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Abstract. The Grøstl hash function is one of the 5 final round candidates of the SHA-3 competition
hosted by NIST. In this paper, we study the preimage resistance of the Grøstl hash function. We
propose pseudo preimage attacks on Grøstl hash function for both 256-bit and 512-bit versions,
i.e., we need to choose the initial value in order to invert the hash function. Pseudo preimage attack
on 5(out of 10)-round Grøstl-256 has a complexity of (2244.85 , 2230.13) (in time and memory) and
pseudo preimage attack on 8(out of 14)-round Grøstl-512 has a complexity of (2507.32, 2507.00). To
the best of our knowledge, our attacks are the first (pseudo) preimage attacks on round-reduced
Grøstl hash function, including its compression function and output transformation. These results
are obtained by a variant of meet-in-the-middle preimage attack framework by Aoki and Sasaki. We
also improve the time complexities of the preimage attacks against 5-round Whirlpool and 7-round
AES hashes by Sasaki in FSE 2011.
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1 Introduction

In FSE 2008, Gaëtan Leurent proposed the first preimage attack on the full MD4 hash func-
tion [12]. Based on this pioneering work, Aoki and Sasaki invented the technique of Meet-int-the-
middle (MitM) preimage attack [2]. The basic idea of this technique is to divide the compression
function into two concatenated sub-functions. The output values of two sub-functions can be
independently calculated from the given input value in the forward direction and the backward
direction. The steps of the forward and backward computation are called forward chunk and
backward chunk. Then the MitM attack is applied to the output values of two sub-functions at
the concatenating point of two chunks.

For hash functions based on block ciphers, the feedforward operations in the mode of oper-
ations like Davis-Meyer, Matyas-Meyer-Oseas and Miyaguchi-Preneel provide a chance for the
applications of new technique called splice-and-cut [2]. The input and output of a compression
function can be regarded as concatenated through the feed-forward operation in these modes of
operations. Then the compression function is in the form of a circle and any step can be selected
as either the starting point or the matching point.

Improvements have been developed on both the starting point and the matching point. The
initial structure technique [16] (also called message stealing [7]) and the local collision3 [15]
technique allows two sub-functions to share several steps without violating the independency
in computing their own values, which provides more attackable rounds. The partial matching

technique [2, 16, 7, 1] takes advantage of the compression function’s diffusion properties at the
matching point. Due to slow diffusion of the Feistel-like round function, part of the state value
can remain independent of the other chunk while proceeding with more reversed rounds. The

3 The local collision technique was proposed by Joux et al. [5], which is originally used in the collision attacks.
The similar idea can be used to construct the initial structure in the MitM preimage attack.



deterministic part of the state is used as the matching point. After finding a match of the partial
values, the equality of the remaining part is calculated and checked. These techniques used in
the MitM preimage attacks are illustrated in Fig. 1.
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Fig. 1. Advanced techniques for MitM preimage attack

The MitM preimage attacks have been applied to full HAVAL-3/4 [15], MD4 [2, 7], MD5 [16],
Tiger [7], and round-reduced HAS-160 [8], RIPEMD [21], SHA-0/1 [3], SHA-2 [7, 1]. The compres-
sion functions of these hash functions all use Feistel-like structures. In FSE 2011, Yu Sasaki
proposed MitM preimage attack on AES hash mode for the first time [14]. He discussed how
initial structure and partial matching can be used on AES-like structures and proposed direct
applications to AES in different hash modes and round-reduced Whirlpool [4]. The development
of the MitM attacks on hash functions has also inspired several attacks on block ciphers, such
as KTANTAN [22] and XTEA [19].

Our contributions In this paper, we found a way to reduce the complexity of the MitM
preimage attack on AES-like hash functions. By finding the optimal chunk separation with best
balance between freedom degrees and the size of the matching point, the freedom degrees in the
internal states are fully utilized.

Grøstl [6] is one of the five finalists in the third round of SHA-3 [13] competition hosted by
NIST. The Grøstl hash function has been tweaked in the third round. The original version is
renamed to Grøstl-0 and the tweaked version is called Grøstl.

We found that Grøstl’s round-reduced output transformation can be inverted using the
MitM techniques. Then we noticed that if we can control the initial value, preimage of the output
transformation can be connected with a compression function. The Grøstl hash function uses
wide-pipe chaining values, so we can actually match 2n-bit chaining value with a time complexity
less than 2n compression function calls. Since the initial value is chosen by us, this attack is a
pseudo preimage attack.

The matching of double-sized states are based on a method of variant generalized birthday
attack. The special property of Grøstl’s compression function makes this approach possible. We
found that the matching can be regarded as a special three-sum problem. Since the elements in
one of the three sets can be restricted in a subspace, we can reduce the complexity to less than
2n.

The comparison of previous best attacks and our attacks on Grøstl are shown in Table 1.
Note that the attacks on Grøstl-0 are not included in this table, since our attack is on the
tweaked version.

We also improve the existing attacks against 5-round Whirlpool and 7-round AES hashing
modes. While the previous result on 5-round Whirlpool applies to second preimage only, we
improve the time complexity and also make the attack work for first preimages. We also improve
the time complexity for the attacks against 7-round AES hashing modes. The details are presented
in Appendix due to space limit.



Table 1. Comparison of the attacks on Grøstl-256 and Grøstl-512

Algorithm Target Attack Type Rounds Time Memory Source

Grøstl-256

Hash
Collision 3 264 - [18]

Function

Compression Semi-Free-Start
6 2112 264 [18]

Function Collision

Permutation Distinguisher 8 248 28 [17]

Output
Preimage 5 2206 248 Sect. 4.1

Transformation

Hash Pseudo
5 2244.85 2230.13 Sect. 4

Function Preimage

Grøstl-512

Hash
Collision 3 2192 - [18]

Function

Compression Semi-Free-Start
7 2152 256 [17]

Function Collision

Output
Preimage 8 2495 216 Sect. 5.1

Transformation

Hash Pseudo
8 2507.32 2507.00 Sect. 5

Function Preimage

Outline of this paper In Sect. 2, we describe the specification of the Grøstl hash function. In
Sect. 3, we introduce the attack outline of the pseudo preimage attack on reduced round Grøstl.
Attacks on Grøstl-256 and Grøstl-512 are illustrated in Sect. 4 and Sect. 5 respectively. Sect. 6
is the conclusion.

2 Specification of Grøstl

Grøstl is a double-pipe design, i.e., the size of the chaining value (2n-bit) is twice as the
hash size (n-bit). Message length should be less than 273 − 577 bits. The padding rule is not
introduced here, since it’s not important in our attack.

The compression function of Grøstl is written as:

F (H,M) = P (H ⊕M)⊕Q(M)⊕H

Where H is the chaining value and M is the message block, both are of 2n bits. After all message
blocks are processed, the last chaining value X is used as input of the output transformation,
which is written as

Ω(X) = Truncn(P (X)⊕X)

The right half of P (X) ⊕ X is used as the hash value. The compression function and output
transformation are illustrated in Fig. 2.

Fig. 2. Compression function and output transformation of Grøstl



P and Q are AES-like permutations with 8 × 8 and 8 × 16 sized state for Grøstl-256 and
Grøstl-512 separately. Grøstl-256 uses 10-round P , Q and Grøstl-512 uses 14-round P , Q.
The round function of the permutations consists of the four operations:

– SubBytes(SB): applies the Substitution-Box to each byte.

– ShiftBytes(SR): cyclically shifts the i-th row leftwards for i positions.

– MixBytes(MC): multiplies each column of the state matrix by an MDS matrix:

C = circ(02, 02, 03, 04, 05, 03, 05, 07)

– AddRoundConstant(AC): XOR the round constant to the state.

The shift vectors used in P and Q are different. P in Grøstl-256 uses (0,1,2,3,4,5,6,7) and P
in Grøstl-512 uses (0,1,2,3,4,5,6,11). In the description of our attack, we skip Q’s detail since
it’s not required.

An important property of the compression function has been pointed out in the submission
document of Grøstl hash function [6]. Note that with H ′ = H ⊕M , the compression function
can be written as

F (H,M) = P (H ′)⊕H ′ ⊕Q(M)⊕M.

So the generic preimage attack on the compression function with 2n-bit state costs 2n com-
putations, since solving the equation F (H,M) = T can be regarded as a birthday prob-
lem. Then the collision attack on the compression function costs 22n/3 computations, since
F (H1,M1)⊕ F (H2,M2) = 0 is a (four-sum) generalized birthday problem [20].

3 Outline of the Attack on the Grøstl Hash Function

Suppose the hash size is n-bit and the state size is 2n-bit. In order to find a pseudo preimage
(H,M) of the Grøstl hash function, let X = F (H,M), then X is the preimage of the output
transformation: P (X) ⊕X = ∗||T where T is the target hash value and ∗ stands for arbitrary
n-bit value. With H ′ = H ⊕M , we have

(P (H ′)⊕H ′)⊕ (Q(M) ⊕M)⊕X = 0 (1)

If we have collected enough candidates for P (H ′)⊕H ′, Q(M)⊕M and X, the pseudo preimage
attack turns into a three-sum problem. As we know, there is no generic solution for three-sum
problem faster than birthday attack. But if we can restrict P (H ′) ⊕ H ′ in a subspace, it is
possible to break the birthday bound. Here we restrict P (H ′)⊕H ′ in a subspace by finding its
partial zero preimages.

As illustrated in Fig. 3, the attack process is similar to the generalized birthday attack [20].
With four parameters x1, x2, x3 and b, this attack can be described in four steps:

1. Find 2x1 preimages X of the output transformation and store them in lookup table L1.

2. Find 2x3 H ′ such that leftmost b bits of P (H ′)⊕H ′ are all zero. Then store all P (H ′)⊕H ′

and H ′ in lookup table L2. This step can be regarded as finding partial zero preimages on
P (H ′)⊕H ′.

3. Choose 2x2 random M with correct padding and calculate Q(M)⊕M . Then check if there is
an X in L1 with the same leftmost b bits as Q(M)⊕M . We expect to find 2x1+x2−b partial
matches Q(M)⊕M ⊕X here, whose left most b bits are all zero.

4. For each of the 2x1+x2−b Q(M)⊕M ⊕X found in step 3, check if its remaining (2n− b)-bit
value can be found in L2.



2
x3 

× 2
x2 

× 2
x1 

×

2
x1+x2-b 

×

2
x1+x2+x3-2n 

×

Fig. 3. Outline for pseudo preimage attack on the Grøstl hash function

Once a final match is found, we have H ′,M and X which satisfies equation (1). So, (H ′⊕M,M)
is a pseudo preimage of Grøstl.

Note that to find an X is to find an n-bit partial preimage of P (X)⊕X and the truncation
bits are fixed (the leftmost n-bits are truncated). But for P (H ′)⊕H ′, it’s not necessary to find
partial preimage for the leftmost b bits. In fact, we can choose any b bits as the zero bits. We
will further discuss the differences between fixed position and chosen position partial preimage
attacks later.

Suppose that for Grøstl with 2n-bit state, it takes 2C1(2n,n) computations to find a fixed
position n-bit partial preimage and it takes 2C2(2n,b) computations to find a chosen position b-bit
partial preimage of P (X) ⊕X. Now we calculate the complexity for each of the four attacking
steps:

1. Step 1, building the look-up table 1 takes 2x1+C1(2n,n) computations and 2x1 memory.

2. Step 2, building the look-up table 2 takes 2x3+C2(2n,b) computations and 2x3 memory.

3. Step 3, calculating Q(M)⊕M for 2x2 M and checking the partial match in table 1 takes 2x2

Q calls, which is equivalent to 2x2−1 compression function calls.

4. Step 4, checking the final match for 2x1+x2−b candidates requires 2x1+x2−b table look-ups,
which can be equivalently regarded as 2x1+x2−bCTL compression function calls. CTL is the
complexity of one table lookup, where unit one is one compression function call. For 5-round
Grøstl-256 and 8-round Grøstl-512(the attacked versions), CTL is chosen as 1/640 and
1/2048 respectively4.

Then the overall complexity is:

2x1+C1(2n,n) + 2x3+C2(2n,b) + 2x2−1 + 2x1+x2−b · CTL (2)

with memory requirement of 2x1 + 2x3 .

In the following sections, we first show how to find partial preimages of the function P (X)⊕X
and calculate the complexity C1(2n, n) and C2(2n, b). Then we need to choose optimal param-
eters x1, x2, x3 and b to minimize the complexity with the restriction of x1 + x2 + x3 ≥ 2n and
0 ≤ b ≤ 2n. Since in order to find one final match, we need 2x1+x2+x3−2n ≥ 1 ⇒ x1+x2+x3 ≥ 2n.

4 The constant CTL is chosen as the upper bound of the complexity that one table lookup takes, due to the fact
that 5-round Grøstl-256 software implementation composes of (8 ∗ 8) ∗ 5 ∗ 2 = 640 s-box lookups, and other
operations. In 8-round Grostl-512, there are (8 ∗ 16) ∗ 8 ∗ 2 = 2048 s-box lookups.



4 Pseudo Preimage Attack on 5-round Grøstl-256

In this section, first, we introduce the preimage attack on the output transformation, i.e., the
fixed position partial preimage attack on P (X)⊕X and calculate the complexity C1(512, 256).
Then we introduce the chosen position partial preimage attack on P (H ′) ⊕ H ′ and give the
expression of the function f(b) = C2(512, b). At last, we try to minimize the overall complexity
by finding proper parameters for the generic attack introduced in Section 3.

4.1 Fixed Position Partial Preimage Attack on P (X)⊕ X

The chunk separation for this attack is shown in Fig. 4. Note that the yellow cells with a diagonal
line are the truncated bytes, which can be regarded as free variables. In the last state of Fig. 4, the
equations for the truncated byte can be directly removed since they are automatically fulfilled.
The size of the full match is 256-bits for this MitM attack.
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Fig. 4. Chunk separation of preimage attack on Grøstl-256’s output transformation

The Colors in the Chunk Separation First, we explain what the colors stand for. Actually,
we use the same colors as in [14] to illustrate the chunk separations. The blue bytes in the
forward chunk can be determined by the blue bytes in the initial structure. The white color in
the forward chunk stands for the bytes whose values are affected by both red bytes and blue bytes
in the initial structure, and can’t be pre-computed until the partial match is found. Similarly,
in the backward chunk, red and white cells stand for the certain and uncertain bytes. The gray
cells are constant bytes in the target value, the chaining value and the initial structure, which
are known or can be chosen before the MitM attack.

Freedom Degrees and Size of the Matching Point Before we apply the MitM attack, we
need to know the freedom degrees in the forward and backward directions and the bit size of
the matching point. The calculation method has been explained in [14]. More details about this
is in Appendix A.

With the method introduced in appendix A, we can find that , in Fig. 4, there are D2 = 248

and D1 = 264 freedom degrees in red and blue bytes respectively. In each of the four available
columns, there are two bytes of matching point. So the size of the matching point is m =
4× (2× 8) = 64 bits.

The Attack Algorithm and Its Complexity In this section, we consider a generic MitM
attack algorithm with partial matching technique. Suppose there are 2D1 and 2D2 freedom



degrees in the forward and backward chunks. The size of the matching point is m-bit and
the full matching size is b-bit. Without loss of generality, assume that D1 ≥ D2. Note that if
D1 +D2 ≥ b, we can’t fully use all the freedom degrees. Here we use d1 and d2 to denote the
actually used freedom degrees:

(d1, d2) =











(D1,D2), ifD1 +D2 ≤ b;

(b/2, b/2), ifD1 +D2 > b and D2 ≥ b/2;

(b−D2,D2), ifD1 +D2 > b and D2 < b/2.

(3)

This MitM preimage attack can be described in four steps.

1. Choose random constants in the initial structure.
2. With the chosen constants, for all 2d2 values v2j of the forward direction, calculate all the

partial values p2j and the full values f2
j at the matching point and store all the pairs (v2j , p

2
j )

in a look up table L;
3. For all 2d1 values v1i of the backward direction, calculate p1i . Then check if p1i is in table L.

If we found one partial match that p1i = p2j for some j, calculate the full value f1
i using v1i

and check if f1
i = f2

j ;
4. If no full match has been found yet, go to step 1.

Then we calculate the complexity. Step 2 costs 2d2 f2 calls and 2d2 memory. Step 3 costs 2d1

f1 calls. Consider two kinds of circumstances separately.

– If d1 + d2 ≥ m. After step 3 is done, we expect 2d1+d2−m good candidates that satisfy the
m-bit matching point. Now check if the full value of all good candidates are matched. This
step requires 2d1+d2−m computations. The probability that a good candidate is a full match
is 2m−b. Then the probability that there exists one full match in 2d1+d2−m good candidates
is about 2(d1+d2−m)+(m−b) = 2d1+d2−b. So, we need to repeat the attack 2b−d1−d2 times in
order to find a full match. The complexity is:

2b−d1−d2 · (2d1 + 2d2 + 2d1+d2−m) = 2b · (2−d1 + 2−d2 + 2−m)

– If d1 + d2 < m. After step 3 is done, we can find one good candidate with probability of
2d1+d2−m. So, we need to repeat the attack 2m−d1−d2 times to find one good candidate, then
we calculate the full value of the good candidate at the matching point to check if it is a
full match, which cost one computation. So the complexity to find one good candidate and
check its full value is 2m−d1−d2(2d1 +2d2) + 1. Then find and check 2b−m good candidates to
get a full match. The complexity is:

2b−m · (2m−d1−d2(2d1 + 2d2) + 1) = 2b · (2−d1 + 2−d2 + 2−m)

So, no matter in which case, the complexity to find one full match using this algorithm is always

2b · (2−d1 + 2−d2 + 2−m) (4)

computations and 2d2 memory.

Application to Grøstl’s Output Transformation In Fig. 4, the freedom degrees are D1 =
48,D2 = 64, the partial and full matching size are m = 64 and b = 256 bits. Using the attack
algorithm introduced in Section 4.1, we can calculate the complexity to invert 5-round Grøstl’s
output transformation. Here the complexity is measured by compression function calls. In the
MitM attack it takes about half P calls, i.e. 1/4 compression function calls to evaluate the
matching point for one direction. Thus we can multiply 2−2 to the complexity: 2C1(512,256) =
2−2 · 2256(2−64 + 2−48 + 2−64) ≈ 2206 compression function calls with 248 memory.



On the Choice of the Chunk Separation We can prove that our chunk separation in Fig. 4
is optimal, which minimizes the complexity of inverting the output transformation.

Suppose there are b blue bytes and r red bytes in each column of the matching point. Then
we show the relation between b, r, freedom degrees D1,D2 and the partial matching size m.

In the forward direction, r red bytes in one column of the matching point
AC,SB,SR,MC
−−−−−−−−−−→ r

full red columns
AC,SB,SR
−−−−−−−→ r red bytes in one column. Here we stops at the left end of the initial

structure. In order to produce at least one byte of freedom degrees in the blue color, there are at
least r+1 blue columns in the initial structure. Then there would be at most 8− (r+1) = 7− r
red columns in the initial structure.

In the backward direction, b blue bytes in one column of the matching point
SR−1,SB−1,AC−1

−−−−−−−−−−−−→

8− b white columns
MC−1,SR−1,SB−1,AC−1

−−−−−−−−−−−−−−−−→ 8− b white bytes in each columns.

Now we count the freedom degrees. There are (7−r) red columns in the initial structure and
each column produces 8− b free bytes. So, freedom degrees in red color is D2 = 8(7− r)(8− b)
bits. The minimum freedom degrees in the blue color here is D1 = 264. Size of the matching
point in one column is 8(b + r − 8) bits, so there are 4× 8(b+ r − 8) bits of matching point in
total.

So the complexity is 2−2 · 2256(2−64 +2−8(7−r)(8−b) +2−32(b+r−8)). The minimum complexity
is 2206 when b = 6, r = 4 or b = 5, r = 5. Fig. 4 is the case of b = 6, r = 4.

4.2 Chosen Position Partial Preimage Attack on P (H′) ⊕ H
′
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Fig. 5. Chunk separation of chosen position partial preimage attack on P (H ′)⊕H ′ for Grøstl-256

Now, consider the attack model of chosen position partial preimage. In the partial preimage
attack of P (H ′) ⊕H ′, we can choose the positions of the target bits. In order to minimize the
complexity, we choose this chunk separation to maximize the size of the matching point m(b)
within all possible b target bits.

First, we discuss the size of matching point and chosen positions in one column. If less than
8 bits of the red byte in one column are chosen, no matching point can be derived. if b > 8
bits of the red bytes are chosen, as explained in appendix A, there are b − 8 bits of matching
point. Since there are only two red bytes in one column in the last state of Fig. 5, even if b > 16,
no more than 8 bits of matching point can be derived. In order to maximize m(b), we choose
at most 2 red bytes in one column and then chose the red bytes from another column. When
b > 128, m(b) = 64, because there are 64 bits of matching point in total. The graph of m(b) is
shown in Fig. 6.



In this Figure, freedom degrees in the red and blue color are D2 = 40 and D1 = 64. Then
we can calculate the complexity of chosen position partial preimage:

2C2(512,b) = 2−2 · 2b(2−d1 + 2−d2 + 2−m(b))

where d1 and d2 are chosen according to equation (3), i.e.:

(d1, d2) =











(64, 40), if b ≥ 104;

(b− 40, 40), if 80 ≤ b < 104;

(b/2, b/2), if b < 80.

The graph of C2(512, b) is shown in Fig. 7. When b > 80, C2(512, b) ≈ b− 42.
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truncations for Grøstl-256
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Fig. 7. Complexity of chosen position partial preimage
of P (H ′)⊕H ′ for Grøstl-256

4.3 Minimizing the Overall Complexity

By now, we have found C1(512, 256) and C2(512, b). So we can start to deal with the overall
complexity in equation (2). In the expression of the complexity, b can be integers from 0 to 512.
For all b ∈ [0, 512], optimal x1, x2 and x3 are chosen to minimize the overall complexity. The
graph of the minimum overall complexity for b ∈ [0, 120] is shown in Fig. 8.

When b = 31, x1 ≈ 36.93, x2 ≈ 244.93 and x3 ≈ 230.13, the complexity is the lowest: 2244.85

compression function calls. Memory requirement is 2230.13. The chosen positions for the 31 bits
≈ 4 bytes are marked in Fig. 5.
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5 Pseudo Preimage Attack on 8-round Grøstl-512

The attack on Grøstl-512 uses the same method for the three-sum phase as in the attack
on Grøstl-256. Here we skip the details of the attack algorithm and introduce the difference
between the attacks on them only.

5.1 Fixed Position Partial Preimage Attack on P (X)⊕ X

The chunk separation for 8-round Grøstl-512 is shown in Fig. 9. Note that in this figure, we
use a 2-round initial structure. Freedom degrees in the red and blue bytes are both 216. There
are 4 bytes of matching point in total, as shown in Table 2 in Appendix B.

The parameters for the MitM preimage attack on the output transformation are D1 = D2 =
16,m = 32 and n = b = 512. So the complexity is 2C1(1024,512) = 2−2 ·2512(2−16+2−16+2−32) ≈
2495 compression function calls and 216 memory.
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Fig. 9. Chunk separation of preimage attack on Grøstl-512’s output transformation

On the Choice of the Chunk Separation Actually, we searched for all the possible patterns
of the chunk separation for 8-round Grøstl-512. The chunk separation in Fig. 9 is one of the
best we found. The search algorithm is as follows:

Step 1. Search for the matching point.

We want to find good candidates in all the possible positions of the white columns in round
2 and round 6. Since there are 32 columns in two states, there are 232 patterns in total.

For each of the pattern of white columns, we can calculate round 2 backward and round 6
forward and check if there are at least two byte of matching point. After the search for all the
232 patterns, we found 1322 patterns with at least two bytes of matching point.

Step 2. Search for the initial structure.



Considering the mirror image and rotational similarity, there are only 120 distinct patterns
in all the 1322 patterns of matching point. For each of the 120 patterns, we calculate forward
from round 2 and backward from round 6.

If there is one white column in round 2, the number of possible patterns of the white bytes
in the same column of round 3 is 28 − 1, since there must be at least one white byte in this
column. So size of the search space is (28−1)w, where w is the number of white columns in both
round 2 and round 6. In the 120 possible patterns, w is no more than 4, so the search space is
at most 232 · 120 ≈ 239.

Using early-abort trick, we can directly skip some bad patterns in round 2 without knowing
the pattern in round 6. Then the search space is reduced again and the search is practical.

5.2 Chosen Position Partial Preimage Attack on P (H′) ⊕ H
′

For chosen position partial preimage, we use another chunk separation in Fig. 10.
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Fig. 10. Chunk separation of chosen position partial preimage attack on P (H ′)⊕H ′ for Grøstl-512

The freedom degrees for the MitM preimage attack are D1 = 24,D2 = 8. The distribution
of the matching point bytes are shown in Table 3 and The graph of m(b) is in Fig. 11. Then we
can calculate the complexity of chosen position partial preimage:

2C2(1024,b) = 2−2 · 2b(2−d1 + 2−d2 + 2−m(b))

where d1 and d2 are chosen according to equation (3), i.e.,

(d1, d2) =











(24, 8), if b ≥ 32;

(b− 8, 8), if 16 ≤ b < 32;

(b/2, b/2), if b < 16.

The graphs for m(b) and C2(1024, b) are in Fig. 11 and Fig. 12. The figures and tables are
in Appendix B.



5.3 Minimizing the Overall Complexity

With the value and expression of C1(1024, 512) and C2(1024, b), we can deal with the overall
complexity like we have done for Grøstl-256. The minimum overall complexity for different b
is shown in Fig. 13.

When b = 0, x1 ≈ 10.50, x2 ≈ 506.50 and x3 ≈ 507.00, the overall complexity is the lowest:
2507.32. Memory requirement is 2507.00.

6 Conclusion

In this paper, we proposed pseudo preimage attacks on the hash functions of 5-round Grøstl-256

and 8-round Grøstl-512. This is the first pseudo preimage attack on round-reduced Grøstl hash
function, which is a wide-pipe design.

In order to invert the wide-pipe hash function, we have to match 2n-bit state value with
less than 2n computations. This is achieved by exploiting the special property of the Grøstl

compression function. After collecting enough partial preimages on the component P (X) ⊕X,
the double-sized state values are matched using a variant of the generalized birthday attack.

There is an interesting observation that this attack works with any function Q. Thus our
attack can be applied to the Grøstl hash function with round-reduced permutation P and
full-round permutation Q. However, our attacks do not threat any security claims of Grøstl.
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A Calculation of Freedom Degrees and Size of the Matching Point

Calculating Freedom Degrees Compared to original attack, we have less constants in the
initial structure. In Fig. 4, there is no constant in the initial structure. Before the MC operation
that produces uncertain (white) bytes in the forward chunk, there are 24 red bytes. In order
to maintain 18 constant (gray) bytes after the MC operation, it is equivalent to solve such a
equation group with 24 variables and 18 equations:

C ·
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(5)

where C is the MDS matrix, {ri} are the values of red bytes, {ci} are constants and ∗ are
arbitrary values we don’t care. This equation group has 28·(24−18) = 248 solutions, which are the
freedom degrees in the red bytes, i.e. the backward chunk. Similarly, by observing 40 variables
and 32 equations, the freedom degrees in the blue bytes can be calculated as 28·(40−32) = 264.

Calculating Size of the Matching Point First, we need to explain how the partial matching
through MR operation works. Use the first column of the matching point in Fig. 4 as an example,
our target is to find proper values that satisfies the following equation:

C ·
(

x0 x1 x2 x3 x4 x5 x6 x7

)T
=

(

y0 y1 y2 y3 y4 y5 y6 y7

)T
(6)



where x0, x1, x2, x3, x6, x7, y0, y5, y6, y7 are known bytes and x4, x5, y1, y2, y3, y4 are uncertain
bytes. So only four equations of y0, y5, y6 and y7 are useful to us:

05x4 + 03x5 = 02x0 + 02x1 + 03x2 + 04x3 + 05x6 + 07x7 + y0 (7)

07x4 + 02x5 = 04x0 + 05x1 + 03x2 + 05x3 + 02x6 + 03x7 + y5 (8)

05x4 + 07x5 = 03x0 + 04x1 + 05x2 + 03x3 + 02x6 + 02x7 + y6 (9)

03x4 + 05x5 = 02x0 + 03x1 + 04x2 + 05x3 + 07x6 + 02x7 + y7 (10)

From equations (7)(8), obtain x4, x5 with linear combinations of the known bytes:

x4 = F7x0 +A5x1 + 00x2 + 52x3 +A5x6 + 53x7 + 52y0 + 52y5

x5 = F6x0 +A4x1 + 8Cx2 + 50x3 + 2Ax6 +DDx7 +DFy0 + 52y5

Then equation (10) can be rewritten as:

F1x0 + 52x1 + 8Cx2 +A9x3 +D3x6 + 23x7 = 2Ay0 +A4y5 + y6 (11)

03x0 + F5x1 + 8Ex2 + F8x3 + 71x6 + 73x7 = 78y0 + F7y5 + y7 (12)

Equations (11) and (12) are used as the matching point, since they provide equations of the
known bytes that can be pre-computed, stored separately and then checked using table look-ups.
Here the matching point is not directly truncated from the state value. In Fig. 4, two bytes of
matching point can be derived from one column. At most 8 bytes (64 bits) of matching point
can be found, since there are only four available columns.

Suppose there are b and r known bytes in one column of the input and output values of
the MC at the matching point. 8 − b uncertain bytes are regarded as variables and r known
red bytes can provide r equations. 8 − b of the equations are used to determine values of the
variables. Then the remaining r − (8− b) = r + b− 8 equations are on the known bytes, which
are regarded as the matching point. Note that if b + r ≤ 8, no matching point can be derived
from this column. Otherwise, there are b+ r − 8 bytes of matching point in this column.

If size of the known bits b′ and r′ are not exact multiples of 8, we can further split the linear
equations on bytes into linear equations on bits. The bit size of matching point can be calculated
as b′ + r′ − 64.

B Figures and Tables for Grøstl-512

Table 2. The matching point in Fig. 9

column index 9 10 11 12 13 14 15 16

blue bytes 4 3 3 4 5 5 4 3

red bytes 4 3 3 4 5 5 4 3

sum 8 6 6 8 10 10 8 6

matching point(bytes) 0 0 0 0 2 2 0 0

C Preimage Attack on round-reduced Whirlpool

C.1 Specification of Whirlpool

Whirlpool uses MD-strengthening structure, with narrow-pipe chaining value and no block
counters. So it is vulnerable to generic attack, like the expandable messages [10] and multi-
target pseudo preimage [12] attack. We will talk about the details later.



Table 3. matching points in Fig. 10

column index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

blue bytes 5 4 3 2 0 2 3 4 5 4 5 6 6 6 5 4

red bytes 2 3 2 0 0 0 2 3 2 2 2 3 4 3 2 2

sum 7 7 5 2 0 2 5 7 7 6 7 9 10 9 7 6

matching point(bytes) 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0
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Fig. 11. Size of the matching point for chosen position
truncations for Grøstl-512
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age of P (H ′)⊕H ′ for Grøstl-512

0 10 20 30 40 50 60 70 80
500

505

510

515

520

525

530

b∈ [0,160]

O
ve

ra
ll 

co
m

p
le

xi
ty

Fig. 13. Overall complexity of pseudo preimage attack on 8-round Grøstl-512



Whirlpool accepts any message with less than 2256 bits as input and the 256-bit binary
expression of bit length is padded according to MD-strengthening, i.e. M ||1||0∗||length. Size
of the message block, the chaining value and the hash value is 512-bit.

Compression function of Whirlpool can be regarded as a block cipher called W in Miyaguchi-
Preneel mode.

F (H,M) = WH(M)⊕M ⊕H

where block cipher W use AES-like iteration with 8× 8 state of bytes and the (8i+ j)-th input
byte of the message block is placed at the i-th row and j-th column of the state. Each round
consists of four operations:

– SubBytes(SB): applies the Substitution-Box to each byte.
– ShiftColumns(SC): cyclically shift the i-th column downwards for i positions.
– MixRows(MR): multiply each row of the state matrix by an MDS matrix

C = circ(01, 01, 04, 01, 08, 05, 02, 09)

– AddRoundKey(AK): XOR the round key to the state.

Since the key schedule is not important in our attack, the description is omitted.

C.2 Improved Second Preimage Attack on Whirlpool

In [14], Yu Sasaki proposed a second preimage attack on 5-round Whirlpool using the MitM
approach. In their attack, there are only 28 freedom degrees in both chunks, but the size of
matching point is much larger (40 bytes=320 bits). The comparison of the preimage attacks on
Whirlpool is shown in Table 4.

Table 4. Comparison of the preimage attacks on Whirlpool

Attack Type Rounds Time Memory Source

Second Preimage 5 2504 28 [14]

Second Preimage 5 2448 264 this section

Preimage 5 2481.5 264 this section

In this section, we propose an improved chunk separation with more freedom degrees and a
smaller matching point in Fig. 14.
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Matching
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Fig. 14. Chunk separation for improved 2nd-preimage attack on 5-round Whirlpool

We use the same colors as in [14] to illustrate the chunk separations. The blue bytes in the
forward chunk can be determined by the previously chosen blue bytes in the initial structure.



The white bytes in the forward chunk stands for the bytes whose value are affected by the red
bytes from initial structure and can’t be precomputed until the partial match is found. Similarly,
in the backward chunk, red and white cells stand for the certain and uncertain bytes. The gray
cells are constant bytes in the target value, the chaining value and the initial structure.

Since this is a second preimage attack, the second last chaining value and the last message
block with proper padding are known. We choose random messages and get a random chaining
value at the third last position. With this chaining value, apply MitM preimage attack of the
compression function.

With chunk separation in Fig. 14, we have a MitM attack with D1 = 72,D2 = 64,m = 64
and b = 512. According to equation 4, the complexity can be computed as 2−12512(2−72+2−64+
2−64) ≈ 2448. Memory requirement is 264. Note that the complexity of computing the two chunks
and checking the full match may be different. Here, we don’t consider the difference between
them and they are all regarded as the same cost of half compression function call. Methods
for calculating freedom degrees of two chunks and the size of matching point are described in
appendix A, which can also be found in [14].

C.3 First Preimage Attack on Whirlpool

This attack consists of three steps: First, find a preimage of the last block with proper padding.
Second, construct an expandable message. At last, connect expandable message and the last
block with MitM. The attack process is illustrated in Fig. 15.

Fig. 15. Outline of the first preimage attack on 5-round Whirlpool

Dealing with Message Padding In order to apply the first preimage attack, the message
padding must be dealt with properly. In our attack, the last message block consists of 255-bit
message concatenated with one bit of “1” padding and 256-bit binary expression of the message
length l. Since Whirlpool uses 512-bit message block, l ≡ 255 mod 512. Then the last 9 bits
of l are fixed to 011111111.
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Fig. 16. Chunk separation for the last message block of Whirlpool



In Fig. 16, the initial structure is relocated at the beginning of the compression function for
the convenience of the message padding, since in MP mode, the first state is the message block
itself. Value of the black byte in the first state is fixed to 0xff , because it is the last 8 bits of
l. One red byte is marked with a “0”, which means the last bit of it is fixed to zero due to the
message length l. There is another blue byte marked with a “1”, which comes from the “1-0”
padding.

Parameters for this MitM attack are D1 = D2 = 63,m = 64 and b = 512. According to
equation 4, the complexity is about 2449 computations and 263 memory for the last block. When
the attack on the last block is done, the remaining bits of the message length are fulfilled by
expandable messages.

Expandable Messages Expandable messages [10] can be constructed using either Joux’s
multi-collision [9] or fix points of the compression function.

Expandable 2k-collision can be constructed with k ·2n/2 computations and k memory. But its
length can only be in the range of [k, k+2k − 1] blocks. If the message length obtained from the
last block is less than k (with a very small probability), we choose different random constants
and repeat the attack.

Fix points of MP mode can be constructed by finding the zero preimages of the compression
function in MMO mode, since

WH(M)⊕M ⊕H = H ⇔ WH(M)⊕M = 0.

This can be done using the same technique as in our 2nd-preimage attack, with complexity of
(2449, 264), which is an affordable cost for us. Note that for random H, the fix point exists with
probability of 1 − e−1. If no fix point can be found for IV, we choose a random message block,
compute the following chaining value and try to find fix point for this chaining value instead.

So, either way is fine to construct the expandable message here and has little influence on
the overall complexity.

Turns Pseudo Preimage into Preimage After preparing preimage for the last message block

F (H,M) = T and the expandable message IV
M∗

−−→ H ′. Now we can connect them to form a
first preimage.

Suppose it takes 2c to find a pseudo preimage. A traditional MitM approach can convert
preimage attack on the compression function into preimage attack on the hash function works
like this. First, find and store 2k pseudo preimages with 2k+c computations and 2k memory.
Then choose 2n−k random message , calculate from IV to find a chaining value appearing in
one of the pseudo preimages. The complexity is 2n−k + 2k+c. Take the optimal k = n−c

2 , the

minimum complexity is 2
n+c
2

+1. Using the pseudo preimage attack described in Sect. C.2, the
preimage attack has a complexity of (2481.5, 264).

D Improved MITM Attacks against AES Hashing Modes

It has been shown by Sasaki [14] that pseudo/second preimage of 7-round AES can be found in
2120 under hashing modes of Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO), and Miyaguchi-
Preneel (MP). In this section, we show that the pesudo-preimage can speed up with the help of
the multi-target pseudo-preimage techniques proposed in [7], when the number of given targets is
more than one. These improvements result in faster preimage and second preimages of 7-round
AES hash modes. Details of the results are summarized in Table 5, comparing with those by
Sasaki in [14].



Attack Mode Time Memory Message length Reference

2nd Preimage

MMO, MP 2120 28 - [14]

MMO, MP, DM 2128−k 2k 2k blocks [10]

MMO, MP, DM 2120−min(k,24) 28+min(k,24) 2k blocks this section

Preimage
DM 2125 28 - [14]

DM 2122.7 216 > 28 blocks this section

Table 5. Results on (Second) Preimages of 7-round AES Hashing Modes.

We refer to Fig. 17 for the details of the attack. The states of AES are divided into two chunks,
while the backward (red) chunk consists of states #8—#15 and forward (blue) chunk consists of
states #20—#28 and #0—#7, the initial structure works for states #16—#19. These divisions
are same as in [14]. However, when setting degree freedoms for both chunks, we find that we can
have 232 and 28 for the backward and forward directions, respectively. There is only one free
byte in blue as in state #15 and the rest three bytes in the colunn are set to some constants.
This byte is later propagated through the MixColumn into all four bytes of the first column in
state #16. Similarly, we do not allow influence from red bytes in state #19 into the blue bytes in
#20. Hence there is only (3-2)=1 free byte in each column of #19, which results in at most 232

(4 bytes) for backward chunk. If one considers the situation that there are 2k available targets
T . Then the attack works in the follows.

1. Use 28+min(k,24) freedom degrees out of 232 for the backward direction, and compute the
values of the bytes in red and gray from state #15 back to #8, store them in a table.

2. For all 28 freedom degrees, compute the values of the bytes in blue and gray from state
#15—#28, then for each of the 28 candidates, xor the 2min(k,24) targets, so that 28+min(k,24)

candidates will be available for state #0. Continue compute forward up to state #7.
3. Carry out the indirect partial matching between state #7 and #8.
4. Repeat until a full match is found.

It is easy to see that the overall complexity for this attack is 2120−min(k,24), with memory
requirement 28+min(k,24). While this can be directly applied when finding second preimages, we
will use a tree-like construction as in [7] to find a first preimages for the AES hash in Davies-
Meyer mode. Generally, given k targets with 1 < k < 224, a pseudo preimage can be found in
2120/k. When finding the first preimage given one target T , one finds a pseudo preimage with
chaining T2 in 2120, then finds the second pseudo preimage with the target set {T, T2} in time
2120/2, and so on. Hence finding Z pseudo preimages costs

∑Z
z=1 2

120/z ≃ 2120 · ln(Z). Finally,
finding a message linking the IV to one of the targets costs 2128/Z. The overall time complexity
is 2120 · ln(Z) + 2128/Z, which is 2122.7 when Z = 28 is chosen.
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