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Abstract. In Europe and North America, the most widely used stream cipher to
ensure privacy and confidentiality of conversations in GSM mobile phones is the A5/1.
In this paper, we present a new attack on the A5/1 stream cipher with an average time
complexity of 248.5, which is much less than the brute-force attack with a complexity
of 264. The attack has a 100% success rate and requires about 5.65GB storage. We
provide a detailed description of our new attack along with its implementation and
results.
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1 Introduction

The most widely used stream cipher to ensure privacy and confidentiality of conversations
in GSM mobile phones in Europe and North America is the A5/1. The A5/1 was developed
in 1987, then GSM was not considered for use outside Europe. The description of the A5/1
was initially kept secret, but its design was disclosed in 1999 by reverse engineering [6]. The
GSM organization later confirmed the correctness of the algorithm [5].

There are multiple versions of the encryption algorithm which belong to the A5 family:
A5/0 is a dummy cipher with no encryption; A5/1 is the original A5 algorithm ensures over-
the-air communication privacy and confidentiality of conversations in GSM mobile phones;
A5/2 is an intentionally weaker encryption algorithm created for export; while A5/3 is
a strong encryption algorithm created as part of the 3rd Generation Partnership Project
(3GPP) which is currently responsible for maintaining and developing GSM technical spec-
ifications around the world [12].

Anderson [1], Golic [11] and Babbage [2] were the pioneers in cryptanalyzing the A5/1
encryption algorithm when only a rough outline of the A5/1 was leaked. After A5/1 was
reverse engineered, it was analyzed by Biryukov, Shamir and Wagner [5]; Biham and Dunkel-
man [4]; Ekdahl and Johansson [8]; Maximov, Johansson and Babbage [15]; Barkan and
Biham [3]; Keller and Seitz [13]; and a few other researchers.

1.1 Current Research

Several attacks on the A5/1 stream cipher were designed in the past twenty years, but
only a few of those were implemented. Attacks on the GSM protocol can work even if the
network supports only A5/1 or A5/3 encryption, as long as the mobile phone supports
A5/2 encryption. The main flaw that allows the implementation of these attacks is that



the same key is used regardless of whether the phone encrypts using A5/1, A5/2, or A5/3
algorithm. Therefore, the attacker can mount a man-in-the-middle attack, in which the
attacker impersonates the mobile to the network, and the network to the mobile (by using
a fake base station). The attacker might use A5/1 for communication with the network and
A5/2 for communication with the mobile. But due to the flaw, both algorithms encrypt
using the same key. The attacker can obtain the key through a passive attack on A5/2. The
attacker who is in the middle can eavesdrop, change the conversation, perform call theft,
etc. The attack applies to all traffic including short message service (SMS) [3].

1.2 Our Contributions

In this paper we describe a new guess-and-determine attack on the A5/1 stream cipher. This
attack has an average time complexity of 248.5, which is much less than a brute-force attack
of 264. For every possible 19 bits of the register R1, we require storage of 100MB to determine
registers R2 and R3 given a known keystream KS. Our attack can be briefly described as
follows: we assume that the register R1 is full with 19 bits and registers R2 and R3 will be
filled progressively as the attack progresses. At any stage of this attack, R1 is completely
filled and R2 and R3 are partially filled. We call these states as state candidates. Once
all three registers are completely filled, we call that state candidate a complete state
candidate. This attack has a 100% success rate and requires about 5.65GB storage. With
the knowledge of only 11 bits of the known keystream, the attack algorithm is able to
determine a set of 64-bit complete state candidates which may contain the key. With every
additional clocking round of the attack, the number of complete state candidates increases.
Thus, the probability of finding the key among all the complete state candidates increases
with every additional round after 11 clocking rounds. We provide a detailed description of
our new attack along with its implementation and results in Sections 4, 5 and 6.

2 Description of the A5/1 Stream Cipher
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The A5/1 stream cipher is built from three short linear feedback shift registers (LFSRs)
of lengths 19, 22, and 23 bits, denoted by R1, R2 and R3 respectively. The rightmost bit in
each register is labeled as bit zero. The tapping bits of R1 are at bit positions 13, 16, 17,
18; the tapping bits of R2 are at bit positions 20, 21; and the tapping bits of R3 are at bit
positions 7, 20, 21, 22 (Table 1).

Table 1. The A5/1 Register Parameters

Register Register Length Clocking Bit Primitive Polynomials Tapping Bits

R1 19 bits 8 1 + x + x2 + x5 + x19 18, 17, 16, 13
R2 22 bits 10 1 + x + x22 21, 20
R3 23 bits 10 1 + x + x2 + x15 + x23 22, 21, 20, 7

The tapping bits are predetermined according to the corresponding primitive polynomials
for the registers. A polynomial of degree n over the finite field GF (2) (i.e., with coefficients
either 0 or 1) is primitive if it has polynomial order 2n−1. For each register, when the register
is clocked, its tapping bits are XORed together and the result is stored in the rightmost bit of
the left-shifted register. The three registers are maximal length LFSRs with periods 219− 1,
222 − 1, and 223 − 1 respectively [14].

The A5/1 keystream generator works as follows [6]. First, an initialization phase is run.
At the start of this phase, all bits of the registers are set to 0. Then the key setup and
the Initialization Vector (IV) setup are performed. During the initialization phase, all three
registers are clocked and the key bits followed by the IV bits are XORed with the most
significant bits (MSBs) of all three registers. Thus, the initialization phase takes an overall
of 64 + 22 = 86 clock-cycles after which initial state Si is achieved.

Based on this initial state Si, a warm-up phase is performed where the generator is
clocked for 100 clock-cycles and the output is discarded. This results directly in state Sw

producing the first output bit 101 clock-cycles after the initialization phase. During the
warm-up phase and the stream generation phase, the registers R1, R2, and R3 are clocked
irregularly according to the majority function rule [7] depending on the clocking bits (CBs)
of the registers. The majority function is a function from n inputs to one output. The value
of the operation is true when at least n

2 arguments are true, and false otherwise.
The registers are clocked in a stop/go fashion using the following majority rule: Each

register has a single clocking bit (bit 8 for R1, bit 10 for R2, and bit 10 for R3) which decides
the clocking pattern for its respective register. In each clock cycle, the majority function of
the clocking taps is calculated and only those registers whose CBs agree with the majority
function are clocked. At each step either two or three registers are clocked, and that each
register has a probability of moving 3 out of 4 times. It is this clocking pattern which makes
the stream cipher generate output bits which are random.

During encryption, a total of four cases are possible for clocking pattern of the registers.
They are:

Case 1: CB1 = CB2 6= CB3 (Clock R1 and R2 only)
Case 2: CB1 6= CB2 = CB3 (Clock R2 and R3 only)



Case 3: CB1 = CB3 6= CB2 (Clock R1 and R3 only)
Case 4: CB1 = CB2 = CB3 (Clock all three registers)

where CBi denotes the clocking bit for register i; i = (1, 2, 3).

After clocking, an output bit is generated from the values of R1, R2, and R3 by XOR-
ing their most significant bits (MSBs), as shown in Equation 1. This XORed bit is called
the keystream bit (KS).

R1[18]⊕ R2[21]⊕R3[22] = KS[i], (1)

where KS[i] denotes the ith keystream bit, i = 0 on initialization and increases by 1 after
every clocking round.

After warm-up phase, the A5/1 produces 228 output bits. For every clock cycle, 114 bits
are used to encrypt uplink traffic, while the remaining 114 bits are used to decrypt downlink
traffic [9].

3 Known Attacks on the A5/1

Here we discuss the known guess-and-determine attacks on the A5/1. A guess-and-determine
attack [16] is a known-plaintext attack on stream ciphers where the attacker guesses some
bits of the cipher and the remaining bits are determined from the known keystream bits.
The known plaintext attack is an attack model where the attacker has access to both the
plaintext and its encrypted ciphertext. This can be used to reveal the secret key used for
encrypting the known plaintext to the known ciphertext. These include Anderson’s At-
tack [1], Golic’s Attack [11], Biham-Dunkelman’s Attack [4], Keller-Seitz’s Attack [13] and
Gendrullis-Novotny-Rupp’s Attack (also known as the Modified Keller-Seitz Attack) [10].
All these attacks assume to have 64 bits of the keystream (KS) known.

3.1 Guess-and-Determine Attacks

The first guess-and-determine attack on the A5/1 was proposed by Anderson [1]. Anderson
suggested to guess all bits of registers R1 and R2 and the lower half of register R3 (i.e., 19 +
22 + 11 = 52 bits), to determine the remaining bits of R3 by Equation 1. In the worst-case,
each of the 252 determined state candidates need to be verified against the known keystream.
This attack was not implemented as Biham-Dunkelman’s Attack and Keller-Seitz’s Attack
had lesser complexity.

Golic proposed an attack that has a complexity of 240 linear equations sets [11]. He
suggested to guess the lower half of all three registers and determine the remaining bits of
the registers with the known keystream by Equation 1. However, each operation in this attack
is much more complicated since it is based on the solutions of system of linear equations.
In practice, this algorithm is not better than the Anderson’s approach [1] or Keller-Seitz’s
[13] approach. In deriving the solution of the system of equations, we additionally require
solving 44 linear equations by Gaussian Elimination method. This makes Golic’s approach
impractical to implement.



Pornin and Stern [17] proposed a Software-Hardware trade off attack that is based on
Golic’s approach. But in contrast to Golic’s approach, they guess the clocking sequence
at the very beginning. The increased assumptions and complexity of the attacks make the
actual implementation very difficult and impractical.

The Biham-Dunkelman attack [4] is expected to be a thousand times faster than the
Anderson’s attack [4] or Keller-Seitz’s attack [13]. The attack requires 247 A5/1 clockings and
about 220.8 bits of plaintext data, which is equivalent to 2.36 minutes of conversation. The
attacker guesses 12 bits (i.e., R1[(9, 18)] ∼ R1[13]), R2[0], R3[22] and R3[10]), and determines
the remaining bits of registers R1 and R2 by Equation 1 and the known keystream bits. The
attack algorithm assumes that register R3 is not clocked (i.e., R1[8] = R2[10] 6= R3[10])
for 10 consecutive rounds. Such an event will occur once out of 220 possible cipher states.
The attacker must know exactly the location of the information-leaking event where register
R3 is unclocked for 10 consecutive rounds. This is a big assumption. Thus, the attacker
will need to probe about 220 different starting locations by trial-and-error before the event
actually occurs. Also, the probability that such an event, where register R3 is not clocked
for consecutive 10 rounds occurs is close to zero. This attack requires a lot of data and
precomputation space. Hence this attack is not practical for implementation.

Keller and Seitz designed a new attack [13] based on the attack proposed by Anderson.
But unlike Anderson, they took into account the asynchronous clocking of the A5/1 stream
cipher. According to their algorithm, the attacker guesses registers R1 and R2 completely
and determines all bits of register R3 by Equation 1. The attack was divided into two phases:
a determination phase in which a possible state candidate consisting of the three registers
of A5/1 after its warm-up phase [6] is generated, and a subsequent post-processing-phase in
which the state candidate is checked for consistency. In the determination phase, the authors
try to reduce the complexity of the simple guess-and-determine attack by early recognizing
contradictions that could occur by guessing the clocking bit of R3 such that R3 will not be
clocked. Hence, all states arising out of the contradictory guess neither need to be computed
further on nor checked afterwards. The authors further reduce the complexity by not only
discarding the incorrect possibilities for R3[22] in case of contradiction, but also limit the
number of choices to the one of not-clocking R3, if this is possible without any contradiction.
If a case arises where R1[8] = R2[10] and R3[10] has to be guessed, then the authors suggest
to always consider the case R1[8] = R2[10] = R3[10] and clock register R3 with register R1

and register R2. This leaves out the possible case of R1[8] = R2[10] 6= R3[10]. Thus, the
success probability of this attack is approximately 18%, and the number of state candidates
inspected by Keller and Seitz to the number of valid states is 86

471 ≈ 0.18.

Gendrullis, Novotny and Rupp [10] (GNR) proposed a modification to the Keller-Seitz
attack. Unlike Keller-Seitz [13], the authors only discard the wrong possibilities for the
clocking bit of register R3 that would lead to a contradiction. But if no contradiction exists,
they check all possibilities of the clocking bit of R3, which means the case of clocking and
not-clocking R3. Thus, every possible state candidate is taken into account, hence giving us
a success probability of 100%.

Besides Golic [11] and Babbage [2], Biryukov-Shamir-Wagner [5] (BSW) proposed an
attack with a complexity of 248 requiring about 300GB storage, where the online phase of
the attack can be executed within minutes with a 60% success probability.



Barkan-Biham-Keller [3] also proposed another attack along these lines. However, in the
precomputation phase of such an attack huge amounts of data need to be computed and
stored. For example, with three minutes of ciphertext available, one needs to precompute
about 50 TB of data to achieve a success probability of about 60%. These are practical
obstacles that make the implementation of such attacks very difficult.

4 A New Attack on the A5/1

Our approach is based on the guess-and-determine attack proposed by Anderson [1], but
with several modifications. With 64 bits of keystream (KS) known, all bits of register R1

are guessed (known) and all bits of registers R2 and R3 are determined. But unlike the ap-
proaches of Anderson [1], Golic [11], Biham-Dunkelman [4] and Keller-Seitz [13], we consider
all possible cases i.e., no case is discarded. At the end, we come up with about 248.5 possible
state candidates, which is much smaller than the exhaustive search where we have 264 state
candidates. Hence this attack is better than the exhaustive search approach.

The attack consists of two phases, the determination phase and the post-processing-phase.
The determination phase is again divided into two parts, the processing-phase1 and the
processing-phase2.

4.1 Determination Phase

The determination phase generates all possible state candidates after the warm-up phase [6]
is completed. Let t2 and t3 denote the number of times the registers R2 and R3 are clocked,
respectively. Every time a register is clocked, increment the counter for that register by one.
Initialize the algorithm by giving the input of known keystream bits (KS) and guessing all
bits of the smallest register R1 (Figure 2).

Processing-Phase1 Compute the most significant bits (MSBs) of register R2 and register
R3 using the MSB of register R1 and KS bit by Equation 1. If the values of three of these
bits are known, the fourth can be computed easily by the above equation. If R2[21] and
R3[22] are unknown, then there exist four possible combinations for the unknown bits; i.e.
00, 01, 10 and 11. But the above equation reduced the number of possibilities to two. The
two possible combinations that satisfy the equation are:

– If R1[18] = KS[i], then R2[21] = R3[22] = 0 or R2[21] = R3[22] = 1.

– If R1[18] 6= KS[i], then R2[21] = 0, R3[22] = 1 or R2[21] = 1, R3[22] = 0.

This reduces the number of possible cases by half and the number of possible state candidates
to half. During initialization, i is set to 0, and with every additional clocking round, the value
of i increases by 1. Note that i also denotes the total number of clocking rounds that have
taken place.



INITIALIZE

Are R2[21] AND R3[22] filled?

Replicate block twice. 
Determine R2[21] AND R3[22] by Equation 1.

Fill each block with a specific valid combination.

Is t2 ≥ 10 AND t3 ≥ 11? TERMINATE

Go to Processing Phase2

Clock registers. Increase counters. 
Equation 1: KS[i] = R1[18] ⊕ R2[21] ⊕ R3[22]

t2 = no. of times R2 is clocked
t3 = no. of times R3 is clocked

NO

YES
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NO

Is R2[21] filled but R3[22] filled? Determine R3[22] by 
Equation 1

YES

NO

Is R3[22] filled but R2[21] filled? Determine R2[21] by 
Equation 1

YES

NO

Fig. 2. Determination Phase of the Attack (Processing-Phase1)

Processing-Phase2 Consider the clocking bits of registers R2 and R3. There are three
possibilities:

– If R2[10] is filled and R3[10] is vacant, then replicate the state candidate twice, fill one
copy with R3[10] = 0, and the other copy with R3[10] = 1

– If R2[10] is vacant and R3[10] is filled, then replicate the state candidate twice, fill one
copy with R2[10] = 0, and the other copy with R2[10] = 1

– If R2[10] and R3[10] are both vacant, then replicate the state candidate four times, fill
the first copy with R2[10] = 0, R3[10] = 0; the second copy with R2[10] = 0, R3[10] =
1; the third copy with R2[10] = 1, R3[10] = 0; and the fourth copy with R2[10] = 1,
R3[10] = 1.

Thus, all possible combinations are taken into consideration (Figure 3).
Now consider the bits R2[20] and R3[21]. If registers R2 and R3 are clocked, then these

bits will become the new MSBs for their respective registers after clocking. If both these
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Replicate Block 4 times

Fill the replicated Blocks accordingly:
Block 1: R2[10] = 0, R3[10] = 0 
Block 2: R2[10] = 0, R3[10] = 1
Block 3: R2[10] = 1, R3[10] = 0
Block 4: R2[10] = 1, R3[10] = 1

Replicate Block twice

Fill one Block with R3[10] = 0 
Fill other Block with R3[10] = 1

Are R2[10] AND R3[10] filled?

Is R2[10] filled but R3[10] vacant?

Is R3[10] filled but R2[10] vacant? 
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Replicate Block twice

Fill one Block with R2[10] = 0 
Fill other Block with R2[10] = 1

Now for each Block, do the following:
If R1[8] = R2[10] = R3[10], then replicate this new Block twice and fill each Block with a 

valid combination for R2[20] AND R3[21] by Equation2.
If R1[8] ≠ R2[10] = R3[10], then replicate this new Block twice and fill each Block with a 

valid combination for R2[20] AND R3[21] by Equation3.

If R2[10] ≠ R1[8] = R3[10], then R3[21] = R1[17] ⊕ R2[21] ⊕ KS[i+1]
If R3[10] ≠ R1[8] = R2[10], then R2[20] = R1[17] ⊕ R3[22] ⊕ KS[i+1]

Also, if R3[7] is vacant, then duplicate Block twice.
Fill one Block with R3[7] = 0, and other Block with R3[7] = 1

NO

NO

Equation2: R1[17] ⊕ KS[i+1] = R2[20] ⊕ R3[21]
Equation3: R1[18] ⊕ KS[i+1] = R2[20] ⊕ R3[21]

YES

Are R2[20] AND R3[21] 
filled?

YESNO

Fig. 3. Determination Phase of the Attack (Processing-Phase2)

bits are vacant, there are four possible combinations for these bits; i.e., 00, 01, 10 and 11.
But Equation 2 and Equation 3 reduce them to two possibilities. This reduces the number
of possible cases by half i.e., 50% save.

If only one of these bits is vacant, there are two possibilities for the vacant bit i.e., 0 or
1. But this is reduced to only one possibility (Figure 3). For example, if R2[10] 6= R1[8] =
R3[10], then R3[21] = R1[17] ⊕ R2[21] ⊕ KS[i + 1]. In this case, only R3[21] is unknown.
This bit can be calculated by the above equation. Here, two possibilities for R3[21] reduce
to only one possibility. This reduces the number of cases by half.



Follow this protocol till t2 < 10 and t3 < 11. Once this condition is not satisfied, i.e., the
first time t2 ≥ 10 and t3 ≥ 11, stop. At this moment, registers R2 and R3 are completely
determined for the known KS and register R1. The number of bits between the clocking bit
(CB) and the MSB for register R2 is 10 and for register R3 is 11. Hence, register R2 has to
be clocked at least 10 times and register R3 has to be clocked at least 11 times to determine
all the bits of that register.

A complete state candidate is a state candidate with all bits filled. The minimum number
of KS bits required to obtain a set of complete state candidates is eleven. This will happen
when both registers R2 and R3 are clocked together for 10 consecutive clocking cycles and
register R3 is clocked again in the next round.

4.2 Post-Processing-Phase

The post-processing-phase checks for the key from the set of complete state candidates
obtained after the determination phase. As discussed in Section 4.1, the minimum number
of rounds needed to perform the post-processing-phase is 11. The number of complete state
candidates increases with every additional round. Hence, the probability of finding the key
increases with every additional round.

In this phase we generate output bits by performing normal A5/1 encryption with each
of the complete state candidates obtained from the determination phase. Match these output
bits bit-wise with the known KS bits. If the KS bits and output bits match, continue clocking
and generating output bits till a contradiction of bit-wise matching occurs. If all the output
bits match the given 64 KS bits, the complete state candidate is the key. Hence, we have
found the key among all the complete state candidates.

5 Analysis of the Attack

We now discuss each phase of the attack step-by-step. After initialization, we perform the
first step of implementation, i.e., the determination phase. The state candidate has all bits
of register R1 and registers R2 and R3 vacant. According to the protocol, the determination
phase determines the most significant bits (MSBs) of registers R2 and R3 in the processing-
phase1; the clocking bits of R2 and R3 (i.e., R2[10] and R3[10]), bit R3[7] and if possible,
bits R2[20] and R3[21] by processing-phase2.

Now we analyze the first stage of the determination phase i.e., the processing-phase1. If
vacant, the MSBs of registers R2 and R3 have to be determined. The number of possible
combinations reduces from four to two by Equation 1. Thus saving two combinations, i.e.,
a 50% save. During the implementation of further rounds, there is a possibility where only
one of the MSBs of R2 or R3 is vacant. We determine these vacant bit(s) by Equation 1.

We now proceed to processing-phase2 of the determination phase. Here we first consider
the four vacant bits: R2[10] (CB of R2), R3[10] (CB of R3), R2[20] and R3[21]. But all these
four bits (except the first step after initialization) may not be vacant together at all times. In
the following table (Figure 4), we consider all possible cases of these four bits being empty,
and the number of maximum possible valid combinations that exist as a result of Equation
1. We now consider the bit R3[7]. There are two possibilities for this bit, i.e., 0 and 1. But
we cannot eliminate any case by any method. Hence, we need to consider both cases.



EMPTY? POSSIBLE
CASES

MAX. 
POSSIBLE 

VALID CASES
% SAVE

CB2 R2[20] CB3 R3[21]
✓ ✓ ✓ ✓ 16 6 62.5
✓ ✓ ✓ - 8 NA NA
✓ ✓ - ✓ 8 3 62.5
✓ - ✓ ✓ 8 4 50
- ✓ ✓ ✓ 8 3 62.5
✓ ✓ - - 4 2 50
✓ - ✓ - 4 NA NA
✓ - - ✓ 4 2 50
- ✓ - ✓ 4 2 50
- ✓ ✓ - 4 NA NA
- ✓ - ✓ 4 2 50
- - ✓ ✓ 4 2 50
✓ - - - 2 2 0
- ✓ - - 2 1 50
- - ✓ - 2 NA NA
- - - ✓ 2 1 50
- - - - 0 0 0

Fig. 4. All possibilities during Processing-Phase2

Whenever the CB of register R3 is vacant, the bit R3[21] has to be vacant too. Hence there
are some cases in the following table which are not applicable (NA). The last column depicts
the percentage of the total possible cases that are discarded due to the attack algorithms.

In the determination phase, a total of 7 bits (i.e., R2[21], R2[20], R2[10], R3[22], R3[21],
R3[10] and R3[7]) have to be determined. These 7 bits would have 27 = 128 possible com-
binations. But our algorithms give only 24 valid possible combinations. Thus saving 104
combinations i.e., a saving of 81.25%.

If R3[7] is not considered, the first round of implementation will always generate 12 state
candidates. On an average, the second round generates 60 state candidates and the third
round generates 300 state candidates. The number of state candidates (till round 10) can be
approximated by the formula 12∗5n−1, where n denotes the nth round, n ∈ Z+, n < 11. It is
only after the 11th round that we will get the first set of complete state candidates (with all
registers full). When bit R3[7] is taken into consideration, the first round of implementation
will always generate 24 state candidates. From round three to round ten, the number of
possible state candidates after every round is approximately five times the total number in
the previous round.



6 Discussion

We discuss in detail a probabilistic approach to determine the time complexity, the storage
requirement and success probability of our new attack. The results of this probabilistic
approach are also corroborated by experimental data. According to these results, the average
number of rounds necessary to get the key is 15.5 and the average number of complete state
candidates obtained after 15.5 rounds is 248.5.

We conclude this section with a comparison of our attack implementation results with
the guess-and-determine attacks already known.

6.1 Time complexity

Now we understand the exact time-complexity of our attack algorithm. According to the
algorithm, work done is during:

– Checking to see if a cell in a register is vacant or full
– Replication of state candidates
– Filling up vacant bits

It is reasonable to assume that the checking and filling of bits take negligible amount of time.
Hence, we can safely assume that the unit of our time complexity measurement should be
the number of replications needed, where one unit of time is one replication. The algorithm
starts with registers R2 and R3 vacant and register R1 filled (guessed). At the end, it creates
about 248.5 complete state candidates, i.e., 248.5 replications.

The number of bits between the clocking bit (CB) and the most significant bit (MSB) for
register R2 is 10 and for register R3 is 11. Hence, the number of times the registers R2 and R3

have to be clocked to determine all the bits of that register is at least 10 and 11 respectively.
The minimum number of KS bits required to obtain a set of complete state candidates (with
no vacant bits) is 11. This will occur when both registers R2 and R3 are clocked together
for 10 consecutive clocking cycles and register R3 is clocked again in the following round.
With every clocking round, the number of complete state candidates increases. Hence, the
probability of finding the key increases with every additional round of clocking, after 11
rounds.

According to the majority function of the clocking rule for the A5/1, a register will get
clocked 3 out of 4 times. At every clocking cycle, at least two registers will get clocked. Let
n1 be the event that registers R2 and R3 are clocked together, and n2 be the event that
register R1 is clocked either with register R2 or with register R3. The probabilities that
events n1 and n2 occur are given by P (n1) and P (n2) respectively. Let n′2 be the event that
only registers R1 and R2 are clocked. Let n′′2 be the event that only registers R1 and R3

are clocked. The probabilities that events n′2 and n′′2 occur are given by P (n′2) and P (n′′2)
respectively. Hence, one concludes that P (n1) = P (n2) = 1

2 . Thus:

P (n1) + P (n2) = 1 and P (n2) = P (n′2) + P (n′′2) =
1

4
+

1

4
. (2)

i.e.,
P (n1) + P (n′2) + P (n′′2) = 1



Registers R2 and R3 have to be clocked at least 10 and 11 times respectively to determine
all bits of that register, i.e., to obtain a set of complete state candidates. We assume that
they were clocked n1 or n2 respectively for the attack to stop.

Let X be the random variable denoting the number of clocking cycles needed to obtain
complete state candidate. Let x1 be the number of clocking cycles needed for event n1, x2

for n′2 and x3 for n′′2 . Here, x1 = 10, x2 = 10 and x3 = 11. Then the expectation for this
variable X is defined as

E[X] =
x1 ∗ P (n1) + x2 ∗ P (n′2) + x3 ∗ P (n′′2)

P (n1) + P (n′2) + P (n′′2)

=
10 ∗ 1

2 + 2 ∗ (10 ∗ 1
4 + 11 ∗ 1

4 )
1
2 + 1

4 + 1
4

= 15.5

An Experiment We implement normal encryption of A5/1 using random inputs for all
three registers. The aim of this experiment is to determine the average number of clocking
rounds needed for register R2 and R3 to be clocked at least 10 and 11 times respectively.
We performed this experiment thrice, each time with 250 inputs. The average number of
clocking rounds needed turned out to be 15.51 with a standard deviation of 1.785. Hence,
the experimental results corroborate with the theoretical proof.

So we conclude, that the minimum number of clocking cycles necessary to obtain a set
of complete state candidates is 11, and after 15.5 rounds there is a very high probability
that the set of complete state candidates contain the key. Experimental results show us that
after 11 rounds we get about 240 complete state candidates.

6.2 Storage Requirement and Success Probability

As discussed in Section 4.1, the minimum number of KS bits required to generate a set of
complete state candidates (all bits filled) is 11. With every additional clocking round, the
number of complete state candidates increase. We can start the post-processing-phase of the
attack after round 11 simultaneously with the determination phase of the attack. Hence, the
probability of finding the key also increases with every round. But we require at least 64 KS
bits for the post-processing-phase of the attack to check for the key.

In Table 2, we describe the data obtained from our humble experiments with this at-
tack. The four columns of the table are: number of clocking rounds; total number of state
candidates obtained after that round; total number of complete state candidates obtained;
and the percentage of complete state candidates over the total number of state candidates
for that particular round. All values of the experimental data in the table are approximated
to one decimal place.

Remark: In each round, the number of possible choices reduce to at least half of the number
for an exhaustive search (refer Figure 4). Hence, a minimum saving of 50% takes place
in every round over exhaustive search (all possible choices). As stated in Section 6.1, the
average number of rounds to get the key is around 15.5. In each round, we save at least half
the possible cases. Hence for 15.5 rounds we save ( 1

2 )15.5 cases. Thus, the average number of
complete state candidates obtained after 15.5 rounds will be (264)( 1

2 )15.5 = 248.5. The key



Table 2. Storage Requirement and Success Probability

No. of Rounds Total State Candidates Complete State Candidates Complete
Total

× 100

11 245.2 239.2 1.6%
12 246.0 242.5 9.0%
13 246.7 244.5 22%
14 246.9 245.3 30%
15 247.1 246.1 50%

would be among the set of complete state candidates obtained after the 15th round, with a
probability higher than 50%.

Storage For each guess of 19 bits of register R1, we require storage of 100MB to determine
registers R2 and R3 and the known keystream KS. If we do not find the key for this choice of
19 bits for register R1, then we discard this guess and make a new guess for register R1. In
the worst case scenario, we would check all 219 possible choices for register R1. The attack
has a 100% success probability and requires about 5.65GB storage.

Comparison of the known guess-and-determine attacks on the A5/1 We conclude
this section with a comparison of our attack with other guess-and-determine attacks already
known. The following table (Table 3) lists the necessary amount of known keystream bits
(KS), the time complexity and the success probability for each attack.

Table 3. Comparison of the known guess-and-determine attacks on the A5/1

Attack KS bits Time Success Notes
complexity probability Storage

Anderson’s Attack[1] 64 252 100% -
Golic’s Attack[11] 64 240.16 100% Additionally solve 64x64

Linear System of Equations
Biham-Dunkelman’s Attack[4] 220.8 247 63% -

Keller-Seitz’s Attack[13] 64 251.24 18% -
GNR’s Attack[10] 64 254.02 100% -
BSW’s Attack[5] 64 248 60% -

Our Attack 64 248.5 100% 5.65GB

7 Conclusion

Our attack is based on the guess-and-determine approach proposed by Anderson [1], but
with several modifications. In this attack, all bits of the first register R1 are assumed to
be known and all bits of registers R2 and R3 are determined with 64 bits of the known
keystream (KS).



This attack has an average time complexity of 248.5, which is much smaller than an
exhaustive search. The average number of rounds necessary to obtain the correct key from
the set of complete state candidates is 15.5. With every round of clocking after 11 rounds,
the number of complete state candidates increases. Thus, the probability of finding the
key increases with every clocking round. One can do the post-processing phase for a round
simultaneously with the determination phase for the next round, and thus save time. The
attack is successful with 100% probability and requires about 5.65GB storage. With this we
conclude that our attack is better than all known guess-and-determine attacks on the A5/1
stream cipher.
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