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Abstract. We consider applications scenarios where an untrusted aggregator wishes
to continually monitor the heavy-hitters across a set of distributed streams. Since
each stream can contain sensitive data, such as the purchase history of customers,
we wish to guarantee the privacy of each stream, while allowing the untrusted
aggregator to accurately detect the heavy hitters and their approximate frequen-
cies. Our protocols are scalable in settings where the volume of streaming data
is large, since we guarantee low memory usage and processing overhead by each
data source, and low communication overhead between the data sources and the
aggregator.

1 Introduction

Consider k data streams at k data sources, where items from some set U arrive at each
stream. An untrusted aggregator wishes to continually monitor the most recent heavy
hitters (i.e. the frequent items) over a sliding window – however, the data sources do
not trust the aggregator, and wish to guarantee the privacy of their data streams. For
example, a public health provider would like to monitor the potential outbursts of new
epidemics (where the heavy hitters are the most common symptoms or diseases) by
studying hospital visit records from k hospitals. Since medical records contain highly
sensitive information, the hospitals may be legally obliged to protect their patients’ pri-
vacy from the third-party public health provider. In Figure 1, we show another example
where each stream represents a store, and the aggregator wishes to track the most pop-
ular items in the past week.

1.1 Results and Contributions

In this paper, we propose novel protocols that allow an untrusted aggregator to contin-
ually monitor the heavy hitters over a sliding window of duration W , while protecting
the privacy of each data source. Since the aggregator is untrusted and there is no sin-
gle trusted entity, standard privacy frameworks like PINQ [16] cannot be used directly
in our distributed setting. In our protocols, each data source periodically sends sani-
tized (and potentially also encrypted) updates to the aggregator in order to notify the
aggregator of latest trends as observed by the data source. The aggregator is then able
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Fig. 1. Problem setup. In this example, k stores wishes to continually monitor the popular items
over the past week. The aggregator is assumed to be untrusted; and the stores may be concerned
about protecting their secret business information such as sales revenue, and protecting the pri-
vacy of their customers.

to reconstruct the most recent popular items and their respective frequencies through
these sanitized updates.

We conduct experiments using the Netflix Contest Dataset, and demonstrate that
our algorithms can achieve low communication bandwidth and good utility in realistic
application scenarios. We next explain the privacy guarantees and desirable features
that our constructions achieve.

Two Levels of Privacy Protection. We propose protocols that achieve the following two
different aspects of privacy.
Event-level differential privacy. Our first construction, referred to as the PDCH-LU al-
gorithm (which stands for Private Distributed Continual Heavy-hitter - Lazy Update),
achieves event-level differential privacy. Roughly speaking, the sanitized updates re-
leased should be insensitive to the occurrence or non-occurrence of a single event.
Intuitively, event-level differential privacy allows a store to guard the privacy of its
customers, by concealing whether a certain purchase has taken place.

In our constructions, we achieve event-level differential privacy through the addition
of appropriate noises before the release of any statistics. Note also that ε event-level
differential privacy immediately implies mε user-level differential privacy, where m is
the maximum number of items for each user.
Aggregator obliviousness. Through the use of bloom filters and special encryption
schemes, our second protocol, referred to as PDCH-BF (which stands for Private Dis-
tributed Continual Heavy-hitter - Bloom Filter), achieves even stronger privacy guar-
antees: specifically, it achieves aggregator obliviousness in addition to event-level dif-
ferential privacy.

On a high level, aggregator obliviousness advocates the need-to-know principle, i.e.,
the aggregator should ideally learn the least amount of information necessary to perform
the heavy-hitter monitoring task. Specifically, in our second construction PDCH-BF,
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apart from the approximate frequencies of a subset of the relatively more popular items
across all streams, the aggregator learns nothing else.

To achieve aggregator obliviousness, our second protocol PDCH-BF employs bloom
filters, as well as special encryption schemes [14, 19, 20] which support secure aggre-
gation and controlled decryption of selective statistics.

Notice that aggregator obliviousness immediately implies the following: 1) in the
example in Figure 1 the aggregator can learn the approximate frequencies of (a subset
of) the items, but it cannot learn the transaction volume of each individual store which
may be considered secret business information; and 2) although the aggregator can
learn which the heavy hitters are and their approximate frequencies across all streams,
the aggregator fails to learn which streams are contributing to these heavy-hitters, and
how much each stream is contributing to these heavy hitters.

A more detailed discussion of our privacy notions and their nuances can be found
in Section 2.3.

Low Computational and Communication Overhead. Our protocols require only a small
amount of computation and memory from each data source. To process an item from
the stream, a data source needs to update only a small number of counters; and in each
time step, it needs to sample only a small number of random variables. This is desirable
in numerous application settings – for example, in sensor network applications, where
each node has low computational resources; or network intrusion detection scenarios,
where routers cannot afford expensive real-time computation due to the large bandwidth
throughput.

Our protocols also requires low communication costs between the data sources and
the aggregator. Moreover, all communications are uni-directional from the data sources
to the aggregator, and the data sources need not have interactions among themselves. In
contrast, generic secure multi-party computation construction [12] requires expensive
interactive communication between the data sources.

A Paradigm to Privatize Streaming Algorithms. Our approach also represents a new
paradigm for privatize streaming algorithms. Our techniques for privatizing streaming
algorithms is applicable to a broad class of streaming algorithms which fall within the
following 3-phase framework, i.e., throughout the execution of such a streaming algo-
rithm, objects are created and they go through three phases: (1) Construction Phase.
The object is still being modified according to incoming items from the stream, and at
this point the object is not used to produce any output. (2) Active Phase. The object is
no longer modified and can be used to produce output in the time steps for which the
object still exists. (3) Expiration. The object is deleted so that space can be reused.

The key idea to differentially privatize such streaming algorithms is that as soon
as an object becomes active, random noise is applied to ensure its differential privacy
before it is used to produce any output. In fact, the continual counting mechanism for bit
streams by Chan et al. [4] follows this design paradigm, where an object corresponds to
a counter recording the number of 1’s appearing in some time interval. However, not all
objects can be readily privatized. In the randomized version of the algorithm by Arasu
and Manku [1] and also the deterministic algorithm by Lee and Ting [15], an object
contains information about the position of some item. It is not clear how to privatize
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such an object while keeping its usefulness. Fortunately, the counters in the algorithm
by Misra and Gries [18] can be privatized.

1.2 Related Work

Our work builds on several well-known lines of research. We describe some of the
works that are the most related to ours and refer the readers to the cited references for
more extensive review on the relevant research areas.
Differential Privacy in Continual Setting. Ever since Dwork [6] has introduced dif-
ferential privacy, this notion has gained popularity in both the theory and security com-
munities (see [7] for a quick review of the latest development). The idea of introducing
randomness to perturb the outputs of algorithms allows a clean and formal way to ana-
lyze the tradeoff between preserving input privacy and achieving output accuracy. Re-
cently, privacy has been studied in the continual setting [4, 8, 9]. Specifically, a change
in the input in the current time step would not only affect the output in the current time
step, but also might have a long lasting effect in the future. Useful continual differen-
tially private algorithms would need to mask this long term effect without sacrificing
too much on accuracy. Chan et al. [4] gave a differentially private mechanism to con-
tinually report the number of 1’s seen so far in a bit stream with additive error that is
polylogarithmic in the number of time steps. In the streaming model, Dwork et al. [9]
also distinguish between event-level privacy and user-level privacy: event-level privacy
hides the occurrence of a particular event, while user-level privacy prevents adversaries
from determining whether the stream contains any of a particular user’s activities at
all. In this paper, we use event-level differential privacy as our privacy notion. Mir et
al. [17] also considered the problem of private streaming algorithms to return the counts
of heavy hitters, not the heavy hitters themselves. However, they consider a more gen-
eral setting in which in each update, the counter of an item can be increased or decreased
arbitrarily, as long as the counter remains non-negative. Moreover, their notion of pri-
vacy hides the following change in the stream: any subset of occurrences of an item can
be replaced with another item, and remaining updates can be arbitrarily reordered; on
the other hand, the total count of all items is public knowledge in their setting.
Untrusted Aggregator. There have been works on studying the case when the aggre-
gator is untrusted [14, 19, 20], where cryptographic techniques are employed. We first
consider protocols in which each node will desensitize its data first so that cryptography
will not be necessary; in order to achieve a stronger notion of privacy and security, we
augment our protocols by employing cryptographic techniques.
Streaming Algorithms for Heavy Hitters. The first algorithm to output frequent items
was given by Misra and Gries [18] (MG algorithm). They designed a deterministic
algorithm that reads a stream of W items and at the end gives the count of every item in
the stream with relative error λ (i.e., additive error at most λW ); the algorithm only uses
O( 1λ ) words of memory. The MG algorithm was rediscovered several times [5, 13].

Using the MG algorithm concurrently on overlapping blocks of different sizes,
Arasu and Manku [1] gave a deterministic algorithm that continually estimate the count
of every item with relative error λ with respect to the current window; the query and
the update time is O( 1λ log 1

λ ), while O( 1λ log2 1
λ ) words of memory is required. They
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also gave a randomized version, where both the time and the memory is O( 1λ log 1
δλ ),

where δ is the failure probability.
Lee and Ting [15] augmented the counters in the MG algorithm to include ap-

proximate positions of where items occur, and consequently they improved Arasu and
Manku’s algorithm performance to O( 1λ ), for both running time and memory require-
ment.
Distributed Streaming Protocols with Low Communication Cost. In the distributed
streaming model, each of k nodes receives its own stream, and the nodes communicate
with the aggregator, who wishes to estimate the number of times each item appears in all
the streams in the current window with relative error λ. Yi and Zhang [21] considered
the special case with infinite window size and gave a 2-way communication (between
nodes and aggregator) protocol with total communication cost of O( kλ logN) words,
where N is the total number of items arriving at all streams. Chan et al. [3] considered
the case of a sliding window, and gave a one-way communication (from nodes to ag-
gregator) protocol. Under the special case of exactly one item arriving in each time step
for each stream, the communication cost for their protocol in L consecutive time steps
is O( kλ ·

⌈
L
W

⌉
logW ) words.

Related Notion of Privacy. In Gantal et al. [10], it is mentioned that Dwork and Mc-
Sherry proposed semantic privacy which measures how the posterior distribution on
the database changes after the transcript is observed. In particular, it is shown that ε-
differential privacy implies (eε − 1)-semantic privacy.

2 Preliminaries

2.1 Notations and Conventions

Given a positive integer m, we let [m] := {1, 2, . . . ,m}, and use N := {1, 2, 3, . . .}
to index time steps. Let U be a set of n items. We use the standard notation Õ(·) to
suppress poly-logarithmic factors.

We assume that an integer can be represented by O(1) words. Although later on
we use random distribution on unbounded integers, we show that with high probability
the magnitudes of the sampled integers are small. Hence, we can use modulo arithmetic
over some large enough integer. We do not explicit explain how each data source obtains
its source of randomness, but we assume that it takes O(1) operations to sample a
random variable that is independent of the input data stream.

2.2 Problem Setup

We assume a set of k ∈ N streams, originating at k data sources (also referred to as
nodes) respectively. We assume that each data source only has limited memory and
computational power. Each stream σ(i) ∈ UN where i ∈ [k] is a sequence of items from
U , where σ(i)(t) ∈ U is the item appearing at time step t in the i-th stream.

We consider an untrusted aggregator who wishes to continually monitor the heavy
hitters over a sliding window of size W ∈ Z. Formally, the window at time step t over
stream σ is the multiset Wt(σ) := σ([t −W + 1, t]) containing all items coming to

5



stream σ between time t −W + 1 and t. Given k streams {σ(i) : i ∈ [k]}, we write
W(i)
t := Wt(σ

(i)) and denote W [k]
t := ]i∈[k]Wt(σ

(i)) as the multiset containing all
items from the k streams in the window at time t.

The notion of heavy hitters is formally defined as below. Given a multiset W , we
use |W| to denote the number of items it contains and for x ∈ U , countx(W) is the
number of times item x appears in W . Given 0 < θ < 1, we say an item x ∈ U is a
θ-heavy hitter in the multisetW if countx(W) ≥ θ · |W|.

Definition 1 (Approximate Heavy Hitters). Given 0 < λ, θ < 1 and a multisetW , a
set S ⊆ U is a λ-approximation for θ-heavy hitters inW if
1. the set S contains all θ-heavy hitters inW; and
2. if x ∈ S, then x is a (θ − λ)-heavy hitter inW .

Definition 2 (λ-approximate Count). Given a multi-setW on items in U , and an item
x ∈ U , an estimate ĉ(x) is called a λ-approximate count for x with respect to W , if
|ĉ(x)− countx(W)| ≤ λ|W|.

Observe that if we have a λ-approximate count for every item x ∈ U with respect
toW , then we can compute a 2λ-approximation for heavy hitters inW .
Communication Protocol. Consider a node receiving some stream σ. At every time
step t, upon receiving the item σ(t), the node might send messages to the aggregator to
update some counters. In the protocols that we consider, each message contains items
of the form c ∈ Z or 〈x, c〉 ∈ U × Z, each of which we assume can be expressed in
O(1) words. Given a (randomized) protocol Π , we denote by Π(σ) the (randomized)
transcript which consists of the messages sent at every time step by the node that applies
the protocol on the stream σ. We wish to reduce the amount of communication, say the
average number of words sent per time step.

Remark 1. In order to show that each item count has small relative error, we need a
lower bound on the total number items in the finite stream to absorb the noise error.
Moreover, the way in which we use PMG in combination with Arasu and Manku’s
algorithm [1] for fix-sized windows requires the assumption that exactly one item comes
in the stream at every time step.

2.3 Defining Privacy

As mentioned earlier, we define our privacy notions based on the following principles:
1) We advocate a need-to-know principle, the aggregator should ideally learn the least
amount of information necessary to perform the heavy hitter monitoring task. 2) While
the amount of information revealed to the aggregator is kept at a minimum, the in-
formation eventually revealed to the aggregator should satisfy event-level differential
privacy. In other words, any statistics revealed should be insentive to the occurrence or
non-occurrence of a single event. Intuitively, this helps to conceal whether some event
of interest has happened, e.g., whether a customer Alice has purchased a specific item.

Below, we formally define differential privacy and aggregator obliviousness.
Differential Privacy. In our setting, each node regards the contents on its stream as
private data. In particular, from the transcript of a node, the aggregator should not be
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able to distinguish between input streams that are close to each other. Formally, two
different streams σ1, σ2 ∈ UN are adjacent or neighbors (denoted as σ1 ∼ σ2) if they
differ at exactly one time step. We use the notion of event-level differential privacy for
protocols.

Definition 3 (Differential Privacy for Protocols). Given ε > 0, a (randomized) pro-
tocol Π is ε-differentially private if for any adjacent streams σ1 and σ2, any subset O
of possible output transcripts, Pr[Π(σ1) ∈ O] ≤ exp(ε) · Pr[Π(σ2) ∈ O], where the
randomness comes from the protocol.

Aggregator Obliviousness. As we shall see, as an intermediate step in our protocols,
each node has some private number and the goal is for the aggregator to learn the sum of
all the nodes’ numbers, but nothing more. Formally, each node has some data in D and
we use x ∈ Dn to denote a configuration of all the nodes’ data. Intuitively, a protocol
Π is aggregator oblivious with respect to some function f : Dn → O if for all x and
y such that f(x) = f(y), no polynomial-time adversary can distinguish between the
transcripts Π(x) and Π(x) with non-negligible probability.

Definition 4 (Aggregator Obliviousness). Let κ ∈ N be a security parameter. A pro-
tocol ensemble {Πκ}κ∈N is aggregator obliviousness with respect to the function f :
Dn → O if there exists a negligible function η : N→ R+ such that for all x and y such
that f(x) = f(y), for all decisional probabilistic polynomial-time Turing machines A,
|Pr[A(Πκ(x)) = 1]− Pr[A(Πκ(y)) = 1]| ≤ η(κ),

where the probability is over the randomness of the protocolΠκ and the Turing machine
A.

2.4 Defining Utility

Recall that for each i ∈ [k], each node i receives some stream σ(i) and follows some
(randomized) protocol to send messages to the aggregator in every time step. Based
on the messages received up to time t, the aggregator computes for each x ∈ U some
number A(t, x), which is an estimate for countx(W [k]

t ). Observe that A(t, x) is a ran-
dom variable, whose randomness comes from the randomized protocols. We use the
following notion to measure the usefulness of A(t, ·) with respect toW [k]

t for each t.

Definition 5 ((ξ, δ)-Usefulness). SupposeW is a multiset containing items in U , and
A ∈ RU is a collection of random variables indexed by U . Then,A is (ξ, δ)-useful with
respect toW , if with probability at least 1− δ, for every item x ∈ U ,
|A(x)− countx(W)| ≤ ξ; in particular, if ξ = λ|W|, then A(x) is a λ-approximate
count for x with respect toW .

Definition 6 ((ξ, δ)-Simultaneous Usefulness.). Let T be an index set. Suppose for
any t ∈ T , Wt is a multiset containing items in U , and At is a collection of random
variables indexed by U . Then, {At}t∈T is (simultaneously) (ξ, δ)-useful with respect
to {Wt}t∈T , if with probability at least 1 − δ, for every t ∈ T and every item x ∈ U ,
|At(x)− countx(Wt)| ≤ ξ.
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3 Achieving Differential Privacy

3.1 Roadmap

This section describes a protocol between the data sources and an aggregator, allowing
the aggregator to continually monitor the heavy hitters over a sliding window. We will
show how to achieve event-level differential privacy in this section. Later in Section 4,
we show how to achieve aggregator obliviousness.

We proceed with the following three-step recipe:
1. The PMG algorithm outputs the heavy hitters in a single stream. In Section 3.2,

we describe a private streaming algorithm, which allows a single data source to
output the approximate heavy hitters in a stream, after a one-pass scan of the en-
tire stream. Since this algorithm builds on top of the Misra-Gries streaming al-
gorithm [18], we refer to it as the Private Misra-Gries (PMG) algorithm. The MG
Algorithm maintains an approximate vector of item counts by storing only non-zero
counts explicitly for only a small number of items. The main technical challenge
to privatize the MG Algorithm is to show that this approximate vector has small
sensitivity.

2. The PCC algorithm continually monitors the recent heavy hitters in a single
stream. In Section 3.3, we extend the aforementioned PMG algorithm to derive
a Private Continual Heavy-hitter (PCC) algorithm, which supports the continual
monitoring of heavy hitters over a sliding window in a single stream. The main
technique in this step is the use of a binary interval tree which allows us to achieve
small memory when the window size is large.

3. The PDCH-LU protocol continually monitors the recent heavy hitters across
multiple streams. Finally, in Section 3.4, we extend the above PCC algorithm,
which works for a single stream, to the distributed setting. In the resulting protocol
PDCH-LU (Private Distributed Continual Heavy-hitter - Lazy Update), in order to
save communication cost, each data source sends sanitized updates to the aggre-
gator whenever necessary (hence lazy updates), to inform the aggregator of latest
trends in its observed stream. The aggregator can in turn continually output the
approximate heavy hitters across all streams over a sliding window.

3.2 Private Misra-Gries Algorithm

In this section, we consider a sub-problem, which will be a useful building block to
construct the private streaming protocol at a node. Given a stream of length T and an
error parameter 0 < λ < 1, the goal is to estimate the number of times each item in U
appears in the stream with additive error λT .

Our approach is based on the (non-private) MG Algorithm [18], which keeps ex-
plicit counters for only O( 1λ ) items. Observe that since we accept λT additive error, if
an item x ∈ U appears for less than λT times in the stream, then we do not need to
keep a counter explicitly for x ∈ U and can give an estimate count of zero. Because at
most O( 1λ ) items can appear for at least λT times in a stream of length T , intuitively it
is sufficient to keep O( 1λ ) explicit counters. The MG Algorithm makes sure that at any
point in time at most O( 1λ ) items have explicit non-zero counts. If an item arrives and
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we need to create an extra counter, all existing non-zero counters are decremented by
1; this step keeps the number of non-zero counters small. On the other hand, whenever
a non-zero counter of some item x decreases by 1, there are Θ( 1λ ) other items that also
have their counts decreased by 1. Since this can happen for at most λT times, the final
count for each item has additive error at most λT .

At the end of the MG Algorithm, the output corresponds to a count vector f ∈ ZU ,
which has at mostO( 1λ ) non-zero coordinates. We show in Lemma 4 that this vector has
sensitivity at most O( 1λ ), and hence we can apply the techniques of geometric noise to
achieve differential privacy. The properties of the private version of the MG Algorithm
are given in the following lemma, which is the main result of this section.

Lemma 1 (Private MG Algorithm). Given a privacy parameter ε > 0 and an ap-
proximation parameter 0 < λ < 1, there is a (randomized) mechanism M, denoted
as PMG(ε, λ) (Private Misra-Gries), that takes any finite stream σ and after one pass
outputs a vector f̂ ∈ ZU such that the following properties hold.
1. ε-Differential Privacy: for any adjacent streams σ1 and σ2, any subset O ⊆ ZU ,

Pr[M(σ1) ∈ O] ≤ exp(ε) · Pr[M(σ2) ∈ O], where the probability is over the
randomness from the mechanism.

2. Utility: Suppose 0 < δ < 1, and the length T of the stream σ satisfies T ≥
32
λ2ε log

n
δ . Then, the vector f̂ is (λT, δ)-useful with respect to the multiset σ([T ])

of items in the stream.
3. The mechanism uses only O( 1λ ) words of memory. In particular, at most O( 1λ )

coordinates of f̂ are non-zero. Moreover, it takes O( 1λ ) operations to process each
item, and samples O( 1λ ) random variables in total.

We prove Lemma 1 for the rest of the section. We let β := d 2λe be a parameter of
memory usage.

In the literature, it is common to achieve differential privacy by adding geometric
noise. However, since we want to be careful about memory usage, we want the output
of the mechanisms to be integral. Therefore, we add noises sampled from symmetric
geometric distributions [11].

Definition 7 (Geometric Distribution). Let α > 1. We denote by Geom(α) the sym-
metric geometric distribution that takes integer values such that the probability mass
function at l is α−1

α+1 · α
−|l|.

The following property states that the symmetric geometric distribution Geom(α)
is highly concentrated around 0. Hence, we assume that each integer can be expressed
using O(1) words and overflow rarely happens.

Fact 1 Let r be a random variable sampled from symmetric geometric distribution
Geom(α). Let l ≥ 0 be a non-negative integer. Then, Pr[|r| > l] ≤ 1

αl
.

The following property of symmetric geometric distribution is useful for designing
differentially private counting mechanisms.
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Fact 2 Let u, v ∈ Zn be two vectors such that ||u − v||1 ≤ ∆, where ||u − v||1 =∑n
i=1 |ui − vi| is the `1-norm of u− v. Let r ∈ Zn be a random vector whose coordi-

nates are independent random variables sampled from symmetric geometry distribution
Geom(exp( ε∆ )). Then, for any vector p ∈ Zn, Pr[u+ r = p] ≤ exp(ε) ·Pr[v+ r = p].

Definition 8 (Sensitivity). Let f : UT → Zn be a function that takes a stream of length
T as input. The sensitivity of f , denoted by ∆(f), is maxσ1∼σ2

||f(σ1)− f(σ2)||1.

By Fact 2, for any function f : UT → Zn such that ∆(f) ≤ ∆, we can make
its output ε-differentially private by adding independent random noise sampled from
Geom(exp( ε∆ )) to coordinates of f .

We modify the Misra-Gries Algorithm [15, 18] to get a counting mechanism, which
we call Private Misra-Gries Algorithm (PMG). The algorithm is shown in Algorithm 1.
We show that the mechanism has fast running time and uses small memory. For the
privacy and the utility parts of Lemma 1, we give the complete proof in Appendix A.

Lemma 2 (Running Time and Memory Usage). The algorithm PMG(ε, λ) takesO( 1λ )
operations to process each item, and samples O( 1λ ) random variables in total. More-
over, the mechanism can be implemented using O( 1λ ) words of memory.

Proof. Observe that in the for loop between Lines 3 and 10, it takes O( 1λ ) word opera-
tions per time step. At first glance, the for loop in Line 11 seems to require n iterations.
We argue that this dependence on n is not necessary.

Suppose after Line 10,A ⊆ U is the subset of items x such that f(x) 6= 0. Then, we
know |A| ≤ β, for each x ∈ A, we sample rx and f̂(x) := max{f(x)+rx, 0} as before.
Next, observe that we do not actually have to sample a fresh independent rx from Geom

for each x ∈ U \ A and compute f̂(x) = max{rx, 0}; we just need the largest β of
the corresponding f̂(x)’s. Hence, it suffices to sample β (dependent) random variables
having the same joint distribution as the β largest values from n − |A| independent
truncated max{0,Geom} distributions. The details are given in Appendix D.

We can pick a random subset B of β items from U \ A to match those β random
numbers such that each x ∈ B has a corresponding f̂(x). Finally, we just need to find
the β largest numbers in {f̂(x) : x ∈ A ∪ B}. Hence, we just need to sample O( 1λ )
random variables in total.

In Algorithm 1, at any time during the execution between Line 1 and Line 10, there
are at most β + 1 items x such that f(x) > 0. Moreover, because of the conditional
statement at Line 14, the number of items x such that f̂(x) 6= 0 is at most β + 1.
Since we only need to explicitly store the non-zero values of f(x) and f̂(x), the above
algorithm uses O(β) = O( 1λ ) words of memory. ut

3.3 Private Continual Heavy-Hitter Monitoring over a Sliding Window

In this section, we use PMG to construct a differentially private mechanism named
Private Continual Heavy-hitter (PCC), that uses small memory and maintains some
efficient data structure at every time step.
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Input: A privacy parameter ε, an approximation parameter λ, and a finite stream σ ∈ UT
of length T .

Output: A vector f̂ ∈ ZU , where f̂(x) is a λ-approximate count of x with respect to
σ([T ]) with high probability.

1 For each x ∈ U , f(x) and f̂(x) are (implicitly) initialized to 0;
2 β ← d 2

λ
e;

3 for t← 1 to T do
4 f(σ(t))← f(σ(t)) + 1;
5 if the number of items x such that f(x) > 0 exceeds the threshold β then

// the decreasing step
6 for x ∈ U such that f(x) > 0 do
7 f(x)← f(x)− 1;
8 end
9 end

10 end
// The sensitivity ∆(f) ≤ β + 1

11 for each x ∈ U do
// We see later in Lemma 2 and Appendix D that there is a

faster procedure that samples only O(β) random
variables and achieves the same output distribution.

12 Sample a fresh independent noise rx ∼ Geom(exp( ε
β+1

));

13 f̂(x)← max{f(x) + rx, 0};
// we only keep the top β non-zero f̂(x)’s

14 if there are more than β items x with f̂(x) 6= 0 then
15 Let y be the item with smallest non-zero f̂(y) (resolving ties arbitrarily);
16 Set f̂(y)← 0;
17 end
18 end
19 Output f̂ ;

Algorithm 1: Private Misra-Gries Algorithm PMG(ε, λ)

As intuitively illustrated as in Figure 2, we build a binary interval tree, where each
leaf node represents

⌈
λW
4

⌉
(= 1 in the figure) time steps, and each non-leaf node rep-

resents a range of time steps. (Note that Figure 2 only depicts the bottom few levels of
this binary interval tree due to reasons stated below). We refer to each node as a block,
and run the subroutine PMG algorithm for each block, with appropriate privacy and
approximation parameters. To output the heavy hitters for any time range, it suffices to
“sum up” a logarithmic number of blocks in the binary interval tree – since any range
can be represented by the union of a logarithmic number of disjoint blocks. In Figure 2,
since we consider a window size of W = 7, we only need the bottom 3 levels of the
binary tree. The main purpose of the binary interval tree technique is to save memory
and allow faster computation.
Small memory. The amount of memory necessary is Õ( 1λ ) independent of W . To
achieve this, we use a garbage collection technique, where a data source saves only
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Fig. 2. Continual counting over a sliding window of the past week.

the blocks which will later be needed, and discard all “expired” blocks which will no
longer be needed. As shown in Figure 2, at any point of time, a block can be one of the
following four types: 1) expired, i.e., will no longer be needed in the future; 2) active,
i.e., the block has completed construction, and will be needed now or in the future; 3)
under-construction, i.e., the heavy hitters for this block are currently being constructed;
or 4) future, i.e., construction for this block will start at some point in the future. Specif-
ically, in the PCC algorithm, a data source saves only the blocks that are either active
or under construction – and the number of such nodes is O( 1λ ) at any point in time. Ob-
serve that the number of counters kept for binary nodes at different levels are different,
and we later give a calculation to show that the total number of counters kept at any
time is O( 1λ log2 1

λ ).
Faster Computation. Observe that we could achieve even smaller memory if we only
store the leaf nodes of the binary construction. However, in order to produce an estimate
count over a window, we would need to look at Ω( 1λ ) leaf nodes. Using the binary
construction, we only need to look at O(log 1

λ ) binary tree nodes for count estimation
at each step.
Low Communication Bandwidth. Notice we could achieve even smaller memory if
only one leaf node (corresponding to W0 =

⌈
λW
4

⌉
time steps) in the binary tree con-

struction is stored at any time; however, updates need to be sent to the aggregator every
W0 time steps. As we shall see in Section 3.4, if information about each stream in the
current window is kept at each node, then the communication bandwidth to the aggre-
gator can be greatly reduced.

Note that a similar binary tree technique was also used in [1, 4].
We now give a formal description of the PCC algorithm, as well as its theoretic

guarantees. At every time step t, PCC maintains a dictionary Pt, which is a collection
of at mostO( 1λ log 1

λ ) pairs (x, cx) ∈ U×Z where for every item x ∈ U , item x appears
in at most one pair in Pt. Hence, Pt can also be interpreted as a vector ZU or a function
from U to Z in the natural way: Pt(x) := cx if (x, cx) ∈ Pt, and Pt(x) := 0 otherwise.
Observe that only non-zero counts need to be stored in the dictionary , and we denote
by |Pt| the number of items x having non-zero counts Pt(x). The following lemma is
the main result of the section.

12



Lemma 3 (Private Continual Heavy Hitter Monitoring). Given a privacy parameter
ε > 0, and an approximation parameter 0 < λ < 1, there exists a continual counting
mechanismM, denoted as PCC(ε, λ) (Private Continual Heavy-hitter), that takes an
infinite data stream σ ∈ UN, and maintains at every time step t a dictionary Pt ∈ ZU .
We writeM(σ) := (Pt)t∈N ∈ ZN×U . The following properties hold.
1. ε-Differential Privacy: for any adjacent streams σ1 and σ2, any subsetO ⊆ ZN×U ,

Pr[M(σ1) ∈ O] ≤ exp(ε) · Pr[M(σ2) ∈ O], where the probability is over the
randomness from the mechanism.

2. Utility: Suppose 0 < δ < 1 and L > 0. If W ≥ Θ( 1
λ2ε (log

2 1
λ ) · log(

n
δ log

1
λ )).

Then, at every time step t ∈ N, Pt is (λW, δ)-useful with respect to Wt. If W ≥
Θ( 1

λ2ε (log
2 1
λ ) · log(

L+W
λW · nδ )), then for any T ≥ L+ 1, {Pt}t∈[T−L,T ] is simul-

taneously (λW, δ)-useful with respect to {Wt}t∈[T−L,T ].
3. The mechanism uses onlyO( 1λ log2 1

λ ) words of memory. Moreover, it takesO( 1λ log 1
λ )

operations to process each item in the stream, and samples at mostO( 1λ log 1
λ ) ran-

dom variables in each time step.
4. For every time step t, |Pt| = O( 1λ log 1

λ ).

Scheme Description PCC(ε, λ). We assume 1
λ is a power of 2; otherwise, let λ′ :=

max{ 1
2k

: 1
2k
< λ} and run PCC(ε, λ′).

LetW0 :=
⌈
λW
4

⌉
> 0, and let ` := log 4

λ . Note that we have W
2 ≤W0·2` ≤W . We

divide the time steps into binary hierarchical blocks with `+ 1 levels, where all blocks
at the same level have the same size, are disjoint and cover all time steps. In particular,
for 0 ≤ i ≤ ` and j ≥ 1, the jth block at level i is the interval [(j − 1)Wi + 1, jWi] of
Wi := 2i ·W0 time steps; we use block Bij to denote the multiset of items from stream
σ contained in this interval, i.e., Bij = σ([(j − 1)Wi + 1, jWi]). At any time t, each
block Bij is in one of the following four states.
1. future: None of Bij’s items has come intoWt(σ), i.e., (j − 1)Wi + 1 > t;
2. under-construction: Some of Bij’s items are in Wt(σ), and the remaining items

have not come intoWt, i.e., (j − 1)Wi + 1 ≤ t and jWi > t;
3. active: Bij is totally withinWt(σ), i.e., t−W + 1 ≤ (j − 1)Wi + 1 ≤ jWi ≤ t;
4. expired: At least one of Bij’s items has expired, i.e., (j − 1)Wi + 1 < t−W + 1.

For each blockBij , right before the time step when its state becomes under-construction,
i.e., t = (j − 1)Wi + 1, PCC(ε, λ) initiates an instance of PMG(εi, λi) on Bij , where
εi := ε

2`−i+1 and λi := 1
2i(`+1) . When Bij becomes active, PMG(εi, λi) produces a

vector f̂Bij ∈ ZU , which has O( 1
λi
) non-zero coordinates. Then, PCC(ε, λ) uses O( 1

λi
)

words of memory to maintain this vector until Bij expires.
Cover by Disjoint Active Blocks. Observe that at any time t, there exists a collection
Ct of disjoint active blocks, such that Ct contains at most two blocks from each level,
and that the union of blocks in Ct is the union of all active level-0 blocks. At any
time, PCC(ε, λ) maintains the dictionary Pt, where Pt = {(x,

∑
B∈Ct f̂B(x)) : x ∈

U and
∑
B∈Ct f̂B(x) > 0}.

We prove that PCC maintains differential privacy. The analysis of the remaining
properties is similar to that in [1, Section 5], and we include the proofs in Appendix B.
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Privacy Guarantee. Observe that the output of PCC is a deterministic function of
PMG’s outputs on all blocks. Hence, we need only to show ε-differential privacy is
maintained with respect to (f̂B)∀B. Consider an item arriving at time step t. We analyze
which of the blocks would be affected if σ(t) is replaced with a different item. It is not
hard to see that the item σ(t) can be in at most one block at each level. Observe that f̂B
for a level-i block B maintains εi-differential privacy, where εi = ε

2`−i+1 and observe
that

∑l
i=0 εi ≤ ε. Hence, we conclude that PCC(ε, λ) preserves ε-differential privacy.

3.4 Privately and Continually Monitoring Heavy Hitters Across Distributed
Streams

In this section, we use PCC to design a protocol between k data sources and an ag-
gregator, allowing the aggregator to continually monitor the global heavy hitters. The
resulting protocol, called PDCH-LU (which stands for Private Distributed Continual
Heavy-hitter - Lazy Update) has low communication cost; moreover, the messages sent
by each data source is differentially private against the aggregator.

Observe that each node could send the privatized updates to the aggregator at every
time step in order for the aggregator to compute the approximate heavy hitters. How-
ever, to save communication bandwidth, we use a lazy update approach: updates are
only required when the count of an item changes by a huge amount. Chan et al. [3]
gave a distributed algorithm (called Approximate Counting (AC)) based on this idea
and proved that it achieves small error. Since the AC Algorithm in [3] only needs an
approximate count in the current window for each item in each stream at any time, our
PCC algorithm is sufficient for this purpose. We give the main result and the construc-
tion of the protocol; the detailed analysis is given in Appendix C.

Theorem 1. Suppose ε > 0 is a privacy parameter, 0 < λ < 1 is an approximation
parameter, W is the window size and L is some positive integer. Given k streams each
received by a node, every node can run an ε-differentially private communication pro-
tocol with the same time and space performance as PCC(ε, λ11 ) in Lemma 3 to send
messages to the aggregator such that if W ≥ Θ( 1

λ2ε (log
2 1
λ ) log(

L+W
λW · knδ )), then for

every time interval T = [T +1, T +L] (where T ≥W ), with probability at least 1− δ,
at every time t ∈ T , the aggregator can maintain a λ-approximate count for every item
with respect to the current window in all streams, and the total communication cost by
all nodes in the period T is O( kλ ·

⌈
L
W

⌉
logW ) words.

Algorithm for the Aggregator. The aggregator maintains a counter ci(x) (initially 0)
for each stream i ∈ [k] and each item x ∈ U . Upon receiving a message 〈x, c〉 from
node i, the aggregator updates the counter ci(x) := c. In each time step t, the aggregator
calculates a count c(x) =

∑
i∈[k] ci(x); to produce a 2λ-approximate set of θ-heavy

hitters, the aggregator releases the set of items x such that c(x) ≥ (θ − λ)kW .
Protocol for Each Data Source. We use Algorithm AC (Approximate Counting) in
[3, Section 2.2] to get a protocol (shown in Algorithm 2), denoted as PDCH-LU(ε, λ)
(Private Distributed Heavy-hitter - Lazy Update). Each node i runs an instance of
PDCH-LU(ε, λ) on the stream σ(i) it receives.
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Input: A privacy parameter ε, an approximation parameter λ, and a stream σ ∈ UN

Run an instance of PCC(ε, λ
11
) and (implicitly) initialize Last(x) := 0 for each x ∈ U ;

// We only store non zero Last(x)’s.
for t← 1 to∞ do

for each x such that Pt(x) > 0 or Last(x) > 0 do
Up: if Pt(x) > Last(x) + 9

11
· λW , send 〈x,Pt(x)〉 and set Last(x)← Pt(x);

Off: if Last(x) > 0 and Pt(x) < 3
11
· λW , send 〈x, 0〉 and set Last(x)← 0;

Down: if Pt(x) < Last(x)− 9
11
· λW , send 〈x,Pt(x)〉 and set

Last(x)← Pt(x);
end

end

Algorithm 2: PDCH-LU(ε, λ)

4 Achieving Aggregator Obliviousness

The main construction described earlier in Section 3 is a protocol for k nodes to com-
municate with an aggregator, whose task is to keep track of heavy hitters over a sliding
window. This protocol guarantees differential privacy at the event level, i.e., the statis-
tics released to the aggregator is not affected by the change of one event.

In this section, we describe a protocol which achieves a stronger level of privacy
protection, i.e., we additionally achieve aggregator obliviousness on top of event-level
differential privacy. Specifically, we wish to reveal the minimum amount of information
possible to the aggregator, for it to successfully perform the heavy hitter monitoring
task.

The main techniques we use to achieve aggregator obliviousness include Bloom
filters [2] as well as special encryption schemes [14, 19, 20] that support the controlled
decryption of selected statistics. Using these techniques to augment the PMG protocol
described earlier, we achieve aggregator obliviousness in the sense that the aggregator
learns only the approximate counts of each item, but nothing else. In particular, the
aggregator does not learn which data sources are contributing to the heavy hitters and
how much their contributions are.

In our protocol to be described later in this section, each node communicates the
update with the aggregator every W0 =

⌈
λW
4

⌉
time steps. We then employ Bloom

filters to effectively reduce the bandwidth overhead. Observe that without the Bloom
filters, we would need to perform n secure additions, one for each item, for each update.
We shall see that using Bloom filters, we can reduce the dependence of the number of
additions per update on n to O(log n).

4.1 Background on Special Encryption Scheme

As a building block for achieving aggregator obliviousness, we employ a special en-
cryption scheme which supports the conditional decryption of selected statistics. In
particular, we can use either the encryption scheme proposed by Shi et al. [20], Ras-
togi et al. [19], or Kursawe et al. [14] In comparison, the scheme by Shi et al. [20]
requires uni-directional communication from the data sources to the aggregator, but the
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decryption algorithm is more expensive; whereas the scheme by Rastogi et al. [19] re-
quires bi-directional communication between the data sources and the aggregator, but
has smaller decryption overhead. The scheme by Kursawe et al. [14] only needs uni-
directional communication and has low overhead, but each node needs to store Θ(k)
keys corresponding to all other nodes. We now give a high-level overview of these spe-
cial encryption schemes. The special encryption schemes we employ typically involve
the following algorithms or phases:

Setup. In a one-time setup phase, cryptographic keying materials are distributed to all
data sources and the aggregator. In particular, each data source receives an encryption
key, and the aggregator receives a cryptographic capability which will allow it to later
decrypt the sum of all data sources in each aggregation time step. The setup phase can
either be performed by an offline authority (which will no longer be needed after the
setup phase); or through an interactive multi-party protocol amongst the data sources
and the aggregator.

Periodic Encryption and Aggregation. In each time step, each data source i ∈ [k] en-
crypts a value xi using the encryption key established in the setup phase, and sends
the ciphertext to the aggregator. After receiving ciphertexts from all data sources, the
aggregator can use its cryptographic capability to decrypt the value

∑k
i=1 xi, but learn

nothing else. In the construction by Shi et al. [20] and Kursawe et al. [14], this decryp-
tion is done solely by the aggregator, whereas in the scheme by Rastogi et al. [19], the
aggregator needs to communicate with the data sources to perform decryption.

In the remainder of this section, we will use this special encryption scheme as a
blackbox – for more algebraic details on how these schemes are constructed, we refer
the readers to [14, 19, 20].

4.2 Augmenting PMG Algorithm with Secure Bloom Filters

Straightforward Solution using Cryptography. We first describe a straightforward
construction using one of the special encryption schemes [14, 19, 20]. A brief back-
ground on these encryption schemes was given in Section 4.1. We show that one draw-
back of this straightforward construction is its high bandwidth overhead. Later, we shall
employ Bloom filters to reduce the bandwidth consumption.

The basic idea is to apply the special encryption scheme all items in the universe.
Suppose each of the k nodes is running PMG(ε, λ) on its finite stream as described

in Section 3.2. Each node v ∈ [k] produces some f̂v : U → Z, which is represented
by at most β = O( 1λ ) non-zero counters. In every time step, for each x ∈ U , each
data source encrypts its observed frequency f̂v(x), and sends the ciphertext to the ag-
gregator. The aggregator may then use its cryptographic capability to decrypt the total
frequency

∑
v∈[k] f̂v(x) for each x ∈ U – and meanwhile, the security of these en-

cryption schemes guarantee that the aggregator learns nothing else beyond the total
frequency of each item.

It is not hard to see that each node needs to send Ω(n) words (proportional to the
size of U) to the aggregator. Even though each node only has β non-zero counters, it still
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has to participate in every addition such that the aggregator does not know where the
non-zero values come from. We would like to decrease the communication cost through
the use of Bloom filters.
Construction with Bloom Filters. Let 0 < δ < 1 be the desired failure probability,
i.e., with probability at least 1 − δ, the aggregator can retrieve

∑
v∈[k] f̂v(x) for all

x ∈ U . Let P :=
⌈
ln n

δ

⌉
and Q := dekβe, where e is the natural number and β is

the maximum number of non-zero counters for each node. We assume there is a public
family {Hp : U → [Q]}p∈[P ] of random hash functions that satisfy the following
properties.
1. The functionsHp are totally independent over different p ∈ [P ].
2. For each p ∈ [P ], Hp is pairwise independent over U , i.e., for x 6= y, Hp(x) and
Hp(y) are independent; moreover, for each x ∈ U and each q ∈ [Q], Pr[Hp(x) =
q] = 1

Q .
Bloom Filters for Each Node. Each node v constructs a table Av of size P ×Q that is
constructed in the following way.
1. Initially, every entry Av[p][q] := 0.
2. For each x ∈ U such that f̂v(x) 6= 0 (note that there are at most β such x’s), for

each p ∈ [Q], increment A[p][Hp(x)] by f̂v(x).
Secure Addition of Bloom Filters. Using one of the secure periodic schemes [14, 19,
20] described above, the aggregator learns for each p ∈ [P ] and q ∈ [Q], A[p][q] :=∑
v∈[k]Av[p][q]. Observe that each node sends O(PQ) = O( kλ log n

δ ) words to the
aggregator.
Retrieving Sum of Counts for Each Item. For item x, the aggregator computes minp∈[P ]A[p][Hp(x)].

Theorem 2. With probability at least 1− δ, the aggregator retrieves
∑
v∈[k] f̂v(x) ac-

curately for all x ∈ U .

Proof. Fix some x ∈ U . Observe that the aggregator makes a mistake for item x iff for
all p ∈ [P ], there exists some y 6= x such that Hp(x) = Hp(y) and there exists v ∈ [k]

such that f̂v(y) 6= 0.
Observe that each node v can only have at most β non-zero counts. For fixed p ∈

P , by pairwise independence of Hp over U and uniformity of Hp(y) over [Q], the
probability that there exists some y 6= x such that some node has non-zero count for y
andHp(x) = Hp(y) is at most kβQ ≤

1
e .

By the total independence of Hp over p’s, it follows that the probability that the
aggregator makes a mistake for item x is at most 1

eP
≤ δ

n . Using the union bound over
all x ∈ U , it follows that the probability that the aggregator makes a mistake for some
item is at most δ, as required.

4.3 Distributed Protocol Achieving Aggregator Obliviousness

We next describe how the PMG Algorithm augmented with Bloom Filters can be used to
design a distributed protocol that achieves aggregator obliviousness – the resulting pro-
tocol is referred to as PDCH-BF (Private Distributed Continual Heavy-hitter - Bloom
Filter).
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Each node performs the binary construction as in the PCC algorithm described in
Section 3.3. In particular, for a block at level i with size Wi = 2i · W0 = 2i · λW4 ,
PMG(εi, λi) is run with εi := ε

2`−i+1 and λi := 1
2i(`+1) . As soon as PMG is completed

for a block, a Bloom filter is constructed for that block as described in Section 4.2. The
Bloom filter for that block is encrypted and sent to the aggregator.

For a particular block, after the aggregator has received the ciphertexts of the Bloom
filters from all the k nodes, it can decrypt the sum of the Bloom filters and reconstruct
the counts for all items in that block.

Observe that to estimate the counts in a window, the aggregator just needs the counts
from at most 2 log 1

λ blocks. Hence, in order to achieve failure probability of δ due to
the Bloom filters for each window, it suffices to set the Bloom filter failure probability
for each block to be δ

2 log 1
λ

. There is also failure probability δ due to the randomness
introduced to achieve differential privacy. Hence, Lemma 3 implies the aggregator can
compute λ-approximate heavy hitters within a window with probability 1− 2δ.
Communication Cost. For each node, the communication cost for a block at level
i is O( kλi log

n
δ0
) words, where λi = 1

2i·(l+1) , l = log 4
λ and δ0 = δ

2(l+1) . More-
over, a block at level i is constructed every Wi := 2i · W0 = 2i · λW4 time steps.
Hence, it follows that the average number of words of communication per time step is
O( k

λW log2 1
λ log

n log 1
λ

δ ).

5 Experiments

5.1 Experimental Setup

The data used in our experiment was constructed from the Netflix Contest Dataset,
which contains n = 17770 movies with 480189 users’ ratings from 1999-11-11 to
2005-12-31. We divided the users randomly into 100 groups to construct 100 streams.
We selected roughly 200 days’ data of each stream from 2002-09-23 to 2003-04-30
to conduct our experiments, where we continually monitored the moving average over
a window size of 90 days. We plot the result for the last 10 days by when the sys-
tem should have become stable. We use the following parameters in our experiments:
heavy-hitter fraction θ = 0.004 and error λ = 0.001. In our experiments, we consider
differential privacy parameter ε = 1, 2, 5, 10. Note that there is no consensus on what
privacy parameters are acceptable in practice, and even for ε = 1, the scheme still offers
some guarantee on privacy.

For the Bloom filters, we choose the number of hash functions to be P = 8, and
the array size for each hash function to be Q = de · 3600e (we explain the choice of Q
below).
Practical Optimization. Several aspects of our protocols can be further optimized in
this application.
1. Empirical Sensitivity of PMG Count Vector and Bloom Filter Size. Since the value

of λ we choose is small, in practice, the number of distinct movies observed by
each node in each day never exceeds O( 1λ ), the number of counters in PMG. If
we assume that the daily number of distinct movies never exceeds the number of
counters in PMG, the real sensitivity isO(1), and so we can use Geom(eε) noise for
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PMG, instead of Geom(eΘ(ελ)). Moreover, we observe that the number of distinct
movies observed by all nodes in each day never exceeds 3600 and hence we can
choose Q = de · 3600e to be the size of the Bloom filter array for each hash.

2. Unnecessary Internal Blocks in Binary Construction. Since the width W of our
window is small, W0 =

⌈
λW
4

⌉
= 1. Hence, each leaf node in the binary tree corre-

sponds to one time step, and therefore, the binary construction does not help to save
memory in this case. Moreover, since W is small, the cost of count reconstruction
from W leaf nodes is still better than the overhead of keeping track of the binary
construction.

3. Relaxing Assumption on Item Arrival. Since we no longer need the binary con-
struction, we can further relax the assumption that exactly one item arrives at each
stream per time step. In our dataset, at least one item arrives at each stream at each
time step, and we do not need any upper bound on the number of arriving items.
Within each time step, PMG for each stream serializes the arriving items and pro-
cess them in any arbitrary order.

4. Estimating the Total Number of Arriving Items. With the assumption that only one
item arrives at each time step for each stream, it is trivial to compute the total num-
ber items within a window; this quantity is required for estimating the fraction an
item appears and also for deciding when to do lazy updates (this is the W in the
conditions for Up, Off and Down in PDCH-LU). However, now each stream also
needs to report to the aggregator the number of items that arrive each day, which
has sensitivity 1 for neighboring streams. Hence, in order to achieve ε-differential
privacy for the whole protocol, we can assign ε1 := 9ε

10 and ε2 := ε
10 such that each

stream runs PMG with ε1-differential privacy (using Geom(eε1) noise) and esti-
mates the number of items each day with ε2-differential privacy (using Geom(eε2)
noise).1

Performance Metric. We consider the following performance measures. For each per-
formance measure, we plot its mean with an error bar of 2 standard deviations (hence
each plot could go negative).
1. Error in estimated fraction. For each day, suppose H is the set of items whose true

fraction in the current window is at least θ and Ĥ is the set of items whose estimated
fraction in the current window is at least θ − λ. For each item x ∈ H ∪ Ĥ , we
calculate the error E(x) which is the absolute difference between the true and the
estimated fractions of item x in the current window. We compute the mean and the
standard deviation of E(x) over x in H ∪ Ĥ . We evaluate these statistics over time
for different protocols with various parameters.

2. Communication Cost. We measure the number of words each node sends to the
aggregator each day. For each day, we compute the mean and the standard deviation
of the communication cost over different nodes.

1 We give more privacy budget to PMG as it is more complicated, and less privacy budget to
the estimation of number of items each day as it is relatively simpler. It does not really affect
the asymptotic error as long as each part get a constant fraction of the privacy budget, but
experiment suggests that these parameters work well.
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Fig. 3. Error under different protocols Fig. 4. Error under different privacy parame-
ters for the PDCH-LU algorithm.

Fig. 5. Error under different privacy parame-
ters for the PDCH-BF algorithm.

Fig. 6. The number of words sent per data
source in the PDCH-LU protocol.

5.2 Results

Utility. In Figures 3, 4, and 5, we observe that the error in each case is well below the
theoretic guarantee λ = 0.001, and we interpret each figure as follows.

Figure 3 compares the errors of the PDCH-LU and PDCH-BF protocols, and also
demonstrates a breakdown of the error, i.e., how much error is introduced by com-
pressing the bandwidth, and how much due to the noise necessary for differential pri-
vacy. With our choice of parameters, the Bloom filter should introduce almost no error
and hence DCH-BF(no noise) forms the baseline for comparison. The plot for protocol
PDCH-BF essentially reflects the error introduced when we wish to preserve differen-
tial privacy. The plot for DCH-LU(no noise) reflects the error introduced by lazy update
in order to save communication bandwidth. The interesting unexpected result is that for
PDCH-LU when we use lazy update together with noise to ensure differential privacy,
the extra noise does not seem to increase the error by much. In fact, the effect of lazy
updates seem to smooth out some of the error introduced by the added random noise.

Figures 4 and 5 plot the utility of PDCH-BF and PDCH-LU under different dif-
ferential privacy parameter ε. As we decreases ε, the magnitude of noise increase and
we can see in Figure 5 that as expected the error for PDCH-BF is increased as well.
However, we can see that in Figure 4, that reducing ε has only a small effect on the
performance of PDCH-LU.
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Communication cost. Figure 6 shows that in the PDCH-LU protocol, the number of
item updates sent by each node per day is around 5 and almost never above 20. Typi-
cally, each item update is under 10 bytes of data.

In comparison, we need to pay higher (but still reasonable) communication cost
if we wish to ensure aggregator obliviousness. In our PDCH-BF experiment, given 8
hashes each having a filter of size Q = de · 3600e, and assuming that each Diffie-
Hellman ciphertext is 1024 bits, then the each sends about 10MB data per day to the
aggregator.

6 Conclusion

We proposed novel privacy-preserving protocols allowing an untrusted aggregator to
continually monitor heavy hitters across a set of distributed streams. Our protocols
achieve two levels of privacy protection, namely, differential privacy and aggregator
obliviousness. Both theoretic proofs and experimental results show that our protocols
achieve good utility in realistic settings, and introduce low memory, computational, and
bandwidth overhead at each data source.
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A Proofs for PMG

Privacy Guarantee. The Misra-Gries Algorithm keeps O( 1λ ) non-zero counters at any
time. For an item x that does not have an explicit counter, its count is interpreted as zero.
Hence, we can imagine that the algorithm maintains some vector that has at most β non-
zero coordinates at any time. Hence, after reading the whole stream (after Line 10),
we can view the resulting vector obtained as a function f : UT → ZU . If we can
show that the sensitivity of f is at most β + 1, then by Fact 2, by adding independent
random noise sampled from Geom(exp( ε

β+1 )) to coordinates of f , the resulting vector
will be ε-differentially private. After that, rounding negative values to zero and picking
the largest β counters are deterministic actions, and therefore releasing f̂ in Line 19
preserves ε-differential privacy.

The difficulty is that even if two streams differ only at one time step, the correspond-
ing counters can be drastically different. In one case, the new item causes an existing
counter to increase by one, while a different item could cause every non-zero counter to
decrease by 1, possibly causing all counters to be zero! The following lemma analyzes
the sensitivity of f and the technical challenge is to show that starting from two adja-
cent streams, the two corresponding vectors of counters at every time step satisfy one
of four structural states, where in each case the `1-distance between the two vectors is
at most β + 1.

Lemma 4. In Algorithm 1 after Line 10, the function f : UT → ZU has sensitivity at
most β + 1.

Proof. Let σ1 and σ2 be any two adjacent data streams of length T , for some time
bound T > 0. For the execution of PMG(ε, λ) on σ1, we denote by f t1(x) the value of
the counter for item x at the end of iteration t in the for loop between Lines 3 and 10;
we can view f t1 ∈ ZU as a vector. Define f t2 ∈ ZU similarly for the stream σ2. The
following claim states that for all time steps t, the vectors f t1 and f t2 follow a structural
property. Its proof appears in the appendix.
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Claim 1 (Structural Property between Adjacent Streams) Let t0 be the time step such
that σ1(t0) 6= σ2(t0) (it is obvious that for t < t0, f t1 = f t2). Then, for each t ≥ t0, the
vectors f t1 and f t2 satisfy one of the following four structural states.
1. I: f t1 = f t2.
2. S(x1, x2), for some x1 6= x2 ∈ U: f t1(x1) = f t2(x1)+1 and f t2(x2) = f t1(x2)+1.

For x ∈ U \ {x1, x2}, f t1(x) = f t2(x).
3. N1(x1, X), for some x1 ∈ X ⊂ U and |X| = β: f t1(x1) = f t2(x1) + 2; for x ∈

X \ {x1}, f t1(x) = f t2(x) + 1; for x ∈ U \X , f t1(x) = f t2(x) = 0.
4. N2(x2, X), for some x2 ∈ X ⊂ U and |X| = β: f t2(x2) = f t1(x2) + 2; for x ∈

X \ {x2}, f t2(x) = f t1(x) + 1; for x ∈ U \X , f t1(x) = f t2(x) = 0.
In particular, for each of the four states, we have ||f t1 − f t2||1 ≤ β + 1.

Hence, from Claim 1, we have ||fT1 − fT2 ||1 ≤ β + 1, as required. ut

Proof of Claim 1:
In this proof, we use f1(x) to denote the counter for item x during the execution

of PMG(ε, λ) on σ1, and define f2 similarly for σ2. Note that f1(x) and f2(x) might
change during the execution of PMG(ε, λ). When we want to specify the values of the
counters at specific times, we will use the superscripts.

We use induction on t− t0.
Base case. Suppose t = t0. Note that we have f t0−11 (x) = f t0−12 (x) for all x ∈ U .
Let A := {x ∈ U : f t0−11 (x) > 0}, then A is also the set {x ∈ U : f t0−12 (x) > 0}.
Suppose σ1(t0) = x1 6= x2 = σ2(t0).

According to the behavior of the algorithm, we have the following cases to consider.

1. |A| < β or {x1, x2} ⊂ A. In time step t0, both f1(x1) and f2(x2) increase by
one, and so we have f t01 (x1) = f t0−11 (x1) + 1 and f t02 (x1) = f t0−12 (x1) + 1.
Hence, at the end of time step t0, PMG is in state S(x1, x2).

2. x1 /∈ A and x2 /∈ A and |A| = β. During time step t0, for all x ∈ A, both f1(x)
and f2(x) decrease by one. Also, both f1(x1) and f2(x2) firstly increase by one
and then decrease by one, and thus remain 0’s. Hence, at the end of time step t0,
PMG is in state I.

3. x1 ∈ A and x2 /∈ A and |A| = β. During time step t0, f1(x1) increases by one,
and for all x ∈ A, f2(x) decreases by one. Also, f2(x2) firstly increases by one
and then decreases by one, and thus remains 0. Hence, at the end of time step t0,
PMG is in state N1(x1, A).

4. x2 ∈ A and x1 /∈ A and |A| = β. Symmetric to the above case, at the end of time
step t0, PMG is in state N2(x2, A).

Induction step. Suppose t > t0, and it is true that at the end of time step t − 1, PMG
can only be in the four structural states.

Suppose σ1(t) = σ2(t) = y. Let A1 := {x ∈ U : f t−11 (x) > 0} and A2 := {x ∈
U : f t−12 (x) > 0}. Note that for any i ∈ {1, 2}, Ai ∪ {y} is the set of items x such that
fi(x) > 0 after increasing fi(y) at Line 4 in the t-th iteration; hence, the decreasing
step is excecuted if and only if |Ai ∪ {y}| > β.

According to the state in which PMG is at the end of time step t−1, we have several
cases to consider.
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PMG is in I . During time step t, for any x ∈ U , f1(x) and f2(x) increase and
decrease simultaneously. Thus, at the end of time step t, f1(x) = f2(x) for all x ∈ U .
Hence, PMG is still in I.
PMG is in S(x1, x2). Let A := {x ∈ U \ {x1, x2} : f t−11 (x) > 0}. Observe that
A is also the set {x ∈ U \ {x1, x2} : f t−12 (x) > 0}. According to the behavior of the
algorithm, we have the following subcases.

1. |A1 ∪ {y}| ≤ β and |A2 ∪ {y}| ≤ β. During time step t, both f1(y) and f2(y)
increase by one. Hence, at the end of time step t, PMG is still in S(x1, x2).

2. |A1 ∪ {y}| ≤ β and |A2 ∪ {y}| > β. It is easy to see that only the following two
situations may lead to this subcase.
(a) |A| = β−1 and f1(x2) = 0 and f2(x1) = 0 and y = x1. During time step t,

f1(x1) increases by one, and f2(x) decreases by one for all x ∈ A∪{x2}. Also,
f2(x1) firstly increases by one and then decreases by one, and thus remains 0.
Hence, at the end of time step t, PMG is in state N1(x1, A ∪ {x1}).

(b) |A| = β − 2 and f1(x2) = 0 and f2(x1) > 0 and y /∈ A ∪ {x1, x2}. During
time step t, f1(y) increases by one, and f2(x) decreases by one for all x ∈
A ∪ {x1, x2}. Also, f2(y) firstly increases by one and then decreases by one,
and thus remains 0. Note that f1(x2) = 0 implies f2(x2) = 1. Therefore,after
the decreasing step, f2(x2) = 0. Hence, at the end of time step t, PMG is in
state N1(x1, A ∪ {x1, y}).

3. |A1 ∪ {y}| > β and |A2 ∪ {y}| ≤ β. Symmetric to the above subcase, at the end
of time step t, PMG is in either N2(x2, A ∪ {x2}) or N2(x2, A ∪ {x2, y}).

4. |A1 ∪ {y}| > β and |A2 ∪ {y}| > β. It is easy to see that only the following two
situations may lead to this subcase.
(a) |A| = β − 1 and f1(x2) = 0 and f2(x1) = 0 and y /∈ A ∪ {x1, x2}. During

time step t, f1(y) and f2(y) firstly increase by one and then decrease by one,
and thus remain 0’s. Also, for all x ∈ A, f1(x) and f2(x) decrease by one.
And, f1(x1) and f2(x2) decrease by one, and hence are both 0’s at the end of
time step t. Therefore, PMG is in state I at the end of time t.

(b) |A| = β − 2 and f1(x2) > 0 and f2(x1) > 0 and y /∈ A ∪ {x1, x2}. During
time step t, f1(x) and f2(x) decrease by one for all x ∈ A ∪ {x1, x2}. Also,
f1(y) and f2(y) firstly increase by one and then decrease by one, and thus
remain 0’s. Hence, at the end of time step t, PMG is still in S(x1, x2).

PMG is in N1(x1, X). Still, according to the behavior of PMG, we have several
cases to consider.

1. y ∈ X . During time step t, both f1(y) and f2(y) increase by one. Hence, at the
end time t, PMG is still in N1(x1, X).

2. y /∈ X and |A2 ∪ {y}| ≤ β. Note that by the definition of state N1(x1, X), it
holds that |X| = β, and thus |X ∪ {y}| > β. Also, for all x ∈ X , f t−11 (x) >
0. Hence, during time step t, f1(x) decreases by one for all x ∈ X , and f1(y)
firstly increases by one and then decreases by one, and hence remains 0. And, since
|A2 ∪{y}| ≤ β, f2(y) increases by one during time t. Therefore, at the end of time
step t, PMG is in S(x1, y).
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3. y /∈ X and |A2 ∪ {y}| > β. Note that |A2 ∪ {y}| > β implies that |A2| = β,
which means X = A2. Hence, during time step t, both f1(x) and f2(x) decrease
by one, for all x ∈ X . Also, both f1(y) and f2(y) firstly increase by one and then
decrease by one, and hence remain 0’s. Therefore, at the end of time step t, PMG
is still in N1(x1, X).

PMG is in N2(x2, X). Symmetric to the above case, at the end of time step t, PMG
can only be in state N2(x2, X) or S(y, x2). ut
Utility. LetW := σ([T ]) be the multiset of items in stream σ. We show that provided
that T is large enough, with high probability, the algorithm PMG(ε, λ) in Algorithm 1
outputs a vector f̂ ∈ ZU such that for every item x, f̂ approximates countx(W) with
additive error at most λT . There are two sources of error in f̂ : the first source comes
from counters being decreased in the loop between loop between Lines 3 and 10; the
second source comes from the randomness and the rounding between Lines 12 and 17.

Lemma 5 (Error for f ). In Algorithm 1 after Line 10, consider the counters at this
point as a vector f ∈ ZU . Let W be the multiset containing the items in the stream
σ ∈ UT of length T . Then, for each x ∈ U , |f(x)− countx(W)| ≤ λ

2 · T .

Proof. Observe that in the for loop between Lines 3 and 10, if counters are decreased
in an iteration (which we call an decrease iteration), then the counters for exactly β+1
different items are decreased by 1. Hence, it follows that there can be at most T

β+1 ≤
T

2/λ+1 <
λ
2 · T decrease iterations.

For any item x ∈ U , the counter for x increases by one whenever one copy of x
comes into the stream, and could only possibly decrease by one in a decrease iteration.
Hence, it follows that |f(x)− countx(W)| ≤ λ

2 · T . ut

Lemma 6 (Error for f̂ ). Let f ∈ ZU be as in Lemma 5 and f̂ ∈ ZU be the vector in
the output of PMG(ε, λ). Suppose that for all x ∈ U , the randomness rx generated in
Line 12 satisfies |rx| ≤ λ

4 · T . Then, for all x ∈ U , |f̂(x)− f(x)| ≤ λ
2 · T .

Proof. We show the result by case analysis. Observe that for any item x, f̂(x) is either
f(x) + rx or 0.
Case 1: f̂(x) = f(x) + rx. We have |f̂(x)− f(x)| = |rx| ≤ λT

4 ≤
λT
2 .

Case 2: f̂(x) = 0 and f(x) + rx ≤ 0. We have |f̂(x)− f(x)| ≤ |rx| ≤ λT
4 ≤

λT
2 .

Case 3: f̂(x) = 0 and f(x) + rx > 0. Since there are at most β non-zero coordinates
in f , we conclude that there must be some item y such that f(y) = 0 and f(y) +
ry ≥ f(x) + rx. It follows that f(x) ≤ ry − rx ≤ |ry| + |rx| ≤ λ

2 · T . Hence,
|f̂(x)− f(x)| = |0− f(x)| ≤ λ

2 · T . ut
Lemma 7 (Usefulness of PMG(ε, λ)). Let 0 < δ < 1 and T ≥ 32

λ2ε log
n
δ . Suppose

f̂ ∈ ZU is the output of PMG(ε, λ) on an input stream σ ∈ UT of length T . Then, f̂ is
(λT, δ)-useful with respect to the multiset σ([T ]) of items in σ.

Proof. By Fact 1, we know that for any x ∈ U , Pr[|rx| > λ
4 ·T ] = Pr[|rx| > bλ4 ·T c] ≤

exp(− ε
β+1 · b

λ
4 · T c), which is at most δn when T ≥ 32

λ2ε log
n
δ . By union bound on the

items in U , we conclude that with probability at least 1− δ, for all x ∈ U , |rx| ≤ λ
4 · T .

From Lemmas 6 and 5, we can conclude the result immediately. ut
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B Proofs for PCC

Recall that at any point of time t, there exists a collection Ct of disjoint active blocks,
such that Ct contains at most two blocks from each level, and that the union of blocks
in Ct is the union of all active level-0 blocks. At any time, PCC(ε, λ) maintains the
dictionary Pt, where Pt = {(x,

∑
B∈Ct f̂B(x)) : x ∈ U and

∑
B∈Ct f̂B(x) > 0}.

Small |Pt|. Let t be any fixed time step. Note that if Pt contains a pair of the form
(x, cx), then there exists at least one B ∈ Ct such that f̂B(x) > 0. Since Ct contains
at most two blocks at each level, and f̂B for a block B at level i has at most O( 1

λi
)

non-zero coordinates, it follows that |Pt| ≤ O(
∑`
i=0 2 ·

1
λi
) = O( 1λ log 1

λ ) .

Lemma 8 (Running Time). The mechanism PCC(ε, λ) takes O( 1λ log 1
λ ) operations

to process each item in the stream, and samples at most O( 1λ log 1
λ ) random variables

in each time step. Moreover, it takes O( 1λ log 1
λ ) operations to produce Pt from the

active blocks.

Proof. Observe that at any time step, at most one block from each level is under con-
struction. Hence, from Lemma 2, the total number operations to process each item is at
most

∑l
i=0O( 1

λi
) = O( 1λ log 1

λ ), and the number of random variables sampled in each
time step is at most O( 1λ log 1

λ ).
Next we analyze the number of operations to produce Pt. Note that f̂B may also

be returned by PMG in the form of a dictionary. Hence, we can look at f̂B for every
B ∈ Ct to add items into Pt. Still, we have to check f̂B for at most two level-i blocks
B, and checking one such f̂B needs O( 1

λi
) operations. Thus, O( 1λ log 1

λ ) operations are
needed in total.

Lemma 9 (Memory Usage). The mechanism PCC(ε, λ) can be implemented using
O( 1λ log2 1

λ ) words of memory.

Proof. At any time t, there are at most W
W0·2i active blocks, and at most one under-

construction block at each level i. Since each active or under-construction block at
level i uses O( 1

λi
) words of memory, the total memory usage is O(

∑`
i=0

W
W0·2i

1
λi
) =

O(
∑`
i=0

i
λ ) = O( `

2

λ ) = O( 1λ log2 1
λ ) ut

Utility. LetWt :=Wt(σ). We show that provided W is large enough, with high proba-
bility, the dictionary maintained by PCC(ε, λ) can be used to give approximate counts.

Lemma 10 (Error for Pt(x)). Let t be any fixed time step. Suppose for every level-i
block B ∈ Ct and every x ∈ U , |f̂B(x) − countx(B)| ≤ λiWi. Then, for all x ∈ U ,
|Pt(x)− countx(Wt)| ≤ λW .

Proof. Recall that ∪B∈CtB is the union of all level-0 active blocks at time t. Hence,
all items in Wt \ ∪B∈CtB are contained in at most two level-0 blocks (one under-
construction and one expired). Thus, for every x ∈ U , |

∑
B∈Ct countx(B)−countx(Wt)| ≤

2W0 ≤ 1
2 · λW .
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Also recall that for any 0 ≤ i ≤ `, Ct contains at most two level-i blocks. Hence,
for all x ∈ U , |

∑
B∈Ct f̂B(x)−

∑
B∈Ct countx(B)| ≤

∑`
i=0 2λiWi ≤ 1

2λW .

Observe that for any x ∈ U , Pt(x) =
∑
B∈Ct f̂B(x). Hence, it follows that for any

x ∈ U , |Pt(x)−countx(Wt)| ≤ |
∑
B∈Ct f̂B(x)−

∑
B∈Ct countx(B)|+|

∑
B∈Ct countx(B)−

countx(Wt)| ≤ λW ut

Lemma 11 (Usefulness of PCC(ε, λ)). Suppose 0 < δ < 1 and L > 0.

(1) If W ≥ Θ( 1
λ2ε (log

2 1
λ ) · log(

n
δ log

1
λ )). Then, at every time step t ∈ N, Pt is

(λW, δ)-useful with respect toWt.
(2) If W ≥ Θ( 1

λ2ε (log
2 1
λ ) · log(

L+W
λW · nδ )), then for any T ≥ L + 1, {Pt}t∈[T−L,T ]

is simultaneously (λW, δ)-useful with respect to {Wt}t∈[T−L,T ].

Proof. (1) Let t ∈ N be any fixed time step and supposeW ≥ 2048·(`+1)2

λ2ε log 2(`+1)n
δ =

Θ( 1
λ2ε (log

2 1
λ )·log(

n
δ log

1
λ )). Then, for any 0 ≤ i ≤ `,Wi =

⌊
λW
4

⌋
·2i ≥ 32

λ2
i εi

log( 2(`+1)n
δ ).

By Lemma 1, for every level-i block B ∈ Ct, f̂B is (λiWi,
δ

2(`+1) )-useful with respect
to B. Recall that Ct contains at most two level-i blocks, and hence |Ct| ≤ 2(`+ 1). By
union bound on the blocks in Ct, we know that with probability at least 1 − δ, for all
level-i block B ∈ Ct and all x ∈ U , |f̂B(x) − countx(B)| ≤ λiWi. By Lemma 10, we
can immediately conclude that Pt is (λW, δ)-useful with respect toWt.

(2) Let T ≥ L + 1 be any fixed time step. Let S = {Bij : T − (L +W ) + 1 ≤
(j− 1)Wi+1 ≤ jWi ≤ T} be the set of all blocks that are totally within σ([T − (L+

W ) + 1, T ]). It is easy to see that |S| ≤
∑`
i=0

L+W
W0·2i ≤

16(L+W )
λW .

Suppose W ≥ 2048·(`+1)2

λ2ε log( 16(L+W )
λW · nδ ) = Θ( 1

λ2ε (log
2 1
λ ) · log(

L+W
λW · nδ )).

Then, for any 0 ≤ i ≤ `, Wi =
⌊
λW
4

⌋
· 2i ≥ 32

λ2
i εi

log( 16(L+W )
λW · nδ ). By Lemma

1, for every level-i block B ∈ S, f̂B is (λiWi,
λWδ

16(L+W ) )-useful with respect to B.

Recall that |S| ≤ 16(L+W )
λW . Hence, by union bound on all blocks in S, we know that

with probability at least 1 − δ, for all level-i block B ∈ S, and all x ∈ U , |f̂B(x) −
countx(B)| ≤ λiWi. Observe that ∪t∈[T−L,T ]Ct ⊆ S. Hence, by Lemma 10, with
probability at least 1− δ, for all t ∈ [T −L, T ] and all x ∈ U , |Pt(x)− countx(Wt)| ≤
λW . ut

C Proofs for PDCH-LU

Space and Time Requirement at Each Node. Note that for each x ∈ U , if Pt(x) = 0,
then at the end of time step t, Last(x) must be 0. Hence, there are at most |Pt| =
O( 1λ log 1

λ ) items x with Last(x) > 0 at the end of each time step t. Those non-zero
values of Last(x) are the information we need to explicitly store. Together with the
O( 1λ log2 1

λ ) words of memory used by PCC(ε, λ11 ), each node usesO( 1λ log2 1
λ ) words

of memory. Also, at each time t, an item x is checked by PDCH-LU only if Last(x) > 0
in the beginning of time t or Pt(x) > 0, and there are O( 1λ log 1

λ ) such items. Together
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with the operations of PCC(ε, λ11 ), totally O( 1λ log 1
λ ) operations are needed to process

an item.
Privacy Guarantee. Note that the transcript of node i, Π(σi), is a deterministic func-
tion of (Pt)t∈N, the dictionaries maintained by PCC(ε, λ11 ) on σi. Since (Pt)t∈N main-
tains ε-differential privacy, it follows that the transcript of each node is ε-differentially
private against the aggregator.
Utility Suppose 0 < δ < 1 and let t ≥ W be any fixed time step. We use Lastt(x)
to denote Last(x)’s value at the end of time step t. And let Pit and Lastit(x) be Pt and
Lastt(x) at node i, respectively. From the description of PDCH-LU, it is easy to see that
for any i ∈ [k], |Pit(x)− Lastit(x)| ≤ 9

11 · λW . By Lemma 3 and union bound on the k
streams, we know that if W ≥ Θ( 1

λ2ε (log
2 1
λ ) · log(

kn
δ log 1

λ )), then with probability at
least 1− δ, for any i ∈ [k] and any x ∈ U , |Pit(x)− countx(W(i)

t )| ≤ λ
11W , and hence

Lastit(x) is a λ-approximate count for x with respect to W(i)
t . Note that at the end of

any time step t, Last(x) at node i is always identical to the counter ci(x) maintained by
the aggregator. Hence, we conclude that if W ≥ Θ( 1

λ2ε (log
2 1
λ ) · log(

kn
δ log 1

λ )), then
at the end of any time step t ≥ W , with probability at least 1 − δ, for all x ∈ U , the
count c(x) on the server is a λ-approximate count for x with respect toW [k]

t .
Communication Cost Suppose L > 0 and 0 < δ < 1. By Lemma 3 and union bound
on the k streams, if W ≥ Θ( 1

λ2ε (log
2 1
λ ) log(

L+W
λW · knδ )), then for any T ≥ L + 1,

with probability at least 1 − δ, for any i ∈ [k], any t ∈ [T − L, T ] and any x ∈ U ,
|Pit(x) − countx(W(i)

t )| ≤ λ
11 ·W . By a characteristic-set argument similar to that in

[3], this approximation guarantee implies that for any T ≥ L, with probability at least
1−δ, the total communication cost in time interval [T −L+1, T ] isO( kλ ·

⌈
L
W

⌉
logW )

words.

D Generating Largest r among n Independently and Identically
Distributed Random Variables

Given some distributionD on integers and 1 ≤ r ≤ n, we wish to sample r (dependent)
random variables that have the joint distribution of the r largest random variables among
n independently and identically distributed random variables each having distribution
D. The naive way to achieve this is to sample n independent random variables from D,
sort them and output the r largest; however, this would take Ω(n) memory and time.
We would like a sampling method that takes O(r) memory and time independent of n.
Computational Model and Source of Randomness. We assume arithmetic such as
exponentiation can be performed in O(1) time, even when the exponent is n. Given
distributionD, we assume the probability mass function k 7→ pk(D) and the cumulative
distribution function Sk(D) :=

∑
i≤k pi(D) can be retrieved in O(1) time for each k.

We assume that we can sample independent real numbers from the interval [0, 1].
Notation. When there is no risk of ambiguity, we write pk := pk(D) and Sk := Sk(D)
dropping the dependence onD. We assume X1, X2, . . . , Xn are n independent random
variables, each having distribution D. For 1 ≤ l ≤ n, let Zl be the lth largest among
the n random variables. We shall describe a procedure SAMPLE(r, n,D) that prints r
numbers having the joint distribution (Z1, Z2, . . . , Zr).
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Input: An integer n and a distribution D.
Output: An integer k having the distribution as the largest among n independent random

variables each sampled from D.

1 Sample x ∈ [0, 1] uniformly at random;
2 Find k such that Snk−1 < x ≤ Snk ;
3 Return k;

Algorithm 3: MAX(n,D)

For each integer k, we denote by Dk the conditional distribution having probability
mass function i 7→ pi(D)

Sk(D) , for i ≤ k.

MAX(n,D): Sampling the Largest. Observe that Pr[Z1 = k] = Snk − Snk−1. Hence,
the procedure MAX(n,D) that returns an integer having the same distribution as Z1 is
defined in Algorithm 3.

Conditioning on Z1. Define ql := Pr[Z1 = k, Z2 = k, . . . , Zl = k] = Snk −∑l−1
i=0

(
n
i

)
pikS

n−i
k−1. Then, we can compute Pr[Zl = k|Z1 = k, . . . , Zl−1 = k] = ql

ql−1
.

This means conditioning on Z1 = k, we can sample Z2, Z3, . . . until we encounter the
first l such that Zl+1 6= k, at which point we know the remaining n−l random variables
each has distributionDk−1, and hence we can call SAMPLE(r− l, n− l,Dk−1) to print
the remaining r − l random variables. The details of SAMPLE(r, n,D) are given in
Algorithm 4.
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Input: Integers 1 ≤ r ≤ n and distribution D.
Output: Print r numbers having the joint distribution as the r largest among n

independent random variables each sampled from D.

1 k ← MAX(n,D);
2 Print(k);
3 q1 ← Snk − Snk−1;
4 l← 1;
5 while l < r do
6 ql+1 ← ql −

(
n
l

)
plkS

n−l
k−1;

7 Sample x ∈ [0, 1] uniformly at random;
8 if x ≤ ql+1

ql
then

// Zl+1 = k
9 Print(k);

10 l← l + 1;
11 end
12 else

// Zl+1 < k, break while loop
13 break;
14 end
15 end
16 if l < r then
17 SAMPLE(r − l, n− l,Dk−1);
18 end

Algorithm 4: SAMPLE(r, n,D)
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