using extended private information retrieval [7,
8]. The latter category of applications employ private fingerprint matching protocols directly and
include e.g. the proposal of [2] in which a protocol similar to private fingerprint matching is used.
Further applications of private fingerprint matching protocols are conceivable in any situation where
the two fingerprints being matched are held by two separate privacy-conscious parties.

Protocols for private fingerprint matching proposed in the literature fall short of providing full
privacy without the presence of a trusted third party. In this paper, we propose a private fingerprint



matching protocol which guarantees that no information other than the outcome of the matching
is revealed to the participating entities.

1.1 Our Contributions

We propose a fully private fingerprint matching protocol that compares two fingerprints based on
the most widely-used minutia-based fingerprint matching algorithm. The protocol enables Alice to
compare a (private) fingerprint that she holds, with another (private) fingerprint that Bob holds,
such that at the end of the protocol, Alice only learns if her fingerprint ‘matches’ Bob’s or not, and
Bob does not learn anything.

Unlike (all but one) previous works, we do not make any simplifying assumption on the matching
algorithm and base our protocol on a commonly used algorithm that compares minutia pairs of the
two fingerprints based on their types, locations, and orientations. A pair of minutiae are defined
to match if they have the same type (i.e. they are both ridge endings, bifurcations, etc.), their
locations are within a threshold Euclidean distance, and their orientations are within a threshold
angular difference. Two fingerprints ‘match’ if the number of their matching minutia pairs is more
than a threshold. The only previous work that is based on the same fingerprint matching protocol
uses generic multiparty computation as a building block. Our protocol is concrete and does not rely
on any generic building blocks.

One of the main building blocks of our constructions is a primitive that we call aided computation.
Consider a polynomial P (x) =

∑
akx

k and a homomorphic encryption algorithm E for which Alice
knows the decryption key. It is known that given {E(ak)}∀k and x, the homomorphic property
of E enables Bob to compute E(P (x)). Aided computation, on the other hand, enables Bob to
compute E(P (x)) given {ak}∀k and E(x). The underlying idea, which has appeared before in the
cryptographic literature, is to simply get Alice to obliviously help with the calculation. This can be
done in situations like ours where Alice is available for interaction and in effect enables the kinds
of computations that only a fully-homomorphic encryption permits, to be performed using only a
homomorphic encryption.

A simplified description of our proposed private fingerprint matching protocol is as follows. Let
{pi}ni=1 and {p′j}mj=1 denote Alice and Bob’s fingerprint minutiae, respectively. We first use the
properties of homomorphic encryption schemes to privately calculate and compare the Euclidean
distance and angular difference for each pair of minutiae (pi, p′j) to given thresholds. Our protocol
enables Bob to calculate E(zij) for each pair (pi, p′j), such that zij is zero if the two minutiae match
and non-zero otherwise. Then, using the aided computation idea, Bob calculates E(R(zij)), where
R is a polynomial that maps zero to one and non-zero values to zero. Let σ =

∑
R(zij). Now, using

the homomorphic property of the encryption scheme E(σ) can be calculated by Bob. Note that σ
equals the total number of minutia matchings. Finally, the homomorphic property can be used to
finalize the protocol and let Alice find out if σ is greater than or equal to a threshold τ or not.

We provide standard two-party computation security definitions for our protocol and prove
its security against honest-but-curious adversaries. Furthermore, we discuss how security against
malicious adversaries can be achieved using standard cryptographic techniques. Our protocol is
constructed using common cryptographic primitives, such as homomorphic encryption schemes,
and do not require pairing- or lattice-based cryptography that imply complex structures and high
computational complexity. As an example application, we show how our private fingerprint matching
protocol can be integrated into a previously proposed fingerprint-based remote authentication system
to enhance the level of privacy it provides for the entities in the system.

1.2 Related Work

There has been proposals in the literature for fingerprint matching protocols in which the two fin-
gerprints are held by two entities. They include the externalized fingerprint matching protocol of [2],
the private fingerprint verification protocol of [21], and the minutiae-based fingerprint identification
protocol of [3]. We compare our protocol to these proposals in detail in Section 3.2. In brief, the first
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two works do not guarantee a high level of privacy, and the last work uses generic multiparty com-
putation protocols in its construction. Therefore, our proposal can be seen as the first fully private
minutiae-based fingerprint matching protocol that does not involve generic multiparty computation.

A considerable number of publications that propose match-on-server fingerprint authentication
systems are based on approaches to fingerprint matching that either are oversimplifying or simply
do not perform as well as minutiae-based matching. Examples of the former include protocols from
[27, 7, 8, 28, 5, 6] that privately calculate the Hamming distance between representations of the two
fingerprints involved. Examples of the latter are the protocols of [1, 17] that privately implement the
FingerCode matching approach which is based on directly comparing the fingerprints as images. Such
approaches do not conform with the commonly-preferred matching algorithms based on minutiae
and hence we do not consider them solving quite the same problem as ours.

Privacy-preserving protocols for matching other biometric features have been proposed in the
literature. Examples include private protocols for identification based on face [26, 12] and iris [3, 4].
Although these works can be seen as related works, best-performing matching algorithms for each
feature are highly specialized and do not necessarily work for other features.

There is a considerable body of work concerning biometric template protection, e.g. [20, 11, 19]
and subsequent works thereof. Although these works can also be employed to realize authentication
systems, they solve inherently different problems and do not consider the case where the inputs to
the matching process are held by separate privacy-conscious entities.

The area of privacy-preserving data mining (see e.g. [22, 29]) and specially fuzzy matching (see
e.g. [18, 9, 31]) is a related area in that protocols for generic fuzzy matching can be viewed as
approximate solutions for the above protocols given appropriate mappings that translate “close”-
enough fingerprints or locations to “similar”-enough strings. However, proposals in this area that
focus on more generic distance functions that do not solve our specific problems efficiently since
precise appropriate mappings that satisfy the above criterion are not easy to find.

2 Preliminaries

In the following we discuss the notation and preliminary definitions that we use throughout the
paper.

2.1 Notation

We use the notation (OA, OB)← P[Alice(IA)↔ Bob(IB)](Ip) to denote that a protocol P between a
party Alice with private input IA and a party Bob with private input IB is run with public protocol
input (i.e. input to both parties) Ip and at the end of the protocol Alice’s output is OA and Bob’s
output is OB. If a party has no input or output we use the placeholder −. We use

c≡ to denote
computational indistinguishability of random variables. PPT stands for probabilistic polynomial-
time. We use E(·) and D(·) short for Epk(·) and Dsk(·) to denote encryption and decryption using
public key pk and secret key sk, respectively.

2.2 Homomorphic Encryption Schemes

An (additively-) homomorphic encryption scheme is one that supports the calculation of addition
in the ciphertext domain. That is, for a homomorphic encryption defined on a plaintext field with
operations (+, ·), with encryption and decryption schemes (E,D), there exists a public operation ⊕
such that for any plaintexts a and b: E(a + b) = E(a) ⊕ E(b). The existence of such an operation
automatically implies that there exists a second public operation � such that for any plaintext a
and any scalar c: E(c · a) = c� E(a).

The above properties enable a range of computations in the ciphertext domain. Among these
is the ability to compute the encrypted value of a polynomial in a fixed point given the encrypted
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values of the polynomial coefficients as follows. Let P (x) =
∑n
k=0 akx

k be a polynomial with coeffi-
cients ak defined over the field. We have the following: E(P (x)) = E(

∑n
k=0 akx

k) =
⊕n

k=0 E(akxk) =⊕n
k=0 (xk � E(ak)).We consider schemes that are semantically secure (i.e. ciphertext-indistinguishable

under chosen-plaintext attack) [16]. An example of such schemes is Paillier’s encryption scheme [24].
We assume that the resulting ciphertexts are rerandomized when � and ⊕ operations are carried
out.

A fully-homomorphic encryption scheme is one that supports the calculation of both addition and
multiplication in the ciphertext domain. That is, for such a scheme there exist two public operations
⊕ and ⊗ such that for any a, b, and c: E(a+ b) = E(a)⊕ E(b) and also E(c · a) = E(c)⊗ E(a). Fully-
homomorphic encryption schemes have been recently realized [13] but they remain too inefficient to
be widely used in practice.

2.3 Security Definitions

Throughout this paper we consider two-party protocols between Alice and Bob in which Bob has
no output and Alice’s output is supposed to be a function of the protocol’s private and public
inputs; that is, we consider protocols of the following description: (f(IA, IB, Ip),−)← P[Alice(IA)↔
Bob(IB)](Ip). In the following we review the security definitions for such protocols which are based
on the simulation paradigm (a.k.a. the real-vs.-ideal-world paradigm) originating from multi-party
computation literature such as [15]. We follow the formalization of [14] and tailor it for protocols of
the above-mentioned description.

A private protocol is one in which both Alice and Bob learn only their respective protocol outputs
and nothing else about the input of the other party. We consider two types of adversary: honest-but-
curious (a.k.a. semi-honest) and malicious (a.k.a. dishonest) parties. An honest-but-curious party is
a party that follows the instructions of the protocol, but may record the communications it receives
and try to infer extra information using such recordings. A malicious party is a part that does not
necessarily follow the instructions of the protocol. First we need to define some notations. The view
of a party during an execution of the protocol is defined as a tuple containing the party’s (private
and public) input, random coins, and all the messages it receives during an execution of the protocol.
The random variable representing the view of Alice (resp. Bob) during an execution of the protocol
P, with Alice’s private input IA, Bob’s private input IB, and public input Ip is denoted here by
ViewP

A(IA, IB, Ip) (resp. ViewP
B(IA, IB, Ip)).

Definition 1 (Privacy against Honest-but-curious Adversaries). We say that P privately
computes a function f for an honest-but-curious Alice (resp. Bob) if there exists a PPT algo-
rithm SimA (resp. SimB) that is able to simulate the view of Alice (resp. Bob) in P, given only
Alice’s (resp. Bob’s) respective (private and public) input and output; i.e., for all IA, IB, and Ip:
ViewP

A(IA, IB, Ip)
c≡ SimA(IA, Ip, f(IA, IB, Ip)) (resp. ViewP

B(IA, IB, Ip)
c≡ SimB(IB, Ip)).

Intuitively, the above definition guarantees that any information revealed to a party during the
protocol can be generated by the party on its own from its input and output. Hence, the parties
gain no extra “knowledge” as a result of participating in the protocol other than what they are
supposed to. For definitions of security against malicious adversaries please refer to [14].

2.4 Fingerprint Minutiae and Fingerprint Matching

The most common method for fingerprint matching is through extraction of minutiae, comparing
them based on their types, locations, and orientations, and deciding based on the number of minutia
matchings [23]. A fingerprint minutia is in the form (t, x, y, θ), where t, (x, y), and θ determine the
type, location, and orientation of the minutia. Minutia type represents the fact that the minutia is
e.g. either a ridge ending, bifurcation point, or of other types. We also assume that the size and
orientation of each fingerprint is adjusted after acquisition. To this end, first the orientation needs to
be adjusted using widely-used pre-alignment techniques (see [23] and the references within.). Then
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(−,E(P (β)))← AidComp[Alice(sk)↔ Bob(E(β), P )](pk, η)

1. Bob randomizes its input by computing E(rβ) = r � E(β) for a random r, and sends the result to
Alice.

2. Alice decrypts the received ciphertext to get rβ, calculates {(rβ)k}ηk=2, encrypts the results to
ciphertexts {E((rβ)k)}ηk=2, and sends them to Bob.

3. Bob derandomizes the results by computing for all k = 2 to η: E(βk) = r−k � E((rβ)k) and then
computes E(P (β)) =

⊕η
k=0 (ak � E(βk)).

Fig. 1. The aided computation protocol

the resulting fingerprint image can be resampled/resized so that the resolution/size of the image
conforms to a fixed value.

Two minutiae are considered to match if their types are the same, their locations are closer than
a threshold Euclidean distance dE, and their orientations are within an angular difference da of
each other. Let us define the following distance functions for two minutiae p = (t, x, y, θ) and p′ =
(t′, x′, y′, θ′): disE((x, y), (x′, y′)) =

√
(x− x′)2 + (y − y′)2 and disa(θ, θ′) = min(|θ−θ′|, 2π−|θ−θ′|)

The two minutiae are defined to match if t = t′, disE((x, y), (x′, y′)) ≤ dE, and disa(θ, θ′) ≤ da.
A fingerprint matching can be carried out by checking if the two sets of extracted minutiae have

at least a threshold number of matching minutiae in common. In this paper we propose a protocol
to carry out the above fingerprint matching privately.

2.5 Aided Computation

Assume Alice is in possession of a decryption key for a homomorphic encryption scheme. The basic
idea in aided computation is for Bob to employ the ability to interact with Alice to enable him to use
the homomorphic encryption scheme as a fully homomorphic one. That is, Alice aids Bob in carrying
out operations in the encrypted domain that are not supported by the homomorphic encryption but
are possible with the knowledge of the secret key. The aid by Alice must be performed obliviously to
ensure privacy of the plaintexts corresponding to the involved ciphertexts. This is achieved simply as
follows. Bob randomizes the operands, sends the randomized versions to Alice, who then performs the
calculations on the randomized plaintexts and sends them back to Bob. Bob eventually derandomizes
the received quantity and gets the desired result. Basically, for any encrypted multiplicands E(a)
and E(b), assuming non-zero a and b, Bob chooses r and s as randomizers and calculates and sends
E(ra) = r� E(a) and E(sb) = s� E(b) to Alice. Alice decrypts the received quantities and retrieves
ra and sb, calculates the product ra sb, encrypts it, and sends E(ra sb) back to Bob. Bob is now
able to calculate an encryption of the product of a and b by derandomizing the encrypted product
of ra and sb that he receives from Alice as follows: E(ab) = r−1s−1 � E(ra sb). Note that, assuming
non-zero a and b, Alice only sees randomized values during this interaction and will not find out
any information about a, b, or even ab.

In our protocols, given E(β) Bob often needs to calculate E(P (β)) for a polynomial P (x) =∑η
k=0 akx

k. Hence we formalize an aided computation protocol AidComp in which Alice has private
input sk, Bob has private input (E(β), P ), the public input is a pair (pk, η), and Bob needs to
calculate E(P (β)). The protocol we propose is based on the idea mentioned above and depicted in
Figure 1. We will use this protocol as a building block for our constructions.

An important note is that the protocol requires non-zero β so that E(β) and E(rβ) do not leak
information about β. Let us call this the non-zero requirement. We make sure this condition is met
in our constructions.

3 The Private Fingerprint Matching Protocol

We propose the following protocol between Alice and Bob for private fingerprint matching. Let Alice
have as private input a set of minutiae F = {p1, . . . , pn} where for each i = 1 to n: pi = (ti, xi, yi, θi)
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and Bob have as private input a set of minutiae F ′ = {p′1, . . . , p′m} where for each j = 1 to m:
p′j = (t′j , x

′
j , y
′
j , θ
′
j). Alice’s private output of the protocol is the binary predicate whether or not

there are at least τ number of her minutiae matching those of Bob’s, where two minutiae are defined
to match if their types are the same, their locations are closer than a threshold Euclidean distance
dE, and their orientations are within an angular difference da of each other.

Let us denote the set of all possible minutia types by T . Consider the set of minutiae F =
{p1, . . . , pn} where for each i = 1 to n: pi = (ti, xi, yi, θi). For each pi, let the polynomial Qi be
defined and calculated via the Lagrange interpolation such that we have the following:

Qi(x) =
|T |−1∑
k=0

bikx
k =

{
0 if x = ti
1 if x ∈ T \ {ti}

(1)

Let us denote the set of all possible Euclidean distances (resp. angular differences) between two
arbitrary points (resp. orientations) by DE (resp. D′a). Let ∆(dE) (resp. ∆′(da)) denote the subset of
DE (resp. D′a) that includes the quantities less than or equal to dE (resp. da). Assume NE = |DE| and
Na = |Da|. Let the polynomials QE and Qa be defined and calculated via the Lagrange interpolation
such that we have the following:

QE(x) =
∑NE−1
k=0 ekx

k =
{

0 if
√
x− 1 ∈ ∆(dE)

1 if
√
x− 1 ∈ DE \∆(dE)

and

Qa(x) =
∑Na−1
k=0 akx

k =
{

0 if
√
x− 1 ∈ ∆′(da)

1 if
√
x− 1 ∈ D′a \∆′(da)

(2)

Let the polynomialsR and S be defined for τ ,m and n and written as follows, where τ ′ = min(m,n)−
τ + 1.

R(x) =
∑3
k=0Rkx

k =
{

1 if x− 1 = 0
0 if x− 1 ∈ {1, 2, 3} and

S(x) =
∑τ ′

k=0 skx
k =

∏min(m,n)
k=τ (x− 1− k)

(3)

Let ‖F |F ′‖dE,da return the number of minutia pairs that match in the two fingerprints F and F ′.
We propose the private fingerprint matching protocol PFM depicted in Fig. 2.

Through the initial steps of the protocol, Alice and Bob’s interaction enables Bob to compute
E(Qi(t′j)), E(QE(d2

ij+1)), and E(Qa(γ2
ij+1)). Based on Equation 1, Qi(t′j) is zero if ti = t′j and is one

otherwise. Similarly, based on Equation 2, QE(d2
ij + 1) is zero if dij ∈ ∆(dE) and is one otherwise;

and Qa(γ2
ij + 1) is zero if γij ∈ ∆′(da) and is one otherwise. Hence, zij is zero if the two minutiae

pi and p′j match and is one, two, or three otherwise. Therefore, based on Equation 3, R(zij + 1) is
zero if pi and p′j match and is one otherwise. This implies that σ =

∑
∀i,j R(zij + 1) reflects the

total number of minutia pair matchings ‖F |F ′‖dE,da . Now, based on Equation 3, S(σ + 1) is zero if
σ ≥ τ and is non-zero otherwise. Hence, r′S(σ) is equal to zero if ‖F |F ′‖dE,da ≥ τ and is random
otherwise. Hence, the protocol correctly computes the predicate ‖F |F ′‖dE,da ≥ τ . Note that the the
non-zero requirement is met.

Security against honest-but-curious adversaries is guaranteed by Theorem 1. The proof comes
in Appendix A. Security against malicious adversaries can be achieved via standard cryptographic
techniques. Further discussion on how to achieve this can be also found in the appendix.

Theorem 1. Protocol PFM privately computes the predicate ‖F |F ′‖dE,da ≥ τ for an honest-but-
curious Alice and an honest-but-curious Bob.

3.1 Practical Considerations

The number of minutiae used by Alice and Bob in protocol PFM, namely n and m, are considered
to be public. If privacy of the number of minutiae is required, Alice and Bob can simply agree on a
size (or two sizes) beforehand and then adjust the number of minutiae they use as input by either
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(‖F |F ′‖dE,da ≥ τ,−)← PFM[Alice(F )↔ Bob(F ′)](n,m, dE, da, τ)

1. Alice generates a key pair for a homomorphic encryption scheme and sends the public key to Bob.
Let the polynomials Qi, QE, Qa, R, and S be defined as in Equations 1–3. Let i ∈ {1, . . . , n} and
j ∈ {1, . . . ,m}.

2. Alice computes for all i: {E(bik)}|T |−1
k=0 , E(x2

i + y2
i ), E(xi), E(yi), E(θ2i ), and E(θi) and sends them

to Bob.
3. Let dij = disE((xi, yi), (x

′
j , y
′
j)) and γij = |θi − θ′j |. Bob computes for all i and j: E(d2

ij + 1) =

E(x2
i +y2

i )⊕ (−2x′j�E(xi))⊕ (−2y′j�E(yj))⊕E(x′
2
j +y′

2
j )⊕E(1) and E(γ2

ij +1) = E(θ2i )⊕ (−2θ′j�
E(θi))⊕ E(θ′

2
j )⊕ E(1).

4. Aided computation ∀i, j:
(−,E(QE(d2

ij + 1)))← AidComp[Alice(sk)↔ Bob(E(d2
ij + 1), QE)](pk,NE − 1).

5. Aided computation ∀i, j:
(−,E(Qa(γ2

ij + 1)))← AidComp[Alice(sk)↔ Bob(E(γ2
ij + 1), Qa)](pk,Na − 1).

6. Let zij = Qi(t
′
j) + QE(d2

ij + 1) + Qa(γ2
ij + 1). Bob calculates for all i and j: E(Qi(t

′
j)) =⊕|T |−1

k=0 (t′
k
j � E(bik)) and E(zij + 1) = E(Qi(t

′
j))⊕ E(QE(d2

ij + 1))⊕ E(Qa(γ2
ij + 1))⊕ E(1).

7. Aided computation ∀i, j:
(−, {E(R(zij + 1)))← AidComp[Alice(sk)↔ Bob(E(zij + 1), R)](pk, 3).

8. Let σ =
∑
∀i,j R(zij + 1). Bob computes E(σ + 1) =

⊕
∀i,j E(R(zij + 1))⊕ E(1).

9. Aided computation:
(−,E(S(σ + 1)))← AidComp[Alice(sk)↔ Bob(E(σ + 1), S)](pk, τ ′).

10. Bob calculates E(r′S(σ + 1)) = r′ � E(S(σ + 1)) for a random r′ and sends it to Alice.
11. Alice decrypts the received ciphertext and decides that ‖F |F ′‖dE,da ≥ τ if the resulting plaintext

is equal to zero and ‖F |F ′‖dE,da < τ otherwise.

Fig. 2. The private fingerprint matching protocol

omitting a number of minutiae or adding a number of chaff minutiae to their set. Note that since the
typical size of a cryptographic plaintext domain is much larger than that of a domain of quantities
representing minutiae, it is always possible to generate safe ‘unmatchable’ chaff minutiae for the
above purpose.

Let µ denote the number of minutia pair matchings that need to be carried out in the fingerprint
matching protocol. In the case of the PFM protocol in Fig. 2, we have µ = nm; that is, we are
assuming that each and every minutia of F is matched against every minutia of F ′. Alice’s compu-
tational complexity in PFM is dominated by O(n|T |+ µ(NE +Na) + τ ′) encryption computations.
Bob’s computational complexity in PFM is dominated by O(µ(|T |+NE +Na) + τ ′) computations of
the operations ⊕ and �. Now note that, the number of possible minutia types |T | is normally only
a few, including usually the two types: ridge ending and bifurcation, and possibly up to a couple
more. In addition, τ ′ is less than min(m,n). Considering the above two facts, Alice’s computational
complexity boils down to O(µ(NE+Na)) encryption computations and Bob’s does to O(µ(NE+Na))
computations of the operations ⊕ and �.

NE and Na respectively represent the number of possible Euclidean distances and angular dif-
ferences between two minutiae. Consider a fingerprint scanner that outputs fingerprints of the size
w × h pixels and angular precision of 2π

a radians. Each extracted minutia hence can be represented
by coordinates x ∈ {1, . . . , w} and y ∈ {1, . . . , h} and an orientation θ ∈ {0, 1, . . . , a − 1} (repre-
senting radian values {0, 2π

a , . . . , (a− 1) 2π
a }). Now, we have around NE ≈ wh/2 possible Euclidean

distances and Na = a − 1 possible angular differences between two minutiae. Practically, w and h
can have typical values of up to hundreds of pixels but a is usually less than a hundred. Hence the
computation complexity is normally dominated by the O(µNE) factor.

In practice, there is no need to match every minutia of F against every minutia of F ′. A large
number of minutia matchings can be avoided by fingerprint partitioning; that is, each fingerprint
Cartesian plane is divided into a number of regions and minutia matching is only carried out for pairs
of minutiae belonging to the same region in the two fingerprints. The partitioning scheme is public
and agreed upon by Alice and Bob prior to the execution of the protocol. Assuming that partitioning
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is in a way that minutiae are equally likely to fall in regions, each fingerprint region is expected to
include n/p minutiae (m/p respectively), where p is the number of regions. Hence, for each pair of
corresponding regions (m/p)(n/p) = mn/p2 minutia matchings are required, which implies that the
total number of minutia matchings is expected to be µ = p×mn/p2 = mn/p. Therefore, the total
number of required minutia matchings is reduced by a factor of p using fingerprint partitioning.
Furthermore, since the minutia pairs being matched belong to the same region, the number of
possible Euclidean distances between the two minutiae is also reduced by a factor of p. The reason
is that each region has an expected dimension of w√

p×
h√
p . Hence, the total computational complexity

of the protocol is reduced by a factor of around p2 using fingerprint partitioning.
Note that as the number of regions p grows, the precision of fingerprint matching decreases,

because matchings between the minutia pairs on the immediate sides of the regions borders are lost
as a result of partitioning. Hence there is a trade-off between the computational cost of the protocol
and its precision.

Protocol PFM can be used along with fingerprint partitioning with the modification that all the
ciphertexts computed by Bob corresponding to minutia pairs (pi, p′j) are only for the pairs for which
both pi and p′j belong to the same fingerprint region rather than for all possible pairs of minutiae.
These ciphertexts include E(Qi(t′j)), E(d2

ij), E(γ2
ij), E(QE(d2

ij)), E(Qa(γ2
ij)), E(zij), and E(R(zij)).

To this end, Alice and Bob can carry out the internal steps of algorithm PFM region-by-region. A
similar method as was discussed before can be used to hide the number of minutiae in each region
if needed.

Let us consider a typical fingerprint reader that can record n ≈ 30 minutia points with an
angular precision of π

25 radians, i.e. a = 50. Also consider a typical dimension of 250 × 350 pixels,
i.e. w = 250 and h = 350. Employing a partitioning with around a hundred regions reduces the
computation complexity of PFM down to as little as around a hundred encryptions for Alice and
around a hundred computations of operations ⊕ and � for Bob, a price that seems quite affordable
to be paid for total privacy. Note that homomorphic encryptions are realizable using textbook
cryptography and do not require comparatively less widespread, more complex, and computationally
more expensive systems such as pairing- or lattice-based cryptography.

We discuss an application of our private fingerprint matching protocol in realizing a remote
fingerprint authentication system in Appendix B.

3.2 Comparison

Among the many related works in the literature, there are three proposals that deal with the same
problem of private fingerprint matching as we define: the private fingerprint verification protocol
by Kerschbaum, Atallah, M’Räıhi, and Rice [21] (KAMR from now on), the externalized fingerprint
matching protocol by Barral, Coron, and Naccache [2] (BCN from now on), and the minutiae-based
fingerprint identification protocol of Blanton and Gasti [3] (BG from now on). We compare our
protocol with these protocols.

The protocol KAMR consists of an alignment phase and a comparison phase. In the alignment
phase, the two fingerprints are aligned based on the types, locations, and orientations of their
minutiae. During this phase, randomized pairs of minutiae (belonging to the same fingerprint) are
sent from one party to the other. In the comparison phase, the fingerprint template containing
minutiae is first rasterized to a binary matrix with each element representing if a square-shaped
region of the template contains any minutiae or not. Then a private Hamming distance calculation
protocol is carried out to find the Hamming distance between the two matrices.

In terms of privacy, the protocol reveals type, location distance, and orientation difference of
minutia pairs in the alignment phase and the Hamming distance between the rasterized templates
in the comparison phase. The Hamming distance between the rasterized templates in turn reveals
the number of minutiae that have the same approximate location in the two fingerprint templates.
In contrast, our PFM protocol only reveals the binary outcome of the matching between the two
fingerprints.
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The underlying fingerprint matching algorithm of the protocol KAMR is based on merely the
locations of the minutiae; that is, a minutia pair is considered a matching if they belong to the
same square-shaped region of a fingerprint. Furthermore, the square-shaped partitioning of the
fingerprint decreases the accuracy of minutiae matching. In contrast, the underlying fingerprint
matching algorithm of our protocols is based on both the locations and the orientations of minutiae.
In addition, minutia locations are compared based on the Euclidean distance, a meter which is
more natural and more precise than the approximate method of checking whether or not minutiae
belong to the same square-shaped region. Our protocols are, unlike KAMR, compatible with the most
widely-used fingerprint matching algorithms based on Euclidean distances and angular differences
of minutiae.

The protocol BCN involves one party sending a set of minutiae to the other party that includes
both true minutiae extracted from a fingerprint and false minutiae generated randomly. The receiving
party is challenged to distinguish the true minutiae from the false ones.

The protocol does not provide a reasonable level of privacy since the true fingerprint minutiae are
revealed in plaintext along with the false minutiae. For example, if the set of minutiae includes n true
and n′ false minutiae, then any randomly chosen minutia in the set is a true minutia with probability
n

n+n′ . Furthermore, because the false minutiae remain unchanged between multiple protocol runs,
all interactions involving the same fingerprint are linkable.

Nevertheless, it should be noted that both of the above protocols incur less computational cost
than our protocols. Let us denote the ⊕ and � homomorphic operations in the ciphertext domain
simply by homomorphic operations. Protocol KAMR has a computation complexity of O(nm) en-
cryptions on one side and O(nm) homomorphic operations on the other side, where n and m are
the number of minutiae in each fingerprint on the two sides. Protocol BCN incurs a computational
complexity of only O(n) exclusive-ors on one side and O(nm) normal minutia matchings on the other
side. However, our PFM protocol incurs a computational complexity of O(µNE) encryptions on one
side and O(µNE) homomorphic operations on the other side, where µ is the number of minutia pair
matchings (which is initially mn but can be reduced by partitioning), and NE and dE respectively
denote the number of possible Euclidean distances (which can also be reduced by partitioning) and
the threshold Euclidean distance.

The BG protocol calculates the distance between minutiae using homomorphic encryption tech-
niques similar to ours, but implements the functionalities of counting of the number of matches
and comparing it with the threshold, using generic private multiparty computation protocols of
garbled circuit evaluation [30] and oblivious transfer [25]. Although the authors show that such
generic techniques can be practical for specific choices of parameters and schemes, the constructions
lack modularity and immediate scalability. In particular, the protocol seem to work only for a spe-
cific homomorphic encryption scheme and the circuits for performing the counting and comparing
functionalities need to be redesigned in case of a change in specific parameters such as the num-
ber of minutiae in a fingerprint. In contrast, our protocols work for any choice of parameters and
homomorphic encryption schemes and are scalable.

In terms of privacy our PFM protocol and BG provide the same guarantee; that is, they both
guarantee that no information is revealed to the parties other than the binary output of fingerprint
matching.

Based on the above discussions, our fingerprint matching algorithms (as well as BG) are more
suitable for cases in which privacy is crucial and the parties are willing to pay the higher com-
putational complexity price, whereas KAMR protocol provides less privacy for less computational
complexity, and finally BCN is more suitable for situations where computational resources are scarce
on one side.

4 Concluding Remarks

We have proposed for the first time a protocol for private fingerprint verification without generic
protocols. The proposed protocol has a linear computation complexity in the number of minutia

9



matchings and provides the highest possible privacy guarantee, and hence is highly suitable for
match-on-server biometric applications. Designing private fingerprint matching protocols with less
computation complexity that are more suitable for match-on-card applications remains a challenging
problem for future research.
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A Security of PFM

A.1 Proof of Theorem 1

Proof. For protocol PFM we have: IA = F = {p1, . . . , pn} where for each i: pi = (ti, xi, yi, θi), IB =
F ′ = {p′1, . . . , p′m} where for each j: p′j = (t′j , x

′
j , y
′
j , θ
′
j), Ip = (n,m, dE, da, τ), and f(IA, IB, Ip) =

(‖F |F ′‖dE,da ≥ τ). Let us denote the random values Bob generates for the four aided computation
protocols during PFM respectively by {uij}∀i,j , {vij}∀i,j , {rij}∀i,j , and ρ. Let us also define ∀i, j:
ψij = uij(d2

ij + 1), χij = vij(γ2
ij + 1), ωij = rij(zij + 1), ς = ρ(σ + 1), C = E(r′S(σ + 1)).

First we prove security against an honest-but-curious Alice. To do so we introduce an algorithm
SimA that can simulate Alice’s view which includes her inputs, randomnesses she uses, and messages
she receives. Alice has inputs IA and Ip and generates no random values (other than those for
encryption) during the protocol. She receives the following messages from Bob during an execution of
PFM: {E(ψij)}∀i,j , {E(χij)}∀i,j , {E(ωij)}∀i,j , E(ς), and eventually C. Note that all these ciphertexts
are encryptions of random plaintexts except for the last one. E(r′S(σ + 1)) is either an encryption
of zero if ‖F |F ′‖dE,da ≥ τ or an encryption of a random plaintext otherwise. We define SimA as
follows. It takes input IA, Ip, and f(IA, IB, Ip). It generates random plaintexts {(ψ̃ij , χ̃ij , ω̃ij)}∀i,j ,
ς̃, and P̃ . It then sets C̃ = E(0) if f(IA, IB, Ip) is true and C̃ = E(P̃ ) otherwise. Eventually, it
outputs IA and Ip as Alice’s inputs and {E(ψ̃ij)}∀i,j , {E(χ̃ij)}∀i,j , {E(ω̃ij)}∀i,j , E(ς̃), and eventually
C̃ as the simulated messages she receives. The distribution of this output is equal to (and hence
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indistinguishable from) the distribution of ViewPFM
A (IA, IB, Ip). Hence the protocol is secure against

an honest-but-curious Alice.
Next, we prove security against an honest-but-curious Bob. To do so we introduce an algorithm

SimB that can simulate Bob’s view includes his inputs, randomnesses he uses, and messages he
receives. His inputs are IB and Ip. The random values he generates include: {uij}∀i,j , {vij}∀i,j ,
{rij}∀i,j , ρ, and r′. The messages he receives include:

( pk, { {E(bik)}|T |−1
k=0 ,E(x2

i + y2
i ),E(xi),E(yi),E(θ2i ),E(θi) }∀i,

{ {E(ψkij)}
NE−1
k=2 , {E(χkij)}

Na−1
k=2 , {E(ωkij)}3k=2 }∀i,j , {E(ςk)}τ ′

k=2 ).

Let SimB be defined as follows. It takes input IB and Ip. It first generates a key pair (s̃k, p̃k) for
a homomorphic encryption scheme and also picks a random fingerprint F̃ = {p̃1, . . . , p̃n} where
for each i: p̃i = (t̃i, x̃i, ỹi, θ̃i). For each p̃i, let the polynomial Q̃i be defined and calculated via the
Lagrange interpolation such that we have the following:

Q̃i(x) =
|T |−1∑
k=0

b̃ikx
k =

{
0 if x = t̃i
1 if x ∈ T \ {t̃i}

Let the polynomials QE, Qa, R, and S be defined as in Equations 2 and 3. It then runs the protocol
for both Alice and Bob, assuming that the private input for Alice is F̃ , the private input for Bob is
IB, and the public input is Ip. Hence it calculates the following results and outputs for all i and j for
each step of the protocol, respectively: {E(b̃ik)}|T |−1

k=0 , E(x̃2
i + ỹ2

i ), E(x̃i), E(ỹi), E(θ̃2i ), and E(θ̃i) for all
i = 1 to n for Alice, E(Q̃i(t′j)), E(d̃2

ij+1), E(γ̃2
ij+1), E(ψ̃ij) where ψ̃ij = ũij(d̃2

ij+1), and E(χ̃ij) where
χ̃ij = ṽij(γ̃2

ij+1) for Bob, {E(ψ̃kij)}
NE−1
k=2 , and {E(χ̃kij)}

Na−1
k=2 for Alice, E(QE(d̃2

ij+1)), E(Qa(γ̃2
ij+1)),

E(z̃ij+1), and E(ω̃ij) where ω̃ij = r̃ij(z̃ij+1) for Bob, {E(ω̃kij)}3k=2 for Alice, E(R(z̃ij+1)), E(σ̃+1),
and E(ς̃) where ς̃ = ρ̃(σ̃ + 1) for Bob, {E(ς̃k)}τ ′

k=2 for Alice, and finally E(r̃′S(σ̃ + 1)) for Bob.
Eventually the protocol outputs IB and Ip as Bob’s inputs, {ũij}∀i,j , {ṽij}∀i,j , {r̃ij}∀i,j , ρ̃, and r̃′ as
the simulated random values he generates, and the following as the simulated messages he receives:

( p̃k, { {E(b̃ik)}|T |−1
k=0 ,E(x̃2

i + ỹ2
i ),E(x̃i),E(ỹi),E(θ̃2i ),E(θ̃i) }∀i,

{ {E(ψ̃kij)}
NE−1
k=2 , {E(χ̃kij)}

Na−1
k=2 , {E(ω̃kij)}3k=2 }∀i,j , {E(ς̃k)}τ ′

k=2 ).

We claim that the distribution of this output is indistinguishable from the distribution of ViewPFM
B (IA, IB, Ip)

for all IA, IB, and Ip. Otherwise, there exists some set of inputs F , F ′, and (n,m, dE, da, τ) such
that SimB(F ′, (n,m, dE, da, τ)) and ViewPFM

B (F, F ′, (n,m, dE, da, τ)) are distinguishable. This implies
that there exists a PPT algorithm that can distinguish the two pairs (Ã, B̃) and (A,B), where:

Ã = ( { {E(b̃ik)}|T |−1
k=0 ,E(x̃2

i + ỹ2
i ),E(x̃i),E(ỹi),E(θ̃2i ),E(θ̃i) }∀i ) ,

B̃ = ( { {E(ψ̃kij)}
NE−1
k=2 , {E(χ̃kij)}

Na−1
k=2 , {E(ω̃kij)}3k=2 }∀i,j , {E(ς̃k)}τ

′

k=2 ) ,

A = ( { {E(bik)}|T |−1
k=0 ,E(x2

i + y2
i ),E(xi),E(yi),E(θ2i ),E(θi) }∀i ) , and

B = ( { {E(ψkij)}
NE−1
k=2 , {E(χkij)}

Na−1
k=2 , {E(ωkij)}3k=2 }∀i,j , {E(ςk)}τ

′

k=2 ) .

since other parts of the simulator output and the view have equal distributions, respectively. Now
note that B is calculated based on the description of the protocol using A, F ′, {uij , vij , rij}∀i,j , and
ρ. In addition, B̃ is also calculated based on the same set of instructions, but using a different set
of inputs, namely Ã, F ′, {ũij , ṽij , r̃ij}∀i,j , and ρ̃. Hence, because (F ′, {uij , vij , rij}∀i,j , ρ) has the
same distribution as (F ′, {ũij , ṽij , r̃ij}∀i,j , ρ̃), if A and Ã are indistinguishable then B and B̃ are
indistinguishable as well. Thus the fact that there exists a PPT algorithm that can distinguish the
two pairs implies that A and Ã are distinguishable. Using a hybrid argument, this implies that at
least one of the elements of A is distinguishable from its counterpart in Ã, which is in contradiction
with the semantic security of the encryption scheme. ut
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A.2 Achieving Security against Malicious Adversaries

Security against malicious adversaries can be achieved via standard cryptographic techniques. To
this end, the following steps need to be added to the protocol:

– before Alice starts, Bob must generate random values {uij}∀i,j , {vij}∀i,j , {rij}∀i,j , ρ, and r′ and
send a commitment to each to Alice;

– then along with pk, Alice must provide a proof that she knows the corresponding secret key;
– along with {E(bik)}|T |−1

k=0 , E(x2
i + y2

i ), E(xi), E(yi), E(θ2i ), and E(θi), Alice must provide proofs
that she knows some set of minutiae that generate these ciphertexts;

– along with E(uij(d2
ij + 1)) and E(vij(γ2

ij + 1)), Bob must provide proofs that he knows {uij}∀i,j ,
{vij}∀i,j , and some set of minutiae such that {uij}∀i,j , {vij}∀i,j are the values committed before
and E(uij(d2

ij + 1)) = uij � [E(x2
i + y2

i )⊕ (−2x′j � E(xi))⊕ (−2y′j � E(yi))⊕ E(x′j
2 + y′j

2)⊕ E(1)]
and E(vij(γ2

ij + 1)) = vij � [E(θ2i )⊕ (−2θ′j � E(θi))⊕ E(θ′2j )⊕ E(1)];
– along with {E((uij(d2

ij + 1))k)}NE
k=2 and {E((vij(γ2

ij + 1))k)}Na
k=2, Alice must provide proofs that

they are encryptions of (uij(d2
ij + 1))k) and (vij(γ2

ij + 1))k;
– along with E(rij(zij+1)), Bob must provide proofs that these ciphertexts are computed correctly

based on the committed uij , vij , and rij , and the ciphertexts received from Alice;
– along with {E((rij(zij + 1))k)}3k=2, Alice must provide proofs that they are encryptions of

(rij(zij + 1))k;
– along with E(ρ(σ + 1)), Bob must provide a proof that this ciphertext is computed correctly

based on the committed rij and ρ, and the ciphertexts received from Alice;
– along with {E((ρ(σ+1))k)}τ ′

k=2, Alice must provide proofs that they are encryptions of (ρ(σ+1))k;
and

– finally along with E(r′S(σ + 1)), Bob must provide a proof that he knows an r′ such that r′ is
the value committed before and E(r′S(σ + 1)) = r′ �

⊕τ ′

k=0 (sk � ρ−k � E((ρ(σ + 1))k)).

Again, assuming that Paillier homomorphic encryption and Pedersen trapdoor commitment are used,
all the above proofs are instances of standard discrete-logarithm based witness-indistinguishable
proofs that can be realized using techniques in the literature. Furthermore, the witness indistin-
guishability of the proofs and the trapdoor property of the commitment scheme enables us to prove
security against malicious adversaries.

B An Application of PFM in Remote Fingerprint Authentication

As an example match-on-server application, we show that our private fingerprint matching protocol
can be used to implement a (remote) fingerprint-based authentication system.

Let us first briefly introduce the system model. The system naturally includes human users U who
wish to be authenticated to a possibly remote authentication servers S. Beside the above entities,
the model also consists of authentication clients C that extract users’ fingerprints through sensors
and databases DB that store user fingerprint information. The clients are assumed to be tamper-
proof and trusted entities. The databases are also trusted. Links between entities are private and
authenticated.

We describe how to use our private fingerprint matching protocol to authenticate a user U to a
server S in the above system. S is assumed to hold a key pair for a homomorphic encryption scheme.
In the enrollment phase, U registers her (real or pseudonymous) identity ID with S and also registers
the same ID along with her fingerprint F ′ with a database DB. In the authentication phase, first
a client C captures a fresh fingerprint F from the user. Then, C, S, and DB run the protocol PFM,
with C and S playing Alice and DB playing Bob. C and S carry out steps of the protocol that require
the knowledge of F and sk, respectively. Note that in each step of the protocol only one of these two
is required. ID identifies the record in the database that must be used as an input to the protocol.
At the end, S gets a binary output indicating whether or not the freshly captured fingerprint by C
matches the registered fingerprint at the database.
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A secure PFM protocol guarantees that S does not find out anything about the registered fin-
gerprint other than the outcome of matching and DB does not find out anything about the fresh
fingerprint. Note that since C is assumed to be trusted, our security proofs still hold in the new
three-party scenario.

In an alternative scenario, ID is not revealed to DB during the protocol and DB calculates and
withholds E(r′S(σ)) for multiple records in the database. Eventually, a private information retrieval
protocol [10] between S and DB is carried out, with ID acting as the record index, which lets S
retrieve the outcome of the matching for the record identified by ID without DB finding out which
record among the multiple ones was queried for matching. A desirable property of both of the above
scenarios is that U does not need to store any information.

In contrast with the previously proposed match-on-server fingerprint authentication systems
for more-or-less the same model as described above that are based on privately calculating the
Hamming distance between some representations of the two fingerprints, our private fingerprint
matching protocol is based on the widely used minutiae-based matching approach. Our protocol
provides a more accurate fingerprint matching based on Euclidean distance, since the Hamming-
distance-based protocols are naturally more suitable for fuzzy matching applications such as iris
matching.
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