
Quadratic Span Programs and Succinct NIZKs without PCPs

Rosario Gennaro∗ Craig Gentry† Bryan Parno‡ Mariana Raykova§

Abstract

We introduce a new characterization of the NP complexity class, called Quadratic Span
Programs (QSPs), which is a natural extension of span programs defined by Karchmer and
Wigderson. Our main motivation is the construction of succinct arguments of NP-statements
that are quick to construct and verify. QSPs seem well-suited for this task, perhaps even better
than Probabilistically Checkable Proofs (PCPs).

In 2010, Groth constructed a NIZK argument in the common reference string (CRS) model
for Circuit-SAT consisting of only 42 elements in a bilinear group. Interestingly, his argument
does not (explicitly) use PCPs. But his scheme has some disadvantages – namely, the CRS size
and prover computation are both quadratic in the circuit size. In 2011, Lipmaa reduced the
CRS size to quasi-linear, but with prover computation still quadratic.

Using QSPs we construct a NIZK argument in the CRS model for Circuit-SAT consisting
of just 7 group elements. The CRS size is linear in the circuit size, and prover computation
is quasi-linear, making our scheme seemingly quite practical. (The prover only needs to do a
linear number of group operations; the quasi-linear computation is a multipoint evaluation and
interpolation.)

Our results are complementary to those of Valiant (TCC 2008) and Bitansky et al. (2012),
who use “bootstrapping” (recursive composition) of arguments to reduce CRS size and prover
and verifier computation. QSPs also provide a crisp mathematical abstraction of some of the
techniques underlying Groth’s and Lipmaa’s constructions.

∗IBM T.J.Watson Research Center. rosario@us.ibm.com
†IBM T.J.Watson Research Center. cbgentry@us.ibm.com
‡Microsoft Research. parno@microsoft.com
§Columbia University. mariana@cs.columbia.edu

1 Introduction

The PCP theorem [BFLS91, FGL+96, AS98, ALM+98] provided a new characterization of NP that
revolutionized the notion of “proof” – in particular, it showed that NP statements have probabilis-
tically checkable proofs (PCPs) that can be verified in time polylogarithmic in the size of a classical
proof. Kilian adapted this new characterization of NP to the cryptographic setting, showing that
one can use PCPs to construct interactive arguments (i.e., computationally sound proof systems
[BCC88]) for NP that are succinct – i.e., polylogarithmic also in their communication complexity.
Micali [Mic00] showed how to make these arguments non-interactive by applying the Fiat-Shamir
heuristic [FS86]: the prover applies a hash function, modeled as a random oracle [BR93], to its PCP
string both as a form of commitment and to non-interactively generate the verifier’s PCP queries.
Recent works [BCCT12a, GLR11, DFH12] (see also [CL08]) have improved Micali’s construction
by removing the random oracles, which are known to be uninstantiable [CGH04], replacing them
with “extractable collision-resistant hash functions” (ECRHs), whose security relies on the plau-
sible, but non-falsifiable [Nao03], assumption that for any algorithm that computes an image of
the ECRH, there is an extractor (that watches the algorithm) that computes a pre-image.1 These
recent constructions have been called succinct non-interactive arguments (SNARGs) of knowledge
(SNARKs), since, under the knowledge assumption, the SNARG permits “knowledge” extraction
of the entire hash preimage – namely, the entire PCP.

In short, the PCP theorem provides a spectacularly powerful characterization of NP that is
useful for, among other things, constructing SNARGs and SNARKs. But, as remarkable as the
PCP theorem is, it was not conceived exclusively for cryptographic applications. So, it seems
reasonable to ask: Can we construct better SNARGs/SNARKs without (explicitly) using PCPs?
Is there a different characterization of NP that is better suited for cryptographic applications?

1.1 Quadratic Span Programs: A New Characterization of NP

We introduce quadratic span programs (QSPs), a new characterization of NP that allows us to
construct very efficient SNARKs without PCPs.

To explain QSPs, it is helpful to recall span programs (SPs), a linear-algebraic model of compu-
tation introduced by Karchmer and Wigderson [KW93]. A SP over a field F consists of a nonzero
target vector t over F , a set V = {v1, . . . ,vm} of vectors, a partition of the indices I = {1, . . . ,m}
into two sets Ilabeled and Ifree, and a further partition of Ilabeled as ∪i∈[n],j∈{0,1}Iij . The SP is said
to “compute” a function f if the following is true for all input assignments u ∈ {0, 1}n: the target
vector is in the span of the vectors that “belong” to the input assignment u – namely, the vectors
with indices in Iu = Ifree ∪i Ii,ui

– iff f(u) = 1. The size of the span program is m.
Functions with polynomial size SPs are in NC2, since linear algebra is in NC2. Consequently,

it is widely believed that SPs are not powerful enough to efficiently compute all functions in P (or
to verify all NP relations).

We define QSPs somewhat similarly to SPs.

Definition 1 (Quadratic Span Program). A quadratic span program (QSP) Q over field F contains
two sets of polynomials V = {vk(x) : k ∈ {0, . . . ,m}} and W = {wk(x) : k ∈ {0, . . . ,m}} and a
target polynomial t(x), all from F [x]. Q also contains a partition of the indices I = {1, . . . ,m}
into two sets Ilabeled and Ifree, and a further partition of Ilabeled as ∪i∈[n],j∈{0,1}Iij.

1We know that the security of succinct non-interactive arguments cannot be based on falsifiable assumptions via
black box reductions [AF07, GW11]; hence non-falsifiable “knowledge” assumptions seem unavoidable in this context.

1

For input u ∈ {0, 1}n, let Iu = Ifree ∪i Ii,ui
be the set of indices that “belong” to input u.

Q accepts an input u ∈ {0, 1}n iff there exist tuples (a1, . . . , am) and (b1, . . . , bm) from Fm, with
ak = 0 = bk for all k /∈ Iu, such that

t(x) divides

(

v0(x) +
m
∑

k=1

ak · vk(x)

)

·

(

w0(x) +
m
∑

k=1

bk · wk(x)

)

. (1)

Q “computes” a boolean function f : {0, 1}n → {0, 1} if it accepts exactly those inputs u where
f(u) = 1. The size of Q is m. The degree of Q is deg(t(x)).

QSPs seem like a natural extension of (linear) SPs. A SP accepts an input u iff the target vector
can be expressed as a linear combination of vectors that “belong” to u. A QSP accepts an input u
iff (a multiple of) the target polynomial can be expressed as a product of two linear combinations
of vectors that “belong” to u, where “product” is defined as polynomial multiplication.

Importantly, unlike SPs, QSPs can efficiently compute any efficiently computable function, and
so we can define NP as the set of languages with proofs that can be verified efficiently by QSPs.

Theorem 1. (Informal) For any boolean circuit f with s gates and any field F of size at least some
d = O(s), there is a QSP of size and degree O(s) (with small constant) over F that computes f .

At a high level, our “canonical” QSP works as follows. (See section 2 for details.) Suppose C
is a boolean circuit that computes a function f . While we cannot necessarily construct a SP that
“computes” f efficiently, we can construct a SP S that merely verifies that a bit string represents a
valid assignment of C’s wires, including the interior wires. Specifically, we construct S by concate-
nating SPs Sg for the individual gates g, where each Sg verifies that the wire values of gate g are
consistent, and each Sg “owns” a few dimensions of the overall vector space that S lives in. The
dimension of the vectors in S depends linearly on the number of gates in C. The vectors in S are
all labeled and allotted to assigned wires in C, and if a wire participates in gate g, it indirectly
receives vectors from Sg.

We embed the SP S into our QSP twice – both inside V and inside W. Specifically, we pick
some distinct values r1, . . . , rmv ∈ F , and interpolate v0(x) so that (v0(r1), . . . , v0(rmv)) is the target
vector of S. We interpolate the other vk(x)’s so that the vectors (vk(r1), . . . , vk(rmv)) correspond to
the other vectors in S. When we set tv(x) =

∏mv

i=1(x− ri) and set t(x) to be some multiple of tv(x),
the divisibility check of Equation 1 implicitly runs the SP S – i.e., it checks that v0(x) +

∑m
k=1 ak ·

vk(x) is divisible by tv(x), hence is zero at the ri’s, hence the target vector (v0(r1), . . . , v0(rmv))
is in the span of the vectors (vk(r1), . . . , vk(rmv)), hence the linear combination {ak} is associated
to a valid assignment of C’s wires. (For W, we construct tw(x) similarly but with different roots,
make t(x) divisible also by tw(x), and proceed analogously.)

The reason that the SP S does not already “compute” f is that it has labeled (non-free) vectors
even for the interior wires of C, whereas an SP for f is only permitted to have labeled vectors for
the input wires. So, a cheating prover is not required to play by S’s rules: in its linear combinations,
it can use vectors in S that correspond to conflicting assignments (both ‘0’ and ‘1’) of some interior
wire in C. Still, S gives us something. It ensures that, if the prover does play by S’s rules – if it
commits to one assignment for each interior wire of C and only uses vectors in S that correspond
to the committed assignment – then the span programs implicit in V and W will be satisfied only
if the assignment is valid.

To ensure that the prover plays by S’s rules, we construct another polynomial tQ(x), another
product of linear terms, with roots distinct from tv(x) and tw(x), and set t(x) = tv(x) · tw(x) · tQ(x).
We set the vk(x)’s (similarly wk(x)’s) via CRT to be equal the original vk(x)’s modulo tv(x) (so that

2

the embedded SP S is undisturbed) and set the evaluations of the vk(x)’s and wk(x)’s at the roots of
tQ(x) so that not playing by S’s rules becomes fatal: if the prover tries to use a linear combination
(a1, . . . , am) that applies nonzero coefficients to vk(x)’s corresponding to different assignments of
the same wire, or if the linear combinations (a1, . . . , am) and (b1, . . . , bm) are inconsistent in how
they assign a wire, then the resulting product v(x) ·w(x) cannot be divisible by tQ(x). The details
here are a bit tricky, and we defer them to Section 2.

Our “canonical” QSP (Section 2) has performance conducive to constructing faster SNARKs.

Theorem 2. (Informal) Given f whose circuit has s gates, computing the polynomials t(x), V and
W of our “canonical” QSP takes O(s) work (O(s) F operations). Given u ∈ {0, 1}n for which
f(u) = 1, computing suitable tuples (a1, . . . , am), (b1, . . . , bm) ∈ {0, 1}m that satisfy Equation 1
takes O(s) work. Given (a1, . . . , am), computing v(x) = v0(x) +

∑m
k=1 ak · vk(x) takes O(s) work.

(Similarly for w(x).) Computing the quotient polynomial h(x) = v(x) · w(x)/t(x) takes Õ(s) work.

We obtain such performance by exploiting the fact that the vk(x)’s and wk(x)’s in our canonical
QSP behave similarly to Lagrange basis polynomials `j(x) =

∏

i 6=j(x − ri)/(rj − ri) in that they
each evaluate to 0 at almost all roots of t(x), which is a product of linear terms. This makes it easy
to compute v(x) and w(x) in linear time by representing them by their evaluation at these roots.
Computing h(x) in purely linear, versus quasi-linear, time remains an intriguing open problem.

Beginning in Section 7, we present a variant of QSPs, called “quadratic arithmetic programs”
(QAPs), that “naturally” compute arithmetic circuits over large fields, along with SNARK con-
structions that use QAPs. QAPs may often have performance advantages over QSPs.

1.2 From QSPs to SNARKs and NIZKs

We use QSPs to build SNARKs and NIZKs in the common reference string (CRS) model introduced
by Blum et al. [BFM88, BSMP91].

Our SNARK for f uses a CRS in which the QSP polynomials (e.g., {vk(x)}) are represented
by terms gvk(s) (etc.), where g is a generator of bilinear group, and s ∈ F is secret. The CRS
size is linear in the circuit size of f . To oversimplify, to compute a SNARK, the prover uses its
satisfying input to compute tuples (a1, . . . , am) and (b1, . . . , bm), and then uses them and the CRS
to compute gv = gv(s), gw = gw(s), gh = gh(s) for v(x), w(x), h(x) as above. The verifier confirms
e(gv, gw) = e(gh, g

t(s)), where e is the bilinear map. (The actual scheme is more complicated.) For
security, we require a non-falsifiable “knowledge” assumption as in [Gro10, Lip12].

It is easy to randomize our public-verifier SNARK to make it zero knowledge and obtain a
non-interactive zero-knowledge (NIZK) argument [BFM88, BSMP91]. Essentially, the prover adds
random δvt(s) and δwt(s) in the exponent to gv and gw and alters gh accordingly. Our NIZK consists
of only 7 group elements. Prover computation is quasi-linear in the circuit size, only due to the
computation of h(x). (To compare: Groth’s [Gro10] NIZK has 42 group elements, Lipmaa’s [Lip12]
has 39, and both have prover computation that is quadratic.) Aside from a pre-processing step to
compute the CRS, verifier computation is linear in the size of the statement (not witness). This
can be reduced pragmatically by applying an ordinary (not extractable) collision-resistant hash to
the statement so that verification is constant aside from the hashing, or asymptotically by applying
a small PCP over the statement (not the witness, as in traditional PCP-based approaches). See
the overview in Section 3, and Section 4, for details.

As also observed by Groth [Gro10] and Lipmaa [Lip12], our result immediately yields a sub-
linear size Zap [DN07] (details in Section 4.4).

3

1.3 Comparisons to Other Work on Succinct Arguments without PCPs

Here, we review and compare other constructions of succinct argument systems for NP-complete
languages, and delegation schemes for P-complete languages, that avoid the PCP theorem.2

Our work on succinct arguments is perhaps best seen as an abstraction and refinement of
Groth’s surprising recent results [Gro10]. He showed that PCPs are not (explicitly) necessary
at all for succinct NIZKs, as long as one permits a pre-processing stage to establish a common
reference string (CRS). Groth and others [GOS06, GS08] had previously constructed NIZKs over
bilinear groups with various attractive properties, but with size linear in the circuit. Recently,
Groth essentially found a way to compress the proof components succinctly into a constant number
of group elements. Security relies on a non-falsifiable “knowledge of exponent” assumption, similar
to the one we use.

The main drawback of Groth’s succinct NIZK is the prover complexity, which is quadratic in
the circuit size. Lipmaa [Lip12] showed how to reduce the size of the CRS in Groth’s construction
from quadratic to quasi-linear in the circuit size, but with prover complexity still quadratic. Recall
that in our scheme the CRS size and prover complexity are linear, aside from the quasi-linear
computation needed to compute the quotient polynomial h(x).

Ishai, Kushilevitz and Ostrovsky (IKO) [IKO07] were perhaps the first to seriously question
whether succinct arguments need the PCP theorem, noting that such arguments have a peculiar
structure: “the classical proof is expanded by introducing a significant amount of redundancy”,
but then the expanded proof is hashed and thus “dramatically shrinks in size”. They presented
a “direct approach, or a shortcut, that combines the two steps into one.” IKO avoids the PCP
theorem by using the simpler exponential-length Hadamard PCP [ALM+98] – that is, IKO still
uses PCPs, but not “short” ones. Since the Hadamard PCP is linear – i.e., the prover’s response
is a linear function π of the verifier’s query – it is possible for the prover, in polynomial time,
to commit cryptographically to π, and therefore to its responses to all of the exponentially-many
possible verifier queries. The verifier sets up this commitment scheme in a pre-processing step: it
generates a key pair for an additively homomorphic encryption scheme, such as Paillier [Pai99],
encrypts (each entry of) a random vector r, and sends these ciphertexts to the prover. The prover
commits to π by sending a ciphertext that encrypts s = π(r), which it computes by using the
additive homomorphism; the verifier decrypts and retains s. Afterwards, when the verifier wants to
query q, it picks a random α and sends (q, r+α · q). The prover responds with two ciphertexts that
encrypt (a, b) = (π(q), π(r+α · q)), which it computes homomorphically. The verifier decrypts, and
accepts a as the correct response to q if b = s+α ·a. Security relies on a non-falsifiable “knowledge”
assumption: that there is an extractor that can recover π from the commitment s.

A drawback of IKO is that, due to the inefficiency of the Hadamard PCP, the prover’s compu-
tation (and also the verifier’s computation in a pre-processing step) is quadratic in the size of the
classical proof, similar to Groth [Gro10]. (See [SMBW12] for an implementation of IKO that claims
a factor of 1017 improvement over a naive implementation of IKO, yet still finds the prover com-
plexity prohibitive in general, and therefore constructs more efficient PCPs for specific functions
such as matrix multiplication.)

Gennaro, Gentry and Parno [GGP10] (GGP) presented a verifiable computation (VC) scheme

2Rothblum and Vadhan [RV10] show that PCPs are “inherent” in argument systems that (1) base security on
certain falsifiable assumptions and (2) are robust (secure when the prover has access to a verification oracle). The
systems we discuss here are based on non-falsifiable assumptions [IKO07, Gro10, Lip12, Val08, BSW12, BCCT12b]
or are not robust [GGP10, CKV10, AIK10].

4

that allows a client to outsource an arbitrarily complex (efficiently computable) function to a
worker and verify the worker’s computation in constant time, where the worker’s complexity is
only linear in the size of the circuit. GGP and related schemes [CKV10, AIK10] embed a one-time
VC scheme, such as a Yao garbled circuit, inside a fully homomorphic encryption (FHE) scheme
[RAD78, Gen09b, Gen09a] to obtain re-usability. These VC schemes have the appealing feature
of being based on a falsifiable assumption – namely, the semantic security of FHE. A drawback,
aside from the current impracticality of FHE, is that these schemes are not robust: the client must
redo an expensive preprocessing step (linear in the circuit size) after it detects that the worker has
cheated. Our SNARKs immediately give us VC schemes that are robust and have better practical
performance.

Valiant [Val08] asked how to construct incrementally verifiable succinct arguments for the cor-
rectness of a computation whose space complexity is much less than its circuit size. He showed that,
for argument systems with certain properties, arguments π1, π2 can be composed into a single argu-
ment π (of equal length) that “I have seen convincing proofs π1, π2.” Then, π can succinctly replace
π1, π2 assuming an extractor that watches the generation of π can recover π1, π2. By recursively

composing SNARKs for (M : ci
j−i
−−→ cj) (“running TM M from configuration ci for j− i steps gives

configuration cj”), one can build a SNARK for the correctness of M ’s entire computation. Veri-
fier preprocessing, and CRS size, are polynomial only in the space complexity of the computation
(the size of the configurations), not the circuit size. Unfortunately, at the time of Valiant’s work,
suitable argument systems existed only heuristically in the random oracle model. Very recently,
Boneh et al. [BSW12] and Bitansky et al. [BCCT12b] observed that Groth’s SNARKs [Gro10] are
suitable. Bitansky et al. provide other extensions of Valiant’s results, including allowing dynamic
computations.

Our results are complementary to [Val08, BSW12, BCCT12b]. Bitansky et al. observe that
recursive composition of SNARKs is analogous to “bootstrapping” in FHE. This analogy holds
also with respect to performance: while recursive composition (of SNARKs, and within FHE)
improves certain aspects of performance (it reduces dependence on circuit size), it also degrades
performance in terms of the security parameter. In particular, the quadratic prover computation in
Groth’s and Lipmaa’s SNARKs increases the complexity of the bootstrapping step in Bitansky et
al.’s construction. Our SNARKs, with quasi-linear prover computation, make bootstrapping more
practical.

2 Quadratic Span Programs (QSPs)

In the Introduction, we defined Quadratic Span Programs (QSPs) in a manner that is superficially
similar to that of span programs (SPs). In this section, we construct a “canonical” QSP for a
function f indirectly: first we construct a traditional SP to check the evaluation of f ; we then
combine this with a consistency checker that ensures the check is itself performed correctly.

Suppose C is a Boolean circuit that computes a function f . While we cannot necessarily
construct a SP that “computes” f efficiently, we can construct a SP S that merely verifies that
a bit string represents a valid assignment of C’s wires, including the interior wires (Section 2.1).
However, the SP S does not “compute” f ; it has labeled (non-free) vectors even for the interior
wires of C, whereas an SP for f is only permitted to have labeled vectors for the input wires. If
we simply move the vectors for the interior wires to the “free” set, then a cheating prover need not
play by S’s rules: in its linear combinations, it can use vectors in S that correspond to conflicting

5

assignments (both ‘0’ and ‘1’) of some interior wire in C. Still, S gives us something. It ensures
that, if the prover does play by S’s rules – if it selects exactly one assignment for each interior wire
of C and uses only vectors in S that correspond to that assignment – then the span program will
be satisfied only if the assignment is valid, i.e., corresponds to a valid evaluation of f .

To ensure the prover plays by the rules, i.e., chooses either vectors for 0 or vectors for 1 for
each interior wire, our canonical QSP incorporates a “consistency checker”, built out of consistency
checkers for each wire (Section 2.2). We can express both the consistency checks and the SP S as
polynomials and compose them into the polynomials that constitute the QSP (Section 2.3).

We provide details of our construction below.

2.1 Component 1: A Useful Linear Span Program

We do not know how to efficiently construct SPs for arbitrary functions f ∈ P. But we can always
efficiently construct a SP for a function related to f , called the circuit checker function for f .

Definition 2 (Circuit Checker Function). Let f : {0, 1}n → {0, 1} be a function whose Boolean
circuit C has s gates. Let N = n + s. Suppose φ : {0, 1}N → {0, 1} is a function that outputs ‘1’
iff the input is a valid assignment of C’s wires (wires that fan out are considered one wire) with
output wire set to ‘1’. We say that φ is the circuit checker function for f .

Lemma 1. Suppose that f consists of Boolean gates from some set Γ – e.g, Γ = {NAND}. Suppose
that, for each gate g ∈ Γ, there is a SP of size m′ that computes whether an input is a satisfying
assignment of g’s input/output wires. If f : {0, 1}n → {0, 1} has a Boolean circuit C with s gates
from Γ, there is SP S of size m = s · m′ that computes f ’s circuit checker function φ. S is a
straightforward composition of SPs {Sg} for the individual gates g of f .

Lemma 1 says that there is an SP S = (t,V = {v1, . . . ,vm}, Ifree, Ilabeled = ∪i∈[N],j∈{0,1}Iij) for
φ that is linear in f ’s circuit size (and linear in the size of NAND’s SP). The proof is constructive.
The target vector of S is literally a concatenation of target vectors for the Sg’s. S also inherits
its other vectors from the Sg’s, but somewhat modified: Sg “owns” a few dimensions of the vector
space that S lives in, and Sg’s vectors are otherwise padded with 0’s to fill out S’s space. If a wire
i ∈ [N] participates in gate g, it indirectly receives vectors from Sg – i.e., {vk : k ∈ Ii0 ∪Ii1 ⊂ [m]}
includes (modified) vectors from Sg, which depend on whether i was a left input, right input, or
output of g. To optimize performance, we will exploit the extreme sparseness of vectors in V .

Proof. (Lemma 1) For convenience, assume that each of the s gates of C each have three wires: a
left input, a right input, and an output. (The proof easily extends to the more general case.) For a
gate g ∈ [s], let gl, gr, go ∈ [m] be the indices of the wires left, right and output. Of course, a wire
may connect to many gates – it may be the output of one gate, and an input to many gates – so
we may have, for example, go = g′l for different gates g, g

′.
For each g, we will define a SP. Let m(g), d(g) be parameters denoting the number of rows and

columns, respectively, in the SP for g. Our span program S = (t,V = {v1, . . . ,vm}, Ifree, Ilabeled =
∪i∈[N],j∈{0,1}Iij) for φ will have m row vectors of dimension d, where m =

∑

g m
(g) and d =

∑

g d
(g). In S’s m × d matrix of row vectors, each gate g “owns” a rectangle of m(g) consecutive

rows and d(g) consecutive columns – call this block of row indices I(g) = I
(g)
free ∪ I

(g)
labeled, where

I
(g)
labeled = ∪i∈{gl,gr,go},j∈{0,1}I

(g)
ij). Therefore, we write the SP for g as S(g) = (t(g),V(g) = {v

(g)
k :

k ∈ I(g)}, I
(g)
free, I

(g)
labeled = ∪i∈{gl,gr,go},j∈{0,1}I

(g)
ij).

6

In S, the target vector t is a simple concatenation of the target vectors for the gates: t =
t(1)‖ · · · ‖t(s). For each k ∈ I(g), the vector vk is the same as one of the vectors in V(g), except
that it is shifted so that its column indices cover J (g), the columns “owned” by g. The free vectors

are a combination of the free vectors from each gate, similarly adjusted: Ifree = ∪g∈[s]I
(g)
free. Also,

Iij = ∪i∈{gl,gr ,go}I
(g)
ij .

It remains to show that S computes φ. Suppose u′ is such that φ(u′) = 1. Then u′ corresponds
to a satisfying assignment of the wires of C, the boolean circuit for f . Therefore, for each gate g of
C, the assignment u′gl , u

′
gr
, u′go to the wires (gl, gr, go) is satisfying, and there is a linear combination

of the vectors in V(g) with indices in Igl,u′
gl
∪Igr ,u′

gr
∪Igo,u′

go
that equals the target vector t(g). This

linear combination is restricted to indices in I(g), and therefore is independent of indices associated
to other gates. Since the column sets associated to different gates are also disjoint, we can compose
the linear combinations for the individual gates to get a linear combination, restricted to indices in
∪i,u′

i
Iiu′

i
, that equals the target vector t.

Conversely, suppose that, for some u′, there is a linear combination, restricted to indices in
∪i,u′

i
Iiu′

i
, that equals the target vector t. Then, for each gate g, there is a linear combination,

restricted to indices in Igl,u′
gl
∪ Igr,u′

gr
∪ Igo,u′

go
, that equals the target vector t(g). Therefore, the

assignment u′ satisfies each individual gate of C. By the definition of φ, we have φ(u′) = 1.

It is straightforward to construct a small SP for NAND.3

Lemma 2. There is a conscientious SP for NAND consisting of 12 vectors of dimension 9.

Proof. (Lemma 2) Let (vl0,v
′
l0,vl1,v

′
l1,vr0,v

′
r0,vr1,v

′
r1, t) be 9 linearly independent vectors of

dimension 9. The target vector is t, and the pair of vectors Vl0 = (vl0,v
′
l0) belongs to the assignment

of 0 to the left wire, etc. Set vo0 = t − vl1 − vr1 and Vo0 = {vo0}, so that one can express t as a
linear combination of vectors in Vl1 ∪ Vr1 ∪ Vo0. Set vo1 = t− vl0 − vr0, v

′
o1 = t − v′

l0 − v′
r1, and

v′′
o1 = t− v′

l1 − v′
r0, and Vo1 = {vo1,v

′
o1,v

′′
o1}, so that one can express t as a linear combination of

vectors associated to the other satisfying gate assignments.
First, let us prove that the SP is conscientious – i.e., that a linear combination associated to a

satisfying gate assignment must use at least one vector associated to each wire. For the satisfying
assignment (0, 0, 1), we have the vectors (vl0,v

′
l0,vr0,v

′
r0, t− vl0− vr0, t− v′

l0− v′
r1, t− v′

l1− v′
r0).

It is clear that no linear combination of just the left and right vectors – i.e., (vl0,v
′
l0,vr0,v

′
r0) –

can give t, since these vectors are linearly independent from t. Wlog, consider the left vectors
and the output vectors: here also there is no linear combination that gives t, since none of the
output vectors can be used, since they each contain at least one right vector that does not appear
elsewhere.

Now, let us prove that there is no way of expressing the target vector as a linear combination
of vectors associated to an unsatisfying assignment. First, consider the unsatisfying assignment
(1, 1, 1). No linear combination that sums to t can use any of the vectors associated to output 1,
since each of them contains one of the following vectors (vl0,v

′
l0,vr0,v

′
r0) associated to assigning 0

to a left or right wire, and moreover each of these terms appears only once, in only one of the output
vectors, and nowhere else. Therefore the linear combination must be restricted to (vl1,v

′
l1,vr1,v

′
r1),

but of course this is impossible. Finally, consider an unsatisfying assignment where the output bit
is 0, and at least one bit of the input is 0. We have vo0 = t − vl1 − vr1. Since one of the input

3The same techniques apply to AND and OR. They also have exactly one input pair that gives one of the outputs.

7

bits is 0, either vl1 or vr1 (or both) appears inside vo0, but nowhere else, and therefore the linear
combination cannot use vo0. Since the SP is conscientious, there is no hope that t can be expressed
as a linear combination of vectors associated only to the input bits.

When we embed the SP S into our QSP, we can only explicitly constrain the prover to consis-
tently use the vectors corresponding to f ’s input, while the vectors for f ’s interior wires will be
free. However, if the prover is nice enough to play by S’s rules – if it uses vectors only from one
of the two sets for each wire, then the SP S will be satisfied only if the wire assignment is a valid
execution of f . This is formalized in Lemma 3 below. Later, we will construct a consistency checker
designed to ensure that the prover abides by S’s rules within our QSP.

Lemma 3. Let S = (t,V = {v1, . . . ,vm}, Ifree, Ilabeled = ∪i∈[N],j∈{0,1}Iij) be a SP for the circuit
checker function φ of f . Then, for all u ∈ {0, 1}n, the following is true iff f(u) = 1: there exists a
tuple (a1, . . . , am) satisfying the following constraints:

• t =
∑

k ak · vk.

• For all k ∈ ∪ni=1Iiui
, we have ak = 0.

• For all i ∈ {n+ 1, . . . , N} and all k1 ∈ Ii0 and k2 ∈ Ii1, at most one of ak1 , ak2 is nonzero.

In particular, if f(u) 6= 1, then a linear combination that satisfies the first and second constraints
must violate third – i.e., must make a “double assignment” of some wire i ∈ {n+ 1, . . . , N}.

Proof. (Lemma 3) If f(u) = 1, then we can assign the wires of C validly with the output wire
set to 1. Therefore, we can extend u ∈ {0, 1}n to an input u′ ∈ {0, 1}N that satisfies φ. Since u′

satisfies φ, there is a linear combination (a1, . . . , am) such that t =
∑

k ak · vk and ak = 0 for all
k ∈ ∪ni=1Iiu′

i
, thus satisfying the constraints listed in the lemma.

Conversely, suppose that (a1, . . . , am) satisfies the constraints. Then, since S computes φ, there
is an extension u′ ∈ {0, 1}N of u ∈ {0, 1}n such that φ(u′) = 1 and such that u′ “agrees” with the
tuple (a1, . . . , am) in the sense that ak = 0 for all k ∈ Iiu′

i
, i ∈ [N]. Since φ(u′) = 1 where u′ is an

extension of u, and since φ tests the satisfaction of f ’s Boolean circuit, we must have f(u) = 1.

We make some tweaks to f ’s circuit and the SP for φ before embedding it in our canonical QSP.
First, the construction of our QSP is cleaner when f has low fan-out – e.g., two. We could

reduce fan-out to two by using split gates while increasing the number of gates by only a constant
factor, but prefer to keep things simple by using only NAND/AND gates. Functionally, a split gate
is equivalent to an AND gate with fan-out 2 with a dummy wire set to ‘1’. Hence Lemma 4, which
says we can reduce fan-out to 2 by adding dummy AND gates and increase the number of gates by
only a constant factor. The tradeoff is that we need to add a single dummy input wire, always set
to ‘1’, that participates in many gates.

Lemma 4. Let f : {0, 1}n → {0, 1} be a function whose Boolean circuit C has s NAND/AND/OR
gates. There is a function f † : {0, 1}n+1 → {0, 1} with f †(1, u) = f(u), whose Boolean circuit C†

has at most 3s NAND/AND/OR gates, where all wires except the first are inputs to at most 2 gates,
and each bit of u is an input to only 1 AND gate (where the other is the first (dummy) input). The
circuit checker function φ† for f †(1, ·) has a SP of size ≤ 36s and dimension 27s, and sparseness
of the vectors is preserved. Also, for each Iij ∈ Ilabeled, we have |Iij | = 1.

Proof. (Lemma 4) Suppose that C has a gate g with fan-out d. To construct C†, we reduce g’s
fan-out to two and connect to the output wire of g an inverted binary tree of AND gates, each of
which has fan-out two and takes one input from the gate before it and the other input is the added

8

dummy input. To eliminate the fan-out d, we need to add at most d such gates. We perform this
process independently for the gates in C that have high fan-out. (Of course, we do not perform this
process for the dummy input, else we would have an infinite loop.) For all inputs to C (independent
of how many gates an input may be connected to in the original circuit), we reduce the number
of input wires per input to one, by making it the input to an AND gate (with the other input the
dummy input), and then dealing with fanout in the usual way. Since we know that the dummy
input is 1, we can simplify the SPs for the input gates by discarding the AND SP vectors associated
to a 0 possibility for the dummy input. Via this simplification, |Iij | = 1 for all of the labeled sets
of indices.

Now we bound the number of gates in C†. In C, when there was a fan-out of d, this fan-out d
participated in at least “d/2 gates” in the rough sense that the d wires were “half of the input” to
d gates. Since eliminating fan-out d added at most d gates, C† has at most 3 times as many gates
as C: hence, at most 3s gates.

The size of the SP for the circuit checker function for f † is thus at most 3s ·m′ by Lemma 1,
where m′ is a bound on the size of the SPs for the individual AND/NAND gates: thus at most 36s
by Lemma 2. By Lemma 2, the dimension of the SP is at most 27s. To construct a SP for φ† (the
circuit checker function for f †(1, ·)), we simply eliminate all of the vectors in f † that corresponded
to assigning the first (dummy) input to ‘0’, and put all of the indices for vectors that correspond
to assigning the first (dummy) input to ‘1’ in Ifree. (Thus, in the SP for φ†, we do not need to
consider the dummy input to C† as an actual input.)

The sparseness property holds for φ† – namely, each vector in the SP for φ† (aside from the
target vector) has only a small constant number of nonzero coefficients, since the vectors in the SP
for φ† are inherited from the small SPs for the individual gates of C†.

Second, to combine the SP with the consistency checker, it will be convenient to view our
SP S as consisting of polynomials rather than vectors. (This also permits one to view the
composition of S from the gate SPs {Sg} as occurring via the Chinese Remainder Theorem.)
Suppose S = (t,V = {v1, . . . ,vm}, Ifree, Ilabeled = ∪i∈[N],j∈{0,1}Iij) has size m and dimension
d. Generate d distinct values ri ∈ F . For each vector vk, define the polynomial vk(x) (of
degree at most d − 1) such that vk(ri) = vki. In addition, define the polynomial v0(x) such
that v0(ri) = −ti. Finally, let t(x) =

∏d
i=1(x − ri). Define the polynomial version of S to be:

Spoly = (t(x),V = {v0(x), . . . , vm(x)}, Ifree, Ilabeled = ∪i∈[N],j∈{0,1}Iij).

Lemma 5. S is satisfied iff Spoly is satisfied in the sense that there exists (a1, . . . , am) such that
t(x) divides v(x) = v0(x) +

∑

ak · vk(x).

Proof. (Lemma 5) Suppose S is satisfied by (a1, . . . , am) such that −t+
∑

akvk = 0. Since −t is
the vector of evaluations (at r1, . . . , rd) of v0(x), and vk is the vector of evaluations of vk(x), the
above holds iff v0(x) +

∑

akvk(x) evaluates to 0 at all ri, and hence is divisible by t(x).

2.2 Component 2: A Consistency Checker

The second component of our QSP, a consistency checker, ensures that the two pairs of linear
coefficients, {ak} and {bk}, in our QSP obey the rules of the embedded SP S for φ – i.e., that they
make no “double assignments” to wires in f ’s circuit C. A double assignment of a wire i occurs
when {ak} (or {bk}) includes non-zero terms for vectors from both sets Ii0 and Ii1.

9

In fact we construct a one-wire consistency checker that enforces a slightly weaker condition:
double assignments in {ak} are forbidden, unless {bk} indicates a non-assignment – i.e., all bk = 0
(and vice versa). We compose the checkers for individual wires via CRT, and then compose this
aggregate with the SP S via CRT to construct the QSP.

The weak consistency condition suffices for our canonical QSP, since each set of linear coefficients
{ak} and {bk} comes from an SP instantiation. The conscientious property of the SP requires that
we use vectors from at least one of the sets I0 and I1 when assigning the corresponding ak and bk
values. The consistency checker then further guarantees that the non-zero values ak and bk used
for a particular wire correspond to the same bit assignment.

Definition 3 (Consistency Checker). For some L, let I0 = {1, . . . , L}, I1 = {L + 1, . . . , 2L},
I = I0 ∪ I1. A consistency checker for coefficients {ak} and {bk} over I consists of polynomials
t(x), V = {vk(x) : k ∈ I} and W = {wk(x) : k ∈ I} such that

t(x) divides

(

∑

k∈I

ak · vk(x)

)

·

(

∑

k∈I

bk · wk(x)

)

(2)

if {ak} and {bk} indicate consistent bit assignments (i.e., for some bit B, ak = bk = 0 for all
k ∈ IB̄), but not if {ak} and {bk} indicate inconsistent bit assignments in the following sense:

• There exist ka ∈ I0 and k′a ∈ I1 and kb ∈ I such that aka 6= 0, ak′a 6= 0 and bkb 6= 0, or

• There exist ka ∈ I and kb ∈ I0 and k′b ∈ I1 such that aka 6= 0, bkb 6= 0 and bk′
b
6= 0.

The size of the consistency checker is |I|, and the degree is deg(t(x)).

Construction of a Consistency Checker.

1. For L′ = 3L − 2, select distinct roots R(0) = {r
(0)
1 , . . . , r

(0)
L′ } and R(1) = {r

(1)
1 , . . . , r

(1)
L′ } from

F . Set R = R(0) ∪R(1). Set t(x) =
∏

r∈R(x− r).

2. Interpolate the polynomials in V and W to have degree (L′ + L− 1) and satisfy:

(a) For k ∈ I0, vk(r) = 0 for all r ∈ R(0)∪{r
(1)
1 , . . . , r

(1)
L } except vk(r

(1)
k) = 1, and wk(r) = 0

for all r ∈ R(1) ∪ {r
(0)
1 , . . . , r

(0)
L } except wk(r

(0)
k) = 1.

(b) For k ∈ I1, vk(r) = 0 for all r ∈ R(1) ∪ {r
(0)
1 , . . . , r

(0)
L } except vk−L(r

(0)
k−L) = 1, and

wk(r) = 0 for all r ∈ R(0) ∪ {r
(1)
1 , . . . , r

(1)
L } except wk−L(r

(1)
k−L) = 1.

Lemma 6. The above construction is a consistency checker.

Proof. (Lemma 6) Clearly, t(x) divides the product in Equation 2 – i.e., (
∑

k∈I ak ·vk(r))·(
∑

k∈I bk ·
wk(r)) = 0 for all r ∈ R – if {ak}, {bk} indicate consistent assignments.

If {ak} indicates a double assignment and {bk} is nonzero, then
∑

k∈I0
ak · vk(x) has at most

L − 1 roots in R(1), since it is nonzero of degree L′ + L − 1 and already has R(0) as roots. A
similar analysis applies to

∑

k∈I1
ak · vk(x). Note that

∑

k∈I ak · vk(x) has exactly the same roots

in R(1) that
∑

k∈I0
ak · vk(x) does, since the other part of the sum – namely,

∑

k∈I1
ak · vk(x) –

has everything in R(1) as a root. Similarly,
∑

k∈I ak · vk(x) has exactly the same roots in R(0) that
∑

k∈I1
ak · vk(x) does. So,

∑

k∈I ak · vk(x) has at most 2L− 2 roots in R. Since
∑

k∈I bk ·wk(x) is
nonzero and degree-(L′ + L− 1), it has at most L′ + L− 1 roots in R. So, the overall product has
at most L′ + 3L− 3 < 2L′ roots, and is therefore not divisible by t(x).

We can construct an “aggregate” consistency checker for the partition used in the SP Spoly by
using CRT to compose consistency checkers for the individual wires.

10

Definition 4 (Aggregate Consistency Checker). Let I = ∪i∈[N],j∈{0,1}Iij be a partition. A aggre-
gate consistency checker for I consists of polynomials t(x), V = {vk(x) : k ∈ I} and W = {wk(x) :
k ∈ I} such that

t(x) divides

(

∑

k∈I

ak · vk(x)

)

·

(

∑

k∈I

bk · wk(x)

)

(3)

if {ak} and {bk} indicate consistent bit assignments of all N bits (i.e., for each i ∈ [N], for some
bit Bi, ak = bk = 0 for all k ∈ IiB̄i

), but not if {ak} and {bk} indicate inconsistent bit assignments
of any of the N bits in the following sense:

• For some i ∈ [N], there exist ka ∈ Ii0 and k′a ∈ Ii1 and kb ∈ Ii0 ∪ Ii1 such that aka 6= 0,
ak′a 6= 0 and bkb 6= 0, or

• For some i ∈ [N], there exist ka ∈ Ii0 ∪ Ii1 and kb ∈ Ii0 and k′b ∈ Ii1 such that aka 6= 0,
bkb 6= 0 and bk′

b
6= 0.

Lemma 7. We obtain an aggregate consistency checker by merging consistency checkers for the
individual indices i ∈ [N], and using disjoint sets of roots R = {R(i0),R(i1) : i ∈ [N]}, an aggregate
target polynomial t(x) =

∏

r∈R(x − r), and CRT to set the polynomials in V and W. For the
partition of Ilabeled from the SP Spoly that computes the circuit checker function φ† for function f †

(the fan-out-2 version of f , where f has s gates), the size of the aggregate consistency checker is
|Ilabeled| ≤ 24s and the degree is 76s.

The aggregate consistency checker is built as follows. For i ∈ [N], let Li be an upper bound on
|Ii0| and |Ii1|.

Construction of an Aggregate Consistency Checker.

1. Generate all of the roots and the target polynomial. For all i ∈ [N], for L′
i = 3Li − 2, select

distinct roots R(i0) = {r
(i0)
1 , . . . , r

(i0)
L′
i
} and R(i1) = {r

(i1)
1 , . . . , r

(i1)
L′ } from F . (The roots are

distinct across the i’s as well.) Set R = ∪iR
(i0) ∪R(i1). Set ti(x) =

∏

r∈R(i0)∪R(i1)(x− r) and
t(x) =

∏

i ti(x) =
∏

r∈R(x− r).

2. Generate polynomials for the individual checkers. For i ∈ [N], construct sets of polynomials
V(i) and W(i) by interpolating polynomials to have degree (L′

i + Li − 1) and satisfy the
following. (For convenience, for this step, we view Ii0 as being the set of indices {1, . . . , Li}
and Ii1 being the set of indices {Li + 1, . . . , 2Li}.)

(a) For k ∈ Ii0, v
(i)
k (r) = 0 for all r ∈ R(i0) ∪ {r

(i1)
1 , . . . , r

(i1)
Li
} except v

(i)
k (r

(i1)
k) = 1, and

w
(i)
k (r) = 0 for all r ∈ R(i1) ∪ {r

(i0)
1 , . . . , r

(i0)
Li
} except w

(i)
k (r

(i0)
k) = 1.

(b) For k ∈ Ii1, v
(i)
k (r) = 0 for all r ∈ R(i1) ∪ {r

(i0)
1 , . . . , r

(i0)
Li
} except v

(i)
k−Li

(r
(i0)
k−Li

) = 1, and

w
(i)
k (r) = 0 for all r ∈ R(i0) ∪ {r

(i1)
1 , . . . , r

(i1)
Li
} except w

(i)
k−Li

(r
(i1)
k−Li

) = 1.

3. Compose individual checkers via CRT. For i ∈ [N], for k ∈ Ii0 ∪ Ii1, interpolate vk(x)

to be of degree at most deg(t(x)) − 1 and satisfy vk(x) = v
(i)
k (x) mod ti(x) and vk(x) =

0 mod t(x)/ti(x). Analogously for wk(x). Set V = {vk(x)} and W = {wk(x)}.

Now, let us consider the performance aspects of the aggregate consistency checker when applied
to the partition Ilabeled = ∪i∈[N],j∈{0,1}Iij of our SP S (or Spoly). Recall that, for a function f with
s gates, we defined a circuit checker function φ that has a SP of size 12s and dimension 9s. (An
improved conscientious SP for NAND would improve this number.) However, if f did not originally

11

have low fan-out, we first transformed f to a function f † such that f †(1, u) = f(u) that has a circuit
with at most 3s gates and fan-out 2, and then defined a circuit checker function φ† for f † that has
a SP of size 36s and dimension 27s. We will pessimistically focus on the latter SP, and assume that
Spoly is derived from that.

While the size of the SP can be up to 36s, potentially many of the vectors in S (Spoly) are free,
and so |Ilabeled| may be much smaller than 36s. In particular, all of the wires emanating from the
dummy input of f † are free. This is because we know a priori that we will always assign ‘1’ to this
bit, and so the SP only needs to provide vectors for that assignment and there is no need to make
them labeled (non-free). Half of the wires added by the transformation from f to f † emanate from
the dummy input. So, the size of Ilabeled at most doubles, not triples. In particular, |Ilabeled| ≤ 24s.

Regarding the degree of the checker, since the fanout in the circuit is 2, each wire participates
in at most 3 gates, one as an output and two as an input. For each assignment, each wire receives
up to two vectors per NAND gate that it participates in as an input, and up to three vectors per
NAND gate that it participates in as an output, for a total of 7 vectors. So, L is bounded by 7 for
all wires, and thus L′ is bounded by 19. Since there are at most 2s wires in the circuit (excluding,
as above, the wires from the dummy input) and since the degree of each individual checker is 2L′,
the overall degree of the aggregate checker is at most 76s.

Proof. (Lemma 7) If {ak}, {bk} indicate consistent assignments, then they indicate consistent
assignments of the i-th bit for k restricted to Ii0∪Ii1. Hence, ti(x) divides the product in Equation
3 when the summations are restricted to k ∈ Ii0 ∪ Ii1. Since vk(x) and wk(x) are divisible by ti(x)
for all k /∈ Ii0∪Ii1, the overall (unrestricted) product in Equation 3 is divisible by ti(x). Since this
is true of all i, the product is divisible by t(x).

If, for some i, {ak} indicates a double assignment of the i-th bit and {bk} is nonzero over
k ∈ Ii0 ∪ Ii1, then, by Lemma 6, ti(x) does not divide the product in Equation 3 when the
summations are restricted to k ∈ Ii0 ∪ Ii1. As above, ti(x) divides everything else, and thus the
overall product in Equation 3 is not divisible by ti(x), and thus not divisible by t(x).

As described above, for the partition of Ilabeled from the SP Spoly that computes the circuit
checker function φ for a function f whose circuit has s gates, the size of the aggregate consistency
checker is |Ilabeled| ≤ 24s and the degree is 76s.

2.3 Our Canonical QSP

Here we describe how to take any polynomial-time computable function f , and construct a polynomial-
size QSP that computes f . The construction uses the Chinese Remainder Theorem to merge the
polynomial version of the SP for the circuit checker function φ, described in Section 2.1, with the
polynomials for the consistency checker from Section 2.2.
The Canonical QSP: Qcan,f .

1. Take as input the Boolean circuit C for f : {0, 1}n → {0, 1}, which has s gates.

2. Construct a Boolean circuit C† with only fan-out-2 gates for f †, per Lemma 4.

3. Construct a SP S = (t, {v1, . . . ,vm}, Ifree, Ilabeled = ∪i∈[N],j∈{0,1}Iij) for the circuit checker

function φ† of f †.

4. From S, using disjoint sets of roots R(V) and R(W), construct two incarnations of the SP Spoly

for φ† – namely, S
(V)
poly = (t̂(V)(x), V̂ = {v̂0(x), . . . , v̂m(x)}, Ifree, Ilabeled = ∪i∈[N],j∈{0,1}Iij)

and S
(W)
poly = (t̂(W)(x), Ŵ = {ŵ0(x), . . . , ŵm(x)}, Ifree, Ilabeled = ∪i∈[N],j∈{0,1}Iij). Note that

12

because we use distinct roots for each incarnation, the resulting target polynomials t̂(V)(x)
and t̂(W)(x) are relatively prime.

5. Using disjoint sets of roots R = {R(i0),R(i1) : i ∈ [N]} and the partition of Ilabeled, construct
the aggregate consistency checker from Lemma 7, which consists of the following polynomials:
t′(x) =

∏

r∈R(x− r), V ′ = {v′1(x), . . . , v
′
m(x)} and W ′ = {w′

1(x), . . . , w
′
m(x)}.

6. Define t(x) = t̂(V)(x)t̂(W)(x)t′(x).

7. Finally, for k ∈ [m], define V = {v0(x), . . . , vm(x)} and W = {w0(x), . . . , wm(x)} using the
Chinese Remainder Theorem to interpolate vk(x) and wk(x) as follows:

vk(x) =

v̂k(x) mod t̂V(x)
v′k(x) mod t′(x)

1 mod t̂W(x) if k = 0

0 mod t̂W(x) otherwise

wk(x) =

ŵk(x) mod t̂W(x)
w′
k(x) mod t′(x)

1 mod t̂V(x) if k = 0

0 mod t̂V(x) otherwise

8. Output Qcan,f = (V ,W, t(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij), where the labeled indices
∪i∈[n+1,N]Iij from the SP S have been moved to Ifree.

Theorem 3. For any boolean circuit f with n inputs, s gates, and N = n+ s total wire values, the
canonical QSP computes f . The size of the canonical QSP is 36s and the degree is 130s.

Proof. (Theorem 3) Suppose f(u) = 1. Then we can evaluate the circuit C for f to find wire values
that satisfy C; hence the circuit checker φ evaluates to 1, and Lemma 5 tells us there must be a set of

coefficients (a1, . . . , am) and (b1, . . . , bm) for each of our polynomial span programs S
(V)
poly and S

(W)
poly

such that t̂(V)(x) divides v̂(x) = v̂0(x)+
∑

ak ·v̂k(x) and t̂(W)(x) divides ŵ(x) = ŵ0(x)+
∑

bk ·ŵk(x).
Since {ak} and {bk} indicate consistent bit assignments of wires in the evaluation of f(u), the
consistency checker is happy; that is, by Lemma 6, we have that t′(x) divides v′(x)w′(x) where
v′(x) =

∑

k∈[m] akv
′
k(x) and w′(x) =

∑

k∈[m] bkw
′
k(x).

Letting v(x) = v0(x)+
∑

ak ·vk(x) and w(x) = w0(x)+
∑

bk ·wk(x), we have that v(x)w(x) mod
t′(x) = v′(x)w′(x) = 0 mod t′(x). Similarly, v(x)w(x) = v̂(x) · 1 = 0 mod t̂V(x), and v(x)w(x) =
1 · ŵ(x) = 0 mod t̂W(x). In other words, v(x)w(x) is divisible by t′(x), t̂V(x), and t̂W(x) (none of
which share any roots), and hence is divisible by t(x).

For the other direction, now suppose that there exist tuples (a1, . . . , am) and (b1, . . . , bm) such
that v(x)w(x) = 0 mod t(x) where again v(x) = v0(x)+

∑

k akvk(x) and w(x) = w0(x)+
∑

k bkwk(x).
(We will not use the additional hypothesis that the tuples correspond to u – i.e., that ak = 0 = bk for
all k /∈ Iu – until a little later.) Since v(x)w(x) = 0 mod t(x), we also have that v(x)w(x) = 0 mod
t′(x). As before, we have that v(x)w(x) = v′(x)w′(x) mod t′(x), and hence v′(x)w′(x) = 0 mod t′(x).
As stated in Lemma 6, divisibility by t′(x) implies that (a1, . . . , am) and (b1, . . . , bm) are consistent,
i.e., that neither makes a double assignment of any wire i ∈ [N] (e.g., uses nonzero bk1 ∈ Ii0 and
bk2 ∈ Ii1) unless the other makes no assignment.

Suppose that, wlog, {ak}makes no assignment for the wire i – i.e., that ak = 0 for all k ∈ Ii0∪Ii1.

Since the polynomial span program S
(V)
poly is conscientious, it is impossible that t̂(V)(x) divides

v̂(x) = v̂0(x) +
∑

ak · v̂k(x) when {ak} makes some non-assignment. But if t̂(V)(x) does not divide
v̂(x), then t(x) cannot divide v(x)w(x), since v(x)w(x) = v̂(x) · 1 = v̂(x) mod t̂(V)(x). by t̂(V)(x).
Therefore, t(x) does not divide v(x)w(x), a contradiction. We conclude that there must be no
non-assignments of wires, and thus (by the consistency checker) no double assignments either. For
each wire i ∈ [N], {ak} and {bk} must indicate unequivocal strongly consistent (no non- or double-)
assignments.

13

We claim that |Iij | = 1 for all i ∈ [n], j ∈ {0, 1}, and moreover that {ak}, {bk} are “unequiv-
ocally” bound to some input u′ ∈ {0, 1}n – in particular, ak = 1 = bk for all {k} = Iiu′

i
and

ak = 0 = bk for all {k} = Iiū′
i
. This claim and previous two paragraphs establish that our canonical

QSP has the extra property required of strong QSPs: that t(x) divides v(x)w(x) only if the sets
Iij for the input wires are singletons and the linear combinations properly specify an input. To
see that the claim is true, notice that we have already established that the linear combinations
must be unequivocal in the sense of consistently indicating an assignment (with no non- or double-
assignments). The fact that the Iij are singletons for i ∈ [n] comes from Lemma 4 and our trans-
formation from f to f †, by which we simplified all of the input gates to AND gates where one of
the inputs is always a dummy input set to ‘1’, and from Lemma 2, wherein the SP for a (simplified)
AND gate (SPs for AND have the same structure as SPs for NAND) in which one input is a dummy
input always set to ‘1’ has a very simple structure – in particular, there is exactly one vector in the
simplified SP that must be chosen for the other input (depending on its assignment).

Now, we include the hypothesis that ak = 0 = bk for all k /∈ Iu. As described above, since
v(x)w(x) = 0 mod t(x), we must have that v̂(x) = v̂0(x) +

∑

ak · v̂k(x) = 0 mod t̂(V)(x) – i.e., that

our polynomial span program S
(V)
poly is satisfied. By Lemmas 3 and 5, this implies f(u) = 1.

The size of the canonical QSP is 36s, the same size as the SP S for the circuit checker function.
Since t(x) is the product of the three polynomials t′(x), t̂V(x), and t̂W(x), of degrees at most 76s,
27s and 27s respectively, t(x) has degree 130s.

Our proof of Theorem 3 actually shows something more: that our canonical QSP is a strong QSP.
Definition 5 (Strong QSP). A QSP Q = (V ,W, t(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij) is a strong
QSP if |Iij | = 1 for all i ∈ [n], j ∈ {0, 1} and the equation

t(x) divides

(

v0(x) +
m
∑

k=1

ak · vk(x)

)

·

(

w0(x) +
m
∑

k=1

bk · wk(x)

)

holds only if {ak}, {bk} are “unequivocally” bound to some input u ∈ {0, 1}n – in particular,
ak = 1 = bk for all {k} = Iiui

and ak = 0 = bk for all {k} = Iiūi
.

Theorem 4. Our canonical QSP is a strong QSP.

Proof. (Theorem 4) The above proof of Theorem 3 showed that ak = 1 = bk for all {k} = Iiui
and

ak = 0 = bk for all {k} = Iiūi
for the canonical QSP construction.

2.4 QSP Efficiency Considerations

To this point, we have bounded the size and degree of our QSPs. Here, we analyze other efficiency
aspects of working with QSPs, before these issues become entangled with the details of our cryp-
tographic protocols. A similar efficiency analysis (see Section 7.5) holds for quadratic arithmetic
programs (QAPs), the version of QSPs for arithmetic circuits.

In particular, given a Boolean circuit C, we address the following questions:

1. Given a circuit C, how efficiently can we output the set of polynomials {vk(x)}, etc., associated
to the QSP that computes C?

2. Given the QSP and an input u, how efficiently can we compute the appropriate linear combi-
nation a1, . . . , am to apply to {vk(x)}?

3. Given the linear combination a1, . . . , am, how efficiently can we compute the polynomial
v(x) =

∑

k ak · vk(x)?

14

4. Letting w(x) =
∑

k bk ·wk(x), how efficiently can we compute the quotient polynomial h(x) =
(v0(x) + v(x)) · (w0(x) + w(x))/t(x)?

Regarding the first question, if {vk(x)} “behaved” like a set of m “random” polynomials of
degree d, we could not hope to compute (or even “write”) all of the polynomials in time less than
m · d. However, in our canonical QSP construction, the polynomials are actually quite structured.
In particular, in our canonical QSP, let RV be the roots of t̂V(x) (the target polynomial for the

polynomial span program S
(V)
poly), let R

W be the roots of t̂W(x), let R′ be the roots of t′(x) (the

target polynomial for our consistency checker) and let R = RV ∪ RW ∪ R′ be the roots of t(x) =
t̂V(x) · t̂W(x) · t′(x) (the target polynomial for our canonical QSP). For any k 6= 0, all but a constant
number of the values {vk(r) : r ∈ R} are zero. Specifically, recall how we set vk(x) in our canonical
QSP:

vk(x) =

v̂k(x) mod t̂V(x)
v′k(x) mod t′(x)

1 mod t̂W(x) if k = 0

0 mod t̂W(x) otherwise

Recall that v̂k(x) comes from S
(V)
poly, and its evaluations at the roots of t̂V(x) correspond precisely

to the vector vk in the SP S for the circuit checker function φ† associated to the function f †.
Each vector vk in the SP S has only a small (constant) number of nonzero coefficients, since it is
associated to a single SP Sg for a single gate g in the circuit for f †. Recall that v′k(x) comes from
the aggregate consistency checker. The roots R′ of t′(x) partition into ∪Ni=1R

′
i, where R

′
i is the set

of roots of t′i(x) =
∏

r∈R′
i
(x − r), the target polynomial for the consistency checker associated to

wire i. By the construction of the aggregate consistency checker from the individual consistency
checkers via CRT, v′k(r) is nonzero only when, for some i, k ∈ Ii0 ∪Ii0 and r ∈ R′

i. Again, for each
k, there are only a constant number of such nonzero evaluations.

So, rather than writing out vk(x) in coefficient representation, we may instead use a “compressed”
representation in terms of its evaluations. In particular, let Jk be the set of indices j for which

vk(rj) is nonzero, We will write vk(x) as (Jk, {c
(k)
j ∈ F : j ∈ Jk}), where c

(k)
j = vk(rj). To address

the first question above, generating the compressed representations of all of the vk(x)’s and wk(x)’s
using O(s) F operations, where s is the number of gates in the circuit, is straightforward.4

Regarding the second question, we need to evaluate the constant-size gate-specific span pro-
grams as we traverse the circuit. This has complexity O(s). More specifically, for our current SP
implementation of NAND gates as described in the proof of Lemma 2, within each NAND gate, for
each possible assignment of the wires, we pick exactly one vector for each wire. Since the circuit
C† for f † has at most 3s gates, there are at most 9s nonzero coefficients in the linear combination
{ak}, and all of the nonzero coefficients are small – in particular, they equal 1.

Regarding the third question above, since each polynomial vk(x) with k 6= 0 has only a constant
number of nonzero evaluations over R, they “behave” like Lagrange basis polynomials `j(x) =
∏

i 6=j(x − ri)/(rj − ri). For any (a1, . . . , ad) ∈ F d, one can output a representation of u(x) =
∑

j∈[d] aj · `j(x) in terms of its evaluations at {rj} using only O(d) F operations. Similarly, since
each of our vk(x)’s has only a constant number of nonzero evaluations over R, one can output
a representation of v(x) =

∑

k∈[m] ak · vk(x) using only O(m) F operations. We state this more
formally below.

4Technically, each index in Jk has O(log s) bits, so these indices take θ(s log s) space. We ignore this bookkeeping
technicality, since representing each F element takes Ω(log s) space anyway.

15

Lemma 8. For k ∈ [m], let ak ∈ F , and let vk(x) be a polynomial of degree at most d−1, represented

as (Jk, {c
(k)
j ∈ F : j ∈ Jk}), where vk(x) =

∑

j∈Jk
c
(k)
j · `j(x) and `j(x) =

∏

i∈[d],i 6=j(x− ri)/(rj− ri)
is a Lagrange basis polynomial. Let n =

∑

k |Jk|. There is an algorithm that outputs v(x) ←
∑

k∈[m] ak · vk(x), represented by its evaluations at (r1, . . . , rd), using O(d+ n) field operations.

Proof. Initialize an array A = (A1, . . . , Ad) that will hold v(x)’s evaluations at r1, . . . , rd. For k = 1

to m, and for j ∈ Jk, set Aj ← Aj + ak · c
(k)
j . Output A. The algorithm uses O(d + n) field

operations.

Theorem 5. In the canonical QSP, we can output v(x) and w(x) using O(s) field operations.

Proof. In our canonical QSP, d = O(s) and maxk |Jk| is constant. The theorem follows.

Regarding the fourth question, once we have v(x) and w(x), we can compute the quotient
polynomial h(x) = (v0(x)+v(x))·(w0(x)+w(x))/t(x) in time Õ(d), where d is the maximum degree
of the polynomials, using generic techniques. For example, let R2 be a set of d values distinct from
the roots R of t(x). Using fast-Fourier evaluation, we can compute the evaluations of v(x) and
w(x) (the evaluations of v0(x), w0(x) and t(x) are pre-computed), and hence the evaluations of h(x)
in quasi-linear time. Computing h(x) via multipoint evaluation and interpolation is faster – e.g.,
O(s log s) versus O(s log2 s) – when R2 consists of D-th roots of unity for some D = O(d) = O(s).
However, when using QSPs in our cryptographic constructions, some care must be taken that using
F with such roots of unity does not weaken security.

Computing h(x) in purely linear, versus quasi-linear, time remains an intriguing open problem.
One may state a more generic version of the problem in terms of Lagrange basis polynomials as
follows. Let r1, . . . , rd ∈ F be distinct, let t(x) =

∏

(x−ri) and let `j(x) =
∑

i 6=j(x−ri)/(rj−ri) be
the Lagrange basis polynomials. Given (a1, . . . , ad) ∈ {0, 1}, output (

∑

aj ·`j(x))·(
∑

āj ·`j(x))/t(x)
in linear time. (Here āj = 1 − aj . Note that (

∑

aj · `j(x)) · (
∑

āj · `j(x)) will always be evenly
divisible by t(x). It would be fine to output h(x) expressed in terms of its evaluations.)

3 Overview of Our Cryptographic Constructions and Security

In this section, we give a high-level overview of our QSP-based cryptographic constructions, while
Section 4 provides formal definitions and detailed constructions.

3.1 Our SNARK Construction

Let R = {(u,w)} be a NP relation with n′-bit statements and (n − n′)-bit witnesses, and let
f(u,w) = 1 iff (u,w) ∈ R. Let Qf = (V ,W, t(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij , I = Ifree∪Ilabeled)
be a strong QSP for f over F of some size m and degree d.

In our SNARK for the relation R, the polynomials (e.g., {vk(x)}) are represented by encodings
of these polynomials evaluated at some secret point (e.g., {E(vk(s))}), where E is the encoding
function of an additively homomorphic encoding scheme E for F -elements. Our preferred encoding
is exponentiation within a bilinear group (E(vk(s)) = gvk(s)), but one may also use an additively
homomorphic encryption scheme such as Paillier (E(vk(s)) = Encpk(vk(s))). In the latter case, the
verifier needs a secret key sk to remove the encoding, and hence the SNARK is designated-verifier.
In the former case, sk = ⊥ and a public verifier can use the bilinear map to verify.

16

CRS generation Gen: On input security parameter κ and upper bound d on the degree of the
strong QSP for the functions f that will be computed, run (pk, sk)← E .Setup, generate uni-
formly at random α, s← F ∗ and output priv = sk, crs = (pk, {E(si)}i∈[0,d], {E(αsi)}i∈[0,d]).

Function specific CRS generation Regen: On input crs, a function f with a strong QSP Qf

as above, and n′ as above, let Iin = ∪n
′

i=1Iij and Imid = I \ Iin, and generate uniformly at
random βv, βw, γ ← F ∗, and output:

crsf = (crs, Qf , n
′, {E(vk(s))}k∈Imid

, {E(wk(s))}k∈I , {E(si)}i∈[0,d],

{E(αvk(s))}k∈Imid
, {E(αwk(s))}k∈I , {E(αsi)}i∈[0,d],

{E(βvvk(s))}k∈Imid
, {E(βwwk(s))}k∈I).

shortcrsf = (priv, E(1), E(α), E(γ), E(βvγ), E(βwγ), {E(vk(s))}k∈{0}∪Iin , E(w0(s)), E(t(s))).

Prove P: On input crsf , statement u ∈ {0, 1}n
′
and witness w, P evaluatesQf to obtain (a1, . . . , am)

and (b1, . . . , bm) and polynomial h(x) such that

h(x) · t(x) =

(

v0(x) +
m
∑

k=1

ak · vk(x)

)

·

(

w0(x) +
m
∑

k=1

bk · wk(x)

)

.

For vmid(x) =
∑

k∈Imid
ak · vk(x) and w(x) =

∑

k∈I bk · wk(x), P outputs:

π = (E(vmid(s)), E(w(s)), E(h(s)), E(αvmid(s)), E(αw(s)), E(αh(s)), E(βvvmid(s) + βww(s))) .

Verify V: On input shortcrsf , sk, u, and π = (πvmid
, πw, πh, πv′

mid
, πw′ , πh′ , πy), V confirms that the

terms are in the support of validly encoded elements. Let Vmid, W , H, V ′
mid, W

′, H ′, and Y be
what is encoded. V computes an encoding E(vin(s)) of vin(s) =

∑

k∈Iin
ak·vk(s), using the fact

that, in a strong QSP, {ak : k ∈ Iin} can be computed efficiently and deterministically from u.
V confirms that the following equations hold: (v0(s) + vin(s) + Vmid) · (w0(s) +W) = H · t(s),
V ′
mid = αVmid, W

′ = αW , H ′ = αH, and γY = (βvγ)Vmid + (βwγ)W .

3.2 Making the SNARK Statistical Zero-Knowledge (NIZKs)

To facilitate randomization in our ZK construction, we add E(t(s)), E(αt(s)), E(βvt(s)), E(βwt(s)),
E(v0(s)), E(αv0(s)), E(w0(s)) and E(αw0(s)) to crsf . To randomize its original SNARK from
above, the prover picks random δvmid

, δw ← F . For vmid(x), w(x), h(x) as above, the proof is:

E(v′mid(s)), E(w′(s)), E(h′(s)), E(αv′mid(s)), E(αw′(s)), E(αh′(s)), E(βvv
′
mid(s) + βww

′(s)),

where v′mid(x) = vmid(x) + δvmid
t(x) and w′(x) = w(x) + δwt(x). The new value of the quotient

polynomial is h′(x) = h(x) + δvmid
w†(x) + δwv

†(x) + δvmid
δwt(x), for v

†(x) = v0(x) +
∑

k∈I akvk(x)
and w†(x) = w0(x)+w(x). All of these new values can be computed efficiently from crsf . Theorem
6 in Section 4.4 proves that the new SNARK, still only 7 elements, is statistical ZK for suitable
encoding schemes, such as the bilinear-group encoding scheme.

3.3 Performance and Optimizations

Our NIZK consists of only 7 group elements. Prover computation requires a linear number of group
operations, aside from the computation of h(x). As detailed in Section 2.4, v0(x) +

∑

akvk(x) and
w0(x) +

∑

bkwk(x) can be computed with a linear number of F -ops due to the structure of the

17

polynomials in V ,W. Then, the quotient h(x) = (v0(x) +
∑

akvk(x)) · (w0(x) +
∑

bkwk(x))/t(x)
can be computed in O(s · polylog(s)) time via multipoint evaluation and interpolation. (In [Gro10,
Lip12], prover computation is quadratic.)

Verifier computation is linear in the size of the statement (not witness). In particular, V’s main
cost is computing an encoding E(vin(s)) of vin(s) =

∑

k∈Iin
ak · vk(s). We can reduce this cost.

In particular, we can make V’s computation constant (independent of |u|), except that V must
compute u′ = H(u), where H is an ordinary (not necessarily extractable) collision-resistant hash
function, like SHA-256. In effect, u′ becomes the new statement, and u becomes part of the witness
(see Section 4.5.1). We can also reduce verifier computation by using PCPs in a targeted way: only
to prove that the prover computed E(vin(s)) correctly (Section 4.5.2).

3.4 Security

In an earlier version of our scheme, for random αv, αw, αh, a SNARK was just 6 elements:

π = (E(vmid(s)), E(w(s)), E(h(s)), E(αvvmid(s)), E(αww(s)), E(αhh(s))) .

We modified the scheme to base security on assumptions comparable to (actually slightly weaker
than) Groth’s [Gro10]. We first consider how the security proof for this earlier version would go.

For the earlier version, the intuition is that it is hard for the prover, who knows the CRS but not
αw, to output any pair (E(W), E(W ′)) with W ′ = αwW unless the prover knows a representation
{bk : k ∈ I} of W such that W =

∑

bkwk(s). Knowledge of exponent assumptions (KEAs)5

formalize this intuition: they say that for any algorithm that outputs a pair of encoded elements
with ratio αw, there is an extractor that “watches” the algorithm’s computation that outputs
the representation (linear combination). In the security proof, extractors for the v, w and h
terms extract out polynomials vmid(x), w(x), h(x) that are in the spans of {vk(x) : k ∈ Imid},
{wk(x) : k ∈ I}, {x

i : i ∈ [d]}. If the proof verifies, then (v0(s) + v(s)) · (w0(s) +w(s)) = h(s) · t(s)
for v(x) = vmid(x) +

∑

k∈Iin
vk(x). If indeed (v0(x) + v(x)) · (w0(x) + w(x)) = h(x) · t(x) as

polynomials, the soundness of our QSP implies that we have extracted a true proof. Otherwise,
(v0(x)+ v(x)) · (w0(x)+w(x))−h(x) · t(x) is a nonzero polynomial having s as a root, which allows
the simulator to solve a hard problem.

In our current scheme, the terms E(αvmid(s)), E(αw(s)), E(αh(s)) are used only to extract
representations of the encoded terms with respect to the power basis {xi}, not with respect (e.g.)
to {vk(x) : k ∈ Imid}. This extraction does not guarantee that vmid(x) and w(x) are in their proper
spans. Instead, we ensure this via the final term E(βvvmid(s) + βww(s)), from which the simulator
can solve a hard problem if vmid(x) or w(x) lies outside its proper span.

4 Cryptographic Constructions from Strong QSPs

4.1 Definitions: SNARGs, SNARKs, Verifiable Computation, NIZKs

We follow the definition of succinct non-interactive arguments (SNARGs) given by Gentry and
Wichs [GW11].6

5KEAs [Dam91, HT98, BP04, Gjø04] exist for Paillier/RSA [Gjø04, DFH12], bilinear groups [Gro10, Lip12], and
even lattices [LMSV11].

6This differs from the re-definition of SNARGs by Bitansky et al. [BCCT12a], which we would call SNARGs with
fast verification.

18

A SNARG system Π consists of three efficient machines Π = (Gen,P,V). The generation
algorithm (crs, priv) ← Gen(1κ) produces a common reference string crs along with some private
verification state priv. The prover algorithm π ← P(crs, u, w) produces a proof π for a statement u
using a witness w. The verification algorithm V(priv, u, π) decides if π is a valid proof for u, using
the private verification state priv.

4.1.1 Succinct Non-Interactive Arguments

Definition 6 (SNARG). We say that Π = (Gen,P,V) is a succinct non-interactive argument
(SNARG) for an NP language L with a corresponding NP relation R, if it satisfies the following
three properties:

Completeness: For all (u,w) ∈ R, Pr

[

V(priv, u, π) = 0

∣

∣

∣

∣

(crs, priv)← Gen(1κ)
π ← P(crs, u, w)

]

= negl(κ).

Soundness: For all efficient P, Pr

[

V(priv, u, π) = 1
∧ u 6∈ L

∣

∣

∣

∣

(crs, priv)← Gen(1κ)

(u, π)← P(1κ, crs)

]

= negl(κ).

Succinctness: The length of a proof is given by |π| = poly(κ)polylog(|u|+ |w|).

Public vs. Designated Verifiability. We say that a SNARG is publicly verifiable if the private
verification state is just priv = crs. In that case, proofs can be verified by all parties. Otherwise, we
call it a designated-verifier SNARG, in which case only the party that knows priv can verify proofs.

Definition 7 (SNARK). A succinct non-interactive argument of knowledge (SNARK) is a SNARG
that comes together with an extractor E. In particular, for any statement u, we require that there
be a polynomial-time extractor Eu such that, for any π ← P(crs, u, w), w ← Eu(priv, π).

Definition 8 (Zero-Knowledge SNARK). A SNARK for an NP language L with a corresponding
NP relation R is zero-knowledge, if there exists a simulator (S1, S2) such that S1 outputs a simulated
CRS crs and a trapdoor τ , S2 takes as input crs, a statement x and τ and outputs a simulated proof
π. Now for all adversaries A it holds that

Pr[crs← Gen(1κ); (u,w)← A(crs); π ← P (crs, u, w); : (x,w) ∈ R and A(π) = 1] ≈

Pr[(crs, τ)← S1(1
κ); (u,w)← A(crs); π ← S2(crs, u, τ); : (x,w) ∈ R and A(π) = 1]

SNARKs with Fast Verification. We say that a SNARG or SNARK has fast verification, or
is unsubtle, if the running time of V(priv, u, π) is poly(κ)polylog(|u|+ |w|). Otherwise, it is a subtle
SNARK.

4.1.2 Verifiable Computation

Verifiable computation (VC) [GGP10], similar to a delegation scheme [GKR08], addresses the
setting where a computationally limited client outsources the evaluation of a function F on input
u to another party, a worker. The goal here is to enable the client to verify the correctness of the
returned result F (u) performing less work than required for the function evaluation itself. A VC
scheme provides public verifiability [PRV12] when anyone can verify the worker’s output using only
public information.

19

Definition 9 (Verifiable Computation). A verifiable computation scheme (with preprocessing)
VC is a four-tuple of polynomial-time algorithms (KeyGen,ProbGen,Compute,Verify) which work as
follows:

• (SK,PKF , EKF)← KeyGen(F, 1κ): The randomized key generation algorithm takes as input
a security parameter κ and the function F , and outputs a secret key SK, a public key PKF

and an evaluation key EKF .

• (σu, V Ku) ← ProbGen(PKF , u): The randomized problem generation algorithm uses the
public key PKF to encode an input u into an input encoding σu, which is given to the worker
and a private verification key V Ku.

• σy ← Compute(EKF , σu): The deterministic worker algorithm uses the evaluation key EKF

together with the value σu to compute a value σy.

• y ← VerifySK(V Ku, σy): The deterministic verification algorithm uses the verification key
V Ku and the worker’s output σy to compute a string y ∈ {0, 1}∗ ∪ {⊥}. Here, the special
symbol ⊥ signifies that the verification algorithm rejects the worker’s answer σy.

Public vs. Designated Verifiability. We refer to the above definition of verifiable computation
as designated verifier (DV) since the verification key V Ku is kept private and provided only to the
designated verifier. A VC scheme is called publicly verifiable if the verification key V Ku can be
made public and the secret key SK is empty.

A verifiable computation scheme needs to satisfy three properties: correctness, security and
efficiency. The correctness property guarantees that if the worker performs the evaluation honestly,
the verification check will hold. The efficiency requirement states that the complexity of the delega-
tion ProbGen and the verification Verify algorithms together is less than the computation required
for the evaluation of F . Finally, the security of a VC scheme is defined as follows:

Definition 10 (Security). Let VC be a verifiable computation scheme for a class of functions F , and
let A = (A1, A2) be any pair of probabilistic polynomial time machines. Consider the experiment

Exp
V erif
A [VC, F, κ] for any F ∈ F below:

Experiment Exp
V erif
A [VC, F, κ]

(PKF , EKF)← KeyGen(F, 1κ);
For i = 1, . . . , l = poly(κ)

(ui, priv)← A1(PKF , EKF);
(σui

, V Kui
)← ProbGen(PKF , ui);

σouti ← A2(priv, σui
);

yi ← Verify(V Kui
, σouti)

If ∃j ∈ [1, l] where yj 6=⊥ and yj 6= F (uj), output ‘1’, else output ‘0’;

A verifiable computation scheme VC is secure for a class of functions F , if for every function F ∈ F
and every p.p.t. adversary A = (A1, A2):

Pr[Exp
V erif
A [VC, F, κ] = 1] ≤ negl(κ). (4)

where negl(·) denotes a negligible function of its input.

The security definition for a publicly verifiable computation scheme is the same as the one above
except for the fact that the algorithm A2 is given as input also V Kui

, and it suffices to consider
the delegation of a single input in the security experiment.

20

4.1.3 Non-Interactive Zero Knowledge

Let R be a binary relation which consists of pairs (u,w), where u is a statement and w is a witness.
Let f be a function such that f(u,w) = 1 iff (u,w) ∈ R. Let L be the language that consists of
statements with valid witnesses for R. A non-interactive zero knowledge argument for the relation
R, or the function f , consists of the triple of polynomial time algorithms (K,P, V):

• K takes a security parameter κ as well as the maximum size of a statement n and outputs a
common reference string crs;

• P takes as input the CRS crs, a statement u and a witness w, and outputs an argument π;

• V takes as input the CRS crs, a statement u and its proof π, and either accepts or rejects the
proof.

A non-interactive zero-knowledge (NIZK) argument [BFM88, BSMP91] for R satisfies the fol-
lowing three properties:

Completeness: This property refers to the fact that a prover can always provide a valid
proof for a statement with witness. Formally for every adversary A the following holds

Pr[crs← K(1κ, n); (u,w)← A(crs); π ← P (crs, u, w); : V (crs, u, π) = 1 if (u,w) ∈ R] = 1.

Soundness: This property guarantees that the prover can give a proof that verifies for a
false statement only with negligible probability. Formally for every adversary A the following
holds

Pr[crs← K(1κ, n); (u, π)← A(crs) : V (crs, u, π) = 1 and u /∈ L] < negl(κ).

Zero-knowledge: This property guarantees that the proof reveals nothing more than the
correctness of the statement. For this purpose we show that it is possible to simulate the
proof for a valid statement without knowing a witness. Formally there exists a simulator
(S1, S2) such that S1 output a simulated CRS crs and trapdoor τ , S2 takes as input crs, a
statement u and τ and output a simulated proof π. Now for all adversaries A it holds that

Pr[crs← K(1k, n); (u,w)← A(crs); π ← P (crs, u, w); : (u,w) ∈ R and A(π) = 1] ≈

Pr[(crs, τ)← S1(1
k, n); (u,w)← A(crs); π ← S2(crs, u, τ); : (u,w) ∈ R and A(π) = 1]

4.2 Verifiable Computation from Designated-Verifier SNARKs

The following construction shows how to instantiate a verifiable computation scheme from a desig-
nated verifier SNARK with fast verification.
Construction 1. Let Π = (Gen,Regenf ,P,V) be a designated verifier SNARK.

Key Generation KeyGen: On input a function F : {0, 1}n → {0, 1}m construct a function f(x,w)
for a relation R such that f(x,w) = 1 if and only if F (x[1,n]) = x[n+1,n+m] where x has n+m
bits, x[1,n] denotes the first n bits of x and x[n+1,n+m] denotes the last m bits of x. Run the
SNARK algorithms Gen and Regenf and output:

• priv a secret key SK;

• crs and crsf as a public evaluation key EKF ;

21

• shortcrs as a public key PKF .

Delegation ProbGen: On input u ∈ {0, 1}n to F , the delegator sends u to the worker.

Computation Compute: The worker evaluates y = F (u) and computes corresponding witness w.
He runs P from the SNARK construction with input x = u||y and witness w to compute a
proof π and returns y and π to the delegator.

Verification VerifySK : The delegator runs the SNARK verification V(priv, x, π) to accept the out-
put.

If we start with a publicly verifiable SNARK where priv is empty, we obtain a publicly verifiable
VC scheme since we do not need to have secret key SK. The scheme uses a per-function verification
key PKF , rather than a per-input verification key, as in Parno et al. [PRV12].

Falsifiable vs. Non-falsifiable Assumptions. Gentry and Wichs showed that a designated-
verifier SNARG/SNARK for NP languages cannot be based (via black box reductions) on falsifiable
assumptions [GW11]. Moreover, they observe that the assumption “this SNARG construction
is secure” is itself non-falsifiable [GW11], since in order for a challenger to decide whether the
adversary successfully produces a proof of a false statement, the challenger needs to decide whether
a NP statement is true or false, which may not be efficiently decidable. However, for languages
in P, the assumption that “this SNARG construction is secure” is, in fact, falsifiable: a challenger
can efficiently distinguish whether the adversary forged a proof of a false statement. Verifiable
computation schemes are only required to work for languages in P. Therefore, one can transform
any SNARG with fast verification (ours or, say, Micali’s PCP-based construction [Mic00]) into a
robust verifiable computation schemes based on a falsifiable assumption. However, more work is
needed to base robust verifiable computation on natural falsifiable assumptions.

4.3 Construction of Designated-Verifier/Public-Verifier SNARKs from Strong
QSPs

In this section, we describe how to construct SNARKs from strong QSPs. The SNARKs may be
designated-verifier or public-verifier, depending on what sort of “encoding” scheme the construc-
tion uses. From these SNARKs, we obtain verifiable computation via the general transformation
described in Section 4.2 and NIZKs via the transformation described in Section 4.4.

We present our construction using schemes for encoding elements of the field/ring F over which
the QSPs are defined. We will assume here that |F | has size exponential in the security param-
eter. Two example encoding schemes to keep in mind are Paillier (or, more generally, additively
homomorphic) encryption, and exponentiation within a bilinear group. We periodically elaborate
on how to instantiate our abstract constructions with concrete encodings.

An encoding scheme E has two algorithms (Setup, E). The Setup function generates some public
parameters or a public key pk, and may also generate some secret state sk. E has also a (possibly
probabilistic) encoding function E : F × R → S (where R is a space of random bits) mapping F -
elements to the set S of encoded F -elements. For each s ∈ S, it must be well-defined which element
it encodes – that is, the sets {{E(a)} : a ∈ F}, where {E(a)} = {E(a, r) : r ∈ R}, partition S. For
convenience, we will often write E(a) with the understanding that this is some element E(a, r) ∈ S
for some r ∈ R. The encoding scheme E has the following additional properties.

22

• Additively homomorphic: Given pk, and any E(a1) ∈ {E(a1)} and E(a2) ∈ {E(a2)}, one can
efficiently compute some E(a1 + a2) ∈ {E(a1 + a2)}.

• Quadratic root detection: Given param, E(a1), . . . , E(at), and the quadratic polynomial
Q(x1, . . . , xt) ∈ F [x1, . . . , xt], one can distinguish whether Q(a1, . . . , at) = 0.

• Image verification: Given param, one can distinguish whether a term c is in the set {{E(a)} :
a ∈ F}, i.e. whether it validly encodes some element of F .

The parameters param needed for quadratic root detection and image verification may include
just the public key pk, or it may also include a secret key sk. In the former case, the resulting
construction will be public-verifier; in the latter, it will be designated-verifier. The quadratic root
detection property is stated more generally than we need: in our QSP-based constructions, we only
require root detection for particular quadratic polynomials. The image verification property has
also been needed in previous applications of extractable primitives [HT98, BP04, CD09], but not
always [BCCT12a].

Next we describe two possible instantiations for the encoding scheme.
Example 1. Let G and GT be two cyclic groups of the same prime order p, and let e : G×G→ GT

be a bilinear map. Let g be a generator of G. We implement the encoding scheme as: E(a, r) = ga.
This encoding has the desired properties:

• Additively homomorphic: Compute E(a1 + a2) as E(a1)E(a2) = ga1+a2.

• Quadratic root detection: Given E(a1), . . . , E(at) = ga1 , . . . , gat , use the bilinear map to
compute e(g, g)Q(a1,...,at) and check whether it equals the identity element in GT .

• Image verification: Typically, it is straightforward to determine whether an element is in the
group G, and all elements of G are valid encodings.

Note that none of these properties requires secret state sk. Note also that this encoding scheme is
deterministic.
Example 2. Let (Gen,Enc,Dec) be a randomized additively homomorphic encryption system,
such as Paillier. For Setup, run Gen to produce (pk, sk). Implement the encoding scheme as:
E(a, r) = Enc(pk, a, r). This encoding has the desired properties:

• Additively homomorphic: By definition.

• Quadratic root detection: Use sk to decrypt the E(ai) values; check whether Q(a1, . . . , at) = 0.

• Image verification: For Paillier, every element modulo N2 is a valid ciphertext, except ele-
ments whose GCD with N is nontrivial, which are easy to detect.

Note that quadratic root detection requires sk.
Technically, the plaintext space of Paillier is a ring, not a field. Our constructions and proofs

apply only where the encoding space is a field. However, we believe that it would be easy to extend
our results to Paillier, using the fact (a fact used, for example, by the elliptic curve factoring
algorithm) that one is unlikely to encounter encodings of nontrivial zero divisors in ZN unless one
is able to factor N .

We now define our SNARK system Π = (Gen,Regenf ,P,V) for the function f : {0, 1}n → {0, 1},
which enables succinct arguments, that for specified u, there exists w such that f(u,w) = 1. We
will refer to u as the “statement” and w as the “witness”. In the description of our SNARK, the
indices i ∈ [1, n′] will correspond to the statement u, and the positions [n′ + 1, n] will correspond
to the witness w.

We split the generation algorithm into two parts, Gen and Regen, where the former is (almost)
independent of particular function f – i.e., Gen only needs an upper bound on the circuit size of f .

23

CRS generation Gen: On input the security parameter κ and an upper bound, d, on the degree
of the strong QSP for the functions f that will be computed, run (pk, sk)← E .Setup, generate
uniformly at random α, s← F ∗ and output priv = sk, crs = (pk, {E(si)}i∈[0,d], {E(αsi)}i∈[0,d]).

Function specific CRS generation Regen: On input crs, a function f with a strong QSP

Qf = (V ,W, t(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij).

of size m and degree at most d, and value n′ ∈ [1, n], let Iin = ∪i∈[1,n′],j∈[0,1]Iij , let Imid be
all of the remaining indices {1, . . . ,m} \ Iin, generate uniformly at random βv, βw, γ ← F ∗,
and output:

• Public common reference string for f , n′:

crsf = (crs, Qf , n
′, {E(vk(s))}k∈Imid

, {E(wk(s))}k∈[m], {E(si)}i∈[0,d],

{E(αvk(s))}k∈Imid
, {E(αwk(s))}k∈[m], {E(αsi)}i∈[0,d],

{E(βvvk(s))}k∈Imid
, {E(βwwk(s))}k∈[m]).

• A short CRS that will be used for verification

shortcrsf = (priv, E(1), E(α), E(γ), E(βvγ), E(βwγ), {E(vk(s))}k∈{0}∪Iin , E(w0(s)), E(t(s))).

Prove P: On input crsf , statement u ∈ {0, 1}n
′
, and witness w, P will prove that (u,w) ∈ R – i.e.,

that f(u,w) = 1. The prover evaluates Qf to obtain (a1, . . . , am) and (b1, . . . , bm) such that

h(x) · t(x) =

(

v0(x) +
m
∑

k=1

ak · vk(x)

)

·

(

w0(x) +
m
∑

k=1

bk · wk(x)

)

.

For vmid(x) =
∑

k∈Imid
ak · vk(x) and w(x) =

∑

k∈[m] bk · wk(x), the prover outputs the
following proof π:

E(vmid(s)), E(w(s)), E(h(s)), E(αvmid(s)), E(αw(s)), E(αh(s)), E(βvvmid(s) + βww(s)).

Verify V: On input shortcrsf , sk, u, and proof π = (πvmid
, πw, πh, πv′

mid
, πw′ , πh′ , πy), V confirms

that the terms are in the support of validly encoded elements. Let Vmid, W , H, V ′
mid, W

′,
H ′, and Y be what is encoded. V computes an encoding E(vin(s)) of vin(s) =

∑

k∈Iin
ak ·

vk(s), using the fact that, in a strong QSP, {ak : k ∈ Iin} can be computed efficiently
and deterministically from u. Using quadratic root detection, V confirms that the following
equations hold: (v0(s) + vin(s) + Vmid) · (w0(s) + W) − H · t(s) = 0, V ′

mid − αVmid = 0,
W ′ − αW = 0, H ′ − αH = 0, and γY − (βvγ)Vmid − (βwγ)W = 0.

24

Public vs. Designated Verifiability. Whether we achieve a designated verifier SNARK or a
public verifier SNARK in the above construction depends on the instantiation of the encoding
scheme. Specifically it depends on whether we require access to the encoding’s secret key for
quadratic root detection. If we instantiate the encoding with pairings, we can perform quadratic
root detection without any secret information, using the pairing operation, and thus we obtain a
public-verifier (PV) SNARK. If we instantiate the encoding with additive homomorphic encryption,
then we need the secret key to detect quadratic roots, so the resulting SNARK construction is
designated-verifier (DV).

Our use of the term designated-verifier in this paper will be informal – in particular, we make
no requirement that a DV SNARK be hard to verify for parties other than the designated verifier,
since this property is not of interest to us here. In our parlance, a PV SNARK can be viewed as
a DV SNARK. Typically, however, we will use the term designated verifier to emphasize that the
verification algorithm V takes some private state sk that is not included in pk.

Verifier Computation. Regarding verifier computation, note that in our canonical strong QSP
we make sure that each input is associated to only one index k. Therefore, the verifier’s work in
computing E(vin(s)) is proportional only to the size |u| of the statement. (This work is otherwise
independent of the witness size and circuit size.) Of course, the verifier’s remaining work after
computing E(vin(s)) is constant.

4.4 Zero-Knowledge SNARKs (including NIZKs) from Strong QSPs: How to
Randomize Our SNARKs

To make our SNARKs zero-knowledge (ZK), the idea is simply to randomize the elements of the
SNARK proof to make them statistically indistinguishable from a set of random (encoded) elements
that satisfy the quadratic checks.

To facilitate the randomization in our ZK construction, we include additional terms E(t(s)),
E(αt(s)), E(βvt(s)), E(βwt(s)), E(v0(s)), E(αv0(s)), E(w0(s)) and E(αw0(s)) in crsf . The prover
proceeds as before, except that it additively perturbs E(vmid(s)) and E(w(s)) by random multiples
of E(t(s)), and modifies the other values accordingly.

More specifically, the values of vmid(x), w(x), and h(x) are as before. The prover picks random
δvmid

, δw ← F . Its proof is:

E(v′mid(s)), E(w′(s)), E(h′(s)), E(αv′mid(s)), E(αw′(s)), E(αh′(s)), E(βvv
′
mid(s) + βww

′(s)),

where v′mid(x) = vmid(x) + δvmid
t(x) and w′(x) = w(x) + δwt(x). Regarding the value of h′(x), let

v′(x) = v0(x)+vin(x)+v′mid(x) = v†(x)+ δvmid
t(x), where v†(x) = v0(x)+vin(x)+vmid(x). Define

w′(x) and w†(x) similarly. We have:

h′(x) = v′(x) · w′(x)/t(x)

= (v†(x) + δvmid
t(x)) · (w†(x) + δwt(x))/t(x)

= h(x) + δvmid
w†(x) + δwv

†(x) + δvmid
δwt(x).

Notice that the encodings of all of the values in this new proof can be computed efficiently from
crsf (the same asymptotic efficiency as before).

We want to argue that this scheme is statistical zero-knowledge, but for this we require an
additional property of the encoding scheme E :

25

• Re-randomizable: Given pk and any e1 = E(a), one can efficiently output a statistically
uniform encoding e2 from the set of encodings of a.

The prover re-randomizes the terms of its proof, so that, information-theoretically, the terms of its
proof reveal nothing more than what they encode. Notice that this re-randomizability property
holds trivially when the encoding is deterministic, as when we use the suggested encoding over a
bilinear group.
Theorem 6. The ZK SNARK construction above is statistically ZK when instantiated with our
canonical QSP.

Proof. We claim three things. First, for fixed crsf and statement u ∈ {0, 1}n
′
, once the elements

Vmid andW that are encoded in the proof are fixed, they determine all of the other elementsH, V ′
mid,

W ′, H ′, and Y that are encoded in the proof, via the verification constraints V ·W †−H · t(s) = 0,
V ′
mid − αVmid = 0, W ′ − αW = 0, H ′ − αH = 0, and γY − (βvγ)Vmid − (βwγ)W = 0, where

V = v0(s) + Vin + Vmid, Vin = vin(s), vin(x) =
∑

k∈Iin
ak · vk(x) and W † = w0(s) +W . Second, in

the ZK construction, the elements Vmid, W that are encoded in the proof are statistically uniform.
Third, there is a simulator (S1, S2) such that S1 outputs a simulated CRS crsf and a trapdoor τ , S2

takes as input crsf , a statement u and τ and outputs a simulated proof π – in particular, without
knowing any witness w for u, and with encodings of appropriately uniform Vmid and W (and what
is encoded in the remaining terms is dictated by the verification constraints). The theorem follows
from these claims, since the simulator can use re-randomization to ensure that its actual encodings
(not just what is encoded) is appropriately uniform.

Regarding the first claim, fixing Vmid and W clearly fixes V ′
mid, W ′, and Y . It also fixes

V = v0(s)+Vin+Vmid and W , since the coefficients {ak : k ∈ Iin} are determined by u in a strong
QSP. Consequently, it fixes H = V ·W/t(s) and also H ′.

Regarding the second claim, t(s) is in F ∗ with overwhelming probability. Since the final step
of generating Vmid and W involves adding δvmid

t(s) and δwt(s), respectively, for uniform values of
δvmid

and δw, the values of Vmid and W are statistically close to uniform.
Regarding the third claim, S1 generates a regular crsf and sets the trapdoor τ to be s, α, βv, βw,

γ. Given the trapdoor τ , S2 picks random v(x), w†(x) such that t(x) divides v(x)w†(x), sets h(x)
be the quotient polynomial, and sets vmid(x) = v(x) − v0(x) − vin(x) and w(x) = w†(x) − w0(x).
Since S2 knows these polynomials and s, α, βv, βw, γ, it can compute encodings of Vmid = vmid(s)
and W = w(s), as well as the other elements that need to be encoded in the proof. Moreover, as
required, the values Vmid = vmid(s) and W = w(s) are statistically uniform.

Notice that our SNARKs can be re-randomized by anyone, not just the prover. Re-randomizable
and malleable NIZKs have found many applications. See [CKLM12] and references therein for
applications of malleable proof systems.

As also observed by Groth [Gro10] and Lipmaa [Lip12], our result immediately yields a sub-
linear size 2-move publicly verifiable witness-indistinguishable argument where the verifier’s first
message can be reused many times, a so-called Zap [DN07], as follows: The verifier generates
a common reference string, which the prover checks for correctness. Now the prover can make
arbitrarily many Zaps using our succinct SNARK with the verifier initial message as CRS.

26

4.5 Optimizations

4.5.1 Reducing the Verifier’s Work without PCPs

We have described how to construct a SNARK for the relation f(u,w) = 1, where the statement
u is required by the verifier, and the remaining portion of the input w is a witness that the prover
may set freely. In one extreme case, the verifier may fix all of f ’s input. For example, in the
verifiable computation setting, the verifier may want to outsource to a worker the computation
of a predicate f(u) that determines whether the verifier’s input u has some property. In this
case, to verify, the verifier must first compute on its own an encoding E(vin(s)) of the value
Vin = vin(s) =

∑

k∈Iin
ak ·vk(s). The verifier’s computation here may be quite expensive, depending

on how large |u| (which is proportional to |Iin|) is. In the other extreme case, the verifier might
not make any constraints on the prover’s input – i.e., u may be zero bits. For example, the verifier
can set up a CRS for a function f that determines whether or not w is a proof of the Riemann
Hypothesis. In this case, the prover’s SNARK can be verified in constant time, since the most
expensive component of verification has gone away; there is no value Vin whose encoding needs to
be computed.

Suppose that the verifier wants to specify a long statement u, but wants to minimize its verifi-
cation work. What can we do, besides use PCPs?

Here is a simple approach that may not reduce the verifier’s work asymptotically, but which
should significantly reduce the verifier’s work in practice: use a collision-resistant hash function
H. More specifically, rather than using a strong QSP for the original function f(u,w), we use a
strong QSP for a related function g(u′, w′), where w′ is parsed as (u,w), where g(u′, w′) outputs
1 iff u′ = H(u) and f(u,w) = 1. In the function g, only the (short) hash output u′ is fixed by
the verifier, but this hash output implicitly fixes (via collision resistance) the statement u that the
verifier wants to fix. In effect, u′ becomes the new statement, and u becomes part of the witness.
To verify the SNARK, the verifier computes u′ = H(u), and then uses u′ to verify the SNARK for
g in the usual way, but now |Iin| = O(|u′|) is potentially much smaller than before. Consequently,
the second component of this computation, verifying the SNARK for g, is not very expensive, since
u′ is so short. In particular, the verifier’s computation is now constant, independent of |u|, aside
from the computation of u′ = H(u)!

While this may not alter the verifier’s computation asymptotically, in practice this will reduce
the verifier’s computation dramatically. In practice, computing a hash function is very fast, even
when the data to be hashed is huge.

On the other hand, this approach increases the prover computation (as the additional compu-
tation of H(u) needs to be verified). Accordingly, to find the right tradeoff between prover and
verifier computation, one may consider hashing a portion of the input u.

We note that this trick is similar in spirit to a trick by Applebaum et al. [AIK10]. In the context
of verifiable computation of a function f(x), they observe that the worker’s output can be more
succinct – in particular, the size of the worker’s output can be made independent of the output
length of f – if the VC scheme is run on the function MACk(f(x)) rather than f(x). Their trick
also makes the client’s verification less expensive – in particular, it makes the client’s verification
work independent of the output length of f , except that the verifier needs to compute a MAC on
the output. However, in their setting, the client still needs to perform expensive cryptographic
operations (such as FHE encryption) to prepare the input to the function. In our setting, our hash
trick has an even more dramatic impact on verification efficiency. The verifier’s work is completely

27

independent of the input/output length, except for the application of an ordinary (not “extractable”)
collision-resistant hash function (an inexpensive cryptographic primitive).

4.5.2 Reducing the Verifier’s Work with PCPs

As explained above, the verifier’s computation is constant, aside from the computation of an en-
coding E(vin(s)) of vin(s) =

∑

k∈Iin
ak · vk(s), which corresponds to the statement u. Why not let

the prover compute this encoding E(vin(s)), and then use PCPs to enable the verifier to quickly
check that E(vin(s)) was computed correctly?

This “limited” use of PCPs seems more practical than using PCPs to verifier the prover’s
entire computation. Here, we are only using PCPs to verify the computation of E(vin(s)), and the
complexity of this computation is only proportional to the size |u| of the statement, not to the size
of the witness or the entire circuit needed to compute f .

4.5.3 Reducing the Verifier’s Preprocessing: Combining Universal Circuits with the

Hash Trick or PCPs

In our SNARK, someone needs to generate a CRS. Although this pre-processing step is only one-
time, it takes computation linear in the circuit size. If the verifier is weak computationally, too
weak to compute the function by itself even one time, the verifier may not be able to set up the
CRS itself. Fortunately, in our NIZK, crs is a global parameter that does not necessarily need to
be generated by the weak verifier individually. On the other hand, crsf is dependent on a function
f that potentially only the verifier is interested in outsourcing. How can a weak verifier outsource
f without expensive setup?

One solution is to use a universal circuit. The global setup procedure generates not just crs, but
also {crsUk

} for universal circuits {Uk} where Uk is able to handle functions whose circuits have
between 2k−1 and 2k gates. Uk takes input of the form (f, u, w), where f is a function, where (f, u)
acts as a “statement”, w is the witness, and it outputs 1 iff f(u,w) = 1.

The drawback is that the new statement (f, u) is longer than the old statement u, and the
verifier’s work (during the actual verification procedure) increases accordingly. But often |f |+ |u|
will be much shorter than the circuit size, and therefore still a significant improvement. A weak
verifier may be able to bear the additional computational complexity.

However, if even O(|f | + |u|) cryptographic group operations is too much for the verifier, we
can further reduce the verifier computation by using the hash trick or PCPs, as described in
Sections 4.5.1 and 4.5.2. For example, using the hash trick, verification time is actually constant,
independent of |f |+ |u|, except that the verifier needs to hash (f, u) with an ordinary cryptographic
hash function, such as SHA-256.

4.5.4 Even Shorter Proofs in the Designated-Verifier Setting

A SNARK proof contains the terms (or similar terms in the ZK setting):

E(vmid(s)), E(w(s)), E(h(s)), E(αvmid(s)), E(αw(s)), E(αh(s)), E(βvvmid(s) + βww(s)).

Suppose that, in the designated-verifier setting, the verifier knows α, βv, βw. Then, given the proof
terms E(vmid(s)), E(w(s)), E(h(s)), the verifier can generate the remaining terms of the proof itself.
This raises the question: does the prover actually need to include these terms in its proof at all?

28

Is there a more succinct way that the prover can convince the verifier that it knows these terms
without actually sending them?

In fact, we can use an extractable collision-resistant hash (ECRH) function here. The prover
applies the hash function H to the terms E(αvmid(s)), E(αw(s)), E(αh(s)), E(βvvmid(s)+βww(s))
to produce a short hash digest D, and sends π = (E(vmid(s)), E(w(s)), E(h(s)),D). To verify π,
the verifier generates the terms E(αvmid(s)), E(αw(s)), E(αh(s)), E(βvvmid(s) + βww(s)) itself,
confirms that D is the correct hash output, and then verifies the de-compressed SNARK in the
usual way. In [BCCT12a, GLR11], the ECRHs are designated verifier, which is compatible with
our designated verifier setting here. In the security proof, the extractability property of the ECRH
ensures that the simulator can unpack the full proof from the truncated proof and hash digest, and
then proceed as it would in the simulation of the ordinary SNARK scheme.

5 Security of Our Public-Verifier SNARK and NIZK

Here we prove the security of our NIZK construction, which implicitly also proves the security of
our non-ZK public-verifier SNARK. We address the security of our designated-verifier construction
in Section 6.

We chose to handle the public-verifier case separately in this section, because (1) the assumptions
and proof are simpler, and (2) we want to make it clear that our public-verifier construction using
bilinear maps is based on the same assumptions that Groth [Gro10] uses for his NIZK construction.
Actually, our assumptions are slightly weaker than Groth’s.

5.1 Assumptions

We base security on two assumptions, the q-power Diffie-Hellman (q-PDH) assumption and the
q-power knowledge of exponent (q-PKE) assumption. When we instantiate our construction and
the q-PDH and q-PKE assumptions with an encoding scheme E(a) = ga over a bilinear group,
the q-PDH and q-PKE assumptions are virtually identical to those used by Groth in his NIZK
construction [Gro10]. (Our q-PDH assumption is actually weaker than his q-CPDH assumption,
and our q-PKE assumption is identical to Groth’s and Lipmaa’s [Lip12], except that we extend the
assumption to handle auxiliary inputs.) Also, the bilinear group version of our q-PDH assumption
is very similar to, but weaker than, assumptions that were used to construct hierarchical identity-
based encryption and broadcast encryption schemes with short ciphertexts [BBG05, BGW05].

The q-PDH assumption is a “conventional” falsifiable assumption, though still somewhat un-
conventional in its dependence on q, which is related to the size of the circuits for the functions
computed by our SNARKs.
Assumption 1 (q-PDH). Let κ be a security parameter, and q = poly(κ). The q-power Diffie-
Hellman (q-PDH) assumption holds for encoding E if for all non-uniform probabilistic polynomial
time adversaries A we have

Pr[pk ← E .Setup(1κ) ; s← F ∗ ;

σ ← (pk,E(1), E(s), . . . , E(sq), E(sq+2), . . . , E(s2q)) ;

y ← A(σ) : y = E(sq+1)] = negl(κ).

More concretely, suppose (p,G,GT , e)← G(1
κ) outputs a description of a cyclic bilinear group

of order p, a κ-bit prime, where e : G×G→ GT is the usual pairing (bilinear map) function. The

29

q-PDH over a bilinear group assumption becomes:
Assumption 2 (q-PDH over a bilinear group). Let κ be a security parameter, and q = poly(κ).
The q-power Diffie-Hellman (q-PDH) assumption holds for G if for all non-uniform probabilistic
polynomial time adversaries A we have

Pr[(p,G,GT , e)← G(1
κ) ; g ← G\{1} ; s← Z

∗
p ;

σ ← (p,G,GT , e, g, g
s, . . . , gs

q

, gs
q+2

, . . . , gs
2q
) ;

y ← A(σ) : y = gs
q+1

] = negl(κ).

For the same q, our q-PDH over a bilinear group assumption is almost exactly the same as, but
weaker than, Groth’s q-CPDH assumption [Gro10]. It is also quite similar to, but weaker than,
Boneh at al.’s [BBG05] bilinear Diffie-Hellman Exponent (BDHE) assumption, which was invoked
to prove security of a hierarchical identity-based encryption scheme [BBG05] and a broadcast
encryption scheme [BGW05] with constant-sized ciphertexts. We require smaller q than Groth,
only linear in the circuit size (versus quadratic), which also makes our assumption weaker.

The q-PKE assumption is a non-falsifiable “knowledge” assumption, similar in spirit to (but
of course more complicated than) early knowledge-of-exponent assumptions (KEAs) [Dam91, BP04].

Assumption 3 (q-PKE). Let κ be a security parameter, and q = poly(κ). The q-power knowledge
of exponent (q-PKE) assumption holds for encoding E if for every non-uniform probabilistic polyno-
mial time adversary A there exists a non-uniform probabilistic polynomial time extractor χA such
that

Pr[pk ← E .Setup(1κ) ; α, s← F ∗ ;

σ ← (pk,E(1), E(s), . . . , E(sq), E(α), E(αs), . . . , E(αsq)) ;

(E(c), E(ĉ) ; a0, . . . , aq)← (A || χA)(σ, z) : ĉ = αc ∧ c 6=
∑q

k=0 aks
k] = negl(κ)

for any auxiliary information z ∈ {0, 1}poly(κ) that is generated independently of α.
More concretely, over a bilinear group, the q-PKE assumption becomes:

Assumption 4 (q-PKE over a bilinear group). Let κ be a security parameter, and q = poly(κ).
The q-power knowledge of exponent assumption holds for G if for every non-uniform probabilistic
polynomial time adversary A there exists a non-uniform probabilistic polynomial time extractor χA

such that

Pr[(p,G,GT , e)← G(1
κ) ; g ← G\{1} ; α, s← Z

∗
p ;

σ ← (p,G,GT , e, g, g
s, . . . , gs

q

, gα, gαs, . . . , gαs
q

) ;

(c, ĉ ; a0, . . . , aq)← (A ‖ χA)(σ, z) : ĉ = cα ∧ c 6=
∏n

i=0 g
ais

i

] = negl(κ)

for any auxiliary information z ∈ {0, 1}poly(κ) that is generated independently of α.
The q-PKE assumption, and knowledge extraction assumptions in general, while plausible, raise

a number of delicate issues. Yao et al. [YYZZ07] observed, with respect to previous protocols that
used knowledge of exponent assumptions (KEAs), that an adversary can get auxiliary inputs from
other instances of the protocol, instances run by different parties. In particular, from these other
transcripts, the adversary may collect encodings of pairs (r, rα) for which it does not know a

30

representation of r in terms of the elements given in the KEA problem. So, it is not reasonable
to assume that the adversary knows such a representation, or that the extractor can extract such
a representation. Stinson and Wu [WS07] suggested a way to handle this problem: simply give
the extractor access to the internal state of the other parties that are running the protocol as
well, or (alternatively) just view the original adversary and these other parties as being part of a
single “aggregate” adversary. Although no single party “knows” a representation of r, all of the
parties together – the aggregate adversary – “know” the representation of r. Of course, knowledge
assumptions start to look rather ridiculous when one imagines such an all-powerful extractor that
omnisciently peers into the internal state of all machines (and brains) that are running the protocol
in question. Instead, one should view the assumption as saying something like: even with all of the
computational power in the world, it is infeasible to generate a pair (r, rα) except in the obvious
way, via a representation over the elements given in the KEA problem.

The q-PKE assumption seems plausible even if the extractor is prohibited from viewing some
computations, as long as those computations are not dependent on α. In our statement of the as-
sumption, we capture this notion by providingA and χA with auxiliary information z ∈ {0, 1}poly(k).
A and χA do not know how z was generated, but they are given the assurance that is not depen-
dent on α. This assurance seems necessary: e.g., if z included an encoded pair (r, rα) whose
representation with respect to {si} is unknown, then we could not hope for an efficient extractor
χA , assuming problems such as discrete-log that underlie the encoding scheme are hard. Note that
we do not require that z be independent of s. Even if z includes the actual value s, q-PKE still
seems plausible.

5.2 Lemmas

To simplify the proof of our main security theorem, we extract out a couple of technical lemmas.
Recall that our SNARK π for statement u and witness w has the form:

E(vmid(s)), E(w(s)), E(h(s)), E(αvmid(s)), E(αw(s)), E(αh(s)), E(βvvmid(s) + βww(s)).

Our first lemma basically says that we would be completely convinced by the prover’s proof if he
gave us the actual polynomials vmid(x), w(x), h(x).
Lemma 9. Let Qf = (V ,W, t(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij) be a QSP of size m for function

f : {0, 1}n → {0, 1}. For n′ ≤ n, let u ∈ {0, 1}n
′
be a statement, Iin = ∪i∈[n′],j∈[0,1]Iij, and

Imid = {1, . . . ,m} \ Iin. Let π = (vmid(x), w(x), h(x)). Suppose the following properties hold:

1. (v0(x) + vin(x) + vmid(x)) · (w0(x) +w(x)) = h(x) · t(x) for vin(x) =
∑

k∈Iin
ak · vk(x) (where

coefficients {ak : k ∈ Iin} are deterministically derived from u in the usual way),

2. vmid(x) is in the linear span of {vk(x) : k ∈ Imid},

3. w(x) is in the linear span of {wk(x) : k ∈ [m]}.

Then, π is an actual proof that u is a true statement. That is, π implies unconditionally that there
exists witness w with f(u,w) = 1, and such w can be extracted from π.

Proof. Let {ak}, {bk} be linear combinations such that vin(x) =
∑

k∈Iin
ak · vk(x), vmid(x) =

∑

k∈Imid
akvk(x), and w(x) =

∑

k∈[m] bkwk(x). (This is well-defined, since Iin and Imid are disjoint.)
Let v(x) = vin(x) + vmid(x). Since v(x) and w(x) are in the spans of {vk(x) : k ∈ [m]} and
{wk(x) : k ∈ [m]}, respectively, and since (v0(x)+v(x)) ·(w0(x)+w(x)) = h(x) · t(x), the soundness
of the strong QSP implies that the linear combinations represent an unequivocal assignment to the

31

n input bits of f – more formally, there is an assignment B ∈ {0, 1}n such that, for all i ∈ [n], there
exist k1, k2 ∈ IiBi

with ak1 , bk2 both nonzero, but ak1 = bk2 = 0 for all k1, k2 ∈ IiB̄i
. This B can

be extracted efficiently from the linear combinations {ak}, {bk}. By the soundness of the QSP, we
have f(B) = 1. Parse B as (u′, w′) with u′ ∈ {0, 1}n

′
. We have u = u′, since {ak} restricted to the

indices in Iin corresponds to u. We also have that w′ is a witness for u.

The second lemma says that if you give me a set of polynomials {vk(x)} of degree d, such as
the polynomials in a QSP, I can pick a polynomial a(x) of degree d+1 such that a(x) · vk(x) has a
zero coefficient for xd+1 for all k. Moreover, if I keep a(x) secret from you, but assure you that a(x)
has the aforementioned property and also give you the value a(s) at known s, then, unconditionally
with overwhelming probability, you will not be able to output a degree-d polynomial u(x) that is
not in the span of the vk(x)’s such that a(x) · u(x) has a zero coefficient for xd+1. One may view
the polynomial a(x) as a “guard” that only lets through polynomials that are in the span of the
vk(x)’s. The simulator in the security proof will use this guard to ensure that, if the adversary
outputs a false proof that passes verification that implicitly uses some vmid(x) that is not in the
span of {vk(x) : k ∈ Imid}, then the simulator will be able to use that false proof to solve q-PDH.
Lemma 10. Let F [x](k) denote polynomials over F [x] of degree at most k. Let F [x](¬k) denote
polynomials over F [x] that have a zero coefficient for xk. For some d, let U = {uk(x)} ⊂ F [x]d,
and let span(U) denote the set of polynomials that can be generated as F -linear combinations of the
polynomials in U . Let a(x) ∈ F [x](d+1) be generated uniformly at random subject to the constraint
that {a(x) · uk(x) : uk(x) ∈ U} ⊂ F [x](¬(d+1)). Let s ∈ F ∗. Then, for all algorithms A,

Pr[u(x)← A(U , s, a(s)) : u(x) ∈ F [x]d ∧ u(x) /∈ span(U) ∧ a(x) · u(x) ∈ F [x](¬(d+1))] ≤ 1/|F |.

Proof. Assume that u(x) ∈ F [x]d and u(x) /∈ span(U). Then, the coefficient vector of u(x) –
namely, (u0, u1, . . . , ud, 0) (padded with a zero to have d+2 coefficients) – is not in the span of the
coefficient vectors of {uk(x)} and the vector (sd+1, . . . , 1). (By assumption, u(x) /∈ span(U), and
the additional vector (sd+1, . . . , 1) does not help since it is the only vector with a nonzero coefficient
in the rightmost position.)

On the other hand, the only information that A has about a(x) is the dot product of the reversal
(ad+1, . . . , a0) of a(x)’s coefficient vector with the vectors in U and (sd+1, . . . , 1). (Observe that the
condition that a(x) · u(x) ∈ F [x](¬(d+1)) is equivalent to

∑

i+j=d+1 ai · uj = 0 – i.e., that the dot
product of u(x)’s coefficient vector and the reversal of a(x)’s coefficient vector is 0.)

Since a(x) appears uniformly random to A subject to dot product constraints wrt the coefficient
vectors of {uk(x)} and the vector (sd+1, . . . , 1), and since u(x)’s coefficient vector is not in the span
these vectors, the dot product of the reversal of a(x)’s coefficient vector with u(x)’s coefficient
vector – i.e., the coefficient of xd+1 in a(x) · u(x) – appears uniformly random to A.

5.3 Security Theorem

Here we prove the main security theorem.
Theorem 7. If the q-PDH and d-PKE assumptions hold for some q ≥ max{2d−1, d+2}, then the
NIZK scheme defined in Section 4, instantiated with a QSP of degree d, is secure under Definition 7,
with soundness error 1/|F |.

Before proceeding with the formal proof, we provide an informal sketch of the main ideas. The
CRS for the scheme contains encodings of {vk(s)}k∈Imid

, {wk(s)}k∈[m], and {s
i}i∈[0,d], as well as

these terms multiplied by α, and the scheme requires the prover to present encodings of Vmid, W ,

32

and H, and these terms multiplied by α. The reason that we require the prover to duplicate its
effort wrt α is so that the simulator in the security proof can extract representations of Vmid, W ,
and H as degree-d polynomials vmid(x), w(x), and h(x) such that vmid = vmid(s), w = w(s) and
h = h(s). The d-PKE assumption implies that this extraction is efficient.

Suppose an adversary manages to forge a SNARK of a false statement that nonetheless passes
the verification test. Then, by Lemma 9, the soundness of our strong QSP implies that, for the
extracted polynomials, one of the following must be true:

1. (v0(x)+ vin(x)+ vmid(x)) · (w0(x)+w(x)) 6= h(x) · t(x), for vin(x) =
∑

k∈Iin
ak · vk(x) (where

coefficients {ak : k ∈ Iin} are deterministically derived from u in the usual way),

2. vmid(x) is not in the linear span of {vk(x) : k ∈ Imid},

3. w(x) is not in the linear span of {wk(x) : k ∈ [m]}.

If the first case, then p(x) = (v0(x) + vin(x) + vmid(x)) · (w0(x) +w(x))− h(x) · t(x) =
∑k

i=0 pix
i is

a nonzero polynomial of degree some k ≤ 2d that has s as a root (since the verification test implies
(v0(s) + vin(s) + vmid(s)) · (w0(s) +w(s)) = h(s) · t(s)). If q+1 ≥ 2d, the simulator can use p(x) to
solve q-PDH by using the fact that E(0) = E(sq+1−kp(s)) and subtracting off encodings of lower
powers of s to get E(pks

q+1) and then E(sq+1). To handle the other cases – i.e., to ensure that
vmid(x) is in the linear span of the vk(x)’s with k ∈ Imid (and similarly for w(x)) – we use two
more scalars βv, βw, supplement the CRS with more terms {βvvk(s)} and {βwwk(s)}, and require
the prover to present (encoded) βvvmid(s) + βww(s) in its proof. In particular, to (implicitly)
set βv, the simulator chooses a polynomial a(v)(x) as in Lemma 10 wrt the set of polynomials
{vk(x) : k ∈ Imid} and implicitly sets βv = sq−da(v)(s). We invoke Lemma 10 to argue that
if vmid(x) is not in its proper span, then the simulator can, with probability 1 − 1/|F |, use the
encoding of βvvmid(s) + βww(s) = sq−da(v)(s)vmid(s) + sq−da(w)(s)w(s) to obtain an encoding of
sq+1 and thus solve q-PDH.

Proof. (Theorem 7) Regarding completeness, the properties of the QSP guarantee that the prover
can always provide a proof for a satisfying input.

To prove soundness, we assume that there exists an adversary Asnark that returns a cheating
proof for the SNARK construction, and we show how we construct an adversary Bpdh, which
interacts with Asnark and breaks the q-PDH assumption.

Suppose that Bpdh receives the q-PDH challenge σ = (pk,E(1), E(s), . . . , E(sq), E(sq+2), . . . , E(s2q)).
The adversary Asnark generates a function f : {0, 1}n → {0, 1} that has a QSP of size m and degree
d with q ≥ max{2d− 1, d+ 2}, defined as follows:

Qf = (V ,W, t(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij).

(It will be convenient notationally, recalling that we are proving the security of the ZK construction,
to view V and W as also including t(x): t(x) = vm(x) = wm(x).) Asnark also selects a number
n′ ∈ [n], where the first n′ input bits are associated to the statement, and the remaining n − n′

input bits are associated to the witness. Let Iin = ∪i∈[n′],j∈[0,1]Iij and let Imid be the rest of the
indices – i.e., {1, . . . ,m} \ Iin.

33

Next, Bpdh provides a CRS of the correct form to Asnark. The CRS is:

crs = (pk, {E(si)}i∈[0,d], {E(αsi)}i∈[0,d])

crsf = (crs, Qf , n
′, {E(vk(s))}k∈Imid

, {E(wk(s))}k∈[m], {E(si)}i∈[0,d],

{E(αvk(s))}k∈Imid
, {E(αwk(s))}k∈[m], {E(αsi)}i∈[0,d],

{E(βvvk(s))}k∈Imid
, {E(βwwk(s))}k∈[m])

shortcrsf = (E(1), E(α), E(γ), E(βvγ), E(βwγ), {E(vk(s))}k∈{0}∪Iin , E(w0(s)), E(t(s))).

However, there are some subtleties in how Bpdh generates the values βv, βw, and γ. (α, on the other
hand, Bpdh just generates uniformly at random from F .) In particular, Bpdh does not know these
values explicitly, but rather knows these values in terms of their representations over the power
basis {si}. We now describe explicitly how Bpdh generates these values, and observe how Bpdh can
generate the CRS despite only knowing these values implicitly.
Bpdh generates βv as follows. Bpdh generates a uniformly random polynomial a(v)(x) of degree

d + 1 subject to the constraint that all of the polynomials {xq−da(v)(x) · vk(x) : k ∈ Imid} have a
zero coefficient for xq+1. Bpdh implicitly sets βv = sq−da(v)(s). The generation of βw is analogous:
βw = sq−da(w)(s) for a(w)(x) where all polynomials {xq−da(w)(x) · wk(x) : k ∈ [m]} have a zero
coefficient for xq+1. Notice that Bpdh can generate encodings of {βvvk(s)} and {βwwk(s)} for the
CRS. This is because the polynomial βvvk(s) = sq−da(v)(s)vk(s) has degree at most q−d+d+1+d =
q+1+d ≤ 2q over s, and because this polynomial has a zero coefficient for the sq+1 term; similarly for
βw. Observe also that βv and βw generated in this way have appropriately uniform distribution.

To verify a proof, it would suffice for shortcrsf to contain only E(βv) and E(βw) (and other
terms), rather than (the more complicated) E(γ), E(βvγ), and E(βwγ), but unfortunately βv =
sq−da(v)(s) likely has a nonzero coefficient for sq+1, making it impossible for Bpdh to generate an
encoding of it. However, suppose Bpdh generates γ′ uniformly from F and implicitly sets γ = γ′sd+2.
Then, γ has an appropriately uniform distribution, and Bpdh can generate an encoding of γ from
the q-PDH instance since q ≥ d+ 2. Moreover Bpdh can generate encodings of βvγ = γ′sq+2a(v)(s)
and βvγ = γ′sq+2a(w)(s), since these two terms have a zero coefficient for sq+1 and are of degree at
most q + 2 + d+ 1 = q + d+ 2 ≤ 2q.

Once Asnark obtains the CRS, it can generate proofs on its own. Since the scheme is public-
verifier, we do not need to worry about simulating a verification oracle for Asnark’s proofs; such an
oracle exists automatically.

Now, suppose that Asnark sends a claimed proof π of a false statement u that passes the
verification test. From the verification equations and the fact that the image of the encoding is
verifiable, the proof must have the form:

E(Vmid), E(W), E(H), E(αVmid), E(αW), E(αH), E(βvVmid + βwW) .

Bpdh applies an extractor to π. Though it may not be immediately recognizable as such, the
CRS received by Asnark is in fact a valid input (σ, z) in the d-PKE assumption: it consists of

σ = (pk, {E(si)}i∈[0,d], {E(αsi)}i∈[0,d])

z = (Qf , n
′, {E(βvvk(s))}k∈Imid

, {E(βwwk(s))}k∈[m], E(γ), E(βvγ), E(βwγ)) ,

34

where the auxiliary information z is independent of α, and other terms in the CRS can be generated
efficiently from σ, z.

Via extraction through the d-PKE assumption, Bpdh obtains a degree-d polynomial vmid(x) such
that Vmid = vmid(s). Similarly, it obtains degree-d polynomials w(x) and h(x). Since π verifies, we
have that

• (v0(s) + vin(s) + vmid(s)) · (w0(s) + w(s)) = h(s) · t(s) for vin(x) =
∑

k∈Iin
ak · vk(x) (where

coefficients {ak : k ∈ Iin} are deterministically derived from u in the usual way),

• The last term of the proof properly encodes βvvmid(s) + βww(s).

But since π is a proof for a false statement, Lemma 9 implies that one of the following two cases
must hold:

• Case 1: (v0(x) + vin(x) + vmid(x)) · (w0(x) + w(x)) 6= h(x) · t(x).

• Case 2: Either vmid(x) or w(x) is not in its proper span.

In either case, Bpdh can solve the q-PDH problem.
Suppose Case 1 holds. Then p(x) = (v0(x) + vin(x) + vmid(x)) · (w0(x) +w(x))− h(x) · t(x) is a

nonzero polynomial of degree 2d having s as a root. Suppose p(x)’s highest nonzero coefficient is pk
for some k ≤ 2d. Write p†(x) = xk − p−1

k · p(x) =
∑k−1

i=0 p†ix
i. Since s is a root of xk − p†(x), it is a

root of xq+1−xq+1−kp†(x), which is a polynomial with all nonnegative powers of x since q ≥ 2d−1.
Thus, we have sq+1 = sq+1−kp†(s), and Bpdh solves q-PDH by computing E(sq+1) = E(sq+1−kp†(s)),
where the latter is a known linear combination of encodings E(1), . . . , E(sq), which are available
from the q-PDH instance.

Suppose Case 2 holds. Wlog, suppose first that vmid(x) cannot be expressed as a linear com-
bination of {vk : k ∈ Imid}. Recall that Bpdh chose a polynomial of a(v)(x) of degree d + 1
subject to the constraint that all of the polynomials {xq−da(v)(x) · vk(x) : k ∈ Imid} have a
zero coefficient for xq+1. However, information-theoretically, the only information that the ex-
tractor χ (which output v(x)) has about a(v)(x) is the above constraint, and the value a(v)(s),
which it gets via βv = sq−da(v)(s). Thus, by Lemma 10, since vmid(x) is not in its proper span,
the coefficient for xq+1 in the polynomial xq−da(v)(x)vmid(x), and hence the coefficient of sq+1 in
βvvmid(s), appears unpredictably uniform to χ. Thus, the coefficient of sq+1 in βvvmid(s)+ βww(s)
also appears unpredictably uniform to χ, regardless of what w(x) is. With probability 1 − 1/|F |,
this coefficient is nonzero. If it is nonzero, the final term of the proof π encodes an element
βvvmid(s)+βww(s) = sq−da(v)(s)vmid(s)+sq−da(w)(s)w(s) that is a polynomial of degree ≤ 2q over
s with a nonzero coefficient for sq+1, and we can subtract off encodings of multiples of the other
powers of s (given in the q-PDH instance) to obtain an encoding of a nonzero multiple of sq+1,
from which Bpdh can obtain an encoding of sq+1, solving the q-PDH problem.

Extraction: Recall that Definition 7 requires extraction – i.e., for any statement u, there is a
polynomial-time extractor Eu such that, for any π ← P(crs, u, w), w ← Eu(priv, π). Such extraction
follows from the extraction of the polynomials vmid(x), w(x) and h(x), as described above, and
Lemma 9.

6 Security: the Designated-Verifier Case

The security proof for our SNARK construction becomes more complicated in the designated-verifier
setting, where sk may be nontrivial and the encoding may even be a semantically secure encryption
scheme such as Paillier. In particular, unless the encoding scheme is deterministic (i.e., there is
exactly one encoding for each element), it becomes more difficult for the simulator in the security

35

proof to simulate the verification oracle – to provide the adversary with an accurate bit indicating
whether a SNARK provided by the adversary verifies successfully. Extraction is a very powerful
tool in a security proof, but still we need to slightly strengthen our extraction assumption to enable
the simulator to handle semantically secure encoding.

This section is somewhat dependent on Section 5, which discusses the security of the public-
verifier SNARK and NIZK. We build on the discussion of assumptions in Section 5.1, and use the
lemmas from Section 5.2. Otherwise, the security proof given in Section 6.2 is self-contained.

6.1 Assumptions

We base security on three assumptions: the same q-PDH assumption described in Section 5.1
except that E .Setup(1k) also outputs sk, a version of the q-PKE assumption from Section 5.1
that is slightly extended to address the designated-verifier setting, and one additional knowledge
extraction assumption that we call q-PKEQ.

Here is the version of q-PKE, extended to the designated-verifier setting.
Assumption 5 (Augmented q-PKE). Let κ be a security parameter, and q = poly(κ). The aug-
mented q-power knowledge of exponent (Augmented q-PKE) assumption holds for encoding E if for
every non-uniform probabilistic polynomial time adversary A there exists a non-uniform probabilis-
tic polynomial time extractor χA such that

Pr[(pk, sk)← E .Setup(1κ) ; α, s← F ∗ ;

σ ← (pk,E(1), E(s), . . . , E(sq), E(α), E(αs), . . . , E(αsq)) ;

(E(c), E(ĉ) ; a0, . . . , aq)← (A || χA)(σ, z) : ĉ = αc ∧ c 6=
∑q

k=0 aks
k] = negl(κ)

for any auxiliary information z ∈ {0, 1}poly(κ) that is generated independently of α, and depends on
sk only to the extent that it can be efficiently generated from (pk,E(1), E(s), . . . , E(sq)).

As discussed in Section 5.1, we require that z be generated independently of α, since if z includes
a pair (E(r), E(αr)) “from the outside” (not included in or generated from σ), then A can easily
defeat the extractor by using it to construct (E(c), E(ĉ)).

The rationale behind the second requirement in Augmented q-PKE, that z is not generated via
some super-polynomial computation on (pk,E(1), E(s), . . . , E(sq)), is that it is unclear whether
the assumption would remain true if z were some nontrivial function of sk. If z actually included
sk, the assumption is still true in the sense that the extractor χA can “decrypt” E(c) to recover c,
decrypt E(s) to recover s, and then easily output some representation of c as a polynomial evaluated
at s. But it remains conceivable that z could encode some clever function of sk that enables A
to generate suitable (E(c), E(ĉ)) without enabling χA to extract a representation of c in terms of
the powers {si}. In the terminology of [BCCT12a], we therefore require the auxiliary information
z to have a “benign distribution” with respect to sk. We make this “benign distribution” more
concrete by specifying that z depend on sk only to the extent that it can be efficiently generated
from (pk,E(1), E(s), . . . , E(sq)).

Finally, in the designated verifier setting, we use the following additional extraction assumption.
Assumption 6 (q-PKEQ). Let κ be a security parameter, and q = poly(κ). The q-power knowl-
edge of equality (q-PKEQ) assumption holds for encoding E if for every non-uniform probabilistic
polynomial time adversary A there exists a non-uniform probabilistic polynomial time extractor χA

36

such that

Pr[(pk, sk)← E .Setup(1κ) ; s← F ∗ ;

σ ← (pk,E(1), E(s), . . . , E(sq), E(sq+2), . . . , E(s2q)) ;

(E(c), e ; b)← (A || χA)(σ) : (e ∈ {E(c)} ∧ b = 0) ∨ (e /∈ {E(c)} ∧ b = 1)] = negl(κ).

The q-PKEQ assumption basically says that if A outputs a valid encoding E(c) of some c, and
another term e, χA can distinguish whether e also encodes c. This assumption is designed to make
up for a shortcoming of augmented q-PKE – namely, it says nothing about what χA does if A
outputs something other than well-formed encodings of some r and α · r. For example, even if the
encodings are not well-formed, the extractor could output polynomials vmid(x), w(x), h(x) that (as
far as the simulator knows) plausibly correspond to the terms in A’s SNARK, leading the simulator
to accept a SNARK that a legitimate verifier (with sk) would reject. The q-PKEQ extractor, when
combined with other techniques, enables the simulator to avoid this pitfall.

As a reality check, let us consider the plausibility of q-PKEQ when the encoding scheme is
Paillier encryption. Paillier encryption [Pai99] is a permutation over Z

∗
N2 . In particular, image

verification in Paillier is easy: every element in Z
∗
N2 legitimately encodes some value. Therefore,

q-PKEQ boils down to the question of whether A can output (E(c1), E(c2)) where χA cannot
distinguish whether c1 = c2. It is difficult to see how A itself could know the plaintexts without
χA also knowing them. Certainly, A can generate values e ∈ Z

∗
N2 for which it does not know the

corresponding plaintext. It can even generate a second encoding e′ ← ekN+1 (for any integer k) that
encodes the same unknown value as e. However, despite not know what is encoded, A (and χA)
know that these terms encode the same value. A can generate encodings (e1, e2) such that, from
the perspective of A and χA , they definitely encode the same value, or have a negligible chance
of encoding the same value, but it seems difficult to generate encodings where the probability of
equality is anything in between.

Before ending our discussion of the new assumptions for the designated-verifier setting, we
remind the reader that in Section 5 we proved the security of a public-verifier SNARK under
more natural assumptions, assumptions for a bilinear group that are actually slightly weaker than
Groth’s [Gro10]. So, a reader who finds the assumptions in this section difficult to accept can
ignore this section, and use our PV SNARK in the DV setting. The main advantage of our DV
construction is that it permits encodings that do not employ bilinear groups.

6.2 Security Theorem

Here we prove the main security theorem.
Theorem 8. If the q-PDH and d-PKE assumptions hold for some q ≥ max{2d − 1, d + 2} and
the encoding scheme is deterministic, or if the q-PDH, d-PKE and q-PKEQ assumptions hold for
some q ≥ max{2d − 1, d + 2}, then the designated-verifier SNARK scheme defined in Section 4,
instantiated with a QSP of degree d, is secure under Definition 7, with soundness error 1/|F |.

Before proceeding with the formal proof, we refer to the beginning of Section 5 for an informal
sketch of the main ideas of the proof. Here, before the proof, we informally highlight the main
difference in the designated-verifier setting – namely, the simulation of the verification oracle.

As before, the simulator uses the (augmented) d-PKE extractor χPKE to extract representations
of the proof terms πvmid

, πw, and πh as degree-d polynomials vmid(x), w(x), and h(x) such that
(allegedly) the proof terms encode vmid = vmid(s), w = w(s) and h = h(s), respectively. At this

37

point, the simulator does not know whether the proof terms actually encode these values – or encode
anything at all – since the d-PKE assumption does not say anything about what χPKE does when
the adversary outputs garbage. So, if vmid(x), w(x), and h(x) could correspond to a legitimate
SNARK in the sense of satisfying the QSP, the simulator generates encodings of vmid(s), w(s), h(s)
and βvvmid(s) + βww(s) on its own. Then, it basically asks the q-PKEQ χPKEQ to confirm that
the proof terms validly encode the same things. (The simulator does not need q-PKEQ’s help if
the encoding scheme is deterministic.)

If χPKEQ says yes, then of course a normal verifier would deem the SNARK to be valid (with
overwhelming probability, depending on the accuracy of χPKEQ). If χPKEQ says no, then it must
be the case (with overwhelming probability) that a normal verifier would reject the proof. To
see that this is the case, notice that, certainly, via image verification, the normal verifier would
reject the proof if one of the proof terms was not a proper encoding of anything. So suppose that
the proof terms πvmid

, πw, πh, πv′
mid

, πw′ , πh′ , πy all encode something, but something different than
the encodings that the simulator computed. If the pairs (πvmid

, πv′
mid

), (πw, πw′), and (πh, πh′) all
have the correct relationship with respect to α, then the augmented q-PKE assumption guarantees
that χPKE outputs correct representations of what is encoded by πvmid

, πw, πh. So, given that the
proof terms encode something different than the simulator’s encodings, it must be the case that
the above pairs do not have the correct relationship with respect to α, or that the πy term encodes
something other than βvvmid(s)+βww(s). A normal verifier would detect either of these situations.
Therefore, the simulator can follow χPKEQ’s advice and simulate the verification oracle correctly
with overwhelming probability.

Proof. (Theorem 8) Regarding completeness, the properties of the QSP guarantee that the prover
can always provide a proof for a satisfying input.

To prove soundness, we assume that there exists an adversary Asnark that returns a cheating
proof for the SNARK construction, and we show how we construct an adversary Bpdh, which
interacts with Asnark and breaks the q-PDH assumption.

Suppose that Bpdh receives the q-PDH challenge σ = (pk,E(1), E(s), . . . , E(sq), E(sq+2), . . . , E(s2q)).
The adversary Asnark generates a function f : {0, 1}n → {0, 1} that has a QSP of size m and degree
d with q ≥ max{2d− 1, d+ 2}, defined as follows:

Qf = (V ,W, t(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij).

(It will be convenient notationally, recalling that we are proving the security of the ZK construction,
to view V and W as also including t(x): t(x) = vm(x) = wm(x).) Asnark also selects a number
n′ ∈ [n], where the first n′ input bits are associated to the statement, and the remaining n − n′

input bits are associated to the witness.
Next, Bpdh provides a CRS of the correct form to Asnark. The CRS is:

crs = (pk, {E(si)}i∈[0,d], {E(αsi)}i∈[0,d])

crsf = (crs, Qf , n
′, {E(vk(s))}k∈Imid

, {E(wk(s))}k∈[m], {E(si)}i∈[0,d],

{E(αvk(s))}k∈Imid
, {E(αwk(s))}k∈[m], {E(αsi)}i∈[0,d],

{E(βvvk(s))}k∈Imid
, {E(βwwk(s))}k∈[m])

shortcrsf = (priv, E(1), E(α), E(γ), E(βvγ), E(βwγ), {E(vk(s))}k∈{0}∪Iin , E(w0(s)), E(t(s))).

38

However, there are some subtleties in how Bpdh generates the values βv, βw, and γ. (α, on the other
hand, Bpdh just generates uniformly at random from F .) In particular, Bpdh does not know these
values explicitly, but rather knows these values in terms of their representations over the power
basis {si}. We now describe explicitly how Bpdh generates these values, and observe how Bpdh can
generate the CRS despite only knowing these values implicitly.
Bpdh generates βv as follows. Bpdh generates a uniformly random polynomial a(v)(x) of degree

d + 1 subject to the constraint that all of the polynomials {xq−da(v)(x) · vk(x) : k ∈ Imid} have
a zero coefficient for xq+1. (Such a polynomial exists by Lemma 10.) Bpdh implicitly sets βv =
sq−da(v)(s). The generation of βw is analogous: βw = sq−da(w)(s) for a(w)(x) where all polynomials
{xq−da(w)(x) · wk(x) : k ∈ [m]} have a zero coefficient for xq+1. Notice that Bpdh can generate
encodings of {βvvk(s)} and {βwwk(s)} for the CRS. This is because the polynomial βvvk(s) =
sq−da(v)(s)vk(s) has degree at most q − d + d + 1 + d = q + 1 + d ≤ 2q over s, and because this
polynomial has a zero coefficient for the sq+1 term; similarly for βw. Observe also that βv and βw
generated in this way have appropriately uniform distribution.

To verify a proof, it would suffice for shortcrsf to contain only E(βv) and E(βw) (and other
terms), rather than (the more complicated) E(γ), E(βvγ), and E(βwγ), but unfortunately βv =
sq−da(v)(s) likely has a nonzero coefficient for sq+1, making it impossible for Bpdh to generate an
encoding of it. However, suppose Bpdh generates γ′ uniformly from F and implicitly sets γ = γ′sd+2.
Then, γ has an appropriately uniform distribution, and Bpdh can generate an encoding of γ from
the q-PDH instance since q ≥ d+ 2. Moreover Bpdh can generate encodings of βvγ = γ′sq+2a(v)(s)
and βvγ = γ′sq+2a(w)(s), since these two terms have a zero coefficient for sq+1 and are of degree at
most q + 2 + d+ 1 = q + d+ 2 ≤ 2q.

Once Asnark obtains the CRS, it can generate proofs on its own. In the designated-verifier
setting, we give Asnark access to an oracle that indicates whether its proof verified. (In the public-
verifier setting, no such oracle is necessary.) The oracle works by extraction: Bpdh recovers the
linear combinations used by the prover, and thereby also extracts a witness for the truth of the
statement being proved. (Recall that witness extraction is required by Definition 7 of SNARKs.)
We now explain how this extraction works.

Now, when Asnark sends a claimed proof π, it should have the form:

E(Vmid), E(W), E(H), E(αVmid), E(αW), E(αH), E(βvVmid + βwW) ,

and it should satisfy various verification equations. But let us not make any presuppositions about
the form of Asnark’s proof; it sends:

πvmid
, πw, πh, πv′

mid
, πw′ , πh′ , πy .

There may be trivial ways by which Bpdh can recognize π immediately as an invalid proof – e.g., if
image verification is a public algorithm and one of the proof terms is not a valid encoding of any
element. If so, Bpdh rejects π.

Otherwise, if (πvmid
, πv′

mid
) are of the form (E(Vmid), E(αVmid)), then the d-PKE assumption

implies that there is an efficient extractor χ that outputs a linear combination a0, . . . , ad such that
Vmid =

∑

ai · s
i. Though it may not be immediately recognizable as such, the CRS received by

Asnark is in fact a valid input (σ, z) in the d-PKE assumption: it consists of

σ = (pk, {E(si)}i∈[0,d], {E(αsi)}i∈[0,d])

z = (Qf , n
′, {E(βvvk(s))}k∈Imid

, {E(βwwk(s))}k∈[m], E(γ), E(βvγ), E(βwγ)) ,

39

where the auxiliary information z is independent of α, and other terms in the CRS can be generated
efficiently from σ, z. Accordingly, Bpdh obtains a d-degree polynomial vmid(x) such that, allegedly,
Vmid = vmid(s). Similarly, it obtains degree-d polynomials w(x) and h(x). (If it does not obtain
such polynomials from the d-PKE extractor, Bpdh rejects π.)

Next, Bpdh checks that (v0(x) + vin(x) + vmid(x)) · (w0(x) + w(x)) = h(x) · t(x), for vin(x) =
∑

k∈Iin
ak ·vk(x) (where coefficients {ak : k ∈ Iin} are deterministically derived from u in the usual

way). It also checks that vmid(x) is in the span of {vk(x) : k ∈ Imid} and that w(x) is in the span
of {wk(x) : w ∈ [m]}. If any of these checks fails, Bpdh rejects the proof.

Next, Bpdh generates on its own encodings of vmid(s), w(s), h(s), αvmid(s), αw(s), αh(s), and
βvvmid(s)+βww(s) using the encodings from the q-PDH instance and its knowledge of α. (Although
it does not know βv, βw explicitly, Bpdh can generate an encoding of βvvmid(s) + βww(s) as long
as vmid(x) and w(x) are in their proper spans, which Bpdh has already checked.) If the encoding
scheme is deterministic, Bpdh simply compares its encodings with Asnark’s proof terms, accepts if
the terms match, and rejects otherwise.

If the encoding scheme is not deterministic, then it invokes the q-PKEQ extractor χPKEQ.
Specifically, for σ from the q-PDH instance, the q-PKEQ assumption implies that if we run (A, χA)
on σ, then if A outputs a valid encoding E(c) and a term d, then χA can distinguish whether
d also encodes c. In our setting, A’s computation actually consists of a combination of some of
Bpdh’s computation and some of Asnark’s computation – in particular, it consists of the Bpdh’s
computation of the CRS from σ, and then Asnark’s computation over the CRS. χPKEQ is run on
the various pairs, such as (E(vmid(s)), πvmid

), where the first term was computed by Bpdh, and
the latter is a term from π. If χPKEQ outputs ‘1’ on all such pairs (indicating matches), then a
normal verifier would accept π, and therefore Bpdh does also. If χPKEQ outputs ‘0’ on any such
pair, then we claim that a normal verifier would reject π, and therefore Bpdh does also. To see
that this is the case, notice that, certainly, via image verification, the normal verifier would reject
the proof if one of the proof terms was not a proper encoding of anything. So suppose that the
proof terms πvmid

, πw, πh, πv′
mid

, πw′ , πh′ , πy all encode something, but something different than the
encodings that Bpdh computed. If the pairs (πvmid

, πv′
mid

), (πw, πw′), and (πh, πh′) all have the
correct relationship with respect to α, then the augmented q-PKE assumption guarantees that
χPKE outputs correct representations of what is encoded by πvmid

, πw, πh. So, given that the proof
terms encode something different than Bpdh’s encodings, it must be the case that the above pairs
do not have the correct relationship with respect to α, or that the πy term encodes something other
than βvvmid(s) + βww(s). A normal verifier would detect either of these situations. Therefore,
Bpdh can follow χPKEQ’s advice and simulate the verification oracle correctly with overwhelming
probability.
Bpdh accepts or rejects exactly as a normal verifier would, except that there are two situations

in which Bpdh would reject π even though a normal verifier might not:

• Case 1: (v0(x)+vin(x)+vmid(x)) · (w0(x)+w(x)) 6= h(x) · t(x), but (v0(s)+vin(s)+vmid(s)) ·
(w0(s) + w(s)) = h(s) · t(s).

• Case 2: Either vmid(x) or w(x) is not in its proper span, but nonetheless the last term of the
proof properly encodes βvvmid(s) + βww(s).

These deviations from the normal verifier are fine, since, in either case, Bpdh can solve the q-PDH
problem.

Suppose Case 1 holds. Then p(x) = (v0(x) + vin(x) + vmid(x)) · (w0(x) +w(x))− h(x) · t(x) is a
nonzero polynomial of degree 2d having s as a root. Suppose p(x)’s highest nonzero coefficient is pk

40

for some k ≤ 2d. Write p†(x) = xk − p−1
k · p(x) =

∑k−1
i=0 p†ix

i. Since s is a root of xk − p†(x), it is a
root of xq+1−xq+1−kp†(x), which is a polynomial with all nonnegative powers of x since q ≥ 2d−1.
Thus, we have sq+1 = sq+1−kp†(s), and Bpdh solves q-PDH by computing E(sq+1) = E(sq+1−kp†(s)),
where the latter is a known linear combination of encodings E(1), . . . , E(sq), which are available
from the q-PDH instance.

Suppose Case 2 holds. Wlog, suppose first that vmid(x) cannot be expressed as a linear com-
bination of {vk : k ∈ Imid}. Recall that Bpdh chose a polynomial of a(v)(x) of degree d + 1
subject to the constraint that all of the polynomials {xq−da(v)(x) · vk(x) : k ∈ Imid} have a
zero coefficient for xq+1. However, information-theoretically, the only information that the ex-
tractor χ (which output v(x)) has about a(v)(x) is the above constraint, and the value a(v)(s),
which it gets via βv = sq−da(v)(s). Thus, by Lemma 10, since vmid(x) is not in its proper span,
the coefficient for xq+1 in the polynomial xq−da(v)(x)vmid(x), and hence the coefficient of sq+1 in
βvvmid(s), appears unpredictably uniform to χ. Thus, the coefficient of sq+1 in βvvmid(s)+ βww(s)
also appears unpredictably uniform to χ, regardless of what w(x) is. With probability 1 − 1/|F |,
this coefficient is nonzero. If it is nonzero, the final term of the proof π encodes an element
βvvmid(s)+βww(s) = sq−da(v)(s)vmid(s)+sq−da(w)(s)w(s) that is a polynomial of degree ≤ 2q over
s with a nonzero coefficient for sq+1, and we can subtract off encodings of multiples of the other
powers of s (given in the q-PDH instance) to obtain an encoding of a nonzero multiple of sq+1,
from which Bpdh can obtain an encoding of sq+1, solving the q-PDH problem.

Extraction: Recall that Definition 7 requires extraction – i.e., for any statement u, there is a
polynomial-time extractor Eu such that, for any π ← P(crs, u, w), w ← Eu(priv, π). Such extraction
follows from the extraction of the polynomials vmid(x), w(x) and h(x), as described above, and
Lemma 9.

7 Quadratic Programs for Arithmetic Circuits

Our quadratic span programs (QSPs) consisted of only two sets of polynomials. This fact allowed
us to construct protocols – VC, SNARKs, NIZKs – with very succinct, constant size, arguments. If
our QSPs had required, say, three sets of polynomials, our QSP-based protocols would have been
slightly less efficient – in particular, the arguments still would have been constant size, but for a
slightly larger constant.

A disadvantage of QSPs, however, is that they compute boolean circuits. In many cases, it
is more natural, and more efficient, to compute arithmetic circuits – i.e., circuits composed of
additions and multiplications modulo p, where p is an appropriate modulus. For example, one
appealing feature of Groth-Sahai proofs is that they can be adapted to prove relationships among
group elements, which are most naturally expressed as equations modulo the group order. Proving
such relationships via a boolean circuit would be much less efficient.

In this section, we present quadratic arithmetic programs (QAPs), which are analogous to QSPs,
but which “naturally” compute arithmetic circuits. QAPs require three sets of polynomials, and
therefore they lead to slightly longer, constant sized, arguments. However, for many computations,
they may be much more efficient for the prover, since the prover performs “cryptographic” opera-
tions – for example, a small constant number of group multiplications – only for each mod-p gate,
not for each boolean gate.

41

7.1 Definitions: QAP and Strong QAP

Definition 11 (Quadratic Arithmetic Programs (QAP)). A quadratic arithmetic program (QAP)
Q over field F contains three sets of polynomials V = {vk(x) : k ∈ {0, . . . ,m}}, W = {wk(x) : k ∈
{0, . . . ,m}}, Y = {yk(x) : k ∈ {0, . . . ,m}}, and a target polynomial t(x), all from F [x].

Let f be a function having input variables with labels 1, . . . , n and output variables with la-
bels m − n′ + 1, . . . ,m. We say that Q is a QAP that computes f if the following is true:
a1, . . . , an, am−n′+1, . . . , am ∈ Fn+n′

is a valid assignment to the input/output variables of f iff
there exist (an+1, . . . , am−n′) ∈ Fm−n−n′

such that

t(x) divides

(

v0(x) +
m
∑

k=1

ak · vk(x)

)

·

(

w0(x) +
m
∑

k=1

ak · wk(x)

)

−

(

y0(x) +
m
∑

k=1

ak · yk(x)

)

.

The size of Q is m. The degree of Q is deg(t(x)).
Note that we can assume that all of the vk(x)’s, wk(x)’s, and yk(x)’s have degree at most

deg(t(x))−1, since they can all be reduced modulo t(x) without affecting the divisibility check (the
check whether t(x) divides the expression).

For the protocols, we will also need a slightly stronger definition, of a “strong QAP”, which
rules out the perverse possibility that different linear combinations are used for the vk(x)’s, wk(x)’s,
and yk(x)’s.
Definition 12 (Strong QAP). A strong QAP is a QAP with one additional property: for any
(a1, . . . , am, b1, . . . , bm, c1, . . . , cm) ∈ F 3m that satisfies

t(x) divides

(

v0(x) +
m
∑

k=1

ak · vk(x)

)

·

(

w0(x) +
m
∑

k=1

bk · wk(x)

)

−

(

y0(x) +
m
∑

k=1

ck · yk(x)

)

it must be the case that (a1, . . . , am) = (b1, . . . , bm) = (c1, . . . , cm).

From QAP to Strong QAP.

Given a QAP for f , it is straightforward to construct a strong QAP for f . Suppose we are
given a QAP Q that computes f and consists of polynomial sets V = {vk(x) : k ∈ {0, . . . ,m}},
W = {wk(x) : k ∈ {0, . . . ,m}}, and Y = {yk(x) : k ∈ {0, . . . ,m}}, and a target polynomial
t(x) of degree d, all from F [x]. From Q, we construct a strong QAP Q′ that computes f and
consists of polynomial sets V ′ = {v′k(x) : k ∈ {0, . . . ,m}}, W ′ = {w′

k(x) : k ∈ {0, . . . ,m}}, and
Y ′ = {y′k(x) : k ∈ {0, . . . ,m}}, and a target polynomial t′(x) of degree d+ 2m, as follows.

Choose 2m elements r1, . . . , rm, s1, . . . , sm ∈ F 2m that are not roots of t(x). Set T (x) =
∏m

i=1(x− ri)(x− si) and the new target polynomial t′(x) = t(x) · T (x).
For all k ∈ {0, . . . ,m}, we set v′k(x), w

′
k(x), y

′
k(x) to satisfy:

v′k(x) = vk(x) mod t(x), w′
k(x) = wk(x) mod t(x), y′k(x) = yk(x) mod t(x).

For all k ∈ {0, . . . ,m}, we set v′k(x), w
′
k(x), y

′
k(x) to evaluate to 0 at all of the ri’s and si’s, subject

to the following exceptions:

• For all i ∈ [m], v′0(si) = 1 and w′
0(ri) = 1.

• For all k ∈ [m], v′k(rk) = 1, w′
k(sk) = 1, and y′k(rk) = y′k(sk) = 1.

By the Chinese Remainder theorem, we can set the polynomials to meet these conditions. Clearly,
t′(x) has degree d + 2m, and the rest of the polynomials can be made to have degree at most
d+ 2m− 1 (as they can be reduced modulo t′(x)). Theorem 9 says that Q′ is a strong QAP that
computes f .

42

Theorem 9. Suppose that there is a QAP of size m and degree d that computes f . Then, there is
a strong QAP of size m and degree d+ 2m that computes f .

Proof. Let Q and Q′ be defined as above. Since Q is a QAP, and since all of the polynomials
in Q′ are congruent to their counterparts in Q modulo t(x), the following statement (*) is true:
a1, . . . , an, am−n′+1, . . . , am ∈ Fn+n′

is a valid assignment to the input/output variables of f iff
there exist (an+1, . . . , am−n′) ∈ Fm−n−n′

such that

t(x) divides

(

v′0(x) +

m
∑

k=1

ak · v
′
k(x)

)

·

(

w′
0(x) +

m
∑

k=1

ak · w
′
k(x)

)

−

(

y′0(x) +

m
∑

k=1

ak · y
′
k(x)

)

.

To finish the proof, it suffices to prove the following statement (**):

T (x) divides

(

v′0(x) +
m
∑

k=1

ak · v
′
k(x)

)

·

(

w′
0(x) +

m
∑

k=1

bk · w
′
k(x)

)

−

(

y′0(x) +
m
∑

k=1

ck · y
′
k(x)

)

⇐⇒ (a1, . . . , am) = (b1, . . . , bm) = (c1, . . . , cm) .

The reason it suffices is that, by the ⇐ direction and statement (*) above, we conclude that
the following statement is true: a1, . . . , an, am−n′+1, . . . , am ∈ Fn+n′

is a valid assignment to the
input/output variables of f iff there exist (an+1, . . . , am−n′) ∈ Fm−n−n′

such that

t′(x) divides

(

v′0(x) +
m
∑

k=1

ak · v
′
k(x)

)

·

(

w′
0(x) +

m
∑

k=1

ak · w
′
k(x)

)

−

(

y′0(x) +
m
∑

k=1

ak · y
′
k(x)

)

.

Therefore, Q′ is a QAP that computes f . By the ⇒ direction, Q′ is a strong QAP.
It remains to prove statement (**). For i ∈ [m], the polynomial v′0(x)+

∑m
k=1 ak ·v

′
k(x) evaluates

to ai at ri, and to 1 at si. Analogously, w′
0(x) +

∑m
k=1 bk · w

′
k(x) evaluates to bi at si, and to 1 at

ri. Finally, y
′
0(x) +

∑m
k=1 ck · y

′
k(x) evaluates to ci at both ri and si. Thus, the expression above is

divisible by T (x) – i.e., evaluates to 0 at all ri and si – iff for all i ∈ [m], we have a1 · 1 − ci = 0
and 1 · bi − ci = 0, which is equivalent to (a1, . . . , am) = (b1, . . . , bm) = (c1, . . . , cm).

7.2 QAPs for Arithmetic Circuits with One Multiplication Gate

Any arithmetic circuit may be viewed as being composed of addition, multiplication-by-scalar, and
multiplication gates. In this subsection, we focus on a special type of function, which we call
a multiplication subcircuit. A multiplication subcircuit has a single output wire, which is the
output wire of a multiplication gate. Connected to the inputs of the single (only) multiplication
gate, the multiplication subcircuit may have an arbitrary number of addition and multiplication-
by-scalar gates. That is, if the inputs to the multiplication subcircuit are (X1, . . . , Xt), the function
computed by the multiplication subcircuit can be expressed as ρ1(X1, . . . , Xt)·ρ2(X1, . . . , Xt), where
ρ1(X1, . . . , Xt) and ρ2(X1, . . . , Xt) are linear polynomials.

It should be clear that any arithmetic circuit can be expressed as a “circuit” composed of
multiplication subcircuits that are stitched together.7 In the next subsection, we will explain how

7There is one minor complication: the output gates of the arithmetic circuit need to be multiplication gates.
However, the fix is simple: create one more input variable, which is always required to be assigned ‘1’, and create
multiplication gates at the top of the circuit, which multiply this new variable with the “old” outputs that are not
outputs of multiplication gates.

43

to compose QAPs for functions which share common input/output variables. This will allow us to
construct QAPs for general arithmetic circuits from our QAPs for multiplication subcircuits.

The main result of this subsection is the following theorem.
Theorem 10. Let C be an arithmetic multiplication subcircuit with m − 1 inputs (and 1 output).
There is a QAP of size m and degree 1 that computes C.

Since the QAP has degree 1 – i.e., the target polynomial t(x) is linear, and the rest of the
polynomials have degree 0 (they are constants) – the QAP looks a bit bizarre. In particular,
most of the polynomials are not really “polynomials”, in the usual sense. The degree-1 QAPs will
look more natural when we compose them. To compose them, we will use the Chinese Remainder
Theorem modulo the various (linear) target polynomials t1(x), t2(x), . . . to get vk(x)’s, wk(x)’s, and
yk(x)’s that have higher degree, and thus look more like legitimate polynomials.

Proof. Set t(x) = x− r for some r ∈ F to be the target polynomial.
Let ρ1(X1, . . . , Xm−1) = c0 +

∑m−1
i=1 ci ·Xi and ρ2(X1, . . . , Xm−1) = d0 +

∑m−1
i=1 di ·Xi be the

linear polynomials corresponding to the induced values of the left input wire and right input wire,
respectively, of the multiplication gate in C. For k ∈ {0, . . . ,m − 1}, set vk(x) = ck, wk(x) = dk
and yk(x) = 0. Set vm(x) = wm(x) = 0 and ym(x) = 1.

We claim that this is a QAP for C. Suppose a1, . . . , am ∈ Fm is a valid assignment to the
input/output of C. Then,

(

v0(x) +
m
∑

k=1

ak · vk(x)

)

·

(

w0(x) +
m
∑

k=1

ak · wk(x)

)

−

(

y0(x) +
m
∑

k=1

ak · yk(x)

)

= ρ1(a1, . . . , am−1) · ρ2(a1, . . . , am−1)− am = 0

is (trivially) divisible by t(x). Conversely, if the polynomial expression above is divisible by t(x), it
must equal 0, and a1, . . . , am ∈ Fm is a valid assignment to the input/output of C.

To distill the strategy for computing multiplication subcircuits in words, the vk(x) polynomials
“handle” the left input to the multiplication gate, and the wk(x) polynomials handle the right input,
and the yk(x) polynomials (really, only ym(x)) handle the output. When we compose multiplication
subcircuits to form general arithmetic circuits, the strategy will be the same – the vk(x)’s will
“handle” all of the left inputs to multiplication gates, the wk(x)’s all of the right inputs, and the
yk(x)’s all of the outputs – but these values will be handled in parallel via the Chinese Remainder
Theorem.

7.3 Composition of QAPs, and QAPs for General Arithmetic Circuits

Here we describe how to compose QAPs for different functions that may share common input/output
variables. The composition technique takes two functions f1 and f2, where some of f1’s output vari-
ables may become some of f2’s input variables, and their respective QAPs, and then composes their
QAPs via a natural invocation of the Chinese Remainder Theorem, assuming their target polyno-
mials are relatively prime. If f1 and f2 do not overlap at all, the size of the new QAP is just the
sum of the sizes of the original QAPs, but if they do overlap, the size may be much smaller. The
degree of the new QAP is just the sum of the degrees of the component QAPs. Indeed the target
polynomial of the composed QAP is simply the product of the original target polynomials. By
composing multiplication subcircuits, we can construct a QAP for any arithmetic circuit.8

8...subject to the previous footnote.

44

Composition of QAPs.

The composition works as follows. For i ∈ {1, 2}, QAP Qi consists of polynomial sets V(i) =

{v
(i)
k (x) : k ∈ Ii}, W

(i) = {w
(i)
k (x) : k ∈ Ii}, Y

(i) = {y
(i)
k (x) : k ∈ Ii}, and target polynomial t(i)(x),

where each Ii is a set of indices that includes indices for all of the input/output variables of circuit
fi, and where I1 ∩ I2 is the set of ` indices of the variables that are outputs of f1 and inputs to

f2. For indices in k ∈ I1 \ I2, we say v
(2)
k (x) = w

(2)
k (x) = y

(2)
k (x) = 0. Similarly, for indices in

k ∈ I2 \ I1, we say v
(1)
k (x) = w

(1)
k (x) = y

(1)
k (x) = 0.

The composed QAP Q consists of polynomial sets V = {vk(x) : k ∈ I1 ∪ I2}, W = {wk(x) :
k ∈ Ii ∪ I2}, Y = {yk(x) : k ∈ Ii ∪ I2}, and target polynomial t(x), as follows. We set t(x) =

t(1)(x) · t(2)(x). For all k ∈ I1 ∪ I2, i ∈ {1, 2}, we set vk(x) = v
(i)
k (x) mod t(i)(x), wk(x) =

w
(i)
k (x) mod t(i)(x), and yk(x) = y

(i)
k (x) mod t(i)(x). Since t(1)(x) and t(2)(x) are relatively prime,

we can find polynomials to satisfy these equations by the Chinese Remainder Theorem.
Theorem 11 says that this composition works as intended.

Theorem 11. Let Q1 and Q2 be two QAPs whose respective target polynomials are relatively prime
and which compute the arithmetic circuits f1 and f2, where f2’s input variables may include some
(say `) of f1’s output variables (but f1 and f2 do not otherwise intersect). Let f be the composed
function formed by stitching f1 and f2 together at their common variables. There is a QAP Q with
size(Q) = size(Q1) + size(Q2) − ` and deg(Q) = deg(Q1) + deg(Q2) that computes f . Q’s target
polynomial is the product of the target polynomials for Q1 and Q2.

Proof. Define Q1, Q2, Q, as above. Clearly, size(Q) = |I1 ∪ I2| = size(Q1) + size(Q2) − `, and
deg(Q) = deg(Q1) + deg(Q2). It remains to show that Q computes f .

Let Iinout, I1,inout, and I2,inout be the indices of the input/output variables of f , f1, and f2,
respectively. We have Iinout ⊆ I1,inout ∪ I2,inout. Suppose {ak : k ∈ Iinout} is a valid assignment of
these variables. This assignment must extend to a valid assignment {ak : k ∈ I1,inout ∪ I2,inout} of
the union of the input/output variables for f1 and f2. Since Q1 is a QAP, there exists {bk : k ∈ I1}
that is consistent with the valid assignment to I1,inout such that

t(1)(x) divides

v
(1)
0 (x) +

∑

k∈I1

bk · v
(1)
k (x)

 ·

w
(1)
0 (x) +

∑

k∈I1

bk · w
(1)
k (x)

−

y
(1)
0 (x) +

∑

k∈I1

bk · y
(1)
k (x)

 .

Similarly, since Q2 is a QAP, there exists {ck : k ∈ I2} that is consistent with the valid assignment
to I2,inout such that

t(2)(x) divides

v
(2)
0 (x) +

∑

k∈I2

ck · v
(2)
k (x)

 ·

w
(2)
0 (x) +

∑

k∈I2

ck · w
(2)
k (x)

−

y
(2)
0 (x) +

∑

k∈I2

ck · y
(2)
k (x)

 .

These linear combinations {bk : k ∈ I1} and {ck : k ∈ I2} must be consistent on the indices in the
intersection I1 ∩ I2, which correspond to output values in f1 and input values in f2 which have
already been fixed by the valid assignment. Therefore, we can merge the two linear combinations

above, setting ak = bk for all k ∈ I1 and ak = ck for all k ∈ I2. Since vk(x) = v
(1)
k (x) mod t(1)(x),

wk(x) = w
(1)
k (x) mod t(1)(x), and yk(x) = y

(1)
k (x) mod t(1)(x) for all k, and since vk(x) = wk(x) =

45

yk(x) = 0 mod t(1)(x) for k ∈ I2 \ I1, we obtain

t(1)(x) divides

v0(x) +
∑

k∈I1∪I2

ak · vk(x)

 ·

w0(x) +
∑

k∈I1∪I2

ak · wk(x)

−

y0(x) +
∑

k∈I1∪I2

ak · yk(x)

 .

Similarly, we obtain that t(2)(x), and hence t(x) divides the expression above.
Conversely, if the divisibility check just above holds, it can be decomposed into the separate

divisibility checks wrt the polynomials for the respective QAPs Q1 and Q2, which implies (since Q1

and Q2 are QAPs) that {ak : k ∈ I1 ∪I2} contains valid assignments to the input/output variables
of f1 and f2, which is therefore a valid assignment to the subset of these variables that are in Iinout.
Thus, Q is a QAP that computes f .

Theorem 12. Let C be an arithmetic circuit with input from Fn that has s multiplication gates,
each with fan-in 2, and whose output gates are all multiplication gates. There is a QAP with size
n+ s and degree s that computes C.

Proof. The proof simply combines Theorems 10 and 11 recursively. We use the fact that we can
compose s multiplication subcircuits to construct C, including them into the aggregate circuit one
at a time, invoking Theorem 11 each time. As long as s < |F |, we can ensure that the target
polynomials of the QAPs for the multiplication subcircuits are relatively prime, so as to permit
the composition. The degree of Q is s. Inductively, we see that the size of C equals the number
of input variables for C, plus the number of variables in C that are the output of a multiplication
gate; hence n+ s.

As mentioned above, the output wires of an arithmetic circuit are not, in general, outputs
exclusively of multiplication gates. Consequently, to apply Theorem 12, we may need to modify
our arithmetic circuit slightly. In particular, we create one more input variable, which is always
required to be assigned ‘1’, and create multiplication gates at the top of the circuit, which multiply
this new variable with the “old” outputs that are not already outputs of multiplication gates.

When we assign input values a1, . . . , an to C, this induces assignments to all of the wires
of C. In our QAP for C, one can verify that it has the following nice property: for m =
n + s, (

∑m
k=1 ak · vk(x)) · (

∑m
k=1 ak · wk(x)) − (

∑m
k=1 ak · yk(x)) is divisible by t(x) precisely when

(a1, . . . , am) is the induced set of values on a “special” subset of wires – namely, the wires corre-
sponding to inputs to C and to output wires of multiplication gates. In other words, there is an
immediate and natural mapping between the linear combination (a1, . . . , am) used in the QAP, and
the actual values on the wires of the arithmetic circuit.

7.4 Illustration of a QAP for a Simple Arithmetic Circuit

Constructing the QAP for a circuit by composition may make the construction somewhat confusing.
Thus, we provide a redundant informal explanation that does not rely on the composition theorem
so heavily, and uses a concrete simple arithmetic circuit as an example.

Consider the arithmetic circuit shown in Figure 1. As shown in the Figure 1, we express each
input value to a multiplication gate as a linear function of the values lower in the circuit, where
each of these values is either an output of a lower multiplication gate (for which there is a no-
multiplication-gate path from this lower multiplication gate to the original multiplication gate), or

46

×

+ –

× × ×

×7 ×2

×

×

a
6a

5

a
1

a
2

a
3

a
4

a
1
+7a

2
a
2
‐2a

3

Figure 1: An arithmetic circuit. The value at each output wire of a multiplication gate is
expressed in terms of the values of output wires of lower multiplication gates (or of input wires).

is an input value to the circuit. (For convenience, we will refer to “special values” or “special wires”
as the values or wires that are outputs of multiplication gates, or are input values or wires to the
circuit.)

More formally, for each multiplication gate g, we have an equation of the form

ag =

∑

k∈Ig,L

cg,L,k · ak

 ·

∑

k∈Ig,R

cg,R,k · ak

 .

In the equation, ag denotes the value of the output of multiplication gate g, and ak denotes some
other “special” value, which itself may be the output of a lower multiplication gate, or an input
value. The notation Ig,L denotes the subset of special wires that are indirect left inputs to g –
i.e., special values that feed into the left wire of g (perhaps indirectly, but without going through
another multiplication gate). Finally, cg,L,k is the scalar applied to wire k’s value as it feeds into
g’s left input wire. For example, in Figure 1, we have that a5 = (a1 + 7a2) · (a2 − 2a3). Values a1
and a2 are indirect left inputs to gate 5, while values a2 and a3 are indirect right inputs.

Let M be the indices of the multiplication gates (viewed as being the same as the indices
associated to their output values). For a circuit with s multiplication gates, we would choose
distinct {ri ∈ F : i ∈ M}, associate each multiplication gate g ∈ M to rg, and set the target
polynomial t(x) =

∏

g∈M(x− rg).
Returning to Figure 1, let us assume for simplicity that wires 1 through 4 are input wires.

To generate the target polynomial for out QAP, we pick distinct values r5, r6 ∈ F , associated
to values 5 and 6, which are the output values of gates 5 and 6. We set the target polynomial
t(x) = (x− r5) · (x− r6).

In general, we set the {vk(x)}, {wk(x)}, and {yk(x)} polynomials as follows. For k ∈ M, we
set yk(x) so that yk(rk) = 1 and yk(rj) = 0 for all j 6= k. Since the yk(x)’s correspond to “output
values”, these polynomials are set to 0 for all of the other indices, which correspond to the input
values to the circuit (rather than to output values of multiplication gates). We set vk(x) and wk(x)
to be polynomials such that:

vk(rg) = cg,L,k for all k ∈ Ig,L. Otherwise vk(rg) = 0.

wk(rg) = cg,R,k for all k ∈ Ig,R. Otherwise wk(rg) = 0.

47

Notice that we have

v(rg) =
m
∑

k=1

ak · vk(rg) =
∑

k∈Ig,L

ak · cg,L,k and w(rg) =
m
∑

k=1

ak · wk(rg) =
∑

k∈Ig,R

ak · cg,R,k ,

and therefore, using the multiplication equations for the gates, we have

(

m
∑

k=1

ak · vk(rg)

)

·

(

m
∑

k=1

ak · wk(rg)

)

−

(

m
∑

k=1

ak · yk(rg)

)

= 0

for all g iff (a1, . . . , am) is a valid assignment of the special wires, as desired.
Returning again to Figure 1, the polynomials {vk(x)}, {wk(x)}, and {yk(x)}, for k ∈ [6], will

all have degree at most 1. It will be convenient to express these polynomials as ordered pairs (·, ·),
representing their evaluations at r5 and r6. The y polynomials are all zero, except y5(x) = (1, 0)
and y6(x) = (0, 1). The polynomials v5(x), v6(x), w5(x), w6(x) are all zero, since the 5-th and 6-th
wires are not left or right inputs to any gate. The remaining polynomials are: v1(x) = (1, 0),
w1(x) = (0, 0), v2(x) = (7, 1), w2(x) = (1, 0), v3(x) = (0,−2), w3(x) = (−2, 0), v4(x) = (0, 0),
w4(x) = (0, 1). For example, we have that v2(x) = (7, 1), since wire 2 is an indirect left input
(with magnitude 7) to gate 5 and an indirect left input (with magnitude 1) to gate 6. We have
w2(x) = (1, 0), since wire 2 is an indirect right input to gate 5 (with magnitude 1).

Now, suppose that we have a candidate assignment (a1, . . . , a6) to the special wires of the circuit
in Figure 1. We compute the following:

6
∑

k=1

ak · vk(r5) = a1 + 7a2,
6
∑

k=1

ak · wk(r5) = a2 − 2a3,
6
∑

k=1

ak · yk(r5) = a5,

6
∑

k=1

ak · vk(r6) = a2 − 2a3,

6
∑

k=1

ak · wk(r6) = a4,

6
∑

k=1

ak · yk(r6) = a6.

We have that t(x) divides
(

∑6
k=1 ak · vk(x)

)

·
(

∑6
k=1 ak · wk(x)

)

−
(

∑6
k=1 ak · yk(x)

)

iff a5 = (a1+

7a2) · (a2− 2a3) and a6 = (a2− 2a3) ·a4 – that is, iff (a1, . . . , a6) is a valid assignment of the special
wires.

7.5 QAP Efficiency Considerations

The main efficiency advantage of QAPs over QSPs is that QAPs handle arithmetic circuits “natu-
rally” – that is, without converting them into boolean circuits. Otherwise, the efficiency analysis
for QAPs is similar to that for QSPs (see Section 2.4). We briefly summarize some differences.

Like the QSP polynomials, the QAP polynomials are quite structured in that, typically, vk(ri) =
0 for “most” pairs (i, k), since this value can be nonzero only when indices k and i have a “local”
relationship in the circuit. For example, the wire corresponding to k must be an indirect left input
to gate i. For vk(ri) or wk(ri) to be nonzero, k must be an input to i’s multiplication subcircuit.
We can exploit this structure to compute and write these polynomials in a compressed form, as
described in Section 2.4.

One complication is that we have not bounded the number of inputs to each multiplication
subcircuit. This means that, in fact, the number of nonzero values vk(ri) may be super-linear in

48

the circuit size. Recall that our performance optimizations from Section 2.4 relied heavily on the
vectors {vk(ri) : i ∈ [d]} being extremely sparse (having only constant support).

For such perverse cases, our solution is to insert dummy multiplication gates into the arithmetic
circuit (where a native wire value is multiplied with a dummy wire value that is set to ‘1’) so as to
“break up” each overly large multiplication subcircuit into constant size multiplication subcircuits.

In more detail, suppose that the arithmetic circuit has a gate with more than two indirect left
inputs. That is, for some gate g, the gate equation is of the form

ag =

∑

k∈Ig,L

cg,L,k · ak

 ·

∑

k∈Ig,R

cg,R,k · ak

 ,

where |Ig,L| > 2. Then, we modify the arithmetic circuit by grouping the indices in Ig,L into
pairs: for j ∈ [d|Ig,L|/2e], Ig,L = ∪jIg,L,j . We create dummy multiplication gates {gj}, with gate
equations:

agj =

∑

k∈Ig,L,j

cg,L,k · ak

 · (1) ,

whose right input is a dummy wire that is set to ‘1’. At this point, if we set the new gate equation
to be

ag =

∑

j

agj

 ·

∑

k∈Ig,R

cg,R,k · ak

 ,

the linear equation for the left side now has half as many variables. We continue breaking up the
left side into pairs, in a binary tree fashion, until the left and right inputs for ag take only two
variables.

Alternatively, one may modify the arithmetic circuit in the following way (which is basically
equivalent). First, modify the circuit so that addition gates have fan-in 2. Then, on top of each
addition gate, place a dummy multiplication gate – that is, a multiplication gate that takes two
inputs: the output of the addition gate, and a dummy input that is always set to ‘1’.

If the original arithmetic circuit already had addition gates with fan-in 2, then the modification
at most doubles the number of gates. In any case, it multiplies the number of wires in the circuit
by only a constant factor. Of course, the modification may increase the number of multiplication
gates, and hence the degree of the QAP, by a super-linear factor.

With this modification, all of the vectors {vk(ri) : i ∈ [d]} associated to the modified arithmetic
circuit have constant support, and the optimizations from Section 2.4 may be applied.

8 SNARK Construction from QAP

We now define our SNARK system Π = (Gen,Regenf ,P,V) for QAPs. Let R = {(u,w)} be a set of
relations over Fn. For convenience, we will refer to u as the “statement” and w as the “witness”.
In the description of our SNARK, the input indices i ∈ [1, n′] will correspond to the statement u,
and the positions [n′ + 1, n] will correspond to the witness w. We assume that R is a relation that

49

can be verified with an arithmetic circuit over F , which we take to mean that there is a efficient
arithmetic function f(u,w) = 1 iff (u,w) ∈ R.

Let us pause to consider how we can construct such a relation-checker over a large field. Suppose
that we are interested in the language L where (x,w) ∈ R is and only if f(x) = w. We modify
f to construct an arithmetic circuit φ which takes (u,w) as input, outputs ‘1’ if (u,w) ∈ R and
‘0’ otherwise, and run the SNARK using a QAP for φ. φ runs f on input u (by incorporating f ’s
arithmetic circuit) to obtain f ’s output values w′

n′+1, . . . , w
′
n. It then computes (bn′+1, . . . , bn) ←

(w′
n′+1 − wn′+1, . . . , w

′
n − wn), which should be all zeros if φ’s input is satisfying. While there may

be simpler approaches, φ may then compute (b
|F |−1
n′+1 , . . . , b

|F |−1
n), where |F | − 1 is the order of the

multiplicative subgroup of the field (each exponentiation requires log(|F |−1) multiplication gates),
which is a vector that is still all-zero if φ’s input is satisfying, but otherwise has one or more ‘1’s
in it. Using standard techniques, φ may then finish off the computation so that the output is ‘1’
if the input is satisfying, and ‘0’ otherwise. Depending on the application, one may alternatively
choose to run a SNARK-like protocol that does not verify a relation per se, but instead uses the
more natural form of QAPs as in Definition 11 to check that (u,w) is a valid input/output pair.

CRS generation Gen: On input the security parameter κ and an upper bound, d, on the degree
of the strong QAP for the functions f that will be computed, run (pk, sk)← E .Setup, generate
uniformly at random α, s← F ∗ and output priv = sk, crs = (pk, {E(si)}i∈[0,d], {E(αsi)}i∈[0,d]).

Function specific CRS generation Regen: On input crs, a function f with a strong QAP

Qf = (V ,W,Y, t(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij).

of size m and degree at most d, and value n′ ∈ [1, n], let Iin = ∪i∈[1,n′],j∈[0,1]Iij , let Imid be all
of the remaining indices {1, . . . ,m} \ Iin, generate uniformly at random βv, βw, βy, γ ← F ∗,
and output:

• Public common reference string for f , n′:

crsf = (crs, Qf , n
′, {E(vk(s))}k∈Imid

, {E(wk(s))}k∈[m], {E(yk(s))}k∈[m], {E(si)}i∈[0,d],

{E(αvk(s))}k∈Imid
, {E(αwk(s))}k∈[m], {E(αyk(s))}k∈[m], {E(αsi)}i∈[0,d],

{E(βvvk(s))}k∈Imid
, {E(βwwk(s))}k∈[m], {E(βyyk(s))}k∈[m]).

• A short CRS that will be used for verification

shortcrsf = (priv, E(1), E(α), E(γ), E(βvγ), E(βwγ), E(βyγ), {E(vk(s))}k∈Iin , E(w0(s)), E(t(s))).

Prove P: On input crsf , statement u ∈ {0, 1}n
′
, and witness w, P will prove that (u,w) ∈ R – i.e.,

that f(u,w) = 1. The prover evaluates the span program Qf to obtain (a1, . . . , am) such that

h(x) · t(x) =

(

v0(x) +
m
∑

k=1

ak · vk(x)

)

·

(

w0(x) +
m
∑

k=1

ak · wk(x)

)

−

(

y0(x) +
m
∑

k=1

ak · yk(x)

)

.

50

For vmid(x) =
∑

k∈Imid
ak · vk(x), w(x) =

∑

k∈[m] ak ·wk(x), and y(x) =
∑

k∈[m] ak · yk(x), the
prover outputs the following proof π:

{E(vmid(s)), E(w(s)), E(y(s)), E(h(s)),

E(αvmid(s)), E(αw(s)), E(αy(s)), E(αh(s)),

E(βvvmid(s) + βww(s) + βyy(s))}.

Verify V: On input shortcrsf , u, and proof π = (πvmid
, πw, πy, πh, πv′

mid
, πw′ , πy′ , πh′ , πz), V confirms

that the terms are in the support of validly encoded elements using image verification. Let
Vmid, W , Y , H, V ′

mid, W
′, Y ′, H ′, and Z denote what is encoded in the respective terms.

V computes an encoding E(vin(s)) of vin(s) =
∑

k∈Iin
ak · vk(s). Using the quadratic root

detection, V confirms that (v0(s) + vin(s) + Vmid) · (w0(s) +W)− (y0(s) + Y))−H · t(s) = 0,
V ′
mid−αVmid = 0, W ′−αW = 0, Y ′−αY = 0, H ′−αH = 0, and γZ−(βvγ)Vmid−(βwγ)W −

(βyγ)Y = 0.

8.1 Zero-Knowledge SNARKs (including NIZKs) from QAP

The idea for randomization of the SNARK construction from QAP is the same as in the case of
SNARKs from QSPs. We outline the construction next.

To facilitate the randomization in our ZK construction, we include additional terms E(t(s)),
E(αt(s)), E(βvt(s)), E(βwt(s)), E(βyt(s)), E(v0(s)), E(αv0(s)), E(w0(s)), E(αw0(s)), E(y0(s))
and E(αy0(s)) in crsf . The prover proceeds as before, except that it additively perturbs E(vmid(s)),
E(w(s)) and E(y(s)) by random multiples of E(t(s)), and modifies the other values accordingly.

More specifically, the values of {ak}k∈Iin , vin(x), vmid(x), v(x) = v0(x)+vin(x)+vmid(x), w(x),
y(x) and h(x) are as before. The verifier picks random δvmid

, δw, δy ← F . Its proof is:

E(v′mid(s)), E(w′(s)), E(y′(s)), E(h′(s)), E(αv′mid(s)), E(αw′(s)), E(αy′(s)), E(αh′(s)),

E(βvv
′
mid(s) + βww

′(s) + βyy
′(s)),

where v′mid(x) = vmid(x) + δvmid
t(x), w′(x) = w(x) + δwt(x) and y′(x) = y(x) + δyt(x). Regarding

the value of h′(x), let v′(x) = v0(x)+vin(x)+v′mid(x) = v(x)+ δvmid
t(x) = v†(x)+ δvmid

t(x), where
v†(x) = v0(x) + vin(x) + vmid(x). Define w′(x), w†(x) and y′(x), y†(x) similarly. We have:

h′(x) = (v′(x) · w′(x)− y′(x))/t(x)

= ((v†(x) + δvmid
t(x)) · (w†(x) + δwt(x))− (y†(x) + δyt(x)))/t(x)

= h(x) + δvmid
w†(x) + δwv

†(x) + δvmid
δwt(x)− δy.

Notice that all of the values in this new proof can be computed efficiently from crsf . As in the QSP
construction we require re-randomizability for the encoding scheme, which is used by the prover
to re-randomize the terms in the proof, so that, information-theoretically, they do not reveal more
than what they encode.

Theorem 13. The ZK SNARK construction above is statistically ZK.

Proof. We claim three things. First, for fixed crsf and statement u ∈ {0, 1}n
′
, once the elements

Vmid, W , and Y that are encoded in the proof are fixed, they determine all of the other elements

51

H, V ′
mid, W

′, Y ′, H ′, and Z that are encoded in the proof, via the verification constraints V ·
W † − Y † − H · t(s) = 0, V ′

mid − αVmid = 0, W ′ − αW = 0, Y ′ − αY = 0, H ′ − αH = 0,
and γZ − (βvγ)Vmid − (βwγ)W − (βyγ)Y = 0, where V = v0(s) + Vin + Vmid, Vin = vin(s),
vin(x) =

∑

k∈Iin
ak · vk(x), W

† = w0(s) +W and Y † = y0(s) + Y . Second, in the ZK construction,
the elements Vmid, W , Y that are encoded in the proof are statistically uniform. Third, there is a
simulator (S1, S2) such that S1 outputs a simulated CRS crsf and a trapdoor τ , S2 takes as input
crsf , a statement u and τ and outputs a simulated proof π – in particular, without knowing any
witness w for u, and with encodings of appropriately uniform Vmid, W and Y (and what is encoded
in the remaining terms is dictated by the verification constraints). The theorem follows from these
claims, since the simulator can use re-randomization to ensure that its actual encodings (not just
what is encoded) is appropriately uniform.

Regarding the first claim, fixing Vmid, W and Y clearly fixes V ′
mid, W ′, Y ′ and Z. It also

fixes V = v0(s) + Vin + Vmid, W and Y , since the coefficients {ak : k ∈ Iin} are determined by u.
Consequently, it fixes H = (V ·W † − Y †)/t(s) and also H ′.

Regarding the second claim, t(s) is in F ∗ with overwhelming probability. Since the final step
of generating Vmid, W and Y involves adding δvmid

t(s), δwt(s) and δyt(s), respectively, for uniform
values of δvmid

, δw and δy, the values of Vmid, W and Y are statistically close to uniform.
Regarding the third claim, S1 generates a regular crsf and sets the trapdoor τ to be s, α,

βv, βw, βy, γ. Given the trapdoor τ , S2 picks random v(x), w†(x), y†(x) such that t(x) divides
v(x)w†(x) − y†, sets h(x) be the quotient polynomial, and sets vmid(x) = v(x) − v0(x) − vin(x),
w(x) = w†(x)−w0(x) and y(x) = y†(x)−y0(x). Since S2 knows these polynomials and s, α, βv, βw,
βy, γ, it can compute encodings of Vmid = vmid(s), W = w(s) and Y = y(s), as well as the other
elements that need to be encoded in the proof. Moreover, as required, the values Vmid = vmid(s),
W = w(s) and Y = y(s) are statistically uniform.

Like the QSP-based NIZK, the QAP-based NIZK can be re-randomized by anyone, not just the
original prover. See [CKLM12] and references therein for applications of re-randomizable NIZKs
and malleable proof systems.

Theorem 14. If the q-PDH and d-PKE assumptions hold for some q ≥ max{2d− 1, d+ 2}, then
the NIZK scheme defined above, instantiated with a QAP of degree d, is secure under Definition 7,
with soundness error 1/|F |.

Proof Idea: Since the proof of the theorem is the same as the proof of ZK SNARK construction
from Section 5.3 except for the additional set of polynomials yk(x), we provide only a sketch for the
proof idea. The CRS for the scheme contains encodings of {vk(s)}k∈Imid

, {wk(s)}k∈[m], {yk(s)}k∈[m]

and {si}i∈[0,d], as well as these terms multiplied by α, and the scheme requires the prover to present
encodings of Vmid, W , Y and H, and these terms multiplied by α. This would enable the simulator
in the security proof to extract representations of Vmid, W , Y and H as degree-d polynomials
vmid(x), w(x), y(x) and h(x) such that vmid = vmid(s), w = w(s), y = y(s) and h = h(s). The
d-PKE assumption implies that this extraction is efficient.

If an adversary manages to forge a SNARK of a false statement that nonetheless passes the
verification test, then, by Lemma 9, the soundness of the strong QAP implies that, for the extracted
polynomials, one of the following must be true:

1. (v0(x)+vin(x)+vmid(x))·(w0(x)+w(x))−(y0(x)+y(x)) 6= h(x)·t(x), for vin(x) =
∑

k∈Iin
ak ·

vk(x), where coefficients {ak : k ∈ Iin} are deterministically derived from u in the usual way,

2. vmid(x) is not in the linear span of {vk(x) : k ∈ Imid},

52

3. w(x) is not in the linear span of {wk(x) : k ∈ [m]},

4. y(x) is not in the linear span of {yk(x) : k ∈ [m]}.

If the first case, set p(x) = (v0(x) + vin(x) + vmid(x)) · (w0(x) +w(x))− (y0(x) + y(x))− h(x) · t(x).
Then, p(x) is a nonzero polynomial of degree some k ≤ 2d that has s as a root. If q + 1 ≥ 2d,
the simulator can use p(x) to solve q-PDH by using the fact that E(0) = E(sq+1−kp(s)) and
subtracting off encodings of lower powers of s to get E(pks

q+1) and then E(sq+1) (see the proof
of Theorem 7 for details). To handle the other cases – i.e., to ensure that vmid(x) is in the
linear span of the vk(x)’s with k ∈ Imid (and similarly for w(x) and y(x)) – we use three more
scalars βv, βw, βy, and include in the CRS the following terms {βvvk(s)}, {βwwk(s)} and {βyyk(s)}.
Then we require the prover to present (encoded) βvvmid(s) + βww(s) + βyy(s) in its proof. The
simulator implicitly sets βv choosing a polynomial a(v)(x) as in Lemma 10 wrt the set of polynomials
{vk(x) : k ∈ Imid} and setting βv = sq−da(v)(s). We invoke Lemma 10 to argue that if vmid(x)
is not in its proper span, then the simulator can, with probability 1 − 1/|F |, use the encoding of
βvvmid(s) + βww(s)− βyy(s) = sq−da(v)(s)vmid(s) + sq−da(w)(s)w(s)− sq−da(y)(s)y(s) to obtain an
encoding of sq+1 and thus solve q-PDH.

The technical details of the proof follow the proof in Theorem 7 with the difference that the
polynomials yk(x) are handled in the same way as wk(x).

8.2 Designated-Verifier SNARK from QAP

Just as in the case of the construction of a designated-verifier SNARK from QSP, we would need
to resort to the augmented assumptions from Section 6.1 in order to prove the security of the
DV SNARK construction from QAP. (We remind the reader that the augmented assumption is
necessary only in the case of randomized encodings such a Paillier encryption, and not for the
encoding instantiation from bilinear groups.) Since the proof follows closely the proof of Theorem 8,
we present only the intuition sketch.
Theorem 15. If the q-PDH and d-PKE assumptions hold for some q ≥ max{2d − 1, d + 2} and
the encoding scheme is deterministic, or if the q-PDH, d-PKE and q-PKEQ assumptions hold for
some q ≥ max{2d − 1, d + 2}, then the designated-verifier SNARK scheme defined in Section 4,
instantiated with a QAP of degree d, is secure under Definition 7, with soundness error 1/|F |.

Proof Idea: The proof for the designated verifier has the same general idea as in the case of
the PV SNARK with the following differences. As before, the simulator uses the (augmented)
d-PKE extractor χPKE to extract representations of the proof terms πvmid

, πw, πy and πh as
degree-d polynomials vmid(x), w(x), y(x) and h(x) such that (allegedly) the proof terms encode
vmid = vmid(s), w = w(s), y = y(s) and h = h(s), respectively. At this point, the simulator
does not know whether the proof terms actually encode these values – or encode anything at all
– since the d-PKE assumption does not say anything about what χPKE does when the adversary
outputs garbage. So, if vmid(x), w(x), y(x) and h(x) could correspond to a legitimate SNARK in
the sense of satisfying the QAP, the simulator generates encodings of vmid(s), w(s), y(s), h(s) and
βvvmid(s) + βww(s) + βyy(s) on its own. Then, it basically asks the q-PKEQ χPKEQ to confirm
that the proof terms validly encode the same things. (The simulator does not need q-PKEQ’s help
if the encoding scheme is deterministic.)

If χPKEQ says yes, then of course a normal verifier would deem the SNARK to be valid (with
overwhelming probability, depending on the accuracy of χPKEQ). If χPKEQ says no, then it must
be the case (with overwhelming probability) that a normal verifier would reject the proof. To
see that this is the case, notice that, certainly, via image verification, the normal verifier would

53

reject the proof if one of the proof terms was not a proper encoding of anything. So suppose that
the proof terms πvmid

, πw, πy, πh, πv′
mid

, πw′ , πh′ , πy′ , πz all encode something, but something different
than the encodings that the simulator computed. If the pairs (πvmid

, πv′
mid

), (πw, πw′), (πy, πy′), and
(πh, πh′) all have the correct relationship with respect to α, then the augmented q-PKE assumption
guarantees that χPKE outputs correct representations of what is encoded by πvmid

, πw, πy, πh. So,
given that the proof terms encode something different than the simulator’s encodings, it must be
the case that the above pairs do not have the correct relationship with respect to α, or that the πz
term encodes something other than βvvmid(s) + βww(s) + βyy(s). A normal verifier would detect
either of these situations. Therefore, the simulator can follow χPKEQ’s advice and simulate the
verification oracle correctly with overwhelming probability.

For the technical details of the proof we refer the reader to the proof of Theorem 8. The only
difference here will be the terms related to the yk(x) polynomials, which will be handled in the
same way as those related to the wk(x) polynomials.

9 Conclusions and Open Questions

We introduced Quadratic Span Programs (QSPs) as a new characterization of NP that lends itself
to efficient cryptographic applications. Specifically, we use QSPs to construct non-interactive zero-
knowledge (NIZK) arguments [BFM88, BSMP91] and hence succinct non-interactive arguments
of knowledge (SNARKs) [BCCT12a] and verifiable computation schemes [GGP10], all without the
need for Probablistically Checkable Proofs (PCPs) [BFLS91, FGL+96, AS98, ALM+98]. The NIZK
arguments require only 7 group elements, and the common reference string is linear in the circuit
size. The prover performs only a linear number of cryptographic operations, though the prover
must also perform a quasi-linear, non-cryptographic step to compute the quotient polynomial for
the QSP. Computing it in purely linear time, by exploiting the structure of the QSP’s polynomials,
remains an interesting open problem. Finally, we introduce Quadratic Arithmetic Programs (QAPs)
as a variant of QSPs that more naturally computes arithmetic circuits, and hence may be more
efficient for many applications. Although not all of our schemes use pairings (bilinear maps), QSPs
appear to be a very useful model for capturing the power of pairings in cryptography: using QSPs,
we get much more powerful pairing-based schemes than existed previously, within a conceptually
simple framework.

References

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Salil P.
Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 118–
136. Springer, 2007.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In Samson Abramsky, Cyril Gavoille,
Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, ICALP
(1), volume 6198 of Lecture Notes in Computer Science, pages 152–163. Springer, 2010.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–
555, 1998.

54

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. J. ACM, 45(1):70–122, 1998.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT, volume 3494
of Lecture Notes in Computer Science, pages 440–456. Springer, 2005.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

[BCCT12a] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In Goldwasser [Gol12], pages 326–349.

[BCCT12b] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composi-
tion and bootstrapping for snarks and proof-carrying data. IACR Cryptology ePrint
Archive, 2012. http://eprint.iacr.org/2012/095.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Cris Koutsougeras and Jeffrey Scott Vitter, editors,
STOC, pages 21–31. ACM, 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In STOC, pages 103–112, 1988.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption
with short ciphertexts and private keys. In Victor Shoup, editor, CRYPTO, volume
3621 of Lecture Notes in Computer Science, pages 258–275. Springer, 2005.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-
round zero-knowledge protocols. In Matthew K. Franklin, editor, CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 273–289. Springer, 2004.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby, editors, ACM Conference on Computer and
Communications Security, pages 62–73. ACM, 1993.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic en-
cryption for restricted computations. In Goldwasser [Gol12], pages 350–366.

[CD09] Ran Canetti and Ronny Ramzi Dakdouk. Towards a theory of extractable functions.
In Omer Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer Science,
pages 595–613. Springer, 2009.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

55

[CKLM12] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Mal-
leable proof systems and applications. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages
281–300. Springer, 2012.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of
computation using fully homomorphic encryption. In CRYPTO, volume 6223 of Lecture
Notes in Computer Science, pages 483–501. Springer, 2010.

[CL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractability
assumption. In Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, edi-
tors, CiE, volume 5028 of Lecture Notes in Computer Science, pages 175–185. Springer,
2008.

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure against chosen cipher-
text attacks. In Joan Feigenbaum, editor, CRYPTO, volume 576 of Lecture Notes in
Computer Science, pages 445–456. Springer, 1991.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In Ronald Cramer, editor, TCC, volume 7194 of Lecture
Notes in Computer Science, pages 54–74. Springer, 2012.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput.,
36(6):1513–1543, 2007.

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. In-
teractive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292,
1996.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, STOC, pages 169–178. ACM, 2009.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In CRYPTO, volume 6223 of
Lecture Notes in Computer Science, pages 465–482. Springer, 2010.

[Gjø04] Kristian Gjøsteen. Subgroup membership problems and public key cryptosys-
tems. PhD thesis, Norwegian University of Science and Technology, 2004.
urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-128.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In Cynthia Dwork, editor, STOC, pages 113–122. ACM,
2008.

56

crypto.stanford.edu/craig
urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-128

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation with-
out rejection problem from designated verifier CS-proofs. IACR Cryptology ePrint
Archive, 2011:456, 2011.

[Gol12] Shafi Goldwasser, editor. Innovations in Theoretical Computer Science 2012, Cam-
bridge, MA, USA, January 8-10, 2012. ACM, 2012.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for np. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in
Computer Science, pages 339–358. Springer, 2006.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT, volume 6477 of Lecture Notes in Computer Sci-
ence, pages 321–340. Springer, 2010.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer
Science, pages 415–432. Springer, 2008.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, pages 99–108. ACM, 2011.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge proto-
cols. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer
Science, pages 408–423. Springer, 1998.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short
PCPs. In IEEE Conference on Computational Complexity, pages 278–291. IEEE Com-
puter Society, 2007.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Structure in Complexity
Theory Conference, pages 102–111, 1993.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In TCC, volume 7194 of Lecture Notes in Computer Science,
pages 169–189. Springer, 2012.

[LMSV11] Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On CCA-
secure somewhat homomorphic encryption. In Ali Miri and Serge Vaudenay, editors,
Selected Areas in Cryptography, volume 7118 of Lecture Notes in Computer Science,
pages 55–72. Springer, 2011.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000. extended abstract in FOCS ’94.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 96–109. Springer,
2003.

57

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Jacques Stern, editor, EUROCRYPT, volume 1592 of Lecture Notes in Computer
Science, pages 223–238. Springer, 1999.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In IACR
Theory of Cryptography Conference (TCC), 2012.

[RAD78] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, pages 169–180, 1978.

[RV10] Guy N. Rothblum and Salil P. Vadhan. Are PCPs inherent in efficient arguments?
Computational Complexity, 19(2):265–304, 2010.

[SMBW12] Srinath Setty, Richard McPherson, Andrew J. Blumberg, and Michael Walfish. Making
argument systems for outsourced computation practical (sometimes). In Proceedings
of the ISOC Symposium on Network and Distributed System Security (NDSS), 2012.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes
in Computer Science, pages 1–18. Springer, 2008.

[WS07] Jiang Wu and Douglas R. Stinson. An efficient identification protocol and the
knowledge-of-exponent assumption. IACR Cryptology ePrint Archive, 2007:479, 2007.

[YYZZ07] Andrew Chi-Chih Yao, Frances F. Yao, Yunlei Zhao, and Bin Zhu. Deniable internet
key-exchange. IACR Cryptology ePrint Archive, 2007:191, 2007.

58

	1 Introduction
	1.1 Quadratic Span Programs: A New Characterization of NP
	1.2 From QSPs to SNARKs and NIZKs
	1.3 Comparisons to Other Work on Succinct Arguments without PCPs

	2 Quadratic Span Programs (QSPs)
	2.1 Component 1: A Useful Linear Span Program
	2.2 Component 2: A Consistency Checker
	2.3 Our Canonical QSP
	2.4 QSP Efficiency Considerations

	3 Overview of Our Cryptographic Constructions and Security
	3.1 Our SNARK Construction
	3.2 Making the SNARK Statistical Zero-Knowledge (NIZKs)
	3.3 Performance and Optimizations
	3.4 Security

	4 Cryptographic Constructions from Strong QSPs
	4.1 Definitions: SNARGs, SNARKs, Verifiable Computation, NIZKs
	4.1.1 Succinct Non-Interactive Arguments
	4.1.2 Verifiable Computation
	4.1.3 Non-Interactive Zero Knowledge

	4.2 Verifiable Computation from Designated-Verifier SNARKs
	4.3 Construction of Designated-Verifier/Public-Verifier SNARKs from Strong QSPs
	4.4 Zero-Knowledge SNARKs (including NIZKs) from Strong QSPs: How to Randomize Our SNARKs
	4.5 Optimizations
	4.5.1 Reducing the Verifier's Work without PCPs
	4.5.2 Reducing the Verifier's Work with PCPs
	4.5.3 Reducing the Verifier's Preprocessing: Combining Universal Circuits with the Hash Trick or PCPs
	4.5.4 Even Shorter Proofs in the Designated-Verifier Setting

	5 Security of Our Public-Verifier SNARK and NIZK
	5.1 Assumptions
	5.2 Lemmas
	5.3 Security Theorem

	6 Security: the Designated-Verifier Case
	6.1 Assumptions
	6.2 Security Theorem

	7 Quadratic Programs for Arithmetic Circuits
	7.1 Definitions: QAP and Strong QAP
	7.2 QAPs for Arithmetic Circuits with One Multiplication Gate
	7.3 Composition of QAPs, and QAPs for General Arithmetic Circuits
	7.4 Illustration of a QAP for a Simple Arithmetic Circuit
	7.5 QAP Efficiency Considerations

	8 SNARK Construction from QAP
	8.1 Zero-Knowledge SNARKs (including NIZKs) from QAP
	8.2 Designated-Verifier SNARK from QAP

	9 Conclusions and Open Questions

