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Abstract. Impossible differential cryptanalysis is a powerful technique to recover the secret key of
block ciphers by exploiting the fact that in block ciphers specific input and output differences are
not compatible. This paper introduces a novel tool to search truncated impossible differentials for
word-oriented block ciphers with bijective Sboxes. Our tool generalizes the earlier U-method and
the UID-method. It allows to reduce the gap between the best impossible differentials found by
these methods and the best known differentials found by ad hoc methods that rely on cryptanalytic
insights. The time and space complexities of our tool in judging an r-round truncated impossible
differential are about O(c · l4 · r4) and O(c′ · l2 · r2) respectively, where l is the number of words in
the plaintext and c, c′ are constants depending on the machine and the block cipher. In order to
demonstrate the strength of our tool, we show that it does not only allow to automatically rediscover
the longest truncated impossible differentials of many word-oriented block ciphers, but also finds
new results. It independently rediscovers all 72 known truncated impossible differentials on 9-round
CLEFIA. In addition, finds new truncated impossible differentials for AES, ARIA, Camellia without
FL and FL−1 layers, E2, LBlock, MIBS and Piccolo. Although our tool does not improve the lengths
of impossible differentials for existing block ciphers, it helps to close the gap between the best known
results of previous tools and those of manual cryptanalysis.
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1 Introduction

Impossible differential cryptanalysis is one of the most popular cryptanalytic tools for block ciphers. It
was firstly proposed by Knudsen to analyze DEAL [14] in 1998 and then extended by Biham et al. to
attack IDEA [5] and Skipjack [4]. Unlike traditional differential cryptanalysis [7], which uses differential
characteristics with high probabilities to recover the right key, impossible differential cryptanalysis is a
sieving method which exploits differentials with probability zero to retrieve the right key by filtering out
all wrong keys. Until now, impossible differential cryptanalysis has shown its superiority over differential
cryptanalysis in many block ciphers such as IDEA, Skipjack, CLEFIA [23] and AES [9].

Impossible differential cryptanalysis mainly consists of two steps. Firstly, an attacker tries to find
impossible differentials, that is, differentials that never occur. Then, after gaining a list of plaintext-
ciphertext pairs, the attacker guesses some subkey material involved in the outer rounds of the impossible
differentials, and then partially encrypts/decrypts each plaintext-ciphertext pair to check whether the
corresponding internal differences are identical to the input and output differences of the impossible
differentials. Once that happens, the guessed subkey will be discarded. The right key will be recovered if
we discard all wrong keys.

Several factors influence the success of impossible differential cryptanalysis, including the length of
impossible differentials, specific input/output difference patterns and the strength of one-round encryp-
tion/decryption. Among them, the most important factor is the length of an impossible differential. The
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longer the impossible differential is, the better the attack will be. Another important factor is the in-
put/output difference pattern when two impossible differentials have the same length, because the new
impossible differentials may well result in improved attacks [27, 17, 10]. If we find more impossible differ-
entials, we can perform a successful attack or improve the time/data complexities of known attacks with
higher possibilities.

In Indocrypt 2003, Kim et al. [13] proposed the U-method to find impossible differentials for various
block cipher structures with bijective round functions. The U-method is based on the miss-in-the-middle
approach (see 1-(a) of Fig. 1): it first constructs two differentials with probability one from the encryption
and decryption direction and subsequently demonstrates some contradictions by combining them. In the
U-method, the propagation of differences in a block cipher (structure) is translated into simple matrix
operations, and some inconsistent conditions are used to detect impossible differentials. Luo et al. [18]
developed the idea of the U-method and proposed a more general method —the UID-method. The
UID-method removed some limitations in the U-method and harnesses more inconsistent conditions to
evaluate impossible differentials. So far, the U-method and the UID-method have been employed as tool
by some block cipher designers to evaluate the security of their designs against impossible differential
cryptanalysis, for instance, LBlock [26] and Piccolo [22].

However, the U-method and the UID-method only focus on finding impossible differentials with the
miss-in-the-middle approach, which limits their power. An example is illustrated in 1-(b) of Fig. 1. In
this case, we cannot detect a contradiction in the match point of the two probability-one differentials,
but instead recover some useful information, which will feed back to the internal rounds to produce
a contradiction. The U-method and the UID-method fail to detect this kind of impossible differentials
because they do not fully use the information in the match point.

Fig. 1. Basic idea of the miss-in-the-middle approach (1-(a)) and impossible differentials with information feedback
(1-(b))

Indeed, the longest impossible differentials of many block ciphers known so far are not found by the U-
method and the UID-method, but constructed by ad hoc approaches and the experience of cryptanalysts,
such as 8-round MIBS [3], 6-round E2 [25], 8-round Camellia without the FL and FL−1 layers [27] [25]
and all 72 9-round impossible differentials of CLEFIA listed in [24]. Almost all impossible differentials of
these block ciphers fall under the model of 1-(b) of Fig. 1, which implies that they are beyond the abilities
of the U-method and the UID-method. Of course, ad hoc approaches also have some disadvantages. For
example, it is very computationally intensive to find even one impossible differential, and the success of
finding an impossible differential is highly dependent to the experience of a cryptanalyst. Thus, they are
not efficient and systematic in practice. Especially in designing a block cipher, one has to modify his/her
design and frequently re-evaluate its security against impossible differential cryptanalysis.

Our Contributions. In this work, we propose a new tool for automatically finding impossible differen-
tials of word-oriented block ciphers with bijective S-boxes. The goals of our tool are to reduce the gap
between previous automatic tools (i.e., the U-method and the UID-method) and ad hoc approaches, and
to provide an automated method to find impossible differentials with a reduced complexity. The devel-
opment of attack algorithms to exploit these impossible differentials is outside the scope of this paper;
we leave it for further work.



Unlike the miss-in-the-middle approach, which splits a block cipher into two parts factitiously, we
treat it as an entirety. The inputs of our tool are some constraints of the plaintext difference and the
ciphertext difference, and a system of equations that describes the propagation behavior when differences
pass through the inner primitives of a block cipher. Then, our tool predicts information about unknown
variables from the known ones iteratively, with probability one in each step. Finally, it outputs a flag
indicating whether a truncated differential is impossible under several filtering conditions. The time and
space complexities of our tool in judging an r-round truncated impossible differential are about O(c·l4 ·r4)
and O(c′ · l2 · r2) respectively, where l is the number of words in the plaintext and c, c′ are constants
depending on the machine and the block cipher.

Although our tool does not improve the lengths of impossible differentials for existing block ciphers,
it helps in reducing the gap between previous automatic tools and ad hoc approaches. Experimental
results also indicate that our tool is efficient and systematic. It not only rediscovers the longest truncated
impossible differentials of many word-oriented block ciphers known so far, but also finds new results. It
independently rediscovers all 72 known truncated impossible differentials on 9-round CLEFIA [24]. In
addition, besides the best results known so far, our tool finds new truncated impossible differentials for
many other word-oriented block ciphers, such as the AES, Camellia [1] without FL and FL−1 layers,
MIBS [11], LBlock [26], ARIA [15], E2 [12] and Piccolo [22]. The number of new truncated impossible
differentials obtained by our tool is summarized in Table 1.

Table 1. Summary of new truncated impossible differentials (ID) obtained by our tool. Camellia* is a variant of
Camellia without FL and FL−1 layers.

Block Cipher Word unit Previous results In this paper
Round No. of IDs Method Round No. of IDs New IDs

AES byte 4 ([6, 20, 21, 2, 19]) 269,554 ad hoc 4 3,608,100 3,338,546
ARIA byte 4 ([27, 17, 10, 16]) 156 ad hoc 4 94,416 94,260

Camellia* byte 8 ([27],[25]) 3 ad hoc 8 4 1
E2 byte 6 ([25]) 1 ad hoc 6 56 55

MIBS nibble 8 ([3]) 2 ad hoc 8 8 6
LBlock nibble 14 ([26]) 64 U-method 14 80 16
Piccolo nibble 7 ([22]) 1 U-method 7 450 449

An interesting observation is that the U-method and the UID-method are specific cases of our tool,
and our tool is more powerful than them. An example is given to indicate that our tool can find longer
impossible differentials than the U-method and the UID-method. Thus, we expect that our tool is useful
in evaluating the security of block ciphers against impossible differential cryptanalysis, especially when
one tries to design a word-oriented block cipher with bijective Sboxes.

For the convenience of verifying our results, the source code for finding truncated impossible differ-
entials of SPN ciphers and Feistel ciphers with SPN round functions are listed in Appendix B.

Outline of This Paper. In Sect. 2, we discuss how to build difference propagation systems, which
describe the propagation behavior when differences pass through the inner primitives of block ciphers. In
Sect. 3, we discuss our idea to find new impossible differentials. Then, a tool for automatically searching
truncated impossible differentials is proposed in Sect. 4. Experimental results are also provided in this
section. Finally, we compare our tool with the U-method and the UID-method in Sect. 5 and conclude
this paper in Sect. 6.

2 Difference Propagation System

Throughout this paper, we consider the exclusive-or difference, and we assume that: (1) E is an r-round
word-oriented block cipher with block length l · s bits (where s is the bit length of a word), that is,
the plaintext and the ciphertext of E are vectors in Fl

2s , and all inner operations of E consist only of
calculations over F2s ; (2) bijective Sboxes over F2s are the only nonlinear primitives of E ; (3) all subkeys
are exclusive-ored to the internal state. Thus, we do not consider the subkey addition operation since



it does not influence the propagation of differences. Although some block ciphers do not satisfy all the
above conditions, e.g., IDEA, we believe that similar ideas can also be applied, with some modifications.

In this section, we discuss how to build a system of equations that describes the propagation behavior
when differences pass through the inner primitives of a word-oriented block cipher. This system will be
called difference propagation system in the subsequent discussions.

2.1 Difference Propagation of Basic Primitives

Before studying block ciphers, we first investigate the difference propagation of four basic primitives
which are often employed as parts of a word-oriented block cipher, namely the branching operation, the
XOR-operation, the bijective Sbox layer and the linear permutation layer. These primitives are illustrated
in (a), (b) and (c) of Fig. 2.

Fig. 2. Basic primitives of a block cipher: (a) the branching operation, (b) the XOR-operation and (c) the bijective
Sbox/linear permutation layer

Suppose ∆X = (∆xi)1≤i≤n, ∆Y = (∆yi)1≤i≤n and ∆Z = (∆zi)1≤i≤n are row vectors in Fn
2s , the

difference propagation of basic primitives can be described as follows.

Lemma 1. (The branching operation.) For a branching operation (see (a) of Fig. 3), we have ∆X =
∆Y = ∆Z. This equation can be written as 2n linear equations ∆xi ⊕∆yi = 0 and ∆xi ⊕∆zi = 0.

Lemma 2. (The XOR-operation.) For an XOR-operation (see (b) of Fig. 3), we have ∆X ⊕∆Y = ∆Z.
This equation can be written as n linear equations ∆xi ⊕∆yi ⊕∆zi = 0.

Lemma 3. (The linear permutation layer.) A linear permutation (see (c) of Fig. 3) has matrix repre-
sentation P = (pi,j)1≤i,j≤n over F2s , that is, ∆Y T = P ·∆XT , where ∆XT is the transposed vector of
∆X. This equation can be written as n linear equations ∆yi ⊕

Ln
j=1 pi,j ·∆xj = 0.

Lemma 4. (The Sbox layer.) For an Sbox layer consisting of n bijective Sboxes Si : F2s → F2s (see (c)
of Fig. 3), we build n formal equations Si(∆xi, ∆yi) = 0.

Remark 1. Notice that Si(·, ·) is inherently a nonlinear map if we try to write its concrete expression,
since Si is a nonlinear bijective Sbox. Each pair (∆xi, ∆yi) with Pr(∆xi → ∆yi) 6= 0 in the Difference
Distributed Table [7] of Si is a solution of Si(∆xi, ∆yi) = 0, which means that an input difference ∆xi
may propagate to the output difference ∆yi. However, in Lemma 4, we build a formal equation for an
Sbox without considering its concrete expression because the only property used in our tool is that it is
bijective.

2.2 Build Difference Propagation Systems

The two most important classes of block ciphers are SPN ciphers and Feistel ciphers with SPN round
functions (see (a) and (b) of Fig. 3). In this section, we choose them as examples to display how to build
difference propagation systems.



Fig. 3. The three most important classes of block ciphers: (a) SPN ciphers and (b) Feistel ciphers with SPN round
function

SPN Cipher. One round of an SPN cipher typically has three layers (see (a) of Fig. 3): the Sub-
keyAddition layer, the Sbox layer and the linear permutation layer. As mentioned above, we omit the
SubkeyAddition layer since it does not influence the propagation of differences. Additionally, we can omit
the last linear permutation layer since it does not influence the length of an impossible differential.

We denote by ∆Xi = (∆Xi,j)1≤j≤l and ∆Yi = (∆Yi,j)1≤j≤l the differences before and after the Sbox
layer of round i, respectively. Then, for an r-round SPN cipher, we build a difference propagation system
as follows: �

Sj(∆Xi,j , ∆Yi,j) = 0 for 1 ≤ i ≤ r and 1 ≤ j ≤ l ,
∆XT

i+1 ⊕ P ·∆Y T
i = 0 for 1 ≤ i ≤ r − 1 ,

(1)

where P is the matrix of linear permutation layer. This system contains 2 · l · r unknown variables, l · r
formal (and nonlinear) equations from Sbox layers and l · (r− 1) linear equations (using Lemma 3). ∆X1

is the plaintext difference and ∆Yr is the ciphertext difference.

Feistel Cipher with SPN Round Functions. For an r-round Feistel cipher (see (b) of Fig. 3), we
denote by ∆Xi−1 = (∆Xi−1,j)1≤j≤ l

2
and ∆Xi = (∆Xi,j)1≤j≤ l

2
the differences of the right branch and

the left branch of round i, respectively. Note that we assume that l is even. Thus, (∆X1, ∆X0) is the
plaintext difference and (∆Xr+1, ∆Xr) is the ciphertext difference.

The SPN round function typically has three layers: the SubkeyAddition layer, the Sbox layer and the
linear permutation layer. We introduce ∆Yi = (∆Yi,j)1≤j≤ l

2
to denote the difference after the Sbox layer

of round i and ∆Zi = (∆Zi,j)1≤j≤ l
2

to represent the output difference of F function in round i. Then,

we build a difference propagation system as follows:8<: Sj(∆Xi,j , ∆Yi,j) = 0 for 1 ≤ i ≤ r and 1 ≤ j ≤ l
2 ,

∆ZT
i ⊕ P ·∆Y T

i = 0 for 1 ≤ i ≤ r ,
∆Xi−1 ⊕∆Xi+1 ⊕∆Zi = 0 for 1 ≤ i ≤ r ,

(2)

where P is the matrix of the linear permutation layer in F . This system contains l
2 · (3r + 2) unknown

variables, l
2 · r formal (and nonlinear) equations and l · r linear equations (using Lemma 2 and Lemma 3).

If F is an SPS-type round function (e.g., the block cipher E2), that is, F consists of two consecutive
SPN round functions, a similar system can be built by introducing new variables to represent the input
difference and the output difference of the second Sbox layer.

Other Block Ciphers. Similar systems can be built for other block ciphers by introducing proper
internal variables and combining Lemma 1 to Lemma 4 appropriately. For the convenience of building
formal equations from Sbox layers and running our tool, different variables should be introduced before
and after an Sbox layer to represent its input difference and output difference, respectively.

Remark 2. From Lemma 1 to Lemma 4, we know that a basic primitive costs 3l variables and provides
2l equations at most. Thus, for one round block cipher consisting of m basic primitives, we can build a



difference propagation system with 3l ·m variables and 2l ·m equations in the worst case. In general, m is
a small constant. For example, m is 2 in SPN ciphers (see (a) of Fig. 3) and m is 4 in Feistel ciphers with
SPN round functions (see (b) of Fig. 3). Hence, for an r-round block cipher, we can build a difference
propagation system with O(c1 · r · l) variables and O(c2 · r · l) equations, where c1 and c2 are constants
depending on specific block ciphers.

3 Finding Impossible Differentials

In this section, we first introduce the basic idea of finding impossible differentials. Then, we discuss how to
predict information from a given difference propagation system and how to detect contradictions. Finally,
we briefly review the U-method and the UID-method.

3.1 Basic Idea

For a given difference propagation system, each solution satisfying it is an r-round differential character-
istic, without considering its probability. On the contrary, an r-round impossible differential is obtained
if one demonstrates that there is no solution satisfying the system under given plaintext difference and
ciphertext difference.

The idea of finding impossible differentials in this paper is simple: given some information of the plain-
text difference and the ciphertext difference, we may predict the information of new variables according to
the difference propagation system, yielding a new set of “known” variables. Then, new information may
again be predicted from these “known” variables. This process will continue until we find a contradiction
or we can no longer obtain any new information. Notice that every prediction we made is deterministic
(i.e., with probability one), which implies that the system does not have any solution if a contradiction
is found. In other words, we obtain an impossible differential if a contradiction is detected in the process
of predicting information, under given plaintext difference and ciphertext difference.

3.2 Predict Information and Detect Contradictions

We can divide a difference propagation system into two subsystems — L and NL. L includes all lin-
ear equations while NL contains all formal (and nonlinear) equations from bijective Sboxes. Then, the
information can be obtained with probability one in the following two ways:

(i) Predict information from the linear system L. If system L has solutions, then they can be solved by
the Gauss-Jordan Elimination algorithm, which gets solutions by firstly reducing the augmented matrix
of L to row echelon form using elementary row operations and then back-substituting until the entire
solution is found. The reduced augmented matrix after the back-substituting step represents a linear
system that is equivalent to the original. Then, we have the following lemma.

Lemma 5. Suppose L has solutions and the reduced augmented matrix of L is obtained, then

1) If an affine equation with only one variable, that is, ∆X ⊕ c = 0 (c is a constant), is found in the
reduced system of L, we have ∆X = 0 if c = 0 and ∆X 6= 0 if c 6= 0.

2) If a linear equation with two variables, that is, ∆X ⊕∆Y = 0, is found in the reduced system of L,
we have ∆X 6= 0 if and only if ∆Y 6= 0.

Remark 3. After solving a system of linear equations L with the Gauss-Jordan Elimination algorithm,
each variable that has a unique solution will be recovered, that is, all equations of the form ∆X⊕c = 0 (c
is a constant) exist in the reduced augmented matrix of L. Hence, Lemma 5 does not miss any information
that falls under case 1).

(ii) Predict information from the nonlinear system NL. We have

Lemma 6. Suppose S is a bijective Sbox, ∆X is the input difference and ∆Y is the output difference.
Then, ∆X is zero (respectively, nonzero) if and only if ∆Y is zero (respectively, nonzero).



According to the basic idea of finding impossible differentials, the strategy of predicting information is
clear now: predict information from system L and NL alternately until a contradiction is found or we can
no longer obtain any new information. An impossible differential is detected by the following proposition:

Proposition 1. We denote by ∆P and ∆C the plaintext difference and the ciphertext difference, respec-
tively. Then, ∆P → ∆C is impossible if one of the following two situations happens:

– I. The linear system L does not have any solution. That is, the rank of its coefficient matrix is not
equal to the rank of its augmented matrix.

– II. There exists a variable with both zero and nonzero values.

Two tiny examples of the second case are given below.

Example 1. Suppose the equations ∆Y ⊕ ∆Z = 0 and S(∆X,∆Y ) = 0 are included in a difference
propagation system, and we know that ∆X = 0 and ∆Z 6= 0 from the previous information. Then, in
the next prediction, we know that ∆Y 6= 0 from Lemma 5 while ∆Y = 0 from Lemma 6, which is a
contradiction.

Example 2. Suppose we have known that [∆a1, ∆a2, . . . ,∆an] is a nonzero vector. Then, a contradiction
is found if we deduce that ∆ai = 0 (for 1 ≤ i ≤ n) in the subsequent information predictions.

3.3 Related Work — the U-method and the UID-method

In this section, we briefly review the U-method and the UID-method. The specification of these tools can
be found in [13] and [18].

Both the U-method and the UID-method mainly have three steps in finding an impossible differential.
First, both tools construct a characteristic matrix which describes the propagation of differences in one
round encryption/decryption. For example, for one round of Feistel structure (see (b) of Fig. 3), we have
∆Xi+1 = F (∆Xi) ⊕ ∆Xi−1 and ∆Xi = ∆Xi, that is, (∆Xi+1, ∆Xi)

T = E · (∆Xi, ∆Xi−1)T , where

E =
�
F 1
1 0

�
is the characteristic matrix of one round encryption. The characteristic matrix D of one round

decryption can be defined similarly. Secondly, the U-method and the UID-method defined some operations
to calculate the multiplications between a characteristic matrix and a vector, because the output difference
after r1-round encryptions (resp., r2-round decryptions) can be described as ∆U = Er1 · ∆PT (resp.,
∆V = Dr2 · ∆CT ). Finally, suppose ∆U = (∆uj)1≤j≤l and ∆V = (∆vj)1≤j≤l are two vectors which
should be combined in the miss-in-the-middle approach, the following filtering conditions are used to
detect contradictions.

Definition 1. (Definition 1 of [18]) Vectors ∆U and ∆V are inconsistent if there exists a subset I ⊆
{1, 2, . . . , l} such that ⊕i∈I(∆ui ⊕ ∆vi) 6= 0, where ∆ui (respectively, ∆vi and f = ⊕i∈I(∆ui ⊕ ∆vi))
is a linear XOR combination of the four types of differences: zero difference, nonzero fixed difference,
nonzero unspecified difference and unknown difference. Especially, the U-method always considers subsets
that have exactly one index.

There are two main differences between the U-method and the UID-method. First, the UID-method
relaxes the 1-Property (i.e., the number of 1 entries in each column of the characteristic matrix is zero
or one) required in the U-method. Secondly, the UID-method exploits a more general filtering condition
to detect contradictions than the U-method, which has shown in Definition 1. Thus, the UID-method is
more general than the U-method.

4 Algorithm to Find Truncated Impossible Differentials

In this section, we first sketch our algorithm in finding impossible differentials. Then, we discuss some
details of our algorithm. Finally, experimental results and some discussions of our tool are introduced.



4.1 Sketch of Our Algorithm

After building a difference propagation system as (1) or (2), we first implement it in a computer. Then, we
choose a set of promising (∆P,∆C) pairs. Finally, for each of these pairs, our algorithm judges whether
it is an impossible differential automatically, that is, our algorithm predicts information from the linear
system L and the nonlinear system NL alternately until a contradiction is found or we can no longer
obtain any new information. The outline of our algorithm is shown in Algorithm 1. flag indicates whether
∆P → ∆C is impossible, and index controls the termination of predicting information.

Implement the difference propagation system, i.e., L and NL, on a computer;1

for every pair of (∆P,∆C) we choose do2

flag:=false; index:=true;3

while index do4

if System L does not have any solution then5

flag:=true; index:=false;6

else
Predict information from the reduced augmented matrix of L;7

Predict information from the nonlinear system NL;8

if do not find new information then9

index:=false;10

else
if find a variable with both zero and nonzero values then11

flag:=true; index:=false;12

return flag;13

Algorithm 1: The outline of our algorithm

In the subsequent sections, we will discuss some details of Algorithm 1, including how we implement
a difference propagation system on a computer, the choices of the plaintext difference and the ciphertext
difference, and a specific algorithm for automatically judging a truncated impossible differential. Λ0 and
Λ1 are sets for storing variables with zero difference and nonzero differences in a difference propagation
system.

4.2 Implementation of a Difference Propagation System

Since a difference propagation system is divided into two parts — systems L and NL in our tool, we
discuss how to implement them on a computer, respectively.

Implement system L with a matrix. System L can be written formally as A · x = b, where A,
b and B = [A|b] are called the coefficient matrix, constant matrix and augmented matrix of this system
respectively, x is the set of all variables (in order) involved in the whole difference propagation system.

For a further step, the system L can be represented as a column vector form:

A1 · x1 ⊕A2 · x2 ⊕ · · · ⊕An · xn = b . (3)

If we change the order of variables in (3), the coefficient matrix A will be changed accordingly. For example,
the column positions of A1 and A2 in A will be exchanged if we exchange the order of x1 and x2 in x.
Thus, matrix A (and B) is determined once the order of variables in x is fixed. In computer manipulations,
we do not deal with the system in terms of equations but instead make use of the augmented matrix B.

In the following example, we show that matrix A can be easily constructed if we choose a proper order
of variables.

Example 3. We consider Feistel ciphers with SPN round functions, that is, we need to generate the
coefficient matrix of linear equations in (2). Firstly, we may simplify the second and third equations
of (2) as

I1 ·∆XT
i−1 ⊕ I2 ·∆XT

i+1 ⊕ P ·∆Y T
i = 0 for 1 ≤ i ≤ r , (4)



where I1 = I2 = I and I is the identity matrix. Notice that variables ∆Zis are eliminated in the simplified
system. For a further step, the coefficient matrices of ∆XT

i−1 and ∆XT
i+1 may be substituted by other

matrices according to the specification of the block ciphers.
Next, we fix the order of all variables in the simplified system as

x = [∆X0, ∆X1, ∆X2, ∆X3, . . . ,∆Xr−1, ∆Xr, ∆Xr+1, ∆Y1, ∆Y2, . . . ,∆Yr] . (5)

Finally, (4) can be represented as
A · xT = 0 ,

where

A =

�
I1 0 I2 0 · · · 0 0 0 P 0 · · · 0
0 I1 0 I2 · · · 0 0 0 0 P · · · 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...
0 0 0 0 · · · I1 0 I2 0 0 · · · P

�

is a block matrix with r rows and 2r + 2 columns. Now, A is a highly structured matrix. We can easily
generate it in a computer if we obtain the coefficient matrices of ∆Xi−1, ∆Xi+1 and ∆Yi in (4).

For iterative block ciphers with other structures, similar techniques can be used to construct highly
structured coefficient matrices.

A technical detail in solving a linear system is to dispose a zero variable. Without loss of generality,
suppose x1 = 0 in (3). Then, to avoid reduplicate judges of case 1) in Lemma 5, we can eliminate the
term A1 · x1 from (3) to obtain a system with one less variable, or keep the variable x1 in the system
while setting A1 to a zero vector. Both methods keep the solutions of the other variables unchanged and
need additional space to store the value of x1. In our tool, we choose the latter manner for implementing
system NL conveniently, and variables with zero value will be stored in set Λ0. Notice that for the last
method, B is a matrix with a fixed number of columns.

Implement system NL with a table. Once the order of variables in x is given, the i-th variable in
x corresponds to the i-th column of A (and B). Then, we can store equations of system NL with a simple
table using the column indexes of B. First, we initialize an empty table T , then for each equation in NL,
we add an element {v1, v2} to T , where v1, v2 are two integers (i.e., the column indexes of B) indicating
the two variables involved in the formal equation of an Sbox. For example, if the order of variables in a
Feistel cipher is fixed as that in (5), then table T for formal equations in (2) is

T = [{ l
2

+
l

2
· (i− 1) + j,

l

2
· (r + 2) +

l

2
· (i− 1) + j} : 1 ≤ i ≤ r, 1 ≤ j ≤ l

2
] .

4.3 The Choices of the Plaintext Difference and the Ciphertext Difference

To judge an impossible differential, we have to first initialize some information, i.e., impose some con-
straints on the plaintext difference ∆P and the ciphertext difference ∆C. To avoid trivial results, an
obvious constraint is that ∆P 6= 0 and ∆C 6= 0 . However, besides this constraint, there are still
(2ls − 1) · (2ls − 1) choices for all combinations of ∆P and ∆C. It is impossible to enumerate all of them
on a personal computer, even for a 32-bit block cipher.

According to the property of word-oriented block ciphers, a natural way is to consider truncated
differences. That is, for each word of ∆P = (∆Pi)1≤i≤l and ∆C = (∆Ci)1≤i≤l, we assign an indicator to
indicate the choice of its difference, representing by 0 a word without difference and by 1 a word with
a difference. In such representation, the indicator vectors of ∆P and ∆C are row vectors in Fl

2, and the
number of all possible combinations of ∆P and ∆C is reduced to (2l−1) · (2l−1), which makes it feasible
to enumerate all or a big part of them.

Notice that the value of ∆Pi (or ∆Ci) is zero if its indicator is 0, which implies that, in a difference
propagation system, the variable ∆Pi (or ∆Ci) can be evaluated as zero. However, if the indicator of
∆Pi (or ∆Ci) is 1, we cannot evaluate any specific value for ∆Pi (or ∆Ci). In this case, we just leave
∆Pi (or ∆Ci) as an undetermined variable in a difference propagation system while storing its indicator
information. In our tool, we will add the variable ∆Pi (or ∆Ci) to set Λ1.



4.4 Algorithm for Judging a Truncated Impossible Differential

Let p = [p1, p2, . . . , pl] (respectively, c = [c1, c2, . . . , cl]) be a vector, indicating the variable positions of
∆P (respectively, ∆C) in x. Fox example, p = [ l2 +1, l

2 +2, . . . , l, 1, 2, . . . , l
2 ] if the order of variables in an

r-round Feistel cipher is fixed as given in (5), since [∆X1, ∆X0] is the plaintext difference. MulCol(B,i,j)
is a function that multiplies the j-th column of matrix B with element i, and ColSubMatrix(B, i, j) is
the submatrix of B with columns from i to j.

Our algorithm takes the matrix B, table T , vector p, vector c, indicator vectors of ∆P and ∆C
as inputs, and then predicts information as described in Algorithm 1 (i.e., from step 3 to step 12)
automatically. Finally, it outputs a flag indicating whether ∆P → ∆C is impossible, under the filter
conditions listed in Proposition 1. The specific description of our algorithm is shown in Algorithm 2, and
some sketches are listed as follows.

– In step 1, our tool initializes the sets Λ0 and Λ1, which are used for storing variables with zero
difference and nonzero differences. We also introduce a new matrix B′ to protect the matrix B
against revision, because B can be re-used for different indicator vectors of ∆P and ∆C (we also
discuss it below in the remarks of Algorithm 2).

– From step 2 to step 6, our tool scans the indicator vectors of ∆P and ∆C, and stores their information
in Λ0 or Λ1. As mentioned in Sect. 4.2, if the value of a variable is zero, then the corresponding column
of B′ will be set to a zero vector.

– From step 7 to step 17, our tool predicts information from system L and NL alternately. This process
is terminated if index is false, which implies that a contradiction is found by using Proposition 1 or
we can no longer obtain any new information. Especially,
• in step 10 and step 11, our tool detects whether there is a type I contradiction of Proposition 1;
• in step 12, it preforms Gauss-Jordan Elimination algorithm to obtain the reduced augmented

matrix of the system L;
• in step 13, it predicts information from the reduced augmented matrix of the system L and the

system NL by calling the subprogram Predict Info;
• in step 15 and step 16, it detects whether there is a type II contradiction of Proposition 1.

– From step 18 to step 36, our tool predicts information from the reduced augmented matrix of the
system L and the system NL. Especially,
• in step 19, our tool defines a temp to represent whether it finally obtain some new information

in the information prediction;
• from step 20 to step 27, our tool predicts information from the reduced augmented matrix of

the system L, by scanning all linear equations in the system L and recovering information using
Lemma 5;
• from step 28 to step 33, our tool predicts information from the system NL using Lemma 6;
• in step 34 and step 35, some new information is obtained if the number of variables in the set Λ0

or Λ1 is increased. If that happens, the returned temp will be true.

For an r-round word-oriented block cipher, we may obtain all r-round truncated impossible differen-
tials by enumerating all possible nonzero indicator vectors of ∆P and ∆C. To obtain truncated impossible
differentials with different lengths, it only needs to try different round numbers.

Some remarks on our algorithm are given below.

1. Since the encryption process of a block cipher is deterministic, for a fixed round number r, we only
need to build the difference propagation system once. So, matrix B, table T , vector p and vector c
can be reused for different indicator vectors of ∆P and ∆C. Thus, we introduce a new matrix B′ in
Algorithm 2 to protect the matrix B against revision.

2. Besides indicator vectors of ∆P and ∆C, some linear constraints between nonzero variables in ∆P
and ∆C can also be added while selecting the initial constraints. Our tool still works in this case by
translating all linear constraints to row matrices firstly and then adding these rows to matrix B′.

3. Our tool only uses the bijective property of an Sbox to predict information, without solving nonlinear
systems. The most time-consuming steps are calculating the rank of a matrix and solving a linear
system.

4. Filter condition Λ0∩Λ1 6= ∅ used in Algorithm 2 is a special form of case II listed in Proposition 1. In
some block ciphers, e.g., AES, we may use the filtering condition of Example 2 to find contradictions.



Input: Matrix B, table T , vector p, vector c and indicator vectors of ∆P and ∆C.
Output: A flag indicates whether ∆P → ∆C is impossible.

B′ := B; Λ0 := ∅; Λ1 := ∅; n :=NumberOfColumns(B′);1

// Initialize the truncated information of ∆P and ∆C . . .
// . . . using their indicator vectors SdeltaP and SdeltaC.

for i := 1 to l do2

Λ1 := Λ1 ∪ {pi} if SdeltaP=1;3

Λ0 := Λ0 ∪ {pi} and B′ :=MulCol(B′, 0, pi) if SdeltaP=0;4

Λ1 := Λ1 ∪ {ci} if SdeltaC=1;5

Λ0 := Λ0 ∪ {ci} and B′ :=MulCol(B′, 0, ci) if SdeltaC=0;6

// Predict information and find contradictions.

flag := false; index :=true;7

while index do8

A′ :=ColSubMatrix(B′, 1, n− 1);9

if rank(A′) 6= rank(B′) then10

flag := true; index :=false;11

else
// Gauss-Jordan Elimination.

B′ :=Reduced-row-echelon-form-of(B′);12

< B′, Λ0, Λ1, temp >:= Predict Info(B′, T , Λ0, Λ1);13

index := temp;14

if Λ0 ∩ Λ1 6= ∅ then15

flag := true; index :=false;16

return flag.17

Predict Info(B′, T , Λ0, Λ1);18

n0 := |Λ0|; n1 := |Λ1|; temp :=false; n :=NumberOfColumns(B′);19

// Predict information from the reduced row echelon form of B′ using Lemma 5.

for i := 1 to NumberOfRows(B′) do20

S := ∅;21

for j := 1 to n− 1 do22

S := S ∪ {j} if B′[i, j] 6= 0;23

// A linear equation with form ∆X = 0.
if |S| = 1 and B′[i, n] = 0 then24

Λ0 := Λ0 ∪ S; B′ :=MulCol(B′, 0, j) for j ∈ S ;25

// An equation with form ∆X ⊕ c = 0 (c 6= 0) or ∆X ⊕∆Y = 0.
if (|S| = 1 and B′[i, n] 6= 0) or (|S| = 2, B′[i, n] = 0 and S ∩ Λ1 6= ∅) then26

Λ1 := Λ1 ∪ S;27

// Scan table T and use Lemma 6 to predict information.

for j := 1 to NumberOfElements(T ) do28

if T [j] ∩ Λ0 6= ∅ and T [j] \ Λ0 6= ∅ then29

B′ :=MulCol(B′, 0, e) for e ∈ T [j] \ Λ0;30

Λ0 := Λ0 ∪ T [j];31

if T [j] ∩ Λ1 6= ∅ then32

Λ1 := Λ1 ∪ T [j];33

if |Λ0| > n0 or |Λ1| > n1 then34

temp :=true;35

return < B′, Λ0, Λ1, temp >.36

Algorithm 2: Automatically evaluation of a truncated impossible differential



Algorithm Complexity. Suppose B′ is a matrix with M rows and N columns. The time consumption
for computing rank(A′), rank(B′) and Gauss-Jordan Elimination is about O(M2 · N), and the time
consumption for the subprogram Predict Info is about O(M · N). Algorithm 2 terminates if index is
false. Otherwise, at least one of sets Λ0 and Λ1 is updated after each while loop. According to the pigeon-
hole principle, there must be a type II contradiction mentioned in Proposition 1 when |Λ0|+ |Λ1| > N .
Therefore, while loop runs N + 1 times at most. In summary, the time complexity of judging a truncated
impossible differential does not exceed O(M2 · N2). From Remark 2, we know M is about O(c1 · l · r)
and N is about O(c2 · l · r). Thus, the time complexity of Algorithm 2 is about O(c · l4 · r4), where c
is a constant depending on the machine and the block cipher. The space complexity of Algorithm 2 is
dominated by storing the matrices B, B′ and A′. Thus, the space complexity is about O(M ·N), that is,
O(c′ · l2 · r2), where c′ is also a constant depending on the machine and the block cipher.

4.5 Experimental Results

We apply our tool to find truncated impossible differentials for various byte-(or nibble-)oriented block
ciphers, such as the AES, CLEFIA, E2, Camellia without FL and FL−1 layers, ARIA, LBlock, MIBS
and Piccolo. All of these block ciphers have l = 16. We may classify them into three groups according
to their underlying structures: SPN ciphers (AES and ARIA), Feistel ciphers (Camellia without FL and
FL−1 layers, LBlock, MIBS and E2), and generalized Feistel ciphers (CLEFIA and Piccolo). The results
of this section are obtained on a 2.66 GHz processor with MAGMA package [8]. For the convenience of
verifying our results, the source code for searching the truncated impossible differentials of some block
ciphers are listed in Appendix B.

SPN Ciphers. For the AES, our tool finds 3,608,100 4-round truncated impossible differentials in hours
using the filter conditions of Example 2. All impossible differentials of AES follow an inherent rule. We
can describe them explicitly (see Appendix A). The classes of impossible differentials discussed in [6, 20,
21, 2, 19] are included in our result set. For the ARIA, besides the results shown in [27, 17, 10], our tool
finds 94,260 new 4-round truncated impossible differentials in about two weeks.

Feistel Ciphers. Since there is always a five round impossible differential (0, ∆X0) 6→5 (∆X6, 0) for the
Feistel structure with bijective round function when ∆X0 = ∆X6 [13], we focus on finding impossible

differentials (0, ∆X0) 6→r (∆Xr+1, 0) with r ≥ 6. The search space is reduced to (2
l
2 − 1) · (2 l

2 − 1).
Results for Camellia without FL and FL−1 layers, MIBS, LBlock and E2 can be obtained in a few hours.
Notice that E2 is a Feistel cipher with SPS-type round function.

Suppose I is a set, eI denotes a vector whose i-th (for all i ∈ I) component is a nonzero difference while
other components are zero difference. Then, the results obtained by our tool are illustrated in Table 2,
where (eI , eJ) is the shortened form of (0, ∆X1) 6→r (∆Xr+1, 0). For example, (e3, e5) in the results of
MIBS means that

(00000000, 00α00000) 6→8 (0000β000, 00000000) , (6)

where α and β are nonzero 4-bit differences.

Generalized Feistel Ciphers. CLEFIA is a 4-branch generalized Feistel cipher with SPN round func-
tions, and Piccolo has a variant of 4-branch generalized Feistel structure with an SPS-type round function.
The specification of these block ciphers can be found in [23] and [22].

The plaintext differences and the ciphertext differences of CLEFIA and Piccolo can be divided into
four branches with four words in each branch. In this paper, we focus on finding truncated impossible
differentials of the form ∆P = ∆C = (0000, ????, 0000, ????) ∈ F16

2 \{0}, where “?” can be zero difference
or a nonzero difference. The number of choices is reduced to (28 − 1) · (28 − 1) now. Our computer
enumerates them in a few hours. For the CLEFIA, our tool independently rediscovers all 72 known
truncated impossible differentials listed in [24] but does not find new results. In [22], the designers of
Piccolo claimed that they find a 7-round impossible differential using modified U-method. However, the



Table 2. Truncated impossible differentials (0,∆X1) 6→r (∆Xr+1, 0) for some Feistel ciphers. Previous results
are marked with bold type. Camellia* is a variant of Camellia without FL and FL−1 layers.

Ciphers r No. Truncated Impossible Differentials

Camellia* 8 4 (e1, e1), (e2, e2), (e3, e3)[27], (e4, e4).

MIBS 8 6 (e3, e8), (e7, e5) [3], (e3, e5), (e5, e3), (e5, e7) , (e8, e3).

(ei, ej) [26], for 1 ≤ i, j ≤ 8.
LBlock 14 80 (e1, e{4,6}), (e2, e{2,8}), (e3, e{5,7}), (e4, e{5,7}), (e5, e{2,8}), (e6, e{4,6}),

(e7, e{1,3}), (e8, e{1,3}), (e{1,2}, e1), (e{3,8}, e2), (e{5,6}, e3), (e{3,8}, e4),
(e{5,6}, e5), (e{4,7}, e6), (e{1,2}, e7), (e{4,7}, e8).

(e1, e1), (e1, e3)[25], (e1, e5), (e1, e6), (e1, e8), (e2, e5), (e2, e6), (e2, e7),
(e2, e8), (e3, e1), (e3, e3), (e3, e6), (e3, e8), (e4, e5), (e4, e6), (e4, e8),
(e5, e1), (e5, e2), (e5, e3), (e5, e4), (e5, e5), (e5, e6), (e5, e8), (e6, e1),

E2 6 56 (e6, e2), (e6, e3), (e6, e4), (e6, e5), (e6, e6), (e6, e7), (e7, e2), (e7, e6),
(e7, e7), (e7, e8), (e8, e1), (e8, e2), (e8, e3), (e8, e4), (e8, e5), (e8, e7),
(e5, e{2,7}), (e5, e{4,7}), (e6, e{1,8}), (e6, e{3,8}), (e7, e{2,5}), (e7, e{5,8}),
(e8, e{1,6}), (e8, e{3,6}), (e{2,7}, e5), (e{4,7}, e5), (e{1,8}, e6), (e{3,8}, e6),
(e{2,5}, e7), (e{5,8}, e7), (e{1,6}, e8), (e{3,6}, e8).

specification is not shown. With the application of our tool, we find 450 truncated impossible differentials
for 7-round Piccolo. They are distributed in two classes

(0000, 00α1α2, 0000, α3α400) 6→7 (0000, β1β200, 0000, 00β3β4) , (7)

(0000, α1α200, 0000, 00α3α4) 6→7 (0000, 00β1β2, 0000, β3β400) , (8)

where each αi (respectively, βi) can be a zero difference or a nonzero difference, and at least one of αi

(respectively, βi) is nonzero.

4.6 Discussions

Despite the fact that impossible differential cryptanalysis has been proposed more than one decade, many
problems are still unsolved. Until now, we even do not know how to prove whether an r-round impossible
differential is one of the longest impossible differentials of a block cipher, since this implies that one can
prove that there is not any (r+ 1)-round impossible differential. In other words, to prove this, one needs
to show that there is an (r + 1)-round differential characteristic satisfying given ∆P and ∆C, whatever
the choices of ∆P and ∆C (∆P 6= 0 and ∆C 6= 0). So far providing such a proof is beyond the state of
the art.

For our tool, the only thing we can confirm is that impossible differentials obtained by our tool must
be correct if one implements a difference propagation system and our algorithm on a computer correctly,
because the conditions of judging an impossible differential are sufficient conditions. The ability and
efficiency of our tool have been experimentally verified for many block ciphers.

However, our tool still has some limitations, which are also unsolved by the U-method and the UID-
method. First, the choice of truncated difference may result in missing some impossible differentials. For
example, ∆P → ∆C should be an impossible differential if ∆P and ∆C are evaluated to some specific
values, but our tool may miss it if we only know the indicator information of ∆P and ∆C. Secondly, our
tool is not able to exploit any properties of the Sboxes beyond the fact that they are bijective. Thus, we
may also miss some impossible differentials if we need some specific properties of an Sbox to detect these
impossible differentials. Finally, our tool may fail if a block cipher is not word-oriented or uses an Sbox
that is not bijective.

5 Comparison of Our Tool with the U-method and the UID-method

In this section, we investigate the relationship of our tool with the U-method and the UID-method.
On the one hand, we have



Proposition 2. The U-method and the UID-method are specific cases of our tool.

Proof. First, the characteristic matrices defined by the U-method and the UID-method are specific forms
of our difference propagation systems.

Secondly, the operations used in these tools (see Table 2 and 3 in [13], Table 1 and Definition 3 in
[18]) are included in Lemma 5, Lemma 6 and the difference propagation system. For example, in Table 3
of [13], the operation 1 · 1F = 1 , i.e., the result of a nonzero difference propagating through a nonlinear
bijective function (Sbox) is also a nonzero difference, is described in Lemma 6.

Finally, we show that a contradiction that is detected by the U-method or the UID-method can also
be found by our tool. From Definition 1, to detect an impossible differential, we have to show that the
final value of f = ⊕i∈I(∆ui ⊕ ∆vi) is a nonzero difference. However, the value of f is unpredictable if
its final expression contains a term with an unknown difference or two terms with nonzero unspecified
differences. And f is useless for us if it is a zero difference, or it contains a term with a nonzero fixed
difference and a term with a nonzero unspecified difference. Thus, a useful f only consists of a single
term with a nonzero fixed difference or a nonzero unspecified difference. In our tool, we can build l linear
equations, i.e., ∆ui ⊕ ∆vi = 0 for 1 ≤ i ≤ l, in a difference propagation system by introducing proper
internal variables. These linear equations are included in the subsystem L, then we have

(1) f = ∆c, where ∆c is a nonzero fixed difference. That is, a nonzero fixed difference is in the linear
space spanned by {∆ui ⊕∆vi : 1 ≤ i ≤ l}. In this case, we conclude that the rank of the coefficient
matrix of L is not equal to the rank of the augmented matrix of L. Thus, an impossible differential
is detected by case I of Proposition 1.

(2) f = ∆a, where ∆a is a nonzero unspecified difference. In this case, we have known that there is a
variable with nonzero unspecified difference, i.e., ∆a 6= 0, from previous information. Meanwhile, we
obtain ∆a = 0 if linear system L is solved by the Gauss-Jordan Elimination algorithm. Thus, an
impossible differential is detected by case II of Proposition 1.

In summary, the U-method and the UID-method are specific cases of our tool. ut

On the other hand, our tool is more powerful than the U-method and the UID-method. An example,
i.e., the 8-round impossible differential (e3, e5) of MIBS, is given to illustrate that our tool finds longer
impossible differentials. The U-method and the UID-method fail to detect this impossible differential
because they do not fully use the information hiding in the match point of the two probability-one
differentials (see Fig. 1).

Example 4. MIBS is a nibble-oriented block cipher following the Feistel structure. It operates on 64-bit
blocks, uses keys of 64 or 80 bits, and iterates 32 rounds for both key sizes. Therefore, the plaintext/ci-
phertext can be represented with a vector with 16 nibbles, i.e., l = 16.

The difference propagation system of r-round MIBS is�
S(∆Xi,j , ∆Yi,j) = 0 for 1 ≤ i ≤ r and 1 ≤ j ≤ 8 ,

I1 ·∆XT
i−1 ⊕ I2 ·∆XT

i+1 ⊕ P ·∆Y T
i = 0 for 1 ≤ i ≤ r ,

(9)

where I1 and I2 are the identity matrix, and P is the linear permutation layer in round functions. Here,

P =

0BBBBBBBBBB@

1 1 0 1 1 0 1 1
0 1 1 1 1 1 1 0
1 1 1 0 1 1 0 1
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
1 0 1 1 0 1 1 1

1CCCCCCCCCCA
and its inverse P−1 =

0BBBBBBBBBB@

0 1 0 1 0 1 1 1
1 0 0 1 1 0 1 1
1 0 1 1 1 1 0 0
0 1 1 0 1 1 1 0
0 1 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 1 1 1 0 1 1 0

1CCCCCCCCCCA
.

Now, for given (∆X1‖∆X0) = (0, 0, 0, 0, 0, 0, 0, 0‖0, 0, a, 0, 0, 0, 0, 0) (a 6= 0) and (∆X9‖∆X8) =
(0, 0, 0, 0, g, 0, 0, 0‖0, 0, 0, 0, 0, 0, 0, 0) (g 6= 0), we can deduce the internal state of MIBS round by round



(see Fig. 4). After 4-round deductions in the forward direction, we obtain that the output difference of
round 4 is

(∆X5‖∆X4) = (e1, e2 ⊕ b, e3 ⊕ b, e4 ⊕ b, e5 ⊕ b, e6, e7 ⊕ b, e8 ⊕ b‖c1, c2, c3 ⊕ a, c4, c5, c6, c7, c8) , (10)

where a, b and bt (t ∈ {2, 3, 4, 5, 7, 8}) are nonzero differences while ct, dt and et (1 ≤ t ≤ 8) are unspecific
differences. While in the backward direction, after 4-round deductions, we obtain that the input difference
of round 5 is

(∆X5‖∆X4) = (i1, i2, i3, i4, i5 ⊕ g, i6, i7, i8‖k1 ⊕ h, k2 ⊕ h, k3 ⊕ h, k4, k5 ⊕ h, k6 ⊕ h, k7, k8) , (11)

where g, h and ht (t ∈ {1, 2, 3, 5, 6}) are nonzero differences while ii, jt and kt (1 ≤ t ≤ 8) are unknown
differences.

Now, if we combine (10) and (11) together and try to find a contradiction by the filtering conditions
of the U-method and the UID-method, we get nothing because et and kt (1 ≤ t ≤ 8) are unknown
differences. Thus, the U-method and the UID-method can not detect this impossible differential.

Fig. 4. A truncated impossible differential of 8-round MIBS

However, our tool retrieves some important information by solving a system of linear equations de-
duced from (10) and (11). Notice that from (10), we know that ∆XT

4 = ∆ZT
3 ⊕∆XT

2 = P ·∆Y T
3 ⊕∆XT

2 ,
and we also have ∆XT

4 = ∆ZT
5 ⊕∆XT

6 = P ·∆Y T
5 ⊕ P ·∆Y T

7 from (11). Thus, we get

P ·∆Y T
3 ⊕∆XT

2 ⊕ P ·∆Y T
5 ⊕ P ·∆Y T

7 = 0 . (12)



It is equivalent to solve the following linear system

∆Y T
3 ⊕ P−1 ·∆XT

2 ⊕∆Y T
5 ⊕∆Y T

7 = 0 . (13)

Since∆Y T
3 = (0, b2, b3, b4, b5, 0, b7, b8)T , P−1·∆XT

2 = (0, 0, a, a, a, 0, a, a)T and∆Y T
7 = (0, 0, 0, 0, h, 0, 0, 0)T ,

we deduce that the first nibble and the six nibble of ∆Y5 are zero, that is, j1 = j6 = 0. From Lemma 6,
we know i1 = i6 = 0. For a further step, since ∆ZT

6 = P ·∆Y T
6 , we have

i1 = h1 ⊕ h2 ⊕ h5 ,

i6 = h1 ⊕ h2 ⊕ h5 ⊕ h6 .

Now, i1 = i6 = 0 implies that h6 = 0, which contradicts with h6 6= 0.
We observe that the U-method and UID-method fail to find any of the 6 impossible differentials of

8-round MIBS listed in Table 2. Similarly, all 4 impossible differentials of 8-round Camellia without FL
and FL−1 layers are also beyond the abilities of the U-method and UID-method.

6 Conclusions

This paper presents an automated tool for finding truncated impossible differentials of word-oriented
block ciphers with bijective S-boxes. The U-method and the UID-method are specific cases of our tool.
Although our tool does not improve the lengths of impossible differentials for existing block ciphers, it
reduces the gap between previous automated tools (i.e., the U-method and the UID-method) and ad hoc
approaches. With the application of our tool, we not only rediscover the longest truncated impossible
differentials of many byte-(and nibble-)oriented block ciphers known so far, but also find new results.
Although it is not clear whether new results found by our tool are useful to improve known attacks or
not, they bring more choices in designing attack algorithms. Hence it may be possible to improve the
known attacks.

To obtain a better tool in the future, one may find some more general filtering conditions than those
given in Proposition 1 or manage to exploit any properties of the Sboxes beyond the fact that they are
bijective.

We except that the tool proposed in this article, especially the idea of building and solving a difference
propagation system, is not only helpful for evaluating the security of block ciphers against impossible
differential cryptanalysis, but also useful in other attacks.
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A All Impossible Differentials of 4-Round AES

In this section, we describe all 4-round truncated impossible differentials of AES obtained by our tool.
∆Xi = (∆Xi,j)1≤j≤16 (respectively, ∆Yi) can be represented by a 4×4 matrix over F28 . In such a matrix,
every byte in row m and column n is numbered as byte m+ 4 · (n− 1), that is, byte one is in the top-left
corner, the first column is made of bytes 1-4, while the last column is made of bytes 13-16, with byte 16
in the bottom-right corner.

For given nonzero plaintext difference ∆X1 and ciphertext difference ∆Y4, we denote by I = {j :
∆X1,j 6= 0 for 1 ≤ j ≤ 16} and J = {j : ∆Y4,j 6= 0 for 1 ≤ j ≤ 16}. Suppose a1 = {1, 6, 11, 16},
a2 = {2, 7, 12, 13}, a3 = {3, 8, 9, 14}, a4 = {4, 5, 10, 15} and bi = {4 · i − 3, 4 · i − 2, 4 · i − 1, 4 · i} for



1 ≤ i ≤ 4. We denote by H(I) the number of true events that I ∩ ai 6= ∅ for 1 ≤ i ≤ 4. For example,
H(I) = 2 if I = {1, 2}, because I ∩ a1 6= ∅ and I ∩ a2 6= ∅ but I ∩ a3 = ∅ and I ∩ a4 = ∅. Similarly, we
denote by H(J) the number of true events that I ∩ bi 6= ∅ for 1 ≤ i ≤ 4. Then, we can search all 4-round
truncated impossible differentials as follows.

1. We set truncated values for only a part of elements in ∆X1 and ∆Y4 while letting other elements
undetermined. Notice that ∆X1 and ∆Y4 are nonzero vectors.

2. Use Algorithm 2 to predict the information of undetermined elements in ∆X1 and ∆Y4.
3. ∆X1 → ∆Y4 is impossible if we detect that ∆X1 or ∆Y4 is a zero vector (see Example 2).

For example, in step 1, we initialize ∆X1 = (?0000?0000?0000?) ∈ F16
2 \ {0} and ∆Y4 = (????0000000

00000) ∈ F16
2 \ {0}, that is, only 24 elements of ∆X1 and ∆Y4 are fixed to zero while other elements are

undetermined. Then, using Algorithm 2, we find ∆X1 and ∆Y4 are zero vectors. Thus, we conclude that
∆X1 → ∆Y4 is impossible, which implies that we obtain 15× 15 = 225 truncated impossible differentials
simultaneously. Other sets of impossible differentials can be obtained by changing the choice in step 1.
Finally, we have

Proposition 3. All 3,608,100 4-round truncated impossible differentials of AES we found are summa-
rized as H(I) +H(J) ≤ 4.

Since H(I) = 1 provides
�4
1

�
× (24−1) = 60 choices, H(I) = 2 provides

�4
2

�
× (24−1)2 = 1350 choices,

and H(I) = 3 provides
�4
3

�
× (24 − 1)3 = 13500 choices, the number of H(I) +H(J) ≤ 4 is

60× (60 + 1350 + 13500) + 1350× (60 + 1350) + 13500× 60 = 3, 608, 100 .

The impossible differentials discussed in [6, 20, 21, 2, 19] are subsets of our generalized results shown in
Proposition 3. They include 269,554 impossible differentials in total.

What should be stressed here is that the method used in this section is highly relevant to the structure
of AES. Thus, it is difficult to extend it to other block ciphers mentioned in Sect. 4.5.

B Source Code for Searching Truncated Impossible Differentials of LBlock

In this section, we list our source code for searching truncated impossible differentials of some typical
block ciphers. First, the source code of Algorithm 2 is given. It costs about 100 lines in MAGMA package.
Then, we list the code for searching truncated impossible differentials of ARIA and LBlock, which are
specific examples of SPN ciphers and Feistel ciphers with SPN round functions, respectively.

B.1 Source Code of Algorithm 2

The specification of our source code for Algorithm 2 is given as follows.

1 //===========Sub−a lgor i thms=========
2 //Algorithm 2 in t h i s paper .
3 //A i s the c o e f f i c i e n t matrix o f the l i n e a r system L .
4 //B:=[A| b ] i s the augmented matrix o f the l i n e a r system L ;
5

6 Pr ed i c t i n f o := func t i on (B,T, Phi0 , Phi1 ) ;
7 m:=NumberOfRows(B) ;
8 n:=NumberOfColumns (B) ;
9 n0:=#Phi0 ;

10 n1:=#Phi1 ;
11 temp:= f a l s e ;
12

13 // Pred ic t in fo rmat ion from the reduced row eche lon form of B us ing Lemma 5 .
14 f o r i :=1 to m do ;
15 U:={} ;
16 f o r j :=1 to n−1 do ;
17 i f B[ i , j ] ne 0 then ;
18 U:=U j o i n { j } ;
19 end i f ;
20 end f o r ;
21

22 //A l i n e a r equat ion with form X=0.



23 i f #U eq 1 and B[ i , n ] eq 0 then ;
24 Phi0 :=Phi0 j o i n U;
25 f o r d in U do ;
26 MultiplyColumn (˜B, 0 , d ) ;
27 end f o r ;
28 //A l i n e a r equat ion with form X+c=0 or X+Y=0
29 e l i f #U eq 1 and B[ i , n ] ne 0 then ;
30 Phi1 :=Phi1 j o i n U;
31 e l i f #U eq 2 and B[ i , n ] eq 0 and U meet Phi1 ne {} then ;
32 Phi1 :=Phi1 j o i n U;
33 end i f ;
34 end f o r ;
35

36 //Scan Table T and use Lemma 6 to p r ed i c t in format ion .
37 numc:=NumberOfColumns (T) ;
38 f o r k:=1 to numc do ;
39 i f T[ 1 , k ] in Phi0 then ;
40 Phi0 :=Phi0 j o i n {T[2 , k ] } ;
41 MultiplyColumn (˜B, 0 ,T[ 2 , k ] ) ;
42 e l i f T[ 1 , k ] in Phi1 then ;
43 Phi1 :=Phi1 j o i n {T[2 , k ] } ;
44 end i f ;
45 end f o r ;
46

47 i f #Phi0 gt n0 or #Phi1 gt n1 then ;
48 temp:= true ;
49 end i f ;
50

51 re turn <B, Phi0 , Phi1 , temp>;
52 end func t i on ;
53

54

55 Judge IDs := func t i on (B,T, p , c , SdeltaP , SdeltaC ) ;
56

57 Phi0 :={ IntegerRing ( ) | } ;
58 Phi1 :={ IntegerRing ( ) | } ;
59 n:=NumberOfColumns (B) ;
60

61 // I n i t i a l i z e the truncated in format ion o f deltaP and deltaC us ing SdeltaP and SdeltaC .
62 f o r i :=1 to NumberOfColumns ( SdeltaP ) do ;
63 i f SdeltaP [ 1 , i ] eq 0 then ;
64 Phi0 :=Phi0 j o i n {p [ i ] } ;
65 MultiplyColumn (˜B, 0 , p [ i ] ) ;
66 e l s e
67 Phi1 :=Phi1 j o i n {p [ i ] } ;
68 end i f ;
69

70 i f SdeltaC [ 1 , i ] eq 0 then ;
71 Phi0 :=Phi0 j o i n {c [ i ] } ;
72 MultiplyColumn (˜B, 0 , c [ i ] ) ;
73 e l s e
74 Phi1 :=Phi1 j o i n {c [ i ] } ;
75 end i f ;
76 end f o r ;
77

78 // Pred ic t in fo rmat ion and detec t c on t r ad i c t i o n s .
79 f l a g := f a l s e ;
80 index := true ;
81 whi le index do ;
82 A:=ColumnSubmatrixRange (B, 1 , n−1);
83 b:=ColumnSubmatrixRange (B, n , n ) ;
84 i f Rank(A) l t Rank(B) then ;
85 f l a g := true ; index := f a l s e ;
86 e l s e
87 //Gauss−Jordan e l im ina t i on ;
88 B:=EchelonForm (B) ;
89

90 //Result :=<B, Phi0 , Phi1 ,T2 , temp>;
91 Result := P r e d i c t i n f o (B,T, Phi0 , Phi1 ) ;
92 B:=Result [ 1 ] ;
93 Phi0 :=Result [ 2 ] ;
94 Phi1 :=Result [ 3 ] ;
95

96 i f Phi0 meet Phi1 ne {} then ;
97 f l a g := true ;
98 index := f a l s e ;
99 e l s e

100 index :=Result [ 4 ] ;
101 end i f ;
102 end i f ;
103 end whi le ;



104

105 re turn f l a g ;
106 end func t i on ;

B.2 Source Code for ARIA

For SPN ciphers, we fix the order of all variables in (1) as

[∆X1, ∆Y1, ∆X2, ∆Y2, ∆X3, . . . ,∆Yr−1, ∆Xr, ∆Yr], (14)

then, the coefficient matrix A of system L is

A =

�
0 P I 0 0 · · · 0 0 0
0 0 0 P I · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · P I 0

�

and table T for formal equations in (1) is

T = [{2l(i− 1) + j, 2l(i− 1) + l + j} : 1 ≤ i ≤ r, 1 ≤ j ≤ l] .

Now, we list our source code for finding truncated impossible differentials of SPN ciphers. ARIA is
chosen as an example. For other SPN ciphers, what we need to specify in this code is the number of words
l in the plaintext, the number of rounds r we consider, the finite field involved in the linear permutation
layer and the coefficient matrices P of (1). Of course, the set of SdeltaP and SdeltaC may be changed
according to other purposes. For example, if we are interested in SdeltaP and SdeltaC with exactly one
nonzero word, then p1 and p2 in the following code will be chosen from set {2i|0 ≤ i ≤ l − 1}.

1

2 //======Next i s the Main Algorithm of ARIA======
3

4 l :=16;
5 //Def ine the c o e f f i c i e n t matr i ce s I and P.
6 //Note : d i f f e r e n t c i phe r s may have d i f f e r e n t matr i ce s .
7 F:=GF( 2 ) ;
8

9 //Build an i d en t i t y matrix with l rows .
10 I := Sca larMatr ix (F , l , 1 ) ;
11

12 //Matrix P o f ARIA.
13 P ARIA:=Matrix (F , l , l ,
14 [ [ 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 0 ] ,
15 [ 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 ] ,
16 [ 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 1 ] ,
17 [ 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 ] ,
18 [ 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 ] ,
19 [ 0 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 ] ,
20 [ 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 ] ,
21 [ 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 0 ] ,
22 [ 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 ] ,
23 [ 1 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 ] ,
24 [ 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 ] ,
25 [ 0 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 ] ,
26 [ 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 0 ] ,
27 [ 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 ] ,
28 [ 1 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 ] ,
29 [ 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 ]
30 ] ) ;
31

32

33 //To f i nd IDs with d i f f e r e n t lengths , we can s e t the round number r to other i n t e g e r s .
34 r :=4;
35 //Note : Var iab le order we choose i s [ X {1} ,Y {1} ,X {2} ,Y {2} ,X {3} ,\ dots , Y {r−1} ,X { r } ,Y { r } , 1 ] ,
36

37 //Generate the augmented matrix B, i t conta in s l ∗( r−1) l i n e a r equat ions . . .
38 // . . . I \Delta X { i +1}\oplus P \Delta Y { i }=0;
39

40 B:=ZeroMatrix (F , l ∗( r−1) , l ∗(2∗ r )+1);
41 f o r i :=1 to r−1 do ;



42 In s e r tB lock (˜B, I , l ∗( i −1)+1, l ∗(2∗ i )+1);
43 In s e r tB lock (˜B,P ARIA , l ∗( i −1)+1, l ∗(2∗ i −1)+1);
44 end f o r ;
45

46

47 // Construct t ab l e T;
48 // An element {v 1 , v 2} in T i s r epre s ented by two columns : [ v 1 , v 2 ] and [ v 2 , v 1 ] ;
49

50 T:=ZeroMatrix ( IntegerRing ( ) , 2 , 2∗ l ∗ r ) ;
51 f o r i :=1 to r do ;
52 f o r j :=1 to l do ;
53 T[1 , 2∗ ( l ∗( i−1)+j )−1]:=2∗ l ∗( i−1)+j ;
54 T[2 , 2∗ ( l ∗( i−1)+j )−1]:=2∗ l ∗( i−1)+ l+j ;
55

56 T[1 , 2∗ ( l ∗( i−1)+j ) ] :=2∗ l ∗( i−1)+ l+j ;
57 T[2 , 2∗ ( l ∗( i−1)+j ) ] :=2∗ l ∗( i−1)+j ;
58 end f o r ;
59 end f o r ;
60

61

62 // vector p and vector c ;
63 p :=[ IntegerRing ( ) | 1 . . l ] ;
64 c :=[ IntegerRing ( ) | l ∗(2∗ r−1)+1.. l ∗2∗ r ] ;
65

66

67 f o r p1:=1 to 2ˆ l−1 do ;
68 // SdeltaP i s the s i gn vec tor o f the p l a i n t e x t d i f f e r e n c e : X 1 ;
69 SdeltaP :=ZeroMatrix (F, 1 , l ) ;
70 L1:= IntegerToSequence (p1 , 2 ) ;
71 f o r i :=1 to #L1 do ;
72 SdeltaP [ 1 , i ] :=L1 [ i ] ;
73 end f o r ;
74

75 f o r p2:=1 to 2ˆ l−1 do ;
76 // SdeltaC i s the s i gn vec tor o f the c i phe r t ex t d i f f e r e n c e : Y { r } ;
77 SdeltaC :=ZeroMatrix (F, 1 , l ) ;
78 L2:= IntegerToSequence (p2 , 2 ) ;
79 f o r i :=1 to #L2 do ;
80 SdeltaC [ 1 , i ] :=L2 [ i ] ;
81 end f o r ;
82

83 //Now, a l l inputs o f the Algorithm 2 in t h i s paper are ready .
84 //Use a lgor i thm 2 to judge whether g iven SdeltaP and SdeltaC i s impos s ib l e ;
85 //Output the f i n a l r e s u l t s . They w i l l be s to r ed in the f i l e ”ARIA r e s u l t s . txt ” .
86 TempB:=B;
87 i f Judge IDs (TempB,T, p , c , SdeltaP , SdeltaC ) then ;
88 Write ( ”ARIA r e s u l t s . txt ”,<r , SdeltaP , SdeltaC >);
89 end i f ;
90

91 end f o r ;
92 end f o r ;

B.3 Source Code for LBlock

In this section, we list our source code for finding truncated impossible differentials of Feistel ciphers
with SPN round functions. Truncated impossible differentials we consider have the form (0, ∆X0) 6→
(∆Xr+1, 0). What we need to specify in this code is the number of words l in the plaintext, the number of
rounds r we consider, the finite field involved in the linear permutation layer and the coefficient matrices
I1, I2 and P of (4).

We choose LBlock as an example to illustrate our source code. For MIBS, matrices I1, I2 and P are
mentioned in Example 4.

1

2 //======Next i s the Main Algorithm of LBlock======
3

4 l :=16;
5 //Def ine the c o e f f i c i e n t matr i ce s I 1 , I 2 and P.
6 //Note : d i f f e r e n t c i phe r s may have d i f f e r e n t matr i ce s .
7

8 F:=GF( 2 ) ;
9 t := Ce i l i n g ( l / 2 ) ;

10

11 I 1 :=Matrix (F , t , t ,
12 [ [ 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ] ,
13 [ 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ] ,



14 [ 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ] ,
15 [ 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ] ,
16 [ 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ] ,
17 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ,
18 [ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,
19 [ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ]
20 ] ) ;
21

22 I 2 :=ScalarMatr ix (F , t , 1 ) ;
23

24 P LBlock :=Matrix (F , t , t ,
25 [ [ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ] ,
26 [ 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ] ,
27 [ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,
28 [ 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ] ,
29 [ 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ] ,
30 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ,
31 [ 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ] ,
32 [ 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ]
33 ] ) ;
34

35 //To f i nd IDs with d i f f e r e n t lengths , we can s e t the round number r to other i n t e g e r s .
36 r :=14;
37

38 //Note : Var iab le order we choose i s [ X 0 , X 1 , X 2 , . . . , X r , X { r+1} ,Y 1 , Y 2 , . . Y r , 1 ] .
39

40 //Generate the augmented matrix B, i t conta in s t∗ r l i n e a r equat ions . . .
41 // . . . I 1 \Delta X { i−1} \ oplus I 2 \Delta X { i +1} \ oplus P \Delta Y { i }=0.;
42 B:=ZeroMatrix (F , t∗r , t ∗(2∗ r +2)+1);
43 f o r i :=1 to r do ;
44 In s e r tB lock (˜B, I 1 , t ∗( i −1)+1, t ∗( i −1)+1);
45 In s e r tB lock (˜B, I 2 , t ∗( i −1)+1, t ∗( i +1)+1);
46 In s e r tB lock (˜B, P LBlock , t ∗( i −1)+1, t ∗( r+2)+t ∗( i −1)+1);
47 end f o r ;
48

49 // Construct t ab l e T;
50 // An element {v 1 , v 2} in T i s r epre s ented by two columns : [ v 1 , v 2 ] and [ v 2 , v 1 ] ;
51 T:=ZeroMatrix ( IntegerRing ( ) , 2 , l ∗ r ) ;
52 f o r i :=1 to r do ;
53 f o r j :=1 to t do ;
54 T[1 , 2∗ ( t ∗( i−1)+j )−1]:= t+t ∗( i−1)+j ;
55 T[2 , 2∗ ( t ∗( i−1)+j )−1]:= t ∗( r+2)+t ∗( i−1)+j ;
56 T[1 , 2∗ ( t ∗( i−1)+j ) ] := t ∗( r+2)+t ∗( i−1)+j ;
57 T[2 , 2∗ ( t ∗( i−1)+j ) ] := t+t ∗( i−1)+j ;
58 end f o r ;
59 end f o r ;
60

61 // vector p and vector c ;
62 p :=[ IntegerRing ( ) | t +1. . l ] cat [ IntegerRing ( ) | 1 . . t ] ;
63 c :=[ IntegerRing ( ) | ( t∗ r+t +1) . . ( t∗ r+l ) ] cat [ IntegerRing ( ) | ( t∗ r +1) . . ( t∗ r+t ) ] ;
64

65

66 // Search truncated impos s ib l e d i f f e r e n t i a l s with form (0 ,X0)−>(X { r +1} ,0) ;
67 f o r p1:=1 to 2ˆ( t )−1 do ;
68 // SdeltaP i s the s i gn vec tor o f the p l a i n t e x t d i f f e r e n c e : (0 , X 0 ) ;
69 SdeltaP :=ZeroMatrix (F, 1 , l ) ;
70 L1:= IntegerToSequence (p1 , 2 ) ;
71 f o r i :=1 to #L1 do ;
72 SdeltaP [ 1 , t+i ] :=L1 [ i ] ;
73 end f o r ;
74

75 f o r p2:=1 to 2ˆ( t )−1 do ;
76 // SdeltaC i s the s i gn vec tor o f the c i phe r t ex t d i f f e r e n c e : (X { r +1} ,0) ;
77 SdeltaC :=ZeroMatrix (F, 1 , l ) ;
78 L2:= IntegerToSequence (p2 , 2 ) ;
79

80 f o r i :=1 to #L2 do ;
81 SdeltaC [ 1 , i ] :=L2 [ i ] ;
82 end f o r ;
83

84 //Now, a l l inputs o f the Algorithm 2 in t h i s paper are ready .
85 //Use a lgor i thm 1 to judge whether g iven SdeltaP and SdeltaC i s impos s ib l e ;
86 //Output the f i n a l r e s u l t s . They w i l l be s to r ed in the f i l e ‘ ‘ LBlock r e s u l t s . txt ’ ’ .
87 TempB:=B;
88 i f Judge IDs (TempB,T, p , c , SdeltaP , SdeltaC ) then ;
89 Write ( ”LBlock r e s u l t s . txt ”,<r , SdeltaP , SdeltaC >);
90 end i f ;
91

92 end f o r ;
93 end f o r ;


