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Abstract

Using homomorphic encryption and secure multiparty computation, cloud servers may perform regularly
structured computation on encrypted data, without access to decryption keys. However, prior approaches
for programming on encrypted data involve restrictive models such as boolean circuits, or standard lan-
guages that do not guarantee secure execution of all expressible programs. We present an expressive core
language for secure cloud computing, with primitive types, conditionals, standard functional features, mu-
table state, and a secrecy preserving form of general recursion. This language, which uses an augmented
information-flow type system to prevent control-flow leakage, allows programs to be developed and tested
using conventional means, then exported to a variety of secure cloud execution platforms, dramatically
reducing the amount of specialized knowledge needed to write secure code. We present a Haskell-based
implementation and prove that cloud implementations based on secret sharing, homomorphic encryption, or
other alternatives satisfying our general definition meet precise security requirements.

1 Introduction

Homomorphic encryption [1, 2, 3] and secure multiparty computation [4, 5, 6, 7] open new opportunities for
secure cloud computing on encrypted data. For example, cloud servers could examine encrypted email for spam,
without decrypting the email. A cloud server could also potentially compute a route between two endpoints on
a public map, and return the encrypted path to a client. This paradigm provides cryptographic confidentiality,
because the cloud server never has the keys needed to decrypt or recover private data.

Our goal is to provide a language and programming environment that would allow developers to produce
secure cloud applications, without sophisticated knowledge of the cryptographic constructions used. Theoret-
ical approaches for programming on encrypted data involve restrictive models such as boolean circuits, which
are not conventional programming models. Programming using a conventional language and a cryptographic
library, on the other hand, may allow programmers to write programs that cannot execute, because control flow
depends on encrypted values that are not available to the cloud execution platform. Due to the performance
costs of computing on encrypted data, realistic computation must involve mixtures of secret (encrypted) and
public data. Without information flow restrictions, programs could inadvertently specify leakage of secret data
into public variables.

We present an expressive core language for secure cloud computing, with primitive types, conditionals,
standard functional features, mutable state, and a secrecy preserving form of general recursion. This language
uses an augmented information-flow type system to impose conventional information-flow control and ad-
dresses a new problem for information-flow type systems: prevent control-flow leakage to the cloud platform.
The language allows programs to be developed and tested using conventional means, then exported to a vari-
ety of secure cloud execution platforms, dramatically reducing the amount of specialized knowledge needed
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to write secure code. Past efforts have produced generally less expressive programming languages (SMC [8],
Fairplay [9], SIMAP [10, 11], VIFF [12]) with weaker security proofs (see Section 7).

A core problem is that if an untrusted cloud server is given a program to execute, the server can observe
control flow through the program. Therefore, if any conditional branch depends on a secret (encrypted) value,
the server must execute both paths and combine results using operations on encrypted data. For example,
consider if x then y := 4 else y := 5, where x : bool and y : int. If x is secret and y is public, then
this statement cannot be executed because secret information flows to a public reference; we use conventional
information-flow control to prevent this. If both x and y are secret, then this is executed by storing the secretly
computed value x · 4 + (1 − x) · 5 in y. While computing both branches works for a simple if-then-else, this
cannot be done for recursive functions, because the set of possible execution paths may be infinite. Therefore,
we augment our type system with additional information labels to prevent unbounded recursion on secret values,
without restricting computation when control flow relies on public data.

While homomorphic encryption and secure multiparty computation are based on different cryptographic
insights and constructions, there is a surprising structural similarity between them. This similarity is also
shared by so-called partially homomorphic encryption, in which the homomorphism property holds only for
certain operations. We capture this similarity in our definition of secure execution platform. Figure 1 shows how
our separation of programming environment from cryptographically secure execution platforms can be used to
delay deployment decisions or run the same code on different platforms. One advantage of this approach is that
a developer may write conventional code and debug it using standard tools, without committing to a specific
form of execution platform security. Another advantage is that as cryptographic constructions for various forms
of homomorphic encryption improve, the same code can be retargeted because our language makes correctness
independent of choice of secure execution platform.

Our formal definition of secure execution platform allows us to develop a single set of definitions, theorems,
and proofs that are applicable to many cryptographic systems. The two main theoretical results are theorems that
guarantee the correctness and security of program execution. We state correctness using a reference semantics
that expresses the standard meaning of programs, with encryption and decryption as the identity function. The
correctness theorem states the cloud execution of a program on encrypted data produces the same output as
the conventional execution without encryption. Our security theorem depends on the threat model, because
homomorphic encryption and secret sharing are secure in different ways. The security theorem states that
no adversary learns the initial secret client values, beyond what is revealed by the program output, because
the probability distributions of program behaviors (on different secret inputs) are indistinguishable. We also
show that fully homomorphic encryption and a specific secret-sharing scheme meet the definition of secure
execution platform, as do somewhat homomorphic schemes when they support the operations actually used in
the program.

We develop our results using the honest-but-curious adversary model, commonly used in practical appli-
cations (e.g., [13], [10]). However, there are established methods for assuring integrity, using commitments
and zero-knowledge techniques [14], as well as for reducing communication overhead [7]. In addition, while
we focus on data confidentiality, our current system can also protect confidential algorithms, in principle, by
considering code as input data to an interpreter (or “universal Turing machine”).

2 Implementation and motivating example

The core of our domain-specific language (DSL) is implemented as a Haskell library, an embedded domain-
specific language (EDSL). Our implementation includes Shamir secret sharing and fully homomorphic encryp-
tion; both use SSL network communication between clients and any number of servers. A preliminary design
without recursion, references, or conditionals, and with a different implementation was described in [15].

As highlighted in Figure 1, we provide a Template Haskell compiler, which translates a subset of Haskell
syntax to our EDSL, at compile-time. The Template Haskell extension provides syntactic sugar for EDSL
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Figure 1: Multiple deployment options using different runtime systems. The EDSL (with the Template Haskell
compiler) can be executed on various Haskell-backends. The core language compiler can additionally be com-
piled to other systems such as SMC and VIFF.

combinators, enabling the programmer to use already-familiar syntax when writing code that operates on secret
data. We also provide a core-language compiler front-end that directly implements the information-flow type
system of this paper; the front-end exports abstract syntax trees (ASTs) of well-typed, labeled expressions,
facilitating code generation for various back-ends, including our Haskell EDSL.

As a working example, we consider the case for email filtering in a cloud setting. More specifically, we
consider RE: Reliable Email [16], as shown in Figure 2. With Reliable Email, email from trustworthy senders
(as deemed by the receiver) is forwarded directly to the receiver’s inbox, bypassing the spam filter. This guar-
antees that a message from a trustworthy source, which may have been labeled “spam” because of its content,
will be received—hence, making email a reliable communication medium between trustworthy entities.

A key component of (a simplified) Reliable Email system is a whitelist, containing the email addresses of
all senders considered trustworthy by the receiver. For every incoming message, the authentication of the From
address is verified1 and checked against the whitelist. If the address is in the whitelist, the mail is forwarded
directly to the inbox, otherwise it is forwarded to the spam filter.

It is important that the sender’s whitelist, which is essentially an address book, remain confidential if Reli-
able Email and the spam filter are executed in the cloud. Hence, in our setting, the hashed email addresses are
encrypted (or split into shares, in the case of secret sharing) and the check against the whitelist is done homo-
morphically. Figure 3 shows a component of the whitelist check in our Haskell DSL: computing the Hamming
distance between the hashes of two email addresses. A Hamming distance of zero denotes a match, i.e., the
email address is that of a trustworthy entity.

This example highlights several key aspects of our Haskell EDSL. First, our language provides various
primitives such as fix and toSecret, that are respectively used for implementing (safe) recursion, and lifting
public values to their secret equivalents. Second, the DSL embedding allows the programmer to use existing
Haskell features including higher-order functions, abstract data types, lists, etc. Third, the Template Haskell
compiler (compileTHtoEDSL) allows the programmer to use standard Haskell syntax. Finally, compared to
languages with similar goals (e.g., SMCL [11]), where a programmer is required to write separate client and
server code, using our EDSL, a programmer needs to only write a single program; we eliminate the client/server
code separation by providing a simple runtime system that directs all parties.

Developers who write in the EDSL can take advantage of existing, carefully-engineered Haskell develop-
1Messages must be signed by the sender since forging the From address is trivial.
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Figure 2: RE: Reliable Email in a cloud setting. Incoming email is forwarded by clients to cloud-based filters
(steps 2 and 4). If email is from a trustworthy source as determined by Reliable Email (step 4), it is forwarded
directly to the inbox (step 3), otherwise it takes the default path through the spam filter (steps 3-5).

-- | Given two secret, hashed email addresses,

-- compute the Hamming distance between them.

hammingDist :: SHA1EmailAddr

→ SHA1EmailAddr → SecIO SecretInt

hammingDist e1 e2 = hammingDist’ e1 e2 0

-- | Number of bits in SHA1 digest

sha1DigestLen = 160

-- | Actual distance computation.

-- A SHA1EmailAddr is a list of bits.

hammingDist’ e1 e2 = $(compileTHtoEDSL [ |
fix ( λf λi →

-- Iterate over all bits of an email

let k = if i < sha1DigestLen -- done?

then f (i+1) -- no, next

else toSecret 0 -- yes

-- Compute difference between i’th bits

x = xor (e1 !! i) (e2 !! i)

in x + k -- Sum of all bit differences

)

|])

Figure 3: Recursively computing the Hamming distance of two SHA1-hashed email addresses. Recursion with
fix is used to iterate over all the bits of the hashed email addresses, which are XORed.



ment tools, compilers, and runtime systems. Programmers also have the benefit of sophisticated type-checking
and general programming features of Haskell; we use the Haskell type and module system to enforce the cor-
rect usage of our secure execution platform. Because our EDSL and compilers are packaged in the form of
Haskell libraries, other researchers could use our libraries to implement different programming paradigms over
the same forms of cryptographic primitives, or compile our core language to other runtime systems.

3 Background

3.1 Haskell and EDSLs

There is a broad research community with extensive experience developing domain-specific languages (DSLs),
represented by the USENIX conferences on Domain-Specific Languages and documented in an annotated bibli-
ography [17]. Many DSLs are embedded into an existing language, which leverages the substantial development
effort of any practical language and also has the benefit of allowing DSLs embedded in the same host language
to interact and share infrastructure. Haskell is a purely functional language that is widely used for such DSL
embeddings [18]. Haskell’s type system, lazy evaluation strategy (expressions are evaluated only when their
values are needed), and support for monads makes it easy to define new data structures, syntactic extensions,
and control structures—features commonly desired when embedding languages.

class Monad M where

return :: α→Mα
(>>=) :: Mα→ (α→Mβ)→Mβ

Figure 4: Monad operations

The main Haskell constructs used in embedding our DSL are
monads and type classes. A monad M provides a type constructor
and related operations that obey several laws. Specifically, if M is
a monad and α is an arbitrary type, then Mα is a type with opera-
tions return, and >>= (pronounced “bind”), whose types are shown
in Figure 4. In Haskell, all computations that produce side-effects
are distinct, at the type-level, from pure functions. For instance, getChar, which reads a character from stan-
dard input, has type IO Char, indicating that it is a (input/output, IO) monadic computation. This type-level
distinction allows for local-reasoning of an implementation’s security properties (and information leaks).

The bind operator, which is used to combine multiple actions (which are similar to commands of imperative
language), is typically invoked through syntactic sugar. Specifically, the do keyword introduces a series of
actions in which each semicolon or newline is an invocation of bind. For example, a simple echo program can
be written as: do { c ←getChar ; putChar c }. Here, the result of executing action getChar is bound to
symbol c (hence the name “bind”) which is then used to compute and execute the action putChar c. Observe
that this code quite similar to mainstream imperative languages, e.g., c = getchar(); putchar(c); in C.

As further highlighted in Figure 4, Haskell provides support for monads through the Monad type class. Type
classes provide a method of associating a collection of operations with a type or type constructor. Programmers,
then, declare instances of a given type class by naming the type or type constructor and providing implementa-
tions of all required operations. As a consequence, programmers can declare a type, such as SecureIO, which
may internally perform encryptions and network communication, to be an instance of Monad and directly lever-
age Haskell’s do-notation. As explained later, type classes are also useful in ‘overloading’ arithmetic operations
over secret and public data.

Haskell also supports compile-time meta-programming with Template Haskell [19]. Template Haskell pro-
vides a method for reifying Haskell source: converting concrete Haskell syntax to a Haskell data type repre-
senting the source abstract syntax tree (AST); and, dually, a method for splicing an AST into Haskell source.
Figure 3 shows an example use case of compile-time meta-programming with Template Haskell. The recur-
sive function is reified by enclosing it in ‘[|’ brackets: [| fix ( λf λi →... ) |]. We use the function
compileTHtoEDSL to analyze the corresponding AST and generate a new AST composed of EDSL primitives.
Finally, the generated AST is spliced in as Haskell source by enclosing it with $(...), providing a definition for
hammingDist’. Our use of Template Haskell is limited to adding syntactic sugar to our EDSL, so that program-
mers can work with familiar constructs. An alternative extension, QuasiQuotes, can be used to reify arbitrary



syntax; in conjunction with Template Haskell, we can use QuasiQuotes to compile from the core language to
our EDSL.

3.2 Homomorphic encryption

A homomorphic encryption scheme 〈KeyGen,Enc,Dec,Eval〉 consists of a key generation algorithm, encryp-
tion and decryption algorithms, and an evaluation function that evaluates a function f ∈ F on encrypted
data. More specifically, for a public/secret key pair 〈pk, sk〉 generated by KeyGen, and a plaintext m, if
c = Enc(pk,m), then Dec(sk,Eval(pk, c, f)) = f(m) for every f ∈ F , where F is some set of functions
on plaintexts. We say that the encryption scheme is homomorphic with respect to the set F of functions.

While some homomorphic encryption schemes [20, 21, 22] are partially homomorphic – i.e., homomorphic
with respect to a restricted class of functions, such as the set of quadratic multivariate polynomials or the set
of shallow branching programs – recent research has produced constructions that are fully homomorphic, i.e.,
homomorphic with respect to all functions of polynomial complexity [1, 2, 23, 3]. Since this work has generated
substantial interest, there is a rapidly growing set of fully homomorphic constructions. However, for efficiency
reasons we remain interested in partially homomorphic schemes as well.

3.3 Secure multiparty computation

Another approach to computing on ciphertexts makes use of generic two-party or multi-party secure compu-
tation [24, 25, 4, 26, 6, 7, 27, 28, 29], in which the client, who has the plaintext m, communicates with the
server(s), who have the function f to be computed on m. The standard conditions for secure multiparty com-
putation guarantee that the client learns f(m), while the server (or an adversary compromising some restricted
set of servers) learns nothing about m.

In this work, we specifically consider Shamir secret sharing, and the multiparty computation protocol based
on it [5]. According to this protocol, a client C shares a secret value a0 from a prime-order finite field Fp among
N servers. In an (N, k) secret sharing scheme, N servers can jointly perform computations on m and other
shared secrets, such that at least k of the N servers must collude to learn anything about m. Letting a0 = m, in
Shamir secret sharing, the clientC shares a0 by choosing values a1, . . . , ak−1 uniformly at random from F , and
forms the polynomial p(x) =

∑k−1
i=0 aix

i. Then, C computes and distributes the shares s1 = p(1), . . . , sN =
p(N) to servers S1, . . . , SN , respectively.

Addition is easy for the servers to compute, since they can simply add their shares of two values pointwise: if
the values si form a sharing of a0 via p, and ti form a sharing of b0 via q, then si + ti form a sharing of a0 + b0
via p + q. Similarly, if the values si form a sharing of a0 via p, then, for a constant c, c · si form a sharing of
c · a0 via c · p. Multiplication of two secret values is more complicated, because multiplication of polynomials
increases their degree. The solution involves computing and communicating a new sharing among the servers.

4 Definitions and assumptions

Before presenting our language design, we detail the semantic structure used in our analysis. As shown below,
our semantic structure is sufficient to prove correctness and security theorems for the language we develop, and
general enough to encompass secret sharing, homomorphic encryption, and other platforms.

4.0.1 Primitive operations

We assume a family Y of sets, where each Y ∈ Y represents a set of primitive values. While different
platforms may provide different primitive values, we assume that at least {bool, unit} ⊆ Y , where bool =
{true, false} and unit = {()}. Although we do not require it, platforms often will also provide a set



int ∈ Y , representing bounded integers (e.g., 64-bit integer values, or values over a finite field Fp in some
implementations of secret sharing).

We also assume primitive operations op1, . . . , opr on these values, where each operation has its own
type: i.e., opi : dom(opi)→ cod(opi). (For instance, if op1 is addition modulo p, then dom(op1) = (int, int),
and cod(op1) = int.) To provide additional flexibility for richer language features, we also assume that
for each primitive type Y , we have a primitive branching operator: i.e., there is some opBr(Y ) such that
opBr(Y )(true, y1, y2) = y1 and opBr(Y )(false, y1, y2) = y2. (In platforms with addition and multiplica-
tion, for instance, we might have opBr(int)(b, z1, z2) = b · z1 + (1 − b) · z2.) In reality, some platforms might
only support branching operators for a subset of primitive types, or none at all (e.g., cryptosystems that are
only additively or multiplicatively, rather than fully, homomorphic). However, to simplify the formalism, we
assume branching operators for all primitive types; the development proceeds in a similar fashion for simpler
platforms, and only requires that additional restrictions be imposed on branching constructs (if-then-else).

4.1 Distributed computing infrastructure

We assume N servers, S1, . . . , SN , execute the secure computation on behalf of one client, C.2 (In many
natural cases, such as homomorphic encryption, N = 1). The (N + 1) parties will communicate by sending
messages via secure party-to-party channels; we denote by M the set of possible message values that may
be sent. A communication round is a set {(P (i)

1 , P
(i)
2 ,m(i))}1≤i≤r of triples, each indicating a sending party,

a receiving party, and a message m ∈ M . A communication trace is a sequence of communication rounds,
possibly empty, and T is the set of communication traces.

If A ⊆ {S1, . . . , SN} is any subset of the servers, the projection of trace T onto A, written ΠA(T ), is the
portion of the trace visible to the servers in A, i.e., ΠA(ε) = ε and:

ΠA({(S(i)
1 , S

(i)
2 ,m(i))}‖T ) =

{(S(i)
1 , S

(i)
2 ,m(i)) | {S(i)

1 , S
(i)
2 } ∩A 6= ∅}‖ΠA(T )

General form of cryptographic primitives We work with a two-element security lattice, P v S, representing
(respectively) “public” values, which are transmitted in the clear and may be revealed to any party; and “secret”
values, which are encrypted or otherwise hidden, and must remain completely unknown to the adversary. For
each primitive type Y ∈ Y , we assume a set ES(Y ), holding “secret equivalents” of base values in Y ; for
notational uniformity, we also define EP(Y ) = Y , signifying that the “public equivalent” of a value is just the
value itself. Similarly, we assume, for any y ∈ Y , a set ES(y) ⊂ ES(Y ), holding the “secret equivalents” of y
(with EP(y) = {y}); we assume that the sets {Eα(y) : y ∈ Y } form a partition of Eα(Y ). We recall that for
any two elements (or labels) of a lattice, we have a well-defined join (t), which corresponds to the least upper
bound of the two elements (e.g., P t S = S).

We also assume a few standard cryptographic primitives, expressed as protocol operations that may operate
on initial parameters ι ∈ I, generate communication traces among the parties, and/or consume bits from a
source of randomness. For clarity, we leave this randomness source implicit, instead considering each operation
to produce a distribution over the values in its range (and implicitly lifting the operations to act on distributions
over their domains). We regard predicates over these distributions to be true if they hold with probability 1.

The operations we assume are as follows (overloaded for all primitive types Y ):

• EncS : Y × I → ES(Y )× T , “hiding” y ∈ Y .

• DecS : ES(Y )× I → Y × T , “unhiding” ỹ ∈ ES(Y ).

2 The restriction to a single client is for clarity of presentation. The generalization to multiple clients is straightforward, and, indeed,
it is common in practice to have N parties in total executing a multiparty computation, each one serving as both a client and a server.



• Enc`1,...,`r(opi) :
∏
j E`j (dom(opi)j)×I → E⊔j `j

(cod(opi))×T (when at least one `j is S), evaluating
a primitive operation.

We also assume that Init describes the generation of initial parameters according to some distribution I (for
example, public and secret keys in the case of homomorphic encryption). For notational uniformity, as above,
we also define the corresponding operations in the degenerate case of “hiding” public values (operating as the
identity on the plaintext values, and yielding empty traces):

• EncP,...,P(opi)(y1, . . . , yr, ι) = (opi(y1, . . . , yr), ε)

• EncP(y, ι) = (y, ε)

• DecP(y, ι) = (y, ε)

We also write Dec as shorthand for DecP or DecS, as appropriate based on the domain (i.e., Dec acts as DecP

on Y , and acts as DecS on ES(Y )). In addition, we assume a projection operator from the initial parameters
onto any server or set of servers, writing:

ΠA(ι) = (Π{Sa1}(ι), . . . ,Π{Sak
}(ι))

(where A = {Sa1 , . . . , Sak}) to mean, intuitively, the portion of the initial parameters ι ∈ I that servers in A
should receive.

In addition, we assume that equality is efficiently decidable on any universe Y of primitive values; that the
label ` and universe Y of a value in E`(Y ) are efficiently computable from the value itself (e.g., by tagging,
when the underlying sets are the same); and that there is some canonical ordering on the universes.

Cryptographic correctness assumptions We assume the usual encryption and homomorphism conditions,
augmented for cryptographic primitives that depend on randomness and that may communicate among servers
to produce their result. For every element y of a primitive type Y , and every choice of initial parameters ι ∈ I,
we assume a family of safe distributions Ê ι`(y) over E`(y): intuitively, any distribution l ∈ Ê ι`(y) can safely
serve as the “hiding” of y under the initial parameters ι (at secrecy level ` ∈ {P,S}). We require that “hiding”
a base value must yield a safe distribution:

• π1(Enc`(y, ι)) ∈ Ê ι`(y)

We also require that unhiding (“decryption”) is the left-inverse of hiding (“encryption”), and hiding commutes
homomorphically with the primitive operations:

• π1(Dec`(π1(Enc`(y, ι)), ι)) = y

• π1(Enc`1,...,`r(opi)(l1, . . . , lr, ι)) ∈
Ê⊔

j `j
(opi(y1, . . . , yr), ι) whenever lj ∈ Ê ι`j (yj)

Indistinguishability conditions In general, the distributed threat model may involve any set of possible com-
binations of colluding servers. We formalize this by assuming a family A of sets that we refer to as valid sets
of untrusted servers. Intuitively, for any set of servers A ∈ A, we assume the cryptographic primitives are
intended to provide security even if an adversary has access to all information possessed by all servers in A.

Different platforms may provide different security guarantees of their primitives. For example, protocols
may specify that distributions are computationally indistinguishable (i.e., indistinguishable to a probabilistic
polynomial-time adversary), or information-theoretically indistinguishable (i.e., identical). For the purposes of
this development, we will use the term indistinguishable to refer to whichever of the above notions is specified
by the secure execution platform. Using this terminology, we require that any two sequences of partial traces



are indistinguishable if each pair of corresponding partial traces describes either 1.) a “hiding” operation;
2.) a primitive operation whose public arguments agree (and whose hidden arguments are safely-distributed);
or 3.) an “unhiding” operation on values that turn out to be equal. More precisely, we say that the pair of
communication rounds Tj(ι), T ′j(ι) is safe, denoted SAFE(ι, Tj(ι), T

′
j(ι)), if it satisfies any of the following

conditions:

1. Tj(ι) = π2(EncS(yj , ι)), and T ′j(ι) = π2(EncS(y′j , ι)) (for some Y , and yj , y′j ∈ Y ). In this case, we
say that Tj(ι), T ′j(ι) constitute a “safe hiding” (denoted SAFEENC(ι, Tj(ι), T

′
j(ι))).

2. Tj(ι) = π2(Enc`1,...,`r(opi)(ỹ1, . . . , ỹr, ι)) and T ′j(ι) = π2(Enc`1,...,`r(opi)(ỹ
′
1, . . . , ỹ

′
r, ι)) where for

each k, either:

• `k = S, and for some Yk, we have ỹk ∈ Ê ιS(yk) and ỹ′k ∈ Ê ιS(y′k), with yk, y′k ∈ Yk.

• `k = P, and for some Yk, we have ỹk, ỹ′k ∈ Yk, and ỹk = ỹ′k.

(and the analogous conditions for T ′j(ι)). In this case, we say that Tj(ι), T ′j(ι) constitute a “safe primitive
operation” (denoted SAFEOP(ι, Tj(ι), T

′
j(ι))).

3. Tj(ι) = π2(DecS(cj , ι)), T
′
j(ι) = π2(DecS(c′j , ι)) and π1(DecS(cj , ι)) = π1(DecS(c′j , ι)). In this case,

we say that Tj(ι), T ′j(ι) constitute a “safe unhiding” (denoted SAFEDEC(ι, Tj(ι), T
′
j(ι))).

We extend the predicate SAFE to pairs of entire traces if each component is safe: i.e., SAFE(ι, T1, T2) if
|T1| = |T2| and SAFE(ι, T1(j), T2(j)) for all j. Finally, we consider partial traces T (ι) = (T1(ι), . . . , Tm(ι))
and T ′(ι) = (T ′1(ι), . . . , T ′m(ι)), and the corresponding adversarial views:

• O(ι) = (ΠA(ι),ΠA(T1(ι)), . . . ,ΠA(Tk(ι)))

• O′(ι) = (ΠA(ι), ΠA(T ′1(ι)), . . . ,ΠA(T ′k(ι)))

We require the following indistinguishability condition: if SAFE(ι, Tj(ι), T
′
j(ι)) for every j, then the distribu-

tions O(Init()) and O′(Init()) are indistinguishable.

Definition 1. We say that the system (N, I, Init, E , Ê ,M,Enc,Dec,A) is a secure execution platform for (opi)
if it satisfies all of the conditions specified above.

5 Language design

We present a functional core language, λ→P,S, whose definition is parameterized by a set of given operations
over primitive types. This language is an extension of the simply-typed lambda calculus, with labeled types as
used in information flow languages (see, e.g., [30]). Our language design and analysis are valid for any secure
execution platform, and are thus parameterized over implementation details such as the number of servers, the
form of cryptography used, and the form and extent of communication in the system. From the programmer’s
standpoint, different cryptographic backends that support the same operations provide the same programming
experience.

In order to prove desired correctness and security properties, we formulate both a standard reference se-
mantics for λ→P,S and a distributed semantics that allows an arbitrary number of servers to communicate with
the client and with each other in order to complete a computation. Correctness of the distributed semantics is
then proved by showing an equivalence with the reference semantics, while security properties are proved by
analyzing the information available to the servers throughout the program execution.



5.1 Syntax

Our core language, λ→P,S, extends the simply-typed lambda calculus with primitive values, conditionals, mutable
stores, and a fixpoint operator. Figure 5 describes the language syntax. Throughout this section, we assume
primitive operations (opi) and a secure execution platform, as specified in Section 4.

Figure 5 λ→P,S syntax.

Types t ::= Y | (τ → τ) | Y ` ref

Labeled types τ ::= t`

Values v ::= y | a | λx.e | fix f.λx.e
Expressions e ::= v | x | X | e e

| if e then e else e
| opti(e, . . . , e) | ref e | !e | e := e

| reveal e
Programs p ::= read(X1 : Y1, . . . , Xn : Yn); e

In addition to standard constructs, expressions in λ→P,S may include variables bound at the program level by
the read construct, representing secret values input by the clients before the body of the program is evaluated;
these input variables are represented by capital letters X (in contrast to lambda-bound variables, which use
lowercase letters x), to emphasize the phase distinction between input processing and evaluation of the program
body3. Programs in λ→P,S may also include reveal operations, which specify that the value in question need
not be kept secret during the remainder of the computation. In addition to decrypting final result values (if
they are intended to be public), the reveal construct also enables declassification of intermediate results,
giving programmers fine-grained control over the tradeoff between performance and total secrecy. We note that
references in λ→P,S are limited to primitive types, since we later depend on some restricted termination results
(and termination need not hold if references of arbitrary type are permitted).

Figure 6 λ→P,S syntax (extended).

ṽ ::= v | ỹ | λx.ẽ | fix f.λx.ẽ | a | ϕ(ṽ1, ṽ2, ṽ3)

ẽ ::= e | ṽ | x | X | ẽ ẽ | if ẽ then ẽ else ẽ
| opti(ẽ, . . . ẽ) | ref ẽ | !ẽ | ẽ := ẽ

| reveal ẽ

In order to reason about the evaluation of programs we extend the language syntax as shown in Figure 6.
The previous syntax (Figure 5), is a subset of the extended syntax, and encompasses all expressions that the
programmer can write (which we refer to as the “surface syntax”), as well as values a, which range over
a countably infinite set of abstract memory locations (as in standard presentations of lambda calculus with
mutable references). However, the extensions are necessary to describe values that may result from evaluations
in the distributed semantics (described below), despite not being present at the surface level.

In particular, we have a case for possibly-hidden primitive values ỹ ∈ E`(Y ). As described in Section 4,
ỹ ∈ ES(Y ) is a hidden value, while ỹ ∈ EP(Y ) = Y is a publicly-visible value but, for notational uniformity,
may be regarded as hidden at the public confidentiality level. The value ϕ(b̃, ṽ2, ṽ3), where b̃ ∈ ES(bool),

3While we enforce this phase distinction to simplify the formalism, it is a straightforward extension to allow input and output
operations throughout the program, rather than restricting inputs to the beginning and outputs to the final value.



and ṽ2, ṽ3 are (extended) values intuitively represents a “deferred decision”. Because the boolean value b̃ was
secret, the system could not decide which of two values was the result of a conditional expression, and thus had
to propagate both. For example, the following expression:

ϕ(b̃, λx.0, λx.1)

might be the result of a conditional in which the condition evaluates to the secret boolean b̃. Note, however, that
a value such as ϕ(b̃, 17, 42) would never occur, since (as detailed below) the system would be able to evaluate
the condition homomorphically on hidden primitive values and produce a hidden primitive value.

5.2 Static semantics

The static semantics rules are shown in Figure 7. In the typing judgment, Γ, as usual, represents the typing
context for lambda-bound variables, while Σ represents the store typing (i.e., if Σ(a) = Y `, then the (extended)
expression ẽ should be evaluated in a store that maps a to an element of type Y `).

The key feature of the static semantics is the presence of value labels, ` ∈ {P, S}, as well as the context
label, C ∈ {P, S}. The intuitive meaning of these labels is similar to their meaning in standard information
flow systems [30, 31]. A value labeled t` is a value of type t at confidentiality level `. Our reveal operator, like
traditional declassification operators, indicates that a particular value is allowed to be leaked; statically, it acts
as a cast from S to P. A context label C signifies that an expression can be typed in a context in which control
flow may depend on values of confidentiality level C. In our language, as in standard information flow systems,
this context restriction is used to prevent implicit flows, such as an update to a public memory location inside
a secret conditional. However, in our model, we must also regard any deviation in control flow as a publicly
visible effect. Thus, not only updates to public memory locations, but also side-effects such as reveal, as well
as unbounded iteration (or potential nontermination), must be independent of secret values. This makes our
system, by necessity, strictly more restrictive than standard termination-insensitive information-flow systems
such as JFlow/Jif [32].

One can view these additional restrictions as specifying that the control flow of the program is visible to the
adversary, as in an oblivious memory model [33]; but, while intuitively helpful, this analogy does not present
a complete picture. In a sense, the purpose of information flow control in our system is dual to its purpose in
traditional language-based security: in a traditional system, the machine model permits the implementation of
arbitrary operations, and the information flow system must statically rule out code that would leak information;
while in our system, the machine model permits only operations that would not leak information (since secret
values are encrypted or otherwise hidden), and thus our system must statically rule out code that would not be
implementable in such a model.

In light of these objectives, we include additional restrictions in the static semantics, similar in flavor to
some type-and-effect systems [34, 35], in addition to standard information flow control constructs. For example,
in the conditional rule, we require that each branch is well-typed at a confidentiality level at least as high as
that of the condition. As in other information flow systems, this restriction rules out the canonical example of
implicit flow (where s is a secret boolean, and p is a reference to a public integer):

if s then p := 0 else p := 1

Since s is secret, the branches must type-check in a secret context; but the rule for assignment specifies that
the label of the reference receiving the assignment is at least as high as that of the surrounding context, which
cannot be satisfied by this expression. Our system also rules out the following expression:

if s1 then (reveal s2) else 17

The reveal operation would cause a publicly-observable side-effect (namely, causing a value to be “unhid-
den”), and thus it cannot be typed in a secret context. Similarly, our restrictions also rule out the following



Figure 7 Static semantics.

ỹ ∈ E`′(Y ) `′ v `
Γ,Σ, C ` ỹ : Y ` Γ,Σ, C ` x : Γ(x)

Σ(a) = Y `′

Γ,Σ, C ` a : (Y `′ ref)`

Γ,Σ, C ` b̃ : boolS Γ,Σ, C ` ṽ2 : (τ1
C→ τ2)`2 Γ,Σ, C ` ṽ3 : (τ1

C→ τ2)`3

Γ,Σ, C ` ϕ(b̃, ṽ2, ṽ3) : (τ1
C→ τ2)S

Γ,Σ, C ` b̃ : boolS Γ,Σ, C ` ṽ2 : (τ ref)`2 Γ,Σ, C ` ṽ3 : (τ ref)`3

Γ,Σ, C ` ϕ(b̃, ṽ2, ṽ3) : (τ ref)S

Γ[x 7→ τ1],Σ, C ′ ` e : τ

Γ,Σ, C ` λx.ẽ : (τ1
C′→ τ)`

Γ[f 7→ (τ1
P→ τ)`, x 7→ τ1],Σ, C ′ ` ẽ : τ

Γ,Σ, C ` fix f.λx.ẽ : (τ1
P→ τ)`

∀j ∈ {1, . . . , r} .Γ,Σ, C ` ẽj : ((dom opi)j)
`j ∧ `j v `

Γ,Σ, C ` opi(ẽ1, . . . , ẽr) : (cod opi)
`

Γ,Σ, C ` ẽ : (τ1
C′→ t`

′
)` Γ,Σ, C ` ẽ1 : τ1 ` v C ′ C v C ′ ` t `′ v `′′

Γ,Σ, C ` ẽ ẽ1 : t`
′′

Γ,Σ, C ` ẽ1 : bool`
′

Γ,Σ, C t `′ ` ẽ2 : t`
′′

Γ,Σ, C t `′ ` ẽ3 : t`
′′

`′ t `′′ v `
Γ,Σ, C ` if ẽ1 then ẽ2 else ẽ3 : t`

Γ,Σ, C ` ẽ1 : (t`
′
ref)` Γ,Σ, C ` ẽ2 : t`

′
C v `′ ` v `′

Γ,Σ, C ` ẽ1 := ẽ2 : unit`
′′

Γ,Σ, C ` ẽ : Y S

Γ,Σ,P ` reveal ẽ : Y `

Γ,Σ ` ẽ : Y `′

Γ,Σ, C ` ref ẽ : (Y `′ref)`

Γ,Σ, C ` ẽ : (Y `′ ref)`
′′

`′ v ` `′′ v `
Γ,Σ, C `!ẽ : Y `

{X1 7→ Y1 . . . Xn 7→ Yn}, ∅, C ` e : τ

` read(X1 : Y1 . . . Xn : Yn); e : τ

expression, although the reasoning is more involved:

fix f . λs . (if s ≤ 0 then 1 else s ∗ f(s− 1))

Notably, in the rules for lambda abstraction and recursive function definition, we add a context label above

the arrow (τ1
C′→ τ), signifying that the resulting function, when applied, may generate effects that must be



confined to a context C ′ (independent of the context C in which the term itself is evaluated).4 In the case of
general recursion, this effect label is assumed to be P, since we conservatively assume that any application of
a function defined by general recursion (either within its own definition, or as a standalone expression) may
generate unpredictable, publicly-observable control flow behavior, including divergence. It is also worth noting
that a function’s effect context label, C ′, is only taken into account when the function is applied; for instance,
the following expression is well-typed:

if s then (fix f . λx . f x) else (λx . x)

The dependence of confidentiality on control flow also raises more subtle issues that necessitate additional
typing restrictions. For instance, the following expression clearly does not preserve confidentiality (and thus
cannot be implemented on a secure execution platform):

(if s then p1 else p2) := 42

The underlying principle in this example is that values escaping a secret context may carry secret information
with them, and thus computations that depend on them must be well-typed in a secret context. Indeed, this
restriction is reflected in the static semantics. In the assignment rule, the restriction ` v `′ expresses that
information could flow from the confidentiality label of the reference itself to the label of its contents: i.e., one
can never write to a secret reference cell (a memory location whose identity is secret) if its contents may be
public. A similar situation arises with lambda abstractions, as in the following (ill-typed) example:

(if s1 then (λx . reveal s2) else (λx . 17)) ()

In the application rule, as above, the restriction ` v C ′ expresses that information could flow from the identity
of the function to the context in which it executes: i.e., one can never apply a function whose identity is secret
if it might have publicly-observable effects.

5.3 Dynamic semantics

We now give a standard dynamic semantics for λ→P,S, the “reference semantics” (Figure 8), extending the eval-
uation rules for the simply-typed lambda calculus. As described above, the reference semantics gives a precise
specification for the evaluation of a program, against which the actual secure implementation (the “distributed
semantics”) can be compared for correctness.

In the reference semantics, the mutable store µ maps addresses (generated by ref) to the values they
contain, while the environment κ represents the initial (secret) values supplied by the client. The judgment
(µ, e) ↓ (v, µ′,O) indicates that the expression e, when evaluated in an initial store µ, produces a value v, a
final store µ′, and a sequence O of “observations”, holding all values ever supplied to reveal throughout the
evaluation (where the operator ‖ indicates concatenation of observation sequences). The observation sequences
are important in proving security properties (Theorem 2, below), as we will show that an appropriately con-
strained adversary learns nothing except what is logically entailed by these observations. The read construct
only serves to bind the initial client-input variables, and is essentially a no-op; for clarity, however, we retain
it in the syntax, since in the distributed semantics (Figure 10), it will represent the initial “hiding” operation
(potentially including communication between the client and servers).

We give an additional dynamic semantics, the “distributed semantics” (Figure 10), that reflects the actual
steps taken by an implementation in terms of a secure execution platform. Values in the distributed semantics
may be “hidden” from the server(s) computing on them – shared or otherwise encrypted, according to the

4For simplicity of presentation, lambda abstractions in our syntax do not carry the traditional type annotations, λ(x : t).e. In any
concrete implementation, we assume that terms are appropriately annotated with (unlabeled) types, so that type-checking becomes
tractable while preserving label subtype polymorphism. Since such restrictions permit the typing of strictly fewer terms, our theoretical
results still hold.



Figure 8 Reference semantics for λ→P,S.

(v, µ) ↓ (v, µ, ε)

∀j ∈ {1, . . . , r} . (ej , µj−1) ↓ (yj , µj ,Oj)
(opti(e1, . . . , er), µ0) ↓ (opti(y1, . . . , yr), µ

′,O1‖ . . . ‖Or)

(e0, µ) ↓ (fix f.λ(x : t).e′0, µ0,O0) (e1, µ0) ↓ (v1, µ1,O1)
(e′0[fix f.λx.e′0)/f, v1/x], µ1) ↓ (v′, µ′,O2)

(e0 e1, µ) ↓ (v′, µ′,O0‖O1‖O2)

(e0, µ) ↓ (λx.e′0, µ0,O0) (e1, µ0) ↓ (v1, µ1,O1) (e[v1/x], µ1) ↓ (v′, µ′,O2)

(e0 e1, µ) ↓ (v′, µ′,O0‖O1‖O2)

(e1, µ) ↓ (true, µ1,O1) (e2, µ1) ↓ (v′, µ′,O2)

(if e1 then e2 else e3, µ) ↓ (v′, µ′,O1‖O2)

(e1, µ) ↓ (false, µ1,O1) (e3, µ1) ↓ (v′, µ′,O3)

(if e1 then e2 else e3, µ) ↓ (v′, µ′,O1‖O3)

(e1, µ) ↓ (a, µ1,O1) (e2, µ1) ↓ (v2, µ2,O2)

(e1 := e2, µ) ↓ ((), µ2[a 7→ v2],O1‖O2)

(e, µ) ↓ (y, µ′,O)

(reveal e, µ) ↓ (y, µ′,O‖y)

(e, µ) ↓ (v1, µ1,O) a /∈ domµ1

(ref e, µ) ↓ (a, µ1[a 7→ v1],O)

(e, µ) ↓ (a, µ′,O) a ∈ domµ′

(!e, µ) ↓ (µ′(a), µ′,O)

(e[κ(X1)/X1 . . . κ(Xn)/Xn], ∅) ↓ (v, µ,O)

(κ, read(X1 : Y1, . . . , Xn : Yn); e) ↓ (v, µ,O)

primitives of the secure execution platform. Thus, the distributed semantics makes central use of the lifted,
or homomorphic, operations of the platform. In particular, we use the lifted primitives, Enc`1,...,`r(opi), to
match the execution of the ordinary primitive operations opi in the reference semantics. It is also worth noting
that the distributed semantics implicitly act on probability distributions. As described above, the output of an
operation in the secure execution platform is a distribution, and thus, when an operation f(x̃) appears in a
semantic rule, it should be considered lifted to act on distributions (i.e., f(x̃) represents the sum of distributions∑

x∈dom x̃ px̃(x)f(x), where px̃ is a probability mass function of the distribution x̃).
Before presenting the distributed semantics, we need a few auxiliary definitions. First, we define a join

operator, Φι, that recursively joins two values according to a secret boolean (applying a primitive branching
operator, if the values are primitive, and otherwise “deferring” the join by wrapping the boolean and operands
in a ϕ symbol):



Φι(b̃, ṽ2, ṽ3) =


(ṽ2, ε) if ṽ2 ∈ EP(Y ) and ṽ2 = ṽ3

Enc`1,`2,`3(opBr(Y ))(b̃, ṽ2, ṽ3, ι)

if b̃ ∈ E`1(bool), ṽ2 ∈ E`2(Y ), ṽ3 ∈ E`3(Y )

(ϕ(b̃, ṽ2, ṽ3), ε) otherwise

We extend Φι to stores as follows. First, assume the addresses (a1, . . . , an) in dom µ̃2∪dom µ̃3 are ordered
lexicographically by the pair of type signatures of µ̃2(ai) and µ̃3(ai): i.e., by (sigµ̃2(ai), sigµ̃3(ai)), where:

sigµ̃(ai) =

{
(Y, `) if µ̃(ai) ∈ E`(Y )

∗ otherwise

Then we define:

Φι(b̃, µ̃2, µ̃3) =
({ai 7→ π1(Z(ai)) : i ∈ {1, . . . , n}}, π2(Z(a1))‖ · · · ‖π2(Z(an)))

where:

Z(a) =


Φι(b̃, µ̃2(a), µ̃3(a)) if a ∈ dom µ̃2 ∩ dom µ̃3

(µ̃2(a), ε) if a ∈ dom µ̃2 \ dom µ̃3

(µ̃3(a), ε) if a ∈ dom µ̃3 \ dom µ̃2

In addition, we use the join operator Φι to define the result of updating a reference (consisting of either an
address, or a ϕ symbol of references), as well as the result of retrieving a reference’s value:

Definition 2 (Update Operator).

updateι(µ̃, a, ṽ) = (µ̃[a 7→ ṽ], ε)

updateι(µ̃, ϕ(b̃, ṽ2, ṽ3), ṽ) = (π1(Z), π2(Z2)‖π2(Z3)‖π2(Z))
where Z2 = updateι(µ̃, ṽ2, ṽ)

Z3 = updateι(µ̃, ṽ3, ṽ)

Z = Φι(b̃, π1(Z2), π1(Z3))

Definition 3 (Select Operator).

selectι(µ̃, a) = (µ̃(a), ε)

selectι(µ̃, ϕ(b̃, ṽ2, ṽ3), ṽ) = (π1(Z), π2(Z2)‖π2(Z3)‖π2(Z))
where Z2 = selectι(µ̃, ṽ2)

Z3 = selectι(µ̃, ṽ3)

Z = Φι(b̃, π1(Z2), π1(Z3))

We note that all of the above definitions may execute branching operators in order to join primitive values, and
thus may produce communication traces. For convenience, we will also use subscripts to indicate projections
of the above operators (e.g., Φι

1(ṽ1, ṽ2, ṽ3) = π1(Φι(ṽ1, ṽ2, ṽ3))).
We now present the distributed semantics (Figures 9 and 10). In this semantics, we use the extended form of

the expression syntax (ẽ), signifying that expressions may contain possibly-hidden primitive values ỹ ∈ E`(Y ),
as well as ϕ symbols ϕ(b̃, ṽ2, ṽ3) (discussed below). The evaluation judgment (ẽ, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O) signifies
that an expression ẽ, when evaluated in an initial store µ̃ and initialized with platform parameters ι, evaluates
to the value ṽ′, producing a final store µ̃′, a communication trace T , and observations O (again containing all
values ever supplied to the reveal operator). In contrast to the reference semantics, the distributed semantics



Figure 9 Distributed dynamic semantics for λ→P,S (part 1 of 2).

(ṽ, µ̃, ι) ⇓ (ṽ, µ̃, ε, ε)

∀j ∈ {1, . . . , r} . (ej , µ̃j−1, ι) ⇓ (ỹj , µ̃j , Tj ,Oj) ∀j ∈ {1, . . . , r} . ỹj ∈ E`j (Yj)
Enc`1,...,`r(opi)(ỹ1, . . . , ỹr, ι) = (ỹ′, T ) T ′ = T1‖ · · · ‖Tr‖T O′ = O1‖ · · · ‖Or

(opi(e1, . . . , er), µ̃0, ι) ⇓ (ỹ′, µ̃r, T
′,O′)

(ẽ0, µ̃, ι) ⇓ (λx.ẽ′0, µ̃0, T0,O0) (ẽ1, µ̃0, ι) ⇓ (ṽ1, µ̃1, T1,O1)
(ẽ′0[ṽ1/x], µ̃1, ι) ⇓ (ṽ′, µ̃′, T2,O2)

(ẽ0 ẽ1, µ̃, ι) ⇓ (ṽ′, µ̃′,O0‖O1‖O2,O0‖O1‖O2)

(ẽ0, µ̃, ι) ⇓ (fix f.λx.ẽ′0, µ̃0, T0,O0) (ẽ1, µ̃0, ι) ⇓ (ṽ1, µ̃1, T1,O1)
(ẽ′0[(fix f.λx.ẽ′0)/f, ṽ1/x], µ̃1, ι) ⇓ (ṽ′, µ̃′, T2,O2)

(ẽ0 ẽ1, µ̃, ι) ⇓ (ṽ′, µ̃′, T0‖T1‖T2,O0‖O1‖O2)

(ẽ0, µ̃, ι) ⇓ (ϕ(b̃, ṽ2, ṽ3), µ̃0, T0,O0)

b̃ ∈ ES(bool) (ẽ1, µ̃0, ι) ⇓ (ṽ1, µ̃1, T1,O1) (ṽ2 ṽ1, µ̃1, ι) ⇓ (ṽ′2, µ̃2, T2,O2)

(ṽ3 ṽ1, µ̃1, ι) ⇓ (ṽ′3, µ̃3, T3,O3) (ṽ′, T4) = Φι(b̃, ṽ′2, ṽ
′
3) (µ̃′, T5) = Φι(b̃, µ̃2, µ̃3)

(ẽ0 ẽ1, µ̃, ι) ⇓ (ṽ′, µ̃′, T0‖ · · · ‖T5,O0‖ · · · ‖O3)

(ẽ, µ̃, ι) ⇓ (ỹ, µ̃′, T1,O) (ỹ′, T2) = DecS(ỹ, ι)

(reveal ẽ, µ̃, ι) ⇓ (ỹ′, µ̃′, T1‖T2,O‖ỹ′)

(ẽ1, µ̃, ι) ⇓ (true, µ̃1, T1,O1) (ẽ2, µ̃1, ι) ⇓ (ṽ′, µ̃′, T2,O2) T = T1‖T2 O = O1‖O2

(if ẽ1 then ẽ2 else ẽ3, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O)

(ẽ1, µ̃, ι) ⇓ (false, µ̃1, T1,O1) (ẽ3, µ̃1, ι) ⇓ (ṽ′, µ̃′, T3,O3) T = T1‖T3 O = O1‖O3

(if ẽ1 then ẽ2 else ẽ3, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O)

specifies that reveal and read operations result in communication between the parties according to the pa-
rameters of the secure execution platform: the reveal rule specifies that the parties execute an “unhiding”, or
decryption, DecS, of a secret value, while the read rule specifies that the client initializes the secure execu-
tion platform, distributes to each server its view of the initial parameters (Π{Si}(ι)), and executes the “hiding”,
EncS, of the secret values in the client’s initial environment κ.

For most of the other rules, we can intuitively regard evaluation in the distributed semantics as proceeding
in lock-step with the reference semantics, executing the corresponding operations as provided by the secure ex-
ecution platform, as long as control flow proceeds independently of secret values. For example, the distributed
semantics provides two distinct rules for conditionals (if-then-else). When the condition evaluates to a pub-
lic boolean (i.e., an element of EP(bool) = bool), the evaluation precisely mirrors the reference semantics;
observations and communication traces are propagated unchanged.

When control flow does depend on a secret value, however, the distributed semantics yields different behav-
ior. For instance, when a condition evaluates to a secret boolean b̃, the distributed semantics specifies that both
branches should be evaluated in the same store µ̃1, each generating its own value and resulting store (ṽ2, µ̃2)
and (ṽ3, µ̃3). The distributed semantics then merges these values and stores, according to the secret boolean b̃,
using the Φι function. For example, if ṽ2 and ṽ3 are (hidden) primitive values representing, respectively, 17 and



Figure 10 Distributed dynamic semantics for λ→P,S (part 2 of 2).

b̃ ∈ E ιS(bool)

(ẽ1, µ̃, ι) ⇓ (b̃, µ̃1, T1,O1)
(ẽ2, µ̃1, ι) ⇓ (ṽ2, µ̃2, T2,O2) (ẽ3, µ̃1, ι) ⇓ (ṽ3, µ̃3, T3,O3) dom µ̃2 ∩ dom µ̃3 = dom µ̃1

(ṽ′, T4) = Φι(b̃, ṽ2, ṽ3) (µ̃′, T5) = Φι(b̃, µ̃2, µ̃3) T = T1‖ · · · ‖T5 O = O1‖O2‖O3

(if ẽ1 then ẽ2 else ẽ3, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O)

(ẽ1, µ̃, ι) ⇓ (ṽ1, µ̃1, T1,O1) (ẽ2, µ̃1, ι) ⇓ (ṽ, µ̃2, T2,O2)
(µ̃′, T ′) = updateι(µ̃2, ṽ1, ṽ2)

(ẽ1 := ẽ2, µ̃, ι) ⇓ ((), µ̃′, T1‖T2‖T ′,O1‖O2)

(ẽ1, µ̃, ι) ⇓ (ṽ1, µ̃1, T,O) a /∈ dom µ̃

(ref ẽ1, µ̃, ι) ⇓ (a, µ̃1[a 7→ ṽ], T,O)

(ẽ, µ̃, ι) ⇓ (ṽ′1, µ̃
′, T1,O) (ṽ′, T ′) = selectι(µ̃′, ṽ1)

(!ẽ, µ̃, ι) ⇓ (ṽ′, µ̃′, T1‖T ′,O)

ι = Init()
T0 = {(C, Si,Π{Si}(ι)) : 1 ≤ i ≤ N} ∀j ∈ {1, . . . , r}.(ṽj , T ′j) = EncS(κ(Xj), ι)

(e[ṽ1/X1 . . . ṽr/Xr], ∅, ι) ⇓ (ṽ′, µ̃′, T ′,O) T = T0‖T ′1‖ . . . ‖T ′r‖T ′

(κ, read(X1 : Y1, . . . Xr : Yr); e) ⇓ (ṽ′, µ̃′, T,O)

42, and the boolean b̃ is a (hidden) representation of true, then the result:

Φι(b̃, ṽ2, ṽ3) = EncS,S,S(opBr(int))(b̃, ṽ2, ṽ3, ι)

will be a hidden representation of 17, along with whatever traces were produced by the execution of the protocol
operation EncS,S,S(opBr(int)). On the other hand, if ṽ2 and ṽ3 are non-primitive values – e.g., lambda abstrac-
tions – then the join function, Φι, is unable to arithmetize the branch immediately, since the arguments to
which the abstractions will be applied are not available. Thus, Φι wraps these operands in the special “deferred
decision” symbol ϕ:

Φι(b̃, ṽ2, ṽ3) = ϕ(b̃, ṽ2, ṽ3)

The contents of each memory address in the pair of stores are merged by Φι in the same fashion (arithmetization,
for primitive values; and wrapping by ϕ symbols, for non-primitive values). It is worth noting that since stores
contain only primitive values, this process can never cause a memory location to contain a ϕ symbol.

Conversely, when values wrapped in ϕ symbols appear as results of evaluated subexpressions (e.g., in the
rule for application of a ϕ symbol), the distributed semantics takes the value from each branch, uses it to
evaluate the entire expression (inductively), and merges the results (again using the Φι function). For example,
if ẽ1 evaluates to ϕ(b̃, λx.0, λx.1), and ẽ2 evaluates to 17, then the application ẽ1 ẽ2 causes the subexpressions
(λx.0) 17 and (λx.1) 17 to be evaluated (returning 0 and 1), and finally executes the merge Φι(b̃, 0, 1) (which,
if b̃ is a hidden representation of true, will produce a hidden primitive value representing 0).

The case of assignment to a secret reference is similar. Since it is secret, the reference might evaluate to
a tree of nested ϕ symbols (e.g., ϕ(b̃1, ϕ(b̃2, a1, a2), a3)), rather than a single address. In this case, using the
update operator, we perform the update recursively on the references from the left and right branches of the ϕ
symbol, then join the resulting (updated) stores as above.



5.4 Theoretical results

Before presenting our main results, we will need a series of auxiliary definitions and lemmas. For continuity,
we defer the proofs of these lemmas to Appendix A. We begin with some standard results, and proceed to note
some immediate consequences of our definition of λ→P,S and its semantics.

Lemma 1 (Weakening). If Γ,Σ, C ` ẽ : τ , Γ′ ⊇ Γ, and Σ′ ⊇ Σ, then Γ′,Σ′, C ` ẽ : τ .

For an environment ρ mapping variables to terms, we extend ρ to expressions in the usual way, defining
ρ(ẽ) to be ẽ with any free variable x replaced by ρ(x).

Lemma 2 (Substitution). If Γ,Σ, C ` ẽ : τ , and for all x ∈ dom Γ, we have Γ,Σ, C ` ρ(x) : Γ(x), then
∅,Σ, C ` ρ(ẽ) : τ .

Lemma 3 (Output of Evaluation is a Value).

• If (e, µ) ↓ (v, µ′,O), then for all µ1, (v, µ1) ↓ (v, µ1, ε).

• If (ẽ, µ̃, ι) ⇓ (ṽ, µ̃′,O), then for all µ̃1, (ṽ, µ̃1, ι) ⇓ (ṽ, µ̃1, ε, ε).

• ṽ is an (extended) value in the syntax if and only if (ẽ, µ̃, ι) ⇓ (ṽ, µ̃′,O) for some ẽ, µ̃.

Henceforth, we will assume Lemma 3 implicitly, using the term “value” to refer to any of the above defini-
tions.

Lemma 4 (Values are Closed). If ṽ is a value, then ṽ contains no free variables.

Lemma 5 (Well-Typed Values are Well-Typed in Secret Contexts). If Γ,Σ, C ` ṽ : τ , and ṽ is a value, then
Γ,Σ,S ` ṽ : τ .

Lemma 6 (Context Subtyping). If Γ,Σ, C ` ẽ : τ , and C ′ v C, then Γ,Σ, C ′ ` ẽ : τ ,

In what follows, we assume Ψ is a bijective mapping between sets of memory locations. We will write
Ψ : A ↔ B to signify that Ψ has domain A and codomain B. We also denote by Addrs(ẽ) the set of memory
locations contained by an expression ẽ, and we extend mappings Ψ to expressions ẽ inductively, applying Ψ to
each address contained in ẽ, requiring that Addrs(ẽ) ⊆ dom Ψ.

Lemma 7 (Extension of Permutations). If Ψ′ ⊇ Ψ and Addrs(ẽ) ⊆ dom Ψ then Ψ(ẽ) = Ψ′(ẽ).

Lemma 8 (Well-Typed Expressions are Address-Closed). If ∅,Σ, C ` ẽ : τ , then Addrs(ẽ) ⊆ dom Σ.

Lemma 9 (Distributed Semantics Preserves Address-Closed Expressions). If (ẽ, µ̃, ι) ⇓ (ṽ, µ̃′, T,O), and
Addrs(ẽ) ⊆ µ̃, then Addrs(ṽ) ⊆ µ̃′.

Lemma 10 (Permutation Invariance of Static Semantics). If Γ,Σ, C ` ẽ : τ then Γ,Ψ(Σ), C ` Ψ(ẽ) : τ .

Lemma 11 (Permutation Invariance of Distributed Semantics). If Addrs(ẽ) ⊆ dom µ̃, (ẽ, µ̃, ι) ⇓ (ṽ, µ̃1, T,O),
then (Ψ(ẽ),Ψ(µ̃), ι) ⇓ (Ψ(ṽ),Ψ(µ̃1), T,O).

We also require some basic properties of the join and update function, Φι and updateι, defined above.

Lemma 12 (Phi Takes the Union of Domains). If µ̃ = Φι
1(b̃, µ̃2, µ̃3), then dom µ̃ = dom µ̃2 ∪ dom µ̃3.

Lemma 13 (Store Update Preserves Domain). If µ̃′ = updateι1(µ̃, ṽ, ṽ′) and Addrs(ṽ) ⊆ dom µ̃ then dom µ̃′ =
dom µ̃.

Lemma 14 (Substitution Commutes With Permutation). If ẽ2 = Ψ(ẽ1) and ṽ2 = Ψ(ṽ1), then ẽ2[ṽ2/x] =
Ψ(ẽ1[ṽ1/x]).



Lemma 15 (Permutation Invariance of Join of Values). If (ṽ1)b = Ψ((ṽ1)a), (ṽ2)b = Ψ((ṽ2)a), (ṽ3)b =
Ψ((ṽ3)a), ṽ′a = Φι

1((ṽ1)a, (ṽ2)a), (ṽ3)a), and ṽ′b = Φι
1((ṽ1)b, (ṽ2)b), (ṽ3)b), then ṽ′b = Ψ(ṽ′a).

Lemma 16 (Permutation Invariance of Join of Stores). If (ṽ1)b = Ψ((ṽ1)a), (µ̃2)b = Ψ((µ̃2)a), (µ̃3)b =
Ψ((µ̃3)a), µ̃′a = Φι

1((ṽ1)a, (µ̃2)a), (µ̃3)a), and µ̃′b = Φι
1((ṽ1)b, (µ̃2)b), (µ̃3)b), then µ̃′b = Ψ(µ̃′a).

Lemma 17 (Permutation Invariance of Store Update). If µ̃b = Ψ(µ̃a), ṽb = Ψ(ṽa), and ṽ′b = Ψ(ṽ′a), µ̃′a =
updateι1(µ̃a, ṽa, ṽ

′
a), and µ̃′b = updateι1(µ̃b, ṽb, ṽ

′
b), then µ̃′b = Ψ(µ̃′a).

Lemma 18 (Permutation Invariance of Store Selection). If µ̃b = Ψ(µ̃a), ṽb = Ψ(ṽa), ṽ′a = selectι2(µ̃a, ṽa),
and ṽ′b = selectι2(µ̃b, ṽb), then ṽ′b = Ψ(ṽ′a).

In many of the following lemmas, we will need the property that the distributed semantics is essentially
deterministic: i.e., evaluations of two identical expression/store pairs (up to permutation of memory locations)
produces identical results (again up to permutation).

Lemma 19 (Determinism of Distributed Semantics). If (ẽa, µ̃a, ι) ⇓ (ṽ′a, µ̃
′
a, Ta,Oa), ẽb = Ψ(ẽa), µ̃b =

Ψ(µ̃a), (ẽb, µ̃b, ι) ⇓ (ṽ′b, µ̃
′
b, Tb,Ob), and Ψ : dom µ̃a ↔ dom µ̃b, then Oa = Ob and for some Ψ′ ⊇ Ψ,

Ψ′ : dom µ̃′a ↔ dom µ̃′b, ṽ
′
b = Ψ′(ṽ′a) and µ̃′b = Ψ′(µ̃′a).

We will also need a series of definitions and results concerning typing of stores and their operations.

Definition 4 (Store Typing). We define ` µ̃ : Σ if for all a ∈ dom Σ, whenever Σ(a) = Y `, we have
µ̃(a) ∈ E`′(Y ).

To simplify notation, we also define a notion of well-formed store typing extension.

Definition 5 (Type Extension). We define (µ̃′,Σ′) �ι (µ̃,Σ) if ` µ̃ : Σ, ` µ̃′ : Σ′, and Σ′ ⊇ Σ.

Lemma 20 (Phi Preserves Value Typing). If b̃ ∈ E`(bool); Σ2|dom Σ3 = Σ3|dom Σ2; Σ′ = Σ2 ∪ Σ3; ṽ′ =
Φι

1(b̃, ṽ2, ṽ3); ∅,Σ2, S ` ṽ2 : τ ; and ∅,Σ3, S ` ṽ3 : τ , then ∅,Σ′, S ` ṽ′ : τ .

Lemma 21 (Phi Preserves Store Typing). If b̃ ∈ E`(bool), ` µ̃2 : Σ2, ` µ̃3 : Σ3, Σ2|dom Σ3 = Σ3|dom Σ2 , and
µ̃′ = Φι

1(b̃, µ̃2, µ̃3), then ` µ̃′ : Σ2 ∪ Σ3.

Lemma 22 (Store Update Preserves Store Typing). If ∅,Σ, C ` ṽ : (Y ` ref)`
′
; ∅,Σ, C ` ṽ′ : Y `; `′ v `;

` µ̃ : Σ; and µ̃′ = updateι1(µ̃, ṽ, ṽ′), then ` µ̃′ : Σ.

Lemma 23 (Store Selection Preserves Typing). If ∅,Σ, S ` ṽ : (Y `′ ref)`
′′
; `′, `′′ v `; ` µ̃ : Σ; and

ṽ′ = selectι1(µ̃, ṽ), then ∅,Σ, S ` ṽ′ : Y `.

Given these results, we can now prove a standard type preservation lemma for the distributed semantics.

Lemma 24 (Type Preservation for Distributed Semantics). If ∅,Σ, C ` ẽ : τ , ` µ̃ : Σ, and (ẽ, µ̃, ι) ⇓
(ṽ′, µ̃′, T,O), then for some Σ′, (µ̃′,Σ′) �ι (µ̃,Σ), and ∅,Σ′, C ′ ` ṽ′ : τ for any C ′.

In order to ensure that joins of stores are well-defined, we will often need stores to agree on any values in
locations typed as public. Thus, we state the following definition, which expresses that one store is a “public
extension” of another – i.e., each is well-typed (the latter according to a superset of the type environment of the
former); and the latter differs only in locations that were not typed as public.

Definition 6 (Public Extension). We define µ̃′ %ι
Σ µ̃ if for any address a ∈ dom µ̃, if Σ(a) = Y P then

µ̃′(a) = µ̃(a).

For convenience, we also give the following notation for stores that are each well-typed and also form a
public extension.



Definition 7 (Full Public Extension). We define (µ̃′,Σ′) %ι (µ̃,Σ) if ` µ̃ : Σ, ` µ̃′ : Σ′, Σ′ ⊇ Σ, and µ̃′ %ι
Σ µ̃.

We also state some facts about public extensions that follow from this definition.

Lemma 25 (Permutation Invariance of Public Extension). If µ̃′ %ι
Σ µ̃, ` µ̃ : Σ, and Ψ|dom Σ = id, then

Ψ(µ̃′) %ι
Σ µ̃.

Lemma 26 (Permutation Invariance of Full Public Extension). If (µ̃′,Σ′) %ι (µ̃,Σ) and Ψ|dom Σ = id, then
(Ψ(µ̃′),Ψ(Σ′)) %ι (µ̃,Σ).

Lemma 27 (Phi is a Public Extension). If b̃ ∈ E`(bool), (µ̃2,Σ2) %ι (µ̃1,Σ1), (µ̃3,Σ3) %ι (µ̃1,Σ1), dom Σ2∩
dom Σ3 ⊆ dom Σ1, then (Φι

1(b̃, µ̃2, µ̃3),Σ2 ∪ Σ3) %ι (µ̃1,Σ1).

Now, we give the key definitions for one of the main lemmas: Lemma 35, conditional purity for the dis-
tributed semantics, which states that if an expression is well-typed in a secret context, then its evaluation termi-
nates, yields no observations, and produces no publicly-observable effects on the mutable store. We will prove
this result using the method of reducibility; we now define the corresponding reducibility predicate (Figure 11,
notated as ṽ ∈ V(τ,Σ) (the value ṽ is reducible at type τ , under store typing context Σ).

Figure 11 Reducibility predicate for distributed semantics.

∀ṽ1 ∈ V(τ1,Σ1) .Σ1 ⊇ Σ ∧ ` µ̃1 : Σ1 =⇒
(ẽ[ṽ1/x], µ̃1, ι) ⇓ (ṽ′, µ̃′, T, ε) ∧ ṽ′ ∈ V(τ,Σ′) ∧ (µ̃′,Σ′) %ι (µ̃1,Σ1)

λx.ẽ ∈ V((τ1
S→ τ)`,Σ)

`′ v ` ỹ ∈ E ι`′(Y )

ỹ ∈ V(Y `,Σ)

Σ(a) = Y `

a ∈ V((Y ` ref)`
′
,Σ)

b̃ ∈ E`1(bool) ṽ2, ṽ3 ∈ V((τ ref)`,Σ)

ϕ(b̃, ṽ2, ṽ3) ∈ V((τ ref)`,Σ)

b̃ ∈ E`1(bool) ṽ2, ṽ3 ∈ V((τ1
S→ τ)`,Σ)

ϕ(b̃, ṽ2, ṽ3) ∈ V((τ1
S→ τ)`,Σ)

b̃ ∈ E`1(bool) ∀ṽ1 ∈ V(τ1,Σ1) .Σ1 ⊇ Σ ∧ ` µ̃1 : Σ1 =⇒
(ṽ2 ṽ1, µ̃1, ι) ⇓ (ṽ′2, µ̃

′
2, T, ε) ∧ ṽ′2 ∈ V(τ,Σ′2) ∧ (µ̃′2,Σ

′
2) %ι (µ̃1,Σ1)∧

(ṽ3 ṽ1, µ̃1, ι) ⇓ (ṽ′3, µ̃
′
3, T, ε) ∧ ṽ′3 ∈ V(τ,Σ′3) ∧ (µ̃′3,Σ

′
3) %ι (µ̃1,Σ1)

ϕ(b̃, ṽ2, ṽ3) ∈ V((τ1
S→ τ)`,Σ)

(−,−, ι) ⇓ (ṽ,−,−,−)

ṽ ∈ V((τ1
P→ τ)−,Σ)

We note that we make no requirement of values reducible at public arrow types (i.e., types with publicly-
observable effects), as they can never be applied in a secret context (and thus Lemma 35 is not concerned with
their execution). Before proceeding, we also note a few facts about the reducibility predicate:

Lemma 28 (Reducible Values are Values). If ṽ ∈ V(τ,Σ), then ṽ is a value.

Lemma 29 (Permutation Invariance of Reducibility Predicate). If ṽ ∈ V(τ,Σ), then Ψ(ṽ) ∈ V(τ,Ψ(Σ)).

Lemma 30 (Store Weakening for Reducibility Predicate). If ṽ ∈ V(τ,Σ), and Σ′ ⊇ Σ, then ṽ ∈ V(τ,Σ′).

Lemma 31 (Phi of Reducible Values is Reducible). If b̃ ∈ E`(bool), ṽ2 ∈ V(τ,Σ2), ṽ3 ∈ V(τ,Σ3), and
Σ2,3 ⊇ Σ2,Σ3, then Φι

1(b̃, ṽ2, ṽ3) ∈ V(τ,Σ2,3).

Lemma 32 (Update to Reducible Secret Reference is a Public Extension). If ṽ ∈ V((Y S ref)`
′
,Σ), ` µ̃ : Σ,

and ṽ′ ∈ E`(Y ), then (updateι1(µ̃, ṽ, ṽ′),Σ) %ι (µ̃,Σ).



Lemma 33 (Select on Reducible Secret Reference is Reducible). If ṽ ∈ V((Y `′)`
′′

ref,Σ), ` µ̃ : Σ, `′ v `,
and `′′ v `, then selectι1(µ̃, ṽ) ∈ V(Y `,Σ).

For convenience, we now prove a generalization of the application case of conditional purity (Lemma 35)
as a separate lemma. Ordinarily, this case would be expressed as an inner induction on the structure of an
expression with nested phi symbols. However, we separate it from Lemma 35 both for clarity and because it is
relevant to later proofs.

Lemma 34 (Purity for Applications of Pure Values). If ṽ ∈ V(τ1
S→ τ,Σ0), (ẽ, µ̃, ι) ⇓ (ṽ, µ̃0, T0,O0),

(ẽ1, µ̃0, ι) ⇓ (ṽ1, µ̃1, T1,O1), ṽ1 ∈ V(τ1,Σ1), and (µ̃1,Σ1) �ι (µ̃0,Σ0) �ι (µ̃,Σ), then (ẽ ẽ1, µ̃, ι) ⇓
(ṽ′, µ̃′, T ′,O0‖O1), (µ̃′,Σ′) %ι (µ̃1,Σ1), and ṽ′ ∈ V(τ,Σ′).

We can now prove conditional purity of the distributed semantics. The proof proceeds via a reducibility
argument, as discussed above, and makes extensive use of the control flow restrictions of the static semantics.

Lemma 35 (Conditional Purity for Distributed Semantics). If Γ,Σ, S ` ẽ : τ , and for all x ∈ dom Γ, ρ(x) ∈
V(Γ(x),Σ) and Addrs(ρ(x)) ⊆ dom Σ, then for some ṽ, T , and (µ̃′,Σ′) %ι (µ̃,Σ), (ρ(ẽ), µ̃, ι) ⇓ (ṽ, µ̃′, T, ε)
and ṽ ∈ V(τ,Σ′).

Having established Lemma 35, we are now ready to approach one of our two main results: correctness of
the distributed semantics. In particular, we will be able to show that any well-typed source program, when it
evaluates according to the reference semantics, will evaluate “similarly” according to the distributed semantics.
Before proving this result, we establish what is meant by similarity of expressions (Figure 12) and similarity of
stores (Definition 8), and note a few consequences of these definitions.

Figure 12 Similar expressions.

ỹ ∈ Ê ι`(y)

y ∼ιΨ ỹ a ∼ιΨ Ψ(a) x ∼ιΨ x

e ∼ιΨ ẽ

λx.e ∼ιΨ λx.ẽ

e ∼ιΨ ẽ

fix f.λx.ẽ ∼ιΨ fix f.λx.ẽ

e0 ∼ιΨ ẽ0 e1 ∼ιΨ ẽ1

e0 e1 ∼ιΨ ẽ0 ẽ1

e ∼ιΨ ṽ2 b̃ ∈ Ê ι`(true)

e ∼ιΨ ϕ(b̃, ṽ2, ṽ3)

e ∼ιΨ ṽ3 b̃ ∈ Ê ι`(false)

e ∼ιΨ ϕ(b̃, ṽ2, ṽ3)

e1 ∼ιΨ ẽ1 e2 ∼ιΨ ẽ2 e3 ∼ιΨ ẽ3

if e1 then e2 else e3 ∼ιΨ if ẽ1 then ẽ2 else ẽ3

∀j ∈ {1, . . . , r} . ej ∼ιΨ ẽj

opti(e1, . . . , er) ∼ιΨ opti(ẽ1, . . . , ẽr)

e1 ∼ιΨ ẽ1

ref e1 ∼ιΨ ref ẽ1

e1 ∼ιΨ ẽ1

!e1 ∼ιΨ !ẽ1

e1 ∼ιΨ ẽ1 e2 ∼ιΨ ẽ2

e1 := e2 ∼ιΨ ẽ1 := ẽ2

e1 ∼ιΨ ẽ1

reveal e1 ∼ιΨ reveal ẽ1

Definition 8 (Similarity of Stores). We define µ ∼ιΨ µ̃ if for all a ∈ dom Ψ, µ(a) ∼ιΨ µ̃(Ψ(a)).

Lemma 36 (Similarity is Reflexive for Surface Expressions). For any expression e (in the surface language),
(e, {}) ∼ι∅ (e, {}).

Lemma 37 (Permutation Weakening for Similarity Relation).

• If e ∼ιΨ ẽ and Ψ′ ⊇ Ψ then e ∼ιΨ′ ẽ.

• If µ ∼ιΨ µ̃ and Ψ′ ⊇ Ψ then µ ∼ιΨ′ µ̃.

Lemma 38 (Substitution for Similarity Relation). If e ∼ιΨ ẽ and v ∼ιΨ ṽ, then e[v/x] ∼ιΨ ẽ[ṽ/x].



Lemma 39 (Join of Values Preserves Equivalence).

• If b̃ ∈ Ê ι`(true) and v ∼ιΨ ṽ2, then v ∼ιΨ Φι
1(b̃, ṽ2, ṽ3).

• If b̃ ∈ Ê ι`(false) and v ∼ιΨ ṽ3, then v ∼ιΨ Φι
1(b̃, ṽ2, ṽ3).

Lemma 40 (Join of Stores Preserves Equivalence).

• If µ ∼ιΨ µ̃2, µ̃′ = Φι
1(b̃, µ̃2, µ̃3), and b̃ ∈ E`1(true), then µ ∼ιΨ µ̃′.

• If µ ∼ιΨ µ̃3, µ̃′ = Φι
1(b̃, µ̃2, µ̃3), and b̃ ∈ E`1(false), then µ ∼ιΨ µ̃′.

We now proceed to introduce the main correctness result (Theorem 1, generalized by Lemma 44). As with
Lemma 35, we first prove separate lemmas that generalize a few of the cases, rather than relying on inner
inductions.

Lemma 41 (Correctness for Applications of Related Values). If λx.e′0 ∼ιΨ0
ṽ0, then for all ẽ0 and ẽ1, if the

following conditions are satisfied:

• (ẽ0, µ̃, ι) ⇓ (ṽ0, µ̃0, T0,O0)

• (ẽ1, µ̃0, ι) ⇓ (ṽ1, µ̃1, T1,O1)

• ∅,Σ0, C ` ṽ0 : (τ1
C→ τ)`

• ∅,Σ1, C ` ṽ1 : τ1

• v1 ∼ιΨ1
ṽ1

• For any ẽ, if e′0[v1/x] ∼ιΨ1
ẽ and ∅,Σ1, C ` ẽ : τ , then (ẽ, µ̃1, ι) ⇓ (ṽ′, µ̃′, T,O2), v′ ∼ιΨ′ ṽ′, µ′ ∼ιΨ′ µ̃′,

and Ψ′ ⊇ Ψ1.

then (ẽ0 ẽ1, µ̃, ι) ⇓ (ṽ′, µ̃′, T ′,O0‖O1‖O2), v′ ∼ιΨ′ ṽ′, µ′ ∼ιΨ′ µ̃′, Ψ′ ⊇ Ψ1; and whenever ∅,Σ0, C ` ṽ0 :

(τ1
S→ τ)`, O2 = ε and µ̃′ %ι

Σ1
µ̃1.

Lemma 42 (Correctness of Distributed Store Update). If a ∼ιΨ ṽ, µ ∼ιΨ µ̃, v′ ∈ Y , ṽ′ ∈ Ê ι`(v′), and µ̃′ =
updateι1(µ̃, ṽ, ṽ′), then µ[a 7→ v′] ∼ιΨ µ̃′.

Lemma 43 (Correctness of Distributed Store Select). If a ∼ιΨ ṽ, µ ∼ιΨ µ̃, and ṽ′ = selectι1(µ̃, ṽ), then
µ(a) ∼ιΨ ṽ′.

Lemma 44 (Correctness (Generalized)). If (e, µ) ↓ (v′, µ′,O), (e, µ) ∼ιΨ (ẽ, µ̃), ` µ̃ : Σ, and ∅,Σ, C ` ẽ : τ ,
then (ẽ, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O), (v′, µ′) ∼ιΨ′ (ṽ′, µ̃′), and Ψ′ ⊇ Ψ.

Finally, we turn to the question of security (Theorem 2). For this, we define a notion of “publicly-
equivalent” expressions, or expressions “equivalent to a public observer” (i.e., two expressions that are struc-
turally equal, except possibly differing in corresponding secret values of the same type). We define this relation
formally in Figure 13, and proceed to show a few consequences of our definition.

Lemma 45 (Public Similarity is Reflexive for Surface Expressions). For any expression e (in the surface lan-
guage), (e, {}) ≈ι∅ (e, {}).

Lemma 46 (Permutation Weakening for Public Similarity Relation).

• If ẽ1 ≈ιΨ ẽ2 and Ψ′ ⊇ Ψ then ẽ1 ≈ιΨ′ ẽ2.



Figure 13 Publicly equivalent expressions (“equivalent to a public observer”).

y≈ιΨ y
ỹ, ỹ′ ∈ Ê ιS(Y )

ỹ≈ιΨ ỹ′ a≈ιΨ Ψ(a) x≈ιΨ x
ẽ≈ιΨ ẽ′

λx.ẽ≈ιΨ λx.ẽ′

ẽ≈ιΨ ẽ′

fix f.λx.ẽ≈ιΨ fix f.λx.ẽ′
ṽ1≈ιΨ ṽ1 ṽ2≈ιΨ ṽ2 ṽ3≈ιΨ ṽ3

ϕ(ṽ1, ṽ2, ṽ3)≈ιΨ ϕ(ṽ′1, ṽ
′
2, ṽ
′
3)

ẽ1≈ιΨ ẽ′1 ẽ2≈ιΨ ẽ′2
ẽ1 ẽ2≈ιΨ ẽ′1 ẽ′2

ẽ1≈ιΨ ẽ′1 ẽ2≈ιΨ ẽ′2 ẽ3≈ιΨ ẽ′3
if ẽ1 then ẽ2 else ẽ3≈ιΨ if ẽ′1 then ẽ

′
2 else ẽ

′
3

∀j ∈ {1, . . . , r} . ẽj ≈ιΨ ẽ′j
opti(ẽ1, . . . , ẽr)≈ιΨ opti(ẽ

′
1, . . . , ẽ

′
r)

ẽ≈ιΨ ẽ′

ref ẽ≈ιΨ ref ẽ′
ẽ≈ιΨ ẽ′

!ẽ≈ιΨ !ẽ′
ẽ1≈ιΨ ẽ′1 ẽ2≈ιΨ ẽ′2
ẽ1 := ẽ2≈ιΨ ẽ′1 := ẽ′2

ẽ1≈ιΨ ẽ′

reveal ẽ≈ιΨ reveal ẽ′

• If µ̃1 ≈ιΨ µ̃2 and Ψ′ ⊇ Ψ then µ̃1 ≈ιΨ′ µ̃2.

Lemma 47 (Substitution for Public Similarity Relation). If ẽ1 ≈ιΨ ẽ2 and ṽ1 ≈ιΨ ṽ2, then ẽ1[ṽ1/x] ≈ιΨ
ẽ2[ṽ2/x].

Lemma 48 (Public Similarity Relation Contains All Addresses). If ẽ1 ≈ιΨ ẽ2, then Addrs(ẽ1) ⊆ dom Ψ and
Addrs(ẽ2) ⊆ cod Ψ.

Lemma 49 (Phi Preserves Public Equivalence of Values). If (ṽ1)a ≈ιΨ (ṽ1)b, (ṽ2)a ≈ιΨ (ṽ2)b, (ṽ3)a ≈ιΨ (ṽ3)b,
ṽ′a = Φι

1((ṽ1)a, (ṽ2)a), (ṽ3)a), and ṽ′b = Φι
1((ṽ1)b, (ṽ2)b), (ṽ3)b), then ṽ′a ≈ιΨ ṽ′b.

Lemma 50 (Phi Preserves Public Equivalence of Stores). If (ṽ1)a ≈ιΨ (ṽ1)b, (µ̃2)a ≈ιΨ (µ̃2)b, (µ̃3)a ≈ιΨ (µ̃3)b,
µ̃′a = Φι

1((ṽ1)a, (µ̃2)a), (µ̃3)a), and µ̃′b = Φι
1((ṽ1)b, (µ̃2)b), (µ̃3)b), then µ̃′a ≈ιΨ µ̃′b.

Lemma 51 (Store Update Preserves Public Equivalence). If µ̃a ≈ιΨ µ̃b, ṽa ≈ιΨ ṽb, ṽ′a ≈ιΨ ṽ′b, µ̃
′
a = updateι1(µ̃a, ṽa, ṽ

′
a),

and µ̃′b = updateι1(µ̃b, ṽb, ṽ
′
b), then µ̃′a ≈ιΨ µ̃′b.

Lemma 52 (Store Selection Preserves Public Equivalence). If µ̃a ≈ιΨ µ̃b, and ṽa ≈ιΨ ṽb, ṽ′a = selectι2(µ̃a, ṽa),
and ṽ′b = selectι2(µ̃b, ṽb), then ṽ′a ≈ιΨ ṽ′b.

Lemma 53 (Safety of Phi of Values). If (ṽ1)a ≈ιΨ (ṽ1)b; (ṽ2)a ≈ιΨ (ṽ2)b; (ṽ3)a ≈ιΨ (ṽ3)b; Ta = Φι
2((ṽ1)a,

(ṽ2)a), (ṽ3)a); and Tb = Φι
2((ṽ1)b, (ṽ2)b), (ṽ3)b), then SAFE(ι, Ta, Tb).

Lemma 54 (Safety of Phi of Stores). If (ṽ1)a ≈ιΨ (ṽ1)b; (µ̃2)a ≈ιΨ (µ̃2)b; (µ̃3)a ≈ιΨ (µ̃3)b; Ta = Φι
2((ṽ1)a,

(µ̃2)a), (µ̃3)a); and Tb = Φι
2((ṽ1)b, (µ̃2)b), (µ̃3)b), then SAFE(ι, Ta, Tb).

Lemma 55 (Safety of Store Update). If µ̃a ≈ιΨ µ̃b; ṽa ≈ιΨ ṽb; ṽ′a ≈ιΨ ṽ′b; Ta = updateι2(µ̃a, ṽa, ṽ
′
a); and

Tb = updateι2(µ̃b, ṽb, ṽ
′
b), then SAFE(ι, Ta, Tb).

Lemma 56 (Safety of Store Selection). If µ̃a ≈ιΨ µ̃b; ṽa ≈ιΨ ṽb; Ta = selectι2(µ̃a, ṽa); and Tb = selectι2(µ̃b, ṽb),
then SAFE(ι, Ta, Tb).

We now present the main lemma required for the security theorem: safety of traces. It states that if two
expression/store pairs are publicly-equivalent, and evaluate to two corresponding traces and observation se-
quences, then neither observation sequence is a proper prefix of the other; and, if the observation sequences
are identical, then the resulting values are equivalent, and the pair of traces is “safe” (in the sense of the secure
execution platform).



Lemma 57 (Safety of Traces). If (ẽa, µ̃a, ι) ⇓ (ṽ′a, µ̃
′
a, Ta,Oa), (ẽb, µ̃b, ι) ⇓ (ṽ′b, µ̃

′
b, Tb,Ob), (ẽa, µ̃a) ≈ιΨ

(ẽb, µ̃b), and Ψ : dom µ̃a ↔ dom µ̃b, then neither of Oa and Ob is a proper prefix of the other; and, if
Oa = Ob, then for some Ψ′ ⊇ Ψ, (ṽ′a, µ̃

′
a) ≈ιΨ′ (ṽ′b, µ̃

′
b), Ψ′ : dom µ̃′a ↔ dom µ̃′b, and SAFE(ι, Ta, Tb).

Finally, we present the two main results of our system: theorems that guarantee the correctness and security
of an execution.

Theorem 1 (Correctness). For any program p and initial input value environment κ, if ` p : τ and (κ, p) ↓
(y, µ′,O) for some y ∈ Y , then for some mutable store µ̃′ and communication trace T , (κ, p) ⇓ (ỹ, µ̃′, T,O),
with ỹ ∈ Ê ι`(y) for some `.

Proof. Follows immediately from Lemmas 36 and 44.

The correctness theorem expresses that any well-typed source program, when it evaluates according to
the reference semantics to some primitive value, will also evaluate according to the distributed semantics to the
same primitive value (possibly hidden), yielding identical observations. Since the reference semantics expresses
the standard meaning of programs in λ→P,S, this theorem guarantees that the distributed semantics give a correct
implementation for any well-typed source program.

Theorem 2 (Security). If (κa, p) ⇓ (ṽ′a, µ̃
′
a, Ta,O) and (κb, p) ⇓ (ṽ′b, µ̃

′
b, Tb,O), then for all valid adversarial

views A ∈ A, the distributions ΠA(Ta) and ΠA(Tb) are indistinguishable5.

Proof. Let p = read(X1 : Y1, . . . , Xr : Yr); e. Then by definition, we have:

• ι = Init()

• T0 = {(C, Si,Π{Si}(ι)) : 1 ≤ i ≤ N}

• ∀j ∈ {1, . . . , r}.((ṽj)a, (T ′j)a) = EncS(κa(Xj), ι)

• ∀j ∈ {1, . . . , r}.((ṽj)b, (T ′j)b) = EncS(κb(Xj), ι)

• (e[(ṽ1)a/X1 . . . (ṽr)a/Xr], {}, ι) ⇓ (ṽ′a, µ̃
′
a, T

′
a,O)

• (e[(ṽ1)b/X1 . . . (ṽr)b/Xr], {}, ι) ⇓ (ṽ′b, µ̃
′
b, T
′
b,O)

• Ta = T0‖(T ′1)a‖ . . . ‖(T ′r)a‖T ′a

• Tb = T0‖(T ′1)b‖ . . . ‖(T ′r)b‖T ′b

Now, we note that ΠA(T0) = ΠA(ι); by definition, we have SAFEENC(ι, (T ′j)a, (T
′
j)b); and by Lemmas 45 and

57, we have SAFE(ι, T ′a, T
′
b). This precisely satisfies the indistinguishability assumption of the secure execution

platform.

The security theorem expresses that if two executions of the same program, each with its own secret initial
inputs, yield the same observations, then their communication traces (as distributions) are indistinguishable
to any adversary that receives only the information available to servers in A. In other words, the theorem
guarantees that any suitably constrained adversary learns nothing about the initial secret client values that
was not already logically entailed by the observations from reveal. It is impossible for the programmer to
unintentionally leak information due to the distributed implementation.

5In the sense specified by the secure execution platform in Section 4.



5.5 Examples of secure execution platforms

Since we have defined our language in terms of the assumptions of a secure execution platform, it is also
important to note that the examples we describe (Shamir secret sharing and fully homomorphic encryption)
indeed satisfy these assumptions. We now give an overview of the arguments that establish these facts. Since
the arguments proceed from known properties of Shamir secret sharing and fully homomorphic encryption, and
are not central to our presentation, we defer the full treatment to Appendix B for continuity.

In Shamir secret sharing,N servers execute the computation in a distributed manner, using an (N, k) sharing
scheme. The primitive values are expressed as elements of a finite field Fp. “Hidden” values are represented
by N -tuples of field elements, representing each server’s share of the value, and the primitive arithmetic and
logical operations (including branching), as well as the initial sharing and decryptions. Intermediate values and
communication traces are produced according to the rules of Shamir secret sharing. Against a valid adversarial
set of fewer than k servers, the primitives of Shamir secret sharing provide information-theoretic security.

On the other hand, in fully homomorphic encryption, the execution proceeds on a single server, N = 1. Ex-
cept for the initial “hiding” (encryption and sending to the server), and “unhiding” (returning values to the client
for decryption) upon reveal operations, the operations of the platform are executed on the server according to
the definition of the cryptosystem, and produce no communication traces. In this case, the trace for the entire
evaluation consists of the encrypted values and the revealed plaintexts, and computational indistinguishability
(up to revealed values) follows from the security of the cryptosystem.

6 Implementation

Our implementation consists of three parts. First, we implemented the constructs of the secure execution
platform as an embedded domain-specific language in Haskell. Specifically, our EDSL framework consists of
a module defining these constructs as a set of combinators, as well as secure multi-party computation (SMC)
and fully homomorphic encryption (FHE) libraries implementing the combinators. Second, we implemented a
lightweight compiler in Template Haskell, which removes syntactic sugar and translates a subset of Haskell to
our EDSL.6 Finally, we implemented a compiler front-end for λ→P,S, producing both type and label information
for core language programs. In this section, we present these implementations, evaluate their performance, and
describe our experience in writing applications.

6.1 A Haskell EDSL for secure execution platforms

Our EDSL is composed of several type classes [36], which define primitives of a secure execution platform
(e.g., (.+) for addition) in terms of actions in a secure I/O monad. In a debug setting, this “secure” monad is
simply Haskell’s IO monad. However, the secure monad used in implementing a real secure execution platform
is more complex. We use monad transformers [37] to stack additional functionalities, in a modular fashion, on
top of Haskell’s IO. Specifically, we implement the following functionalities:

• RNG: used for implementing random number generation. Specifically, the transformer provides access
to the cryptographically strong, deterministic random bit generator (DRBG) of the Haskell crypto-api
library.

• State: used for threading library-specific state through computations (including the initial parameters
ι). For example, the FHE library uses this state to store the public and private keys used in the secure
computation.

6Notably, the implementation adds constructs for arrays of public length, product and sum types, and bounded iteration primitives.
While these features are very useful in practice, we omit them in our present theoretical analysis, as they would further complicate the
formalism without providing additional insight.



• MPI/RPC (message passing interface and remote procedure calls): used to enable communication among
the client and servers. We use the SSL protocol to provide secure, authenticated party-to-party channels.

The constructs for both of our examples of secure execution platforms, SMC and FHE, can be built using
this secure monad. For example, the SMC multiplication combinator (.*) uses the RNG and MPI functionalities
to generate and communicate a new secret sharing among the servers. On the other hand, the FHE multiplication
combinator relies on the State functionality to store the key needed by the homomorphic evaluation function
(from the Gentry-Halevi implementation of FHE [38, 39]) that performs the actual multiplication. Furthermore,
we note that although our implementation currently treats only SMC and FHE, the secure monad can easily
be extended with other monad transformers to add features required by other platforms. The flexibility and
modularity of monads makes this embedding approach especially attractive.

For both secure execution platforms, SMC and FHE, our EDSL implements secure addition (.+), subtrac-
tion (.-) and multiplication (.*), bitwise and logical operators (and, or, and exclusive-or), and comparison op-
erations (equality (.==) and inequality (./=) testing, less-than (.<), greater-than (.>), and so on). We also imple-
ment branching operators, sif-sthen-selse, in terms of arithmetization, as described above: sif b sthen x selse y

becomes b .* x + (1 .- b) .* y.
For Shamir secret sharing, our implementation of the above primitives is essentially a direct translation of

the protocol into a Haskell implementation. In the case of fully homomorphic encryption, our library extends
the Gentry-Halevi implementation, presented in [38, 39]. Their C++ implementation provides several functions,
including a public/private key pair generation function, encryption/decryption functions, a recrypt (ciphertext
refreshing) function, and simple single-bit homomorphic arithmetic operators. We extend their implementation
by providing support for k-bit homomorphic addition, multiplication, comparison and equality testing func-
tions. In integrating the extended C++ FHE library with our Haskell framework, we implemented C wrappers
for the basic FHE operations, and various library functions. The EDSL primitives are implemented as foreign
calls to the corresponding C functions, using Haskell’s Foreign Function Interface (FFI). Our design hides the
low-level C details from the programmer, in addition to adding garbage collection support to the underlying
FHE library.

6.2 Extending the EDSL with Template Haskell

Our Template Haskell compiler takes a Haskell AST, enclosed in Template Haskell quotes [| ... |], and out-
puts a transformed AST, which is spliced into the surrounding code using Template Haskell’s $(...). The
compiler removes syntactic sugar, performs label inference and static label checks, and translates Haskell li-
brary operators, such as <=, to our EDSL operators (.<=), in addition to inserting type annotations and explicit
conversions from public to secret values. An example use of this compiler is shown in Figure 3. In our im-
plementation efforts, this compiler serves as an intermediate step between the EDSL (i.e., using the secure
execution platform primitives directly) and the full core language λ→P,S.

6.3 Core language

We also implement a compiler front-end for our core language, λ→P,S, adapting standard approaches [40] to per-
form type inference and type checking according to the rules of Section 5. In ongoing work, we are continuing
to improve the compiler front-end, and extending our development to a full λ→P,S compiler using the Template
Haskell and QuasiQuotes extensions.

6.4 Evaluation

Our experimental setup consists of 6 machines, interconnected on a local Gig-E network, with each machine
containing two Intel Xeon E5620 (2.4GHz) processors, and 48GB of RAM. Our SMC implementation uses
arithmetic modulo the largest 32-bit prime.



Addition Multiplication Comparison Assignment

Public 0.003 sec 0.006 sec 0.004 sec 0.003 sec
Secret 0.006 sec 1.71 sec 406.8 sec 3.28 sec

Table 1: Micro-benchmarks for SMC (N = 5, k = 2). We measure 1000 operations on randomly generated
values.

We measured the performance of several SMC core primitives. In particular, we measure the cost of addition
(.+), multiplication (.*), and comparison (.>=) of two secret integers and compare them to the corresponding
public operations. Similarly, we compare the cost of assignment to a memory location in secret and public con-
ditionals. Table 1 summarizes these results. We observe that SMC additions, multiplications, and comparisons
on secret operands are roughly 1.8×, 300× and 91000× slower than the corresponding operation on public
values7. We note that the time difference in the additions of public and secret values (since addition does not
involve network communication) serves as a measurement for the performance overhead incurred by our secret
monad, i.e., our library imposes a 1.8× overhead. Assignments are roughly 1000× slower, reflecting the fact
that each assignment in a secret context consists of an application of a branching operator opBr(int) (which, in
the case of SMC, consists of two multiplications, a subtraction, and an addition).

We also measure the cost of using our framework to implement a portion of Reliable Email. Specifically,
we measure the cost of checking if an email address is present in a whitelist of 100 random entries. Our results
indicate that the average time of checking such a secret list is about 2.4 minutes.

Although the overhead for secret computations seems formidable, we note that our prototype implemen-
tation uses a very simple multi-party computation protocol, which incurs a round of communication for each
multiplication operation. There exist more efficient protocols that use a constant number of rounds to execute
an arbitrary (though pre-specified) sequence of operations [41]. Since the overhead from network latency is sig-
nificant, the efficiency of our system should improve substantially upon adapting our implementation to use a
more round-efficient scheme for sub-computations whose operations are known in advance (i.e., do not depend
on values from reveal operations). Likewise, we anticipate a significant speedup when independent computa-
tions (such as the 100 email address comparisons above) are performed in parallel. Moreover, given the wide
interest in secure cloud computing, we expect the performance of the underlying cryptographic primitives, and
thereby our EDSL, to improve in the near future.

7 Related work

Our static semantics is similar to many standard type systems for information flow control (for example, the
system described in the work of Pottier and Simonet [31]). However, as described in Section 5.2, our system
is designed for a dual purpose: rather than ensuring that any expressible program is free of information leaks,
our system ensures that any expressible program (which, by definition, cannot leak information on a secure
execution platform) is nevertheless implementable in our model. In addition, we need substantially different
restrictions to deal with the problem of control flow leakage.

Li and Zdancewic’s seminal work [42, 43] presents the first implementation of information flow control as
a library, in Haskell. They enforce information flow dynamically, and consider only pure computations; our
system relies on strong static guarantees, and addresses a language with side effects. Subsequently [44], Tsai et
al. addressed the issue of internal timing for a multi-threaded language; since in our model the servers can only
observe their own execution, timing attacks are not relevant. More closely related, Russo et al. [45] present

7We omit performance evaluations for fully homomorphic encryption, as past results have shown that the time complexity of existing
schemes renders experimental results of limited value [15].



a static information flow library, SecIO, that is statically enforced using Haskell type classes. They prove
termination-insensitive non-interference for a call-by-name λ-calculus. Our type system enforces substantially
stricter requirements on control flow. Nevertheless, their system is complementary to ours, and SecIO could be
used to implement some of our static restrictions.

Vaughan presents an extension to Aura, called AuraConf [46], which provides an information flow language
with cryptographic support. AuraConf allows programmers with knowledge of access control to implement
general decentralized information flow control. The AuraConf system also builds on earlier work by Vaughan
and Zdancewic, in which they develop a decentralized label model for cryptographic operations [47]. In addi-
tion, Fournet et al., in work on the CFlow system [48], analyze information flow annotations on cryptographic
code. In contrast to these approaches, our system abstracts away the cryptography primitives from the language,
allowing programmers without specialized knowledge to write secure applications for the cloud.

Systems for secure computations include SCET [49], with focus on economic applications and secure dou-
ble auctions; FairplayMP [50], a specification language SFDL that is converted to primitive operations on
bits; Sharemind [51], for multiparty computations on large datasets; VIFF [12], a basic language embedded
in Python and API to cryptographic primitives. These systems implement cryptographic protocols, without
proving the more comprehensive correctness and security properties.

The closest work to ours is SMCL [11], an imperative-style DSL with similar goals (notably, SMCL aims
to enable programmers to use secure multiparty computation without detailed knowledge of the underlying
protocol), as well as some similar constructs (notably, the behavior of SMCL’s open construct is very similar to
our reveal). However, our work improves on existing efforts in several respects. While the papers on SMCL
do exhibit correctness and security properties, but they do not formally define some crucial aspects: notably, the
execution model of the platform, and the security properties required of its primitives so that security for the
entire system can be guaranteed. Unlike SMCL, our system also generalizes to other platforms beyond SMC.
In addition, our system provides significantly richer language constructs (encompassing both imperative and
functional features).

In a previous paper [15], we described a restricted language without recursion, mutable stores, and condi-
tionals. As in this paper, we proved correctness and security for programs written in the language executing
on a secure execution platform. Drawing on our experience of working with the EDSL in our previous work,
we implemented the Template Haskell compiler and the compiler frontend for our core language. As far as we
know, we are the first to formalize and prove correctness and security properties for a unified language frame-
work, providing rich language features such as recursion, mutable stores, and conditionals, and encompassing
a wide range of cryptographic schemes for computation on encrypted data.

8 Conclusions

We present an expressive core language for secure cloud computing, with primitive types, conditionals, stan-
dard functional features, mutable state, and a secrecy preserving form of general recursion. This language
uses an augmented information-flow type system to impose conventional information-flow control and prevent
previously unexplored forms of control-flow leakage that may occur when the execution platform is untrusted.
The language allows programs to be developed and tested using conventional means, then exported to a variety
of secure cloud execution platforms, dramatically reducing the amount of specialized knowledge needed to
write secure code. We prove correctness and confidentiality for any platform meeting our definitions, and note
two examples of such platforms: fully homomorphic encryption, as well as a multi-party computation protocol
based on Shamir secret sharing.

The implementation of our language as a Haskell library allows developers to use standard Haskell software
development environments. Programmers also have the benefit of sophisticated type-checking and general
programming features of Haskell. On the other hand, implementation in Haskell is not an inherent feature of our
core language; other languages with functional features, such as Scala or F# (or even object-oriented languages



such as Java, with some additional implementation effort) would also be reasonable choices. Our core language
could also be used to develop secure libraries that can be safely called from other languages, providing the
strong security guarantees of our DSL in an unrestricted multi-language programming environment.

In future work, we plan to extend our theoretical framework to other secure execution platforms that can
provide stronger guarantees, such as security against active adversaries. We will also explore the possibil-
ity of mechanically verifying that a particular implementation realizes our distributed semantics. Finally, we
plan to develop more sophisticated implementation techniques, possibly leveraging Template Haskell meta-
programming, such as automatically producing code that is optimized for particular forms of more efficient
partially homomorphic encryption schemes.
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[6] R. Cramer, I. Damgård, and U. M. Maurer, “General secure multi-party computation from any linear
secret-sharing scheme,” in EUROCRYPT, 2000, pp. 316–334.

[7] M. Naor and K. Nissim, “Communication preserving protocols for secure function evaluation,” in STOC,
2001, pp. 590–599.

[8] M. C. Silaghi, “SMC: Secure multiparty computation language,” http://www.cs.fit.edu/∼msilaghi/SMC/
tutorial.html, 2004.

[9] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - secure two-party computation system,” in
USENIX Security Symposium, 2004, pp. 287–302.

[10] P. Bogetoft, D. L. Christensen, I. Damgard, M. Geisler, T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B.
Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft, “Multiparty computation goes live,” Cryp-
tology ePrint Archive, Report 2008/068, 2008, http://eprint.iacr.org/.

[11] J. D. Nielsen and M. I. Schwartzbach, “A domain-specific programming language for secure multiparty
computation,” in PLAS, 2007, pp. 21–30.

http://www.cs.fit.edu/~msilaghi/SMC/tutorial.html
http://www.cs.fit.edu/~msilaghi/SMC/tutorial.html
http://eprint.iacr.org/
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A Proofs of auxiliary lemmas

In this appendix, we give proofs of the auxiliary lemmas in Section 5.4 (omitted above, for continuity).

Lemma 1 (Weakening). If Γ,Σ, C ` ẽ : τ , Γ′ ⊇ Γ, and Σ′ ⊇ Σ, then Γ′,Σ′, C ` ẽ : τ .

Proof. By induction on the structure of ẽ.

Lemma 2 (Substitution). If Γ,Σ, C ` ẽ : τ , and for all x ∈ dom Γ, we have Γ,Σ, C ` ρ(x) : Γ(x), then
∅,Σ, C ` ρ(ẽ) : τ .

Proof. By induction on the structure of ẽ.

Lemma 3 (Output of Evaluation is a Value).

• If (e, µ) ↓ (v, µ′,O), then for all µ1, (v, µ1) ↓ (v, µ1, ε).

• If (ẽ, µ̃, ι) ⇓ (ṽ, µ̃′,O), then for all µ̃1, (ṽ, µ̃1, ι) ⇓ (ṽ, µ̃1, ε, ε).

• ṽ is an (extended) value in the syntax if and only if (ẽ, µ̃, ι) ⇓ (ṽ, µ̃′,O) for some ẽ, µ̃.

Proof. By inspection of the reference and distributed semantics (with the last claim proceeding by induction on
the evaluation derivation).

Lemma 4 (Values are Closed). If ṽ is a value, then ṽ contains no free variables.

Proof. By induction on the structure of ṽ.

Lemma 5 (Well-Typed Values are Well-Typed in Secret Contexts). If Γ,Σ, C ` ṽ : τ , and ṽ is a value, then
Γ,Σ, S ` ṽ : τ .

Proof. By inspection of the static semantics.

Lemma 6 (Context Subtyping). If Γ,Σ, C ` ẽ : τ , and C ′ v C, then Γ,Σ, C ′ ` ẽ : τ ,

Proof. By inspection of the static semantics.

Lemma 7 (Extension of Permutations). If Ψ′ ⊇ Ψ and Addrs(ẽ) ⊆ dom Ψ then Ψ(ẽ) = Ψ′(ẽ).

Proof. By induction on the structure of the expression ẽ.

Lemma 8 (Well-Typed Expressions are Address-Closed). If ∅,Σ, C ` ẽ : τ , then Addrs(ẽ) ⊆ dom Σ.

Proof. By induction on the typing judgment ∅,Σ, C ` ẽ : τ .

Lemma 9 (Distributed Semantics Preserves Address-Closed Expressions). If (ẽ, µ̃, ι) ⇓ (ṽ, µ̃′, T,O), and
Addrs(ẽ) ⊆ µ̃, then Addrs(ṽ) ⊆ µ̃′.

Proof. By induction on the evaluation derivation (ẽ, µ̃, ι) ⇓ (ṽ, µ̃′, T,O).

Lemma 10 (Permutation Invariance of Static Semantics). If Γ,Σ, C ` ẽ : τ then Γ,Ψ(Σ), C ` Ψ(ẽ) : τ .

Proof. By induction on the typing judgment Γ,Σ, C ` ẽ : τ .

Lemma 11 (Permutation Invariance of Distributed Semantics). If Addrs(ẽ) ⊆ dom µ̃, (ẽ, µ̃, ι) ⇓ (ṽ, µ̃1, T,O),
then (Ψ(ẽ),Ψ(µ̃), ι) ⇓ (Ψ(ṽ),Ψ(µ̃1), T,O).

Proof. By induction on the evaluation derivation (ẽ, µ̃, ι) ⇓ (ṽ, µ̃1, T,O).



We also require some basic properties of the join and update function, Φι and updateι, defined above.

Lemma 12 (Phi Takes the Union of Domains). If µ̃ = Φι
1(b̃, µ̃2, µ̃3), then dom µ̃ = dom µ̃2 ∪ dom µ̃3.

Proof. By inspection of the definition of Φ.

Lemma 13 (Store Update Preserves Domain). If µ̃′ = updateι1(µ̃, ṽ, ṽ′) and Addrs(ṽ) ⊆ dom µ̃ then dom µ̃′ =
dom µ̃.

Proof. By induction on the structure of ṽ. The base case is immediate. If ṽ = ϕ(b̃, ṽ2, ṽ3), then the inductive
hypothesis gives dom updateι1(µ̃, ṽ2, ṽ

′) = dom µ̃ and dom updateι1(µ̃, ṽ3, ṽ
′) = dom µ̃, and the claim then

follows by Lemma 12.

Lemma 14 (Substitution Commutes With Permutation). If ẽ2 = Ψ(ẽ1) and ṽ2 = Ψ(ṽ1), then ẽ2[ṽ2/x] =
Ψ(ẽ1[ṽ1/x]).

Proof. By induction on the structure of ẽ1.

Lemma 15 (Permutation Invariance of Join of Values). If (ṽ1)b = Ψ((ṽ1)a), (ṽ2)b = Ψ((ṽ2)a), (ṽ3)b =
Ψ((ṽ3)a), ṽ′a = Φι

1((ṽ1)a, (ṽ2)a), (ṽ3)a), and ṽ′b = Φι
1((ṽ1)b, (ṽ2)b), (ṽ3)b), then ṽ′b = Ψ(ṽ′a).

Proof. By inspection of the definition of Φ.

Lemma 16 (Permutation Invariance of Join of Stores). If (ṽ1)b = Ψ((ṽ1)a), (µ̃2)b = Ψ((µ̃2)a), (µ̃3)b =
Ψ((µ̃3)a), µ̃′a = Φι

1((ṽ1)a, (µ̃2)a), (µ̃3)a), and µ̃′b = Φι
1((ṽ1)b, (µ̃2)b), (µ̃3)b), then µ̃′b = Ψ(µ̃′a).

Proof. The result follows directly by applying Lemma 15 to the contents of each address.

Lemma 17 (Permutation Invariance of Store Update). If µ̃b = Ψ(µ̃a), ṽb = Ψ(ṽa), and ṽ′b = Ψ(ṽ′a), µ̃′a =
updateι1(µ̃a, ṽa, ṽ

′
a), and µ̃′b = updateι1(µ̃b, ṽb, ṽ

′
b), then µ̃′b = Ψ(µ̃′a).

Proof. By induction on the structure of ṽa.

Lemma 18 (Permutation Invariance of Store Selection). If µ̃b = Ψ(µ̃a), ṽb = Ψ(ṽa), ṽ′a = selectι2(µ̃a, ṽa),
and ṽ′b = selectι2(µ̃b, ṽb), then ṽ′b = Ψ(ṽ′a).

Proof. By induction on the structure of ṽa.

Lemma 19 (Determinism of Distributed Semantics). If (ẽa, µ̃a, ι) ⇓ (ṽ′a, µ̃
′
a, Ta,Oa), ẽb = Ψ(ẽa), µ̃b =

Ψ(µ̃a), (ẽb, µ̃b, ι) ⇓ (ṽ′b, µ̃
′
b, Tb,Ob), and Ψ : dom µ̃a ↔ dom µ̃b, then Oa = Ob and for some Ψ′ ⊇ Ψ,

Ψ′ : dom µ̃′a ↔ dom µ̃′b, ṽ
′
b = Ψ′(ṽ′a) and µ̃′b = Ψ′(µ̃′a).

Proof. By induction on the first evaluation derivation (ẽa, µ̃a, ι) ⇓ (ṽ′a, µ̃
′
a, Ta,Oa). The argument exactly

matches that of Lemma 57, with invocations of Lemmas 46–52 replaced by invocations of Lemmas 14–18.

Lemma 20 (Phi Preserves Value Typing). If b̃ ∈ E`(bool); Σ2|dom Σ3 = Σ3|dom Σ2; Σ′ = Σ2 ∪ Σ3; ṽ′ =
Φι

1(b̃, ṽ2, ṽ3); ∅,Σ2,S ` ṽ2 : τ ; and ∅,Σ3,S ` ṽ3 : τ , then ∅,Σ′,S ` ṽ′ : τ .

Proof. By weakening, we have ∅,Σ′,S ` ṽ2 : τ and ∅,Σ′,S ` ṽ3 : τ . The result then follows by inspection of
the static semantics and the definition of Φ.

Lemma 21 (Phi Preserves Store Typing). If b̃ ∈ E`(bool), ` µ̃2 : Σ2, ` µ̃3 : Σ3, Σ2|dom Σ3 = Σ3|dom Σ2 , and
µ̃′ = Φι

1(b̃, µ̃2, µ̃3), then ` µ̃′ : Σ2 ∪ Σ3.

Proof. The result is immediate by Lemmas 12 and 20.



Lemma 22 (Store Update Preserves Store Typing). If ∅,Σ, C ` ṽ : (Y ` ref)`
′
; ∅,Σ, C ` ṽ′ : Y `; `′ v `;

` µ̃ : Σ; and µ̃′ = updateι1(µ̃, ṽ, ṽ′), then ` µ̃′ : Σ.

Proof. By induction on the structure of ṽ.

Lemma 23 (Store Selection Preserves Typing). If ∅,Σ,S ` ṽ : (Y `′ ref)`
′′
; `′, `′′ v `; ` µ̃ : Σ; and

ṽ′ = selectι1(µ̃, ṽ), then ∅,Σ,S ` ṽ′ : Y `.

Proof. By induction on the structure of ṽ.

Lemma 24 (Type Preservation for Distributed Semantics). If ∅,Σ, C ` ẽ : τ , ` µ̃ : Σ, and (ẽ, µ̃, ι) ⇓
(ṽ′, µ̃′, T,O), then for some Σ′, (µ̃′,Σ′) �ι (µ̃,Σ), and ∅,Σ′, C ′ ` ṽ′ : τ for any C ′.

Proof. First, we note that by Lemma 6, it suffices to show the conclusion for the particular context C ′ = S.
Now, we proceed by induction on the evaluation derivation (ẽ, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O).

• Suppose (if ẽ1 then ẽ2 else ẽ3, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O). Then (ẽ1, µ̃, ι) ⇓ (ṽ1, µ̃1, T1,O1). Inversion on
the typing judgment gives ∅,Σ, C ` ẽ1 : τ1, ∅,Σ, C ` ẽ2 : τ , and ∅,Σ, C ` ẽ3 : τ , with τ1 = bool`.
So, by the inductive hypothesis, we have (µ̃1,Σ1) �ι (µ̃,Σ), and ∅,Σ1,S ` ṽ1 : bool`. In addition,
(ẽ2, µ̃1, ι) ⇓ (ṽ2, µ̃2, T2,O2); by weakening (Lemma 1), we have ∅,Σ1, C ` ẽ2 : τ ; and thus (µ̃2,Σ2) �ι
(µ̃1,Σ1) �ι (µ̃,Σ) and Γ,Σ2,S ` ṽ2 : τ . Now, either ṽ1 ∈ E`′(true) or ṽ1 ∈ E`′(false); without loss
of generality we assume ṽ1 ∈ E`′(true). Then we have the following cases:

– ṽ1 ∈ EP(true). In this case, ṽ′ = ṽ2, and setting Σ′ = Σ2, the claim follows immediately from the
above.

– ṽ1 ∈ ES(true). In this case, (ẽ3, µ̃1, ι) ⇓ (ṽ3, µ̃3, T3,O3), ṽ′ = Φι
1(ṽ1, ṽ2, ṽ3), and µ̃′ =

Φι
1(ṽ1, µ̃2, µ̃3). Now, we must have τ1 = boolS, and so ∅,Σ, S ` ẽ2 : τ and ∅,Σ, S ` ẽ3 : τ

(and thus, by weakening (Lemma 1), ∅,Σ1, S ` ẽ2 : τ and ∅,Σ1, S ` ẽ3 : τ . So the inductive hy-
pothesis gives ∅,Σ3, S ` ṽ3 : τ and (µ̃3,Σ3) �ι (µ̃1,Σ1) �ι (µ̃,Σ). Finally, setting Σ′ = Σ2∪Σ3,
and invoking Lemma 20, we conclude that ∅,Σ′,S ` ṽ′ : τ ; and invoking Lemma 21, we conclude
that (µ̃′,Σ′) �ι (µ̃1,Σ1) �ι (µ̃,Σ), as desired.

• Suppose (ẽ0 ẽ1, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O), so that (ẽ0, µ̃, ι) ⇓ (ṽ0, µ̃0, T0,O0) and (ẽ1, µ̃0, ι) ⇓ (ṽ1, µ̃1, T1,O1).

Then the typing judgment gives ∅,Σ, C ` ẽ0 : (τ1
C→ τ)` and ∅,Σ, C ` ẽ1 : τ1, where ` v C, and thus

by the inductive hypothesis, ∅,Σ0, C ` ṽ0 : (τ1
C→ τ)` with (µ̃0,Σ0) �ι (µ̃,Σ). In addition, by weaken-

ing (Lemma 1), ∅,Σ0, C ` ẽ1 : τ1, and thus the inductive hypothesis also gives ∅,Σ1, C ` ṽ1 : τ1 with
(µ̃1,Σ1) �ι (µ̃0,Σ0). Now, we have the following cases:

– Suppose ṽ0 = λx.ẽ′0. Then, by definition, {x 7→ τ1},Σ0, C ` ẽ′0 : τ , so that substitution (Lemma 2)
gives ∅,Σ0,S ` ẽ′0[ṽ1/x] : τ (and, by weakening (Lemma 1), ∅,Σ1, C ` ẽ′0[ṽ1/x] : τ ). Finally,
since (ẽ′0[ṽ1/x], µ̃1, ι) ⇓ (ṽ′, µ̃′, T3,O3), the inductive hypothesis gives (µ̃′,Σ′) �ι (µ̃1,Σ1) �ι
(µ̃,Σ) and ∅,Σ1,S ` ṽ′ : τ , as desired.

– Suppose ṽ0 = (fix f.λx.ẽ′0). Then, by definition, {f 7→ (τ1
C→ τ)`, x 7→ τ1},Σ0, C ` ẽ′0 : τ ,

so that substitution (Lemma 2) gives ∅,Σ0, S ` ẽ′0[ṽ0/f, ṽ1/x] : τ (and, by weakening (Lemma 1),
∅,Σ1, C ` ẽ′0[ṽ0/f, ṽ1/x] : τ ). Finally, since (ẽ′0[ṽ0/f, ṽ1/x], µ̃1, ι) ⇓ (ṽ′, µ̃′, T3,O3), the induc-
tive hypothesis gives (µ̃′,Σ′) �ι (µ̃1,Σ1) �ι (µ̃,Σ) and ∅,Σ1,S ` ṽ′ : τ , as desired.

– Suppose ṽ0 = ϕ(b̃, ṽ2, ṽ3), In this case, b̃ ∈ E`1(bool), (ṽ2 ṽ1, µ̃1, ι) ⇓ (ṽ′2, µ̃
′
2, T2,O2), (ṽ3 ṽ1, µ̃1, ι) ⇓

(ṽ′3, µ̃
′
3, T3,O3), ṽ′ = ϕ(b̃, ṽ′2, ṽ

′
3), and µ̃′ = ϕ(b̃, µ̃′2, µ̃

′
3). Now, we have ∅,Σ0, S ` ṽ2 : (τ1

C→ τ)`

and ∅,Σ0,S ` ṽ3 : (τ1
C→ τ)` (and, by weakening (Lemma 1), ∅,Σ1,S ` ṽ2 : (τ1

C→ τ)`

and ∅,Σ1,S ` ṽ3 : (τ1
C→ τ)`). Thus, the inductive hypothesis gives ∅,Σ2,S ` ṽ′2 : τ with



(µ̃′2,Σ2) �ι (µ̃1,Σ1); and, similarly, ∅,Σ3, S ` ṽ′3 : τ with (µ̃′3,Σ3) �ι (µ̃1,Σ1); Finally, setting
Σ′ = Σ2∪Σ3, and invoking Lemma 20, we conclude that ∅,Σ′,S ` ṽ′ : τ ; and invoking Lemma 21,
we conclude that (µ̃′,Σ′) �ι (µ̃1,Σ1) �ι (µ̃,Σ), as desired.

• Suppose (ẽ1 := ẽ2, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O), so that (ẽ1, µ̃, ι) ⇓ (ṽ1, µ̃1, T1,O1), (ẽ2, µ̃1, ι) ⇓ (ṽ2, µ̃2, T2,O2),
µ̃′ = updateι1(µ̃2, ṽ1, ṽ2), and ṽ′ = (). Then the typing judgment gives τ = unit`

′′
, ∅,Σ, C ` ẽ1 :

(Y ` ref)`
′
, with `′ v `, and ∅,Σ, C ` ẽ2 : Y `. Thus, the inductive hypothesis gives ∅,Σ1, C ` ṽ′ :

(Y ` ref)`
′
, with (µ̃1,Σ1) �ι (µ̃,Σ). By weakening (Lemma 1), we also have ∅,Σ1, C ` ẽ2 : Y `,

so that the inductive hypothesis gives ∅,Σ1, C ` ṽ2 : Y ` with (µ̃2,Σ2) �ι (µ̃1,Σ1). Now, evidently
∅,Σ2, C ` () : unit`

′′
; and, by Lemma 22, we have (µ̃′,Σ2) �ι (µ̃2,Σ2), as desired.

• Suppose (!ẽ1, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O), so that (ẽ1, µ̃, ι) ⇓ (ṽ1, µ̃
′, T,O) and ṽ′ = selectι1(µ̃′, ṽ1). Then

the typing judgment gives τ = Y ` and ∅,Σ, C ` ẽ1 : (Y `′ ref)`
′′
, with `′, `′′ v `. Thus, the inductive

hypothesis gives ∅,Σ1, S ` ṽ1 : (Y `′ ref)`
′′
, with (µ̃1,Σ1) �ι (µ̃,Σ). The claim then follows from

Lemma 23.

• Suppose (ref ẽ1, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O), so that (ẽ1, µ̃, ι) ⇓ (ṽ1, µ̃1, T,O), ṽ′ = a /∈ dom µ̃1, and
µ̃′ = µ̃1[a 7→ ṽ1]. Then the typing judgment gives τ = (Y `′ ref)` and ∅,Σ, C ` ẽ : Y `′ , so that the
inductive hypothesis gives ∅,Σ1, S ` ṽ1 : Y `′ with (µ̃1,Σ1) �ι (µ̃,Σ), and thus ṽ1 ∈ E`′′(Y ) for some
`′′ v `′. Setting Σ′ = Σ1[a 7→ Y `′ ], we have (µ̃′,Σ′) �ι (µ̃1,Σ1) �ι (µ̃,Σ), as desired.

• Suppose (reveal ẽ1, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O), so that (ẽ1, µ̃, ι) ⇓ (ṽ1, µ̃, T1,O1), and ṽ′ = π1(Dec(ṽ1)).
Then the typing judgment gives τ = Y ` and ∅,Σ, C ` ẽ1 : Y S, so that the inductive hypothesis gives
∅,Σ′,S ` ṽ1 : Y S, with (µ̃′,Σ′) �ι (µ̃,Σ). Hence ṽ1 ∈ E`′(Y ), and thus by definition of Dec, ṽ′ ∈ Y .
So ∅,Σ′,S ` ṽ′ : Y `, as desired.

• Suppose (opi(ẽ1, . . . , ẽr), µ̃, ι) ⇓ (ṽ′, µ̃′, T,O), so that for all j ∈ {1, . . . , r}, (ẽj , µ̃j−1, ι) ⇓ (ṽj , µ̃j , Tj ,Oj)
(where µ̃0 = µ̃ and µ̃′ = µ̃r), ṽj ∈ E`′j (Yj), ṽ′ = Enc`′1,...,`′r(opi)(ṽ1, . . . , ṽr) ∈ E`′(Y ) (where

`′ = tj`′j), and opi :
∏
j Yj → Y . Then the typing judgment gives τ = Y ` and ∅,Σ, C ` ẽj : Y

`j
j , where

` = tj`j . After r successive applications of the inductive hypothesis, along with weakening (Lemma 1),
we obtain ∅,Σr, S ` ṽj : Y

`j
j , with (µ̃r,Σr) �ι . . . �ι (µ̃0,Σ0) (where Σ0 = Σ). Thus `′j v `j for all j,

and hence `′ v `, so that ∅,Σ′,S ` ṽ′ : Y `, as desired.

Lemma 25 (Permutation Invariance of Public Extension). If µ̃′ %ι
Σ µ̃, ` µ̃ : Σ, and Ψ|dom Σ = id, then

Ψ(µ̃′) %ι
Σ µ̃.

Proof. Follows directly from the definition of public extension.

Lemma 26 (Permutation Invariance of Full Public Extension). If (µ̃′,Σ′) %ι (µ̃,Σ) and Ψ|dom Σ = id, then
(Ψ(µ̃′),Ψ(Σ′)) %ι (µ̃,Σ).

Proof. Immediate from Lemma 25.

Lemma 27 (Phi is a Public Extension). If b̃ ∈ E`(bool), (µ̃2,Σ2) %ι (µ̃1,Σ1), (µ̃3,Σ3) %ι (µ̃1,Σ1), dom Σ2∩
dom Σ3 ⊆ dom Σ1, then (Φι

1(b̃, µ̃2, µ̃3),Σ2 ∪ Σ3) %ι (µ̃1,Σ1).

Proof. By Lemma 21, we must only show that Φι
1(b̃, µ̃2, µ̃3) is well-defined and Φι

1(b̃, µ̃2, µ̃3) %ι
Σ1

µ̃1. Fix
a ∈ dom Σ2 ∪ dom Σ3. If a ∈ dom Σ1 and Σ1(a) = P, then Σ2(a) = Σ3(a), so that Φι

1(b̃, µ̃2, µ̃3)(a) =
µ̃2(a) = µ̃3(a); otherwise, Φι

1(b̃, µ̃2, µ̃3)(a) is a secret value, and the result follows by inspection of the
definition of Φ.



Lemma 28 (Reducible Values are Values). If ṽ ∈ V(τ,Σ), then ṽ is a value.

Proof. By inspection of the reducibility judgment.

Lemma 29 (Permutation Invariance of Reducibility Predicate). If ṽ ∈ V(τ,Σ), then Ψ(ṽ) ∈ V(τ,Ψ(Σ)).

Proof. By induction on the type τ . In the cases for lambda abstraction and phi of lambda abstractions, the result
follows from Lemmas 11 and 14; in other cases, the result is immediate.

Lemma 30 (Store Weakening for Reducibility Predicate). If ṽ ∈ V(τ,Σ), and Σ′ ⊇ Σ, then ṽ ∈ V(τ,Σ′).

Proof. By induction on the judgment ṽ ∈ V(τ,Σ). The cases for abstraction and phi follow since the premise
is immediately generalized to Σ1 ⊇ Σ, while the cases for base value, nested phi of locations, and nested phi
of arrows are immediate. On the other hand, if ṽ is a location, ṽ = a ∈ V((Y `′ ref)`,Σ), then Σ′(a) = Σ(a) =
Y `′ , so again immediately a ∈ V((Y `′ ref)`,Σ′), as desired.

Lemma 31 (Phi of Reducible Values is Reducible). If b̃ ∈ E`(bool), ṽ2 ∈ V(τ,Σ2), ṽ3 ∈ V(τ,Σ3), and
Σ2,3 ⊇ Σ2,Σ3, then Φι

1(b̃, ṽ2, ṽ3) ∈ V(τ,Σ2,3).

Proof. By Lemma 30, we have ṽ2, ṽ3 ∈ V(τ,Σ2,3). The result then follows by case analysis on the reducibility
judgments.

Lemma 32 (Update to Reducible Secret Reference is a Public Extension). If ṽ ∈ V((Y S ref)`
′
,Σ), ` µ̃ : Σ,

and ṽ′ ∈ E`(Y ), then (updateι1(µ̃, ṽ, ṽ′),Σ) %ι (µ̃,Σ).

Proof. By induction on the reducibility predicate ṽ ∈ V((Y S ref)`
′
,Σ).

Lemma 33 (Select on Reducible Secret Reference is Reducible). If ṽ ∈ V((Y `′)`
′′

ref,Σ), ` µ̃ : Σ, `′ v `,
and `′′ v `, then selectι1(µ̃, ṽ) ∈ V(Y `,Σ).

Proof. By induction on the reducibility predicate ṽ ∈ V((Y `′ ref)`
′′
,Σ).

Lemma 34 (Purity for Applications of Pure Values). If ṽ ∈ V(τ1
S→ τ,Σ0), (ẽ, µ̃, ι) ⇓ (ṽ, µ̃0, T0,O0),

(ẽ1, µ̃0, ι) ⇓ (ṽ1, µ̃1, T1,O1), ṽ1 ∈ V(τ1,Σ1), and (µ̃1,Σ1) �ι (µ̃0,Σ0) �ι (µ̃,Σ), then (ẽ ẽ1, µ̃, ι) ⇓
(ṽ′, µ̃′, T ′,O0‖O1), (µ̃′,Σ′) %ι (µ̃1,Σ1), and ṽ′ ∈ V(τ,Σ′).

Proof. By induction on the reducibility judgment ṽ ∈ V(τ1
S→ τ,Σ1).

• Suppose ṽ = λx.ẽ0, reducible by the abstraction rule. The premise of that rule then gives that (ẽ0[ṽ1/x], µ̃1, ι) ⇓
(ṽ′, µ̃′, T ′, ε) with (µ̃′,Σ′) %ι (µ̃1,Σ1) and ṽ′ ∈ V(τ,Σ′). Further, by Lemma 28, ṽ′ and ṽ1 are values,
so that (ṽ′, µ̃1, ι) ⇓ (ṽ′, µ̃1, ε, ε) and (ṽ1, µ̃1, ι) ⇓ (ṽ1, µ̃1, ε, ε). Thus, the claim follows immediately by
the rule for application of lambda abstraction.

• Suppose ṽ = ϕ(b̃, ṽ2, ṽ3), reducible by the phi rule. The premises of that rule then yield b̃ ∈ E`1(bool);
(ṽ2 ṽ1, µ̃1, ι) ⇓ (ṽ′2, µ̃2, T2, ε) with (µ̃2,Σ2) %ι (µ̃1,Σ1) and ṽ′2 ∈ V(τ,Σ2); and (ṽ3 ṽ1, µ̃1, ι) ⇓
(ṽ′3, µ̃3, T3, ε) with (µ̃3,Σ3) %ι (µ̃1,Σ1) and ṽ′3 ∈ V(τ,Σ3). Let Ψ be a permutation that extends
iddom Σ1 so that Ψ(a) /∈ dom Σ2 for any a ∈ dom Σ3 (i.e., dom Σ2 ∩ dom Ψ(Σ3) = dom Σ1). Then
by Lemma 26, (Ψ(µ̃3),Ψ(Σ3)) %ι (µ̃1,Σ1), and by Lemma 29, Ψ(ṽ′3) ∈ V(τ,Ψ(Σ3)). We now define
ṽ′ = Φι

1(b̃, ṽ′2,Ψ(ṽ′3)); µ̃′ = Φι
1(b̃, µ̃2,Ψ(µ̃3)); and Σ′ = Σ2 ∪ Ψ(Σ3) (well-defined since Σ2,Ψ(Σ3) ⊇

Σ1 and dom Σ2 ∩ dom Ψ(Σ3) ⊆ dom Σ1). In addition, Lemma 31 gives ṽ′ ∈ V(τ,Σ′). Thus, by the
rule for application of phi, we conclude (ẽ ẽ1, µ̃1, ι) ⇓ (ṽ′, µ̃′, T,O0‖O1‖ε) (for some trace T produced
by concatenating traces above). Finally, Lemma 27 gives (µ̃′,Σ′) %ι (µ̃1,Σ1), as desired.



• Suppose ṽ = ϕ(b̃, ṽ2, ṽ3), reducible by the rule for nested phi. In this case, b̃ ∈ E`1(bool) and ṽ2, ṽ3 ∈
V((τ1

S→ τ)`,Σ). Thus, the inductive hypothesis gives (ṽ2 ṽ1, µ̃1, ι) ⇓ (ṽ′2, µ̃2, T2, ε) with (µ̃2,Σ2) %ι

(µ̃1,Σ1) and ṽ′2 ∈ V(τ,Σ2); and (ṽ3 ṽ1, µ̃1, ι) ⇓ (ṽ′3, µ̃3, T3, ε) with (µ̃3,Σ3) %ι (µ̃1,Σ1) and ṽ′3 ∈
V(τ,Σ3), and the proof proceeds as in the previous case.

Lemma 35 (Conditional Purity for Distributed Semantics). If Γ,Σ, S ` ẽ : τ , and for all x ∈ dom Γ, ρ(x) ∈
V(Γ(x),Σ) and Addrs(ρ(x)) ⊆ dom Σ, then for some ṽ, T , and (µ̃′,Σ′) %ι (µ̃,Σ), (ρ(ẽ), µ̃, ι) ⇓ (ṽ, µ̃′, T, ε)
and ṽ ∈ V(τ,Σ′).

Proof. By induction on the typing judgment Γ,Σ,S ` ẽ : τ . Some cases are immediately ruled out by the
context component, leaving only the following:

• Suppose Γ,Σ,S ` if ẽ1 then ẽ2 else ẽ3 : τ . Then we have Γ,Σ,S ` ẽ1 : τ1, Γ,Σ, S ` ẽ2 :
τ , and Γ,Σ,S ` ẽ3 : τ , with τ1 = bool−. Thus, the inductive hypothesis gives (ρ(ẽ1), µ̃, ι) ⇓
(b̃, µ̃1, T1, ε) with (µ̃1,Σ1) %ι (µ̃,Σ) and (b̃, µ̃1) ∈ V(bool〈−,S〉,Σ1). In addition, by weakening of
typing (Lemma 1), Γ,Σ1, S ` ẽ2 : τ and Γ,Σ1,S ` ẽ3 : τ ; and by weakening of the reducibility predi-
cate (Lemma 30), (ρ(x), µ̃1) ∈ V(Γ(x),Σ1) for all x ∈ dom Γ. Inversion on the reducibility judgment
(b̃, µ̃1) ∈ V(bool−,Σ1) now gives the following cases:

– Suppose b̃ ∈ E ιP(bool) = bool. In this case, b̃ = true or b̃ = false; without loss of generality we
assume b̃ = true. Then the inductive hypothesis immediately gives (ρ(ẽ2), µ̃1, ι) ⇓ (ṽ′, µ̃′, T ′, ε),
with (µ̃′,Σ′) %ι (µ̃1,Σ1) %ι (µ̃,Σ) and (ṽ′, µ̃′) ∈ V(τ,Σ′), as desired.

– Suppose b̃ ∈ E ιS(bool), so that τ = tS; assume without loss of generality that b̃ ∈ E ιS(true).
Then the inductive hypothesis gives (ρ(ẽ2), µ̃1, ι) ⇓ (ṽ2, µ̃2, T2, ε) with (ṽ2, µ̃2) ∈ V(τ,Σ2) and
(µ̃2,Σ2) %ι (µ̃1,Σ1); and, similarly, (ρ(ẽ3), µ̃1, ι) ⇓ (ṽ3, µ̃3, T3, ε), with (ṽ3, µ̃3) ∈ V(τ,Σ3) and
(µ̃3,Σ3) %ι (µ̃1,Σ1). Let Ψ be a permutation that extends iddom Σ1 so that dom Σ2∩dom Ψ(Σ3) =
dom Σ1. Then by Lemma 26, (Ψ(µ̃3),Ψ(Σ3)) %ι (µ̃1,Σ1); and by Lemmas 8 and 11, (ρ(ẽ3), µ̃1, ι) ⇓
(Ψ(ṽ3),Ψ(µ̃3), T3, ε). We now define ṽ′ = Φι

1(b̃, ṽ2,Ψ(ṽ3)); µ̃′ = Φι
1(b̃, µ̃2,Ψ(µ̃3)); and Σ′ =

Σ2 ∪Ψ(Σ3) (well-defined since Σ2,Ψ(Σ3) ⊇ Σ1 and dom Σ2 ∩ dom Ψ(Σ3) ⊆ dom Σ1). In addi-
tion, Lemma 31 gives ṽ′ ∈ V(τ,Σ′), and Lemma 27 gives (µ̃′,Σ′) %ι (µ̃1,Σ1), as desired. Thus,
the claim follows immediately from the conditional rule in the distributed semantics.

• Suppose Γ,Σ, S ` ẽ0 ẽ1 : τ . Then Γ,Σ,S ` ẽ0 : (τ1
S→ τ)` and Γ,Σ, S ` ẽ1 : τ1. Thus, the inductive

hypothesis gives (ρ(ẽ0), µ̃, ι) ⇓ (ṽ0, µ̃0, T0, ε), with ṽ0 ∈ V((τ1
S→ τ)`,Σ0) and (µ̃0,Σ0) %ι (µ̃,Σ).

Since Σ0 ⊇ Σ, ` µ̃0 : Σ, and thus the inductive hypothesis also gives (ρ(ẽ1), µ̃0, ι) ⇓ (ṽ1, µ̃1, τ1, ε) with
ṽ1 ∈ V(τ1,Σ1) and (µ̃1,Σ1) %ι (µ̃0,Σ0) %ι (µ̃,Σ). The claim then follows directly from Lemma 34.

• Suppose Γ,Σ,S ` (ẽ1 := ẽ2) : τ , so that τ = unit−. Then Γ,Σ, S ` ẽ1 : (Y S ref)`
′
, so the inductive

hypothesis gives (ρ(ẽ1), µ̃, ι) ⇓ (ṽ1, µ̃1, T1, ε) with (µ̃1,Σ1) %ι (µ̃,Σ) and ṽ1 ∈ V((Y S ref)`
′
,Σ1). In

addition, we conclude by weakening (Lemma 1) that Γ,Σ1,S ` ẽ2 : Y `, and thus the inductive hypothesis
also gives (ρ(ẽ2), µ̃1, ι) ⇓ (ṽ2, µ̃2, T2, ε) with (µ̃2,Σ2) %ι (µ̃1,Σ1) %ι (µ̃,Σ) and ṽ2 ∈ V(Y `,Σ2). The
claim then follows directly from Lemma 32 and the assignment rule in the distributed semantics.

• Suppose Γ,Σ,S ` !ẽ1 : τ . Then we have τ = Y `, and Γ,Σ,S ` ẽ : (Y `′ ref)`
′′
, with `′ v ` and

`′′ v `. Thus, the inductive hypothesis gives (ρ(ẽ1), µ̃, ι) ⇓ (ṽ1, µ̃1, T1,O1), with (µ̃1,Σ1) %ι (µ̃,Σ),
and ṽ1 ∈ V((Y `′ ref)`

′′
,Σ1). The claim then follows directly from Lemma 33 and the dereference rule

in the distributed semantics.



• Suppose Γ,Σ,S ` ref ẽ1 : τ . Then τ = ((Y `′) ref)` and Γ,Σ,S ` ẽ1 : Y `′ . Thus, the inductive
hypothesis gives (ρ(ẽ1), µ̃, ι) ⇓ (ṽ1, µ̃1, T1,O1), with (µ̃1,Σ1) %ι (µ̃,Σ) and ṽ1 ∈ V(Y `′ ,Σ1). Pick
ã /∈ dom µ̃1, and set µ̃′ = µ̃1[ã 7→ ṽ1], Σ′ = Σ[ã 7→ Y `′ . Then by definition, ã ∈ V((Y `′ ref)`,Σ′).
Now, since µ̃′|dom Σ1 = id, we have µ̃′ %ι

Σ1
µ̃1; and since ṽ1 ∈ E`′(Y ), we have ` µ̃′ : Σ′. Hence

(µ̃′,Σ′) %ι (µ̃1,Σ1) %ι (µ̃,Σ), and the claim follows directly from the reference rule in the distributed
semantics.

• Suppose Γ,Σ, S ` opti : τ , so that τ = Y `, and for all j ∈ {1, . . . , r}, we have Γ,Σ, S ` ẽj : Y
`j
j ,

with `j v ` (and opi :
∏
j Yj → Y ). Then after r successive applications of the inductive hypothesis,

along with weakening (Lemmas 1 and 30), we obtain, for each j: (ẽj , µ̃j−1, ι) ⇓ (ṽj , µ̃j , Tj ,Oj), with
(µ̃r,Σr) %ι . . . %ι (µ̃0,Σ0), and ṽj ∈ V(Y

`j
j ,Σr) (where µ̃0 = µ̃, Σ0 = Σ). Setting µ̃′ = µ̃r

and Σ′ = Σr, we note that by definition, ṽj ∈ E`′j (Yj) for some `′j v `j , and thus, setting ṽ′ =

Enc`′1,...,`′r(opi)(ṽ1, . . . , ṽr), we have ṽ′ ∈ Etj`′j (Y ). But tj`′j v tj`j , so by definition, ṽ′ ∈ V(Y `,Σ′),
and the claim follows directly from the primitive operation rule in the distributed semantics.

• Suppose Γ,Σ, S ` λx.ẽ′ : (τ1
C→ τ2)P. We have ρ(λ(x : τ1).ẽ′) = λ(x : τ1).ρ(ẽ′) (since we are

reasoning with capture-avoiding substitution). So (λ(x : τ1).ρ(ẽ′), µ̃, ι) ⇓ (λ(x : τ1).ρ(ẽ′), µ̃, ε, ε)

and (µ̃,Σ) %ι (µ̃,Σ). Thus, it only remains to show that λ(x : τ1).ρ(ẽ′) ∈ V((τ1
C→ τ2)P). If

C = P, this condition is vacuous, so we assume C = S, so that Γ[x 7→ τ1],Σ,S ` ẽ′ : τ2. Fix
ṽ1 ∈ V(τ1,Σ1), (µ̃1,Σ1) %ι (µ̃,Σ), and let ρ′ = ρ[x 7→ ṽ1], Γ′ = Γ[x 7→ τ1]. Thus ρ′(ẽ′) = ρ(ẽ′)[ṽ1/x],
and ρ′(x) ∈ V(Γ′(x),Σ1). In addition, by Lemma 9, Addrs(ρ′(x)) ⊆ dom Σ1; and, by Lemma 30,
ρ′(y) ∈ V(Γ′(y),Σ1) for all y ∈ dom Γ (and, trivially, Addrs(ρ′(y)) ⊆ dom Σ ⊆ dom Σ1). Hence, by
the inductive hypothesis, (ρ(ẽ′)[ṽ1/x], µ̃1, ι) ⇓ (ṽ′, µ̃′, T, ε), ṽ′ ∈ V(τ2,Σ

′), and (µ̃′,Σ′) %ι (µ̃1,Σ1), as
desired.

• Suppose Γ,Σ, S ` fix f.λx.ẽ′ : (τ1
P→ τ2)P. We have ρ(fix f.λx.ẽ′) = fix f.λx.ρ(ẽ′) (since we are

reasoning with capture-avoiding substitution). But then (fix f.λx.ρ(ẽ′), µ̃, ι) ⇓ (fix f.λx.ρ(ẽ′), µ̃, ε, ε),

and trivially fix f.λx.ρ(ẽ′) ∈ V((τ1
P→ τ2)P,Σ), as desired.

• Suppose Γ,Σ,S ` ϕ(b̃, ṽ2, ṽ3) : τ , so that Γ,Σ,S ` b̃ : boolS, Γ,Σ, S ` ṽ2 : t`2 , and Γ,Σ, S ` ṽ3 :
t`3 , with τ = t`; `2, `3 v `; and either t = (τ1 → τ2) or t = τ1 ref . By definition, b̃, ṽ2, and ṽ3

are values, so by Lemma 4, ρ(ϕ(b̃, ṽ2, ṽ3)) = ϕ(b̃, ṽ2, ṽ3); and, in addition, (ṽ2, µ̃, ι) ⇓ (ṽ2, µ̃, ε, ε);
(ṽ3, µ̃, ι) ⇓ (ṽ3, µ̃, ε, ε); and (ϕ(b̃, ṽ2, tv3), µ̃, ι) ⇓ (ϕ(b̃, ṽ2, ṽ3), µ̃, ε, ε). Thus, applying the rule for phi
in the distributed semantics, it only remains to show that ϕ(b̃, ṽ2, ṽ3) ∈ V(τ,Σ). Now, the inductive
hypothesis gives (ṽ2, µ̃, ι) ⇓ (ṽ′2, µ̃2, T2,O2), with ṽ′2 ∈ V(t`2 ,Σ2), Σ2 ⊇ Σ, ṽ′3 ∈ V(t`33 ,Σ3), and
Σ3 ⊇ Σ. But determinism (Lemma 19) gives that ṽ′2 = Ψ2(ṽ2) and ṽ′3 = Ψ3(ṽ3), with Ψ2|dom µ̃ = id
and Ψ3|dom µ̃ = id. In addition, Lemma 8 gives Addrs(ṽ2) ⊆ dom Σ ⊆ dom µ̃ and Addrs(ṽ3) ⊆
dom Σ ⊆ dom µ̃, and thus ṽ′2 = ṽ2 ∈ V(t`2 ,Σ), ṽ′3 = ṽ3 ∈ V(t`33 ,Σ). The claim now follows by
definition of the reducibility predicate.

• Suppose Γ,Σ,S ` a : τ , so that τ = (Y `′ ref)` and Σ(a) = Y `′ . Then (a, µ̃, ι) ⇓ (a, µ̃, ε, ε), so the
claim follows by definition of the reducibility predicate.

• Suppose Γ,Σ,S ` ỹ : τ , so that τ = Y ` and ỹ ∈ E`′(Y ) with `′ v `. Then (ỹ, µ̃, ι) ⇓ (ỹ, µ̃, ε, ε), so the
claim follows by definition of the reducibility predicate.

• Suppose Γ,Σ, S ` x : τ . Then Γ(x) = τ , and hence ρ(x) ∈ V(τ,Σ). By inspection, all cases for V(τ,Σ)
are values, so that (ρ(x), µ̃, ι) ⇓ (ρ(x), µ̃, ε, ε), and the claim is immediate.



Lemma 36 (Similarity is Reflexive for Surface Expressions). For any expression e (in the surface language),
(e, {}) ∼ι∅ (e, {}).

Proof. By induction on the structure of the expression e.

Lemma 37 (Permutation Weakening for Similarity Relation).

• If e ∼ιΨ ẽ and Ψ′ ⊇ Ψ then e ∼ιΨ′ ẽ.

• If µ ∼ιΨ µ̃ and Ψ′ ⊇ Ψ then µ ∼ιΨ′ µ̃.

Proof. The first claim follows by induction on the similarity relation e ∼ιΨ ẽ; the second claim then follows
immediately by applying the first claim for each address a ∈ domµ.

Lemma 38 (Substitution for Similarity Relation). If e ∼ιΨ ẽ and v ∼ιΨ ṽ, then e[v/x] ∼ιΨ ẽ[ṽ/x].

Proof. By induction on the similarity relation e ∼ιΨ ẽ.

Lemma 39 (Join of Values Preserves Equivalence).

• If b̃ ∈ Ê ι`(true) and v ∼ιΨ ṽ2, then v ∼ιΨ Φι
1(b̃, ṽ2, ṽ3).

• If b̃ ∈ Ê ι`(false) and v ∼ιΨ ṽ3, then v ∼ιΨ Φι
1(b̃, ṽ2, ṽ3).

Proof. By case analysis on the similarity relation v ∼ιΨ ṽ2 (resp., v ∼ιΨ ṽ3).

Lemma 40 (Join of Stores Preserves Equivalence).

• If µ ∼ιΨ µ̃2, µ̃′ = Φι
1(b̃, µ̃2, µ̃3), and b̃ ∈ E`1(true), then µ ∼ιΨ µ̃′.

• If µ ∼ιΨ µ̃3, µ̃′ = Φι
1(b̃, µ̃2, µ̃3), and b̃ ∈ E`1(false), then µ ∼ιΨ µ̃′.

Proof. Follows by applying Lemma 39 for each address in dom µ̃2 ∩ dom µ̃3 (and follows by definition for
other addresses).

Lemma 41 (Correctness for Applications of Related Values). If λx.e′0 ∼ιΨ0
ṽ0, then for all ẽ0 and ẽ1, if the

following conditions are satisfied:

• (ẽ0, µ̃, ι) ⇓ (ṽ0, µ̃0, T0,O0)

• (ẽ1, µ̃0, ι) ⇓ (ṽ1, µ̃1, T1,O1)

• ∅,Σ0, C ` ṽ0 : (τ1
C→ τ)`

• ∅,Σ1, C ` ṽ1 : τ1

• v1 ∼ιΨ1
ṽ1

• For any ẽ, if e′0[v1/x] ∼ιΨ1
ẽ and ∅,Σ1, C ` ẽ : τ , then (ẽ, µ̃1, ι) ⇓ (ṽ′, µ̃′, T,O2), v′ ∼ιΨ′ ṽ′, µ′ ∼ιΨ′ µ̃′,

and Ψ′ ⊇ Ψ1.

then (ẽ0 ẽ1, µ̃, ι) ⇓ (ṽ′, µ̃′, T ′,O0‖O1‖O2), v′ ∼ιΨ′ ṽ′, µ′ ∼ιΨ′ µ̃′, Ψ′ ⊇ Ψ1; and whenever ∅,Σ0, C ` ṽ0 :

(τ1
S→ τ)`, O2 = ε and µ̃′ %ι

Σ1
µ̃1.

Proof. By induction on the similarity relation λx.e′0 ∼ιΨ0
ṽ0.



• Suppose ṽ0 = ϕ(b̃, ṽ2, ṽ3). Then b̃ ∈ Ê ι`1(true) or b̃ ∈ Ê ι`1(false); without loss of generality we

assume the former, so that λx.e′0 ∼ιΨ0
ṽ2. Since ∅,Σ0, C ` ṽ0 : (τ1

C→ τ)`, and ṽ0 = ϕ(b̃, ṽ2, ṽ3),

we must have C = S, and also ∅,Σ0,S ` ṽ2 : (τ1
S→ τ)` and ∅,Σ0,S ` ṽ3 : (τ1

S→ τ)`. We now
invoke the inductive hypothesis on the expressions ṽ2 and ṽ1 (by inspection, the first two conditions
are satisfied, since ṽ2 and ṽ1 are values; the third was shown above; and the remaining conditions are
unchanged from the premises). Thus, we conclude that (ṽ2 ṽ1, µ̃1, ι) ⇓ (ṽ′2, µ̃

′
2, T

′
2, ε), with v′ ∼ιΨ2

ṽ′2,
µ′ ∼ιΨ2

µ̃′2, Ψ2 ⊇ Ψ1, and µ̃′2 %ι
Σ1

µ̃1. On the other hand, we note that by Lemma 35, we have

ṽ3 ∈ V(τ1
S→ τ,Σ0); and by Lemmas 35 and 5, ṽ1 ∈ V(τ1,Σ1) (since ṽ1 is a value). Thus, we

can also invoke Lemma 34 to conclude that (ṽ3 ṽ1, µ̃1, ι) ⇓ (ṽ′3, µ̃
′
3, T

′
3, ε), with (µ̃3,Σ3) %ι (µ̃1,Σ1).

Let Ψ′3 be a permutation that extends iddom Σ1 so that Ψ′3(a) /∈ dom Σ2 for any a ∈ dom Σ3 (i.e.,
dom Σ2 ∩ dom Ψ′3(Σ3) = dom Σ1). Then by Lemma 26, (Ψ′3(µ̃3),Ψ′3(Σ3)) %ι (µ̃1,Σ1); and by
Lemmas 8 and 11, (ṽ3 ṽ1, µ̃1, ι) ⇓ (Ψ′3(ṽ′3),Ψ′3(µ̃′3), T ′3, ε). Let Ψ′ = Ψ2, ṽ′ = Φι

1(b̃, ṽ′2, ṽ
′
3), and

µ̃′ = Φι
1(b̃, µ̃′2, µ̃

′
3). Lemma 39 then gives v′ ∼ιΨ′ ṽ′, while Lemmas 27 and 40 give µ′ ∼ιΨ′ µ̃′. The claim

then follows immediately from the distributed semantics rule for application of phi.

• Suppose ṽ0 = λx.ẽ′0. Then by definition, e′0 ∼ιΨ0
ẽ′0, so that Lemma 38 gives e0[v1/x] ∼ιΨ0

ẽ′0[ṽ1/x].
In addition, by substitution (Lemma 2) and weakening (Lemma 1), we have ∅,Σ1, C ` ẽ′0[ṽ1/x] : τ .
Thus, using the final condition given in the hypothesis, and instantiating ẽ with ẽ′0[ṽ1/x], we conclude
that (ẽ′0[ṽ1/x], µ̃1, ι) ⇓ (ṽ′, µ̃, T,O2), with v′ ∼ιΨ′ ṽ′, µ′ ∼ιΨ′ µ̃′, and Ψ′ ⊇ Ψ1. So it only remains

to show the final clause of the conclusion. Suppose ∅,Σ0, C ` ṽ0 : (τ1
S→ τ)`. Then by definition,

{x 7→ τ1},Σ0, S ` ẽ′0 : τ . But by Lemma 5, we also have ∅,Σ1,S ` ṽ1 : τ1, and hence by substitution
(Lemma 2) and weakening (Lemma 1), ∅,Σ1, S ` ẽ′0[ṽ1/x] : τ . Thus, purity (Lemma 35) along with
determinism (Lemma 19) gives O2 = ε and Ψ′2(µ̃′) %ι µ̃1 for some Ψ′2 such that Ψ′2|dom µ̃1 = id. The
claim then follows directly from Lemma 26.

Lemma 42 (Correctness of Distributed Store Update). If a ∼ιΨ ṽ, µ ∼ιΨ µ̃, v′ ∈ Y , ṽ′ ∈ Ê ι`(v′), and µ̃′ =
updateι1(µ̃, ṽ, ṽ′), then µ[a 7→ v′] ∼ιΨ µ̃′.

Proof. By induction on the similarity relation a ∼ιΨ ṽ.

• Suppose ṽ = ϕ(b̃, ṽ2, ṽ3) with b̃ ∈ Ê ι`1(bool). Without loss of generality, we assume b̃ ∈ Ê ι`1(true),
so that a ∼ιΨ ṽ2. Then, by the inductive hypothesis, we have µ[a 7→ v′] ∼ιΨ updateι1(µ̃, ṽ2, ṽ

′). But
by definition, updateι1(µ̃, ṽ, ṽ′) = Φι

1(b̃,updateι1(µ̃, ṽ2, ṽ
′), updateι1(µ̃, ṽ3, ṽ

′)), so the claim follows
immediately from Lemma 40.

• Suppose ṽ = Ψ(a). Then updateι1(µ̃, ṽ, ṽ′) = µ̃[Ψ(a) 7→ ṽ′], so the claim follows by definition of
similarity of stores.

Lemma 43 (Correctness of Distributed Store Select). If a ∼ιΨ ṽ, µ ∼ιΨ µ̃, and ṽ′ = selectι1(µ̃, ṽ), then
µ(a) ∼ιΨ ṽ′.

Proof. By induction on the similarity relation a ∼ιΨ ṽ.

• Suppose ṽ = ϕ(b̃, ṽ2, ṽ3) with b̃ ∈ Ê ι`1(bool). Without loss of generality, we assume b̃ ∈ Ê ι`1(true), so
that a ∼ιΨ ṽ2. Then, by the inductive hypothesis, we have µ(a) ∼ιΨ selectι1(µ̃, ṽ2). But by definition,
selectι1(µ̃, ṽ) = Φι

1(b̃, selectι1(µ̃, ṽ2), selectι1(µ̃, ṽ3)), so the claim follows immediately from Lemma 39.



• Suppose ṽ = Ψ(a). Then selectι1(µ̃, ṽ) = µ̃(Ψ(a)), so the claim follows by definition of similarity of
addresses.

Lemma 44 (Correctness (Generalized)). If (e, µ) ↓ (v′, µ′,O), (e, µ) ∼ιΨ (ẽ, µ̃), ` µ̃ : Σ, and ∅,Σ, C ` ẽ : τ ,
then (ẽ, µ̃, ι) ⇓ (ṽ′, µ̃′, T,O), (v′, µ′) ∼ιΨ′ (ṽ′, µ̃′), and Ψ′ ⊇ Ψ.

Proof. By induction on the evaluation derivation (e, µ) ↓ (v′, µ′,O).

• Suppose (if e1 then e2 else e3, µ) ↓ (v′, µ′,O), so that ẽ = if ẽ1 then ẽ2 else ẽ3, with e1 ∼ιΨ ẽ1,
e2 ∼ιΨ ẽ2, and e3 ∼ιΨ ẽ3. Then (e1, µ) ↓ (v1, µ1,O1), and ∅,Σ, C ` ẽ1 : bool`. Thus, by the
inductive hypothesis, (ẽ1, µ̃, ι) ⇓ (ṽ1, µ̃1, T1,O1), with (v1, µ1) ∼ιΨ1

(ṽ1, µ̃1) and Ψ1 ⊇ Ψ. In addition,
by preservation (Lemma 24), we have ` µ̃1 : Σ1, Σ1 ⊇ Σ, and ∅,Σ1, C ` ṽ1 : bool`. So for some
`′ v `, either ṽ1 ∈ E`′(true) or ṽ1 ∈ E`′(false); without loss of generality we assume the former.
Since v1 ∼ιΨ1

ṽ1, v1 = true also. So (e2, µ1) ↓ (v′, µ′,O2) and O = O1‖O2. By weakening of typing
(Lemma 1), Γ,Σ1, C ` ẽ2 : τ ; and by weakening of the similarity relation (Lemma 37), e2 ∼ιΨ1

ẽ2.
Thus, the inductive hypothesis gives (ẽ2, µ̃1, ι) ⇓ (ṽ2, µ̃2, T2,O2) with (v′, µ′) ∼ιΨ2

(ṽ2, µ̃2) and Ψ2 ⊇
Ψ1 ⊇ Ψ. Now, we have the following cases:

– Suppose ṽ1 ∈ EP(true). Setting Ψ′ = Ψ2, (ṽ′, µ̃′) = (ṽ2, µ̃2), the claim follows immediately from
the public conditional rule for the distributed semantics.

– Suppose ṽ1 ∈ ES(true), so that ` = S. By preservation (Lemma 24), ` µ̃2 : Σ2, Σ2 ⊇ Σ1, and
∅,Σ2, C ` ṽ2 : τ . Since ∅,Σ, C ` ṽ1 : boolS, we have ∅,Σ,S ` ẽ2 : τ and ∅,Σ, S ` ẽ3 : τ
(and thus, again by weakening (Lemma 1), we have ∅,Σ1,S ` ẽ2 : τ and ∅,Σ1,S ` ẽ3 : τ ). Now,
by purity (Lemma 35), (ẽ2, µ̃1, ι) ⇓ (ṽ′2, µ̃

′
2, T

′
2, ε), (µ̃′2,Σ

′
2) %ι (µ̃1,Σ1). But by determinism

(Lemma 19), there is some permutation Ψ′2 with Ψ′2|dom Σ1 = id and µ̃′2 = Ψ′2(µ̃2); and, invoking
Lemma 25 with the permutation (Ψ′2)−1 (also the identity on dom Σ1), we obtain µ̃2 %ι

Σ1
µ̃1

(and thus, from the above, (µ̃2,Σ2) %ι (µ̃1,Σ1)). In addition, again by purity (Lemma 35), we
have (ẽ3, µ̃1, ι) ⇓ (ṽ3, µ̃3, T3, ε) with (µ̃3,Σ3) %ι (µ̃1,Σ1); and, by preservation (Lemma 24),
∅,Σ3, C ` ṽ3 : τ , ` µ̃3 : Σ3, and Σ3 ⊇ Σ1. Let Ψ3 be a permutation that extends iddom Σ1

so that Ψ3(a) /∈ dom Σ2 for any a ∈ dom Σ3 (i.e., dom Σ2 ∩ dom Ψ3(Σ3) = dom Σ1). Then
by Lemma 26, (Ψ3(µ̃3),Ψ3(Σ3)) %ι (µ̃1,Σ1); by Lemma 10, ∅,Ψ3(Σ3), C ` Ψ3(ṽ3) : τ ; and
by Lemma 11, (ẽ3, µ̃1, ι) ⇓ (Ψ3(ṽ3),Ψ3(µ̃3), T3, ε). Let Ψ′ = Ψ2, ṽ′ = Φι

1(ṽ1, ṽ2, ṽ3), and
µ̃′ = Φι

1(ṽ1, µ̃2, µ̃3). Lemma 39 then gives v′ ∼ιΨ′ ṽ′, while Lemmas 27 and 40 gives µ′ ∼ιΨ′ µ̃′.
The claim then follows from the secret conditional rule for the distributed semantics.

• Suppose (e0 e1, µ) ↓ (v′, µ′,O). Then ẽ = ẽ0 ẽ1, with e0 ∼ιΨ ẽ0 and e1 ∼ιΨ ẽ1. Since ∅,Σ, C ` ẽ : τ ,

we have ∅,Σ, C ` ẽ0 : (τ1
C→ τ)`, with ` v C, and ∅,Σ, C ` ẽ1 : τ1. Now, (e0, µ) ↓ (v0, µ0,O0) so that

by the inductive hypothesis, (ẽ0, µ̃, ι) ⇓ (ṽ0, µ̃0, T0,O0), with v0 ∼ιΨ0
ṽ0; µ0 ∼ιΨ0

µ̃0; ` µ̃0 : Σ0; and
Ψ0 ⊇ Ψ. By weakening of typing (Lemma 1), ∅,Σ1, C ` ẽ1 : τ1; and by weakening of the similarity
relation (Lemma 37), e1 ∼ιΨ0

ṽ1. Thus, since (e1, µ0) ↓ (v1, µ1,O1), the inductive hypothesis gives
(ẽ1, µ̃0, ι) ⇓ (ṽ1, µ̃1, T1,O1) with v1 ∼ιΨ1

ṽ1; µ1 ∼ιΨ1
µ̃1; ` µ̃1 : Σ1; and Ψ1 ⊇ Ψ0 ⊇ Ψ. In addition,

preservation (Lemma 24) gives ∅,Σ0, C ` ṽ0 : (τ1
C→ τ)` and ∅,Σ1, C ` ṽ1 : τ1. We now consider the

following cases:

– v0 = λx.e′0. We then have (e′0[v1/x], µ1) ↓ (v′, µ′,O2) and O = O0‖O1‖O2. Thus, the claim
follows directly from Lemma 41 (supplying its final condition with the inductive hypothesis applied
to e′0[v1/x]).



– v0 = fix f.λx.e′0. In this case, (e′0[(fix f.λx.e′0)/f, v1/x], µ1) ↓ (v′, µ′,O2) andO = O0‖O1‖O2.
Now, by definition, we have e′0 ∼ιΨ0

ẽ′0, so that Lemma 38 gives e0[(fix f.λx.e′0)/f, v1/x] ∼ιΨ0

ẽ′0[(fix f.λx.ẽ′0)/f, ṽ1/x]. In addition, substitution (Lemma 2) and weakening (Lemma 1) give
∅,Σ1, C ` ẽ′0[(fix f.λx.ẽ′0)/f, ṽ1/x] : τ . The claim then follows immediately by the inductive
hypothesis.

• Suppose (e1 := e2, µ) ↓ (v′, µ′,O). Then (e1, µ) ↓ (a, µ1,O2), (e2, µ1) ↓ (v2, µ2,O2), µ̃′ = µ2[a 7→
v2], v′ = (), and O = O1‖O2. We also have ẽ = (ẽ1 := ẽ2), with e1 ∼ιΨ ẽ1 and e2 ∼ιΨ ẽ2. Inversion
on the typing judgment gives ∅,Σ, C ` ẽ1 : (Y ` ref)`

′
and ∅,Σ, C ` ẽ2 : Y `, so that by the inductive

hypothesis, (ẽ1, µ̃, ι) ⇓ (ṽ1, µ̃1, T1,O1) with a ∼ιΨ1
ṽ1, µ1 ∼ιΨ1

µ̃1, and Ψ1 ⊇ Ψ. In addition, preser-
vation (Lemma 24) gives ` µ̃1 : Σ1, Σ1 ⊇ Σ, and ∅,Σ1, C ` ṽ1 : (Y ` ref)`

′
. By weakening of typing

(Lemma 1), we have ∅,Σ1, C ` ẽ2 : Y `, and by weakening of the similarity relation (Lemma 37), we
have e1 ∼ιΨ1

ẽ1 and µ1 ∼ιΨ1
µ̃1. Thus, the inductive hypothesis also gives (ẽ2, µ̃1, ι) ⇓ (ṽ2, µ̃2, T2,O2)

with v2 ∼ιΨ2
ṽ2, µ2 ∼ιΨ2

µ̃2, and Ψ2 ⊇ Ψ1 ⊇ Ψ. Further, by preservation (Lemma 24), ` µ̃2 : Σ2,
Σ2 ⊇ Σ, and ∅,Σ2, C ` ṽ2 : (Y ` ref)`

′
. Hence by definition, v2 ∈ Y and ṽ2 ∈ Ê ι`′′(v2) for `′′ v `. In

addition, again by weakening (Lemmas 1 and 37), we have a ∼ιΨ1
ṽ2, and ∅,Σ2, C ` ṽ1 : (Y ` ref)`

′
.

Now, we consider the following cases:

– Suppose `′ = P. In this case, the typing judgment gives that ṽ1 = ã for some address ã; and
the equivalence judgment gives that ã = Ψ1(a) = Ψ2(a). Thus, updateι(µ̃2, ṽ1, ṽ2) = (µ̃2[ã 7→
ṽ2], ε), and the claim follows immediately from the assignment rule in the distributed semantics.

– Suppose `′ = S. Then C = S, and so ` = S, so that Σ2(ã) = S, and ṽ2 ∈ Ê ιS(v2). The claim now
follows immediately from Lemma 42 and the assignment rule in the distributed semantics.

• Suppose (!e, µ) ↓ (v′, µ′,O), so that (e, µ) ↓ (a, µ′,O) and v′ = µ′(a). The equivalence judgment
gives ẽ′ = !ẽ, with e ∼ιΨ ẽ. In addition, the typing judgment gives ∅,Σ, C ` ẽ : (Y ` ref)`

′
, so that by

the inductive hypothesis, (ẽ, µ̃, ι) ⇓ (ṽ, µ̃′, T1,O) with a ∼ιΨ′ ṽ, µ′ ∼ιΨ′ µ̃′, and Ψ′ ⊇ Ψ. In addition,
preservation (Lemma 24) gives ` µ̃′ : Σ′, Σ′ ⊇ Σ, and ∅,Σ′, C ` ṽ : (Y ` ref)`

′
. Thus, setting

(ṽ′, T ′) = selectι(µ̃′, ṽ), the claim follows immediately from Lemma 43 and the dereference rule in the
distributed semantics.

• Suppose (ref e, µ) ↓ (a, µ′,O), so that (e1, µ) ↓ (v1, µ1,O), a /∈ domµ, and µ′ = µ[a 7→ v1]. Then
we have ẽ = ref ẽ1, with e1 ∼ιΨ ẽ1, and ∅,Σ, C ` ẽ1 : Y `′ . Thus, the inductive hypothesis gives
(ẽ1, µ̃, ι) ⇓ (ṽ1, µ̃1, T1,O), with (v1, µ1) ∼ιΨ1

(ṽ1, µ̃1), and Ψ1 ⊇ Ψ. Pick any ã /∈ dom µ̃1, and let
Ψ′ = Ψ1[a 7→ ã], µ̃′ = µ̃[ã 7→ ṽ]. Then by weakening of the similarity relation (Lemma 37), v1 ∼ιΨ′ ṽ1;
so, by definition, a ∼ιΨ′ ã and µ′ ∼ιΨ′ µ̃′; and thus the claim follows immediately from the reference rule
in the distributed semantics.

• Suppose (reveal e, µ) ↓ (v′, µ′,O), so that (e1, µ) ↓ (y, µ′,O1) and O = O1‖y. Then we have
ẽ = reveal ẽ1, with e1 ∼ιΨ ẽ1 and ∅,Σ, C ` ẽ1 : Y S. Thus, the inductive hypothesis gives (ẽ1, µ̃, ι) ⇓
(ṽ1, µ̃1, T1,O1), with (y, µ1) ∼ιΨ1

(ṽ1, µ̃1) and Ψ1 ⊇ Ψ. Then by preservation (Lemma 24), we have
∅,Σ1, C ` ṽ1 : Y S. Hence ṽ1 ∈ Ê ι`(y) for some `, and so by correctness of Dec, we have π1(Dec(ṽ1)) =
y, and the claim follows from the reveal rule in the distributed semantics.

• Suppose (opti(e1, . . . , er), µ) ↓ (v′, µ′,O), so that for all j ∈ {1, . . . , r}, (ej , µj−1) ↓ (yj , µj ,Oj),
where µ = µ0, µ′ = µr, and v′ = opti(y1, . . . , yr). Then we have ẽ = opti(ẽ1, . . . , ẽr), and for all
j, ej ∼ιΨ ẽj and ∅,Σ, C ` ẽj : Y

`j
j . Now, after r successive applications of the inductive hypothesis,

preservation (Lemma 24), and weakening (Lemmas 1 and 37), we obtain (ẽj , µ̃j−1, ι) ⇓ (ỹj , µ̃j , Tj ,Oj),
with (vj , µj) ∼ιΨj

(ṽj , µ̃j), ∅,Σj , C ` ṽj : Y
`j
j , and ` µ̃j : Σj . Thus, ṽj ∈ Ê ι`′j (vj), so that by correctness

of Enc, we have π1(Enc`′1,...,`′r(opti)(ṽ1, . . . , ṽr, ι)) ∈ Ê ι`′(opti(v1, . . . , vr)) = Ê ι`′(v′), where `′ = tj`′j .



The claim then follows from the primitive operation rule in the distributed semantics and the definition
of similarity.

Lemma 45 (Public Similarity is Reflexive for Surface Expressions). For any expression e (in the surface lan-
guage), (e, {}) ≈ι∅ (e, {}).

Proof. By induction on the structure of the expression e.

Lemma 46 (Permutation Weakening for Public Similarity Relation).

• If ẽ1 ≈ιΨ ẽ2 and Ψ′ ⊇ Ψ then ẽ1 ≈ιΨ′ ẽ2.

• If µ̃1 ≈ιΨ µ̃2 and Ψ′ ⊇ Ψ then µ̃1 ≈ιΨ′ µ̃2.

Proof. The first claim follows by induction on the similarity relation ẽ1 ≈ιΨ ẽ1; the second claim then follows
immediately by applying the first claim for each address a ∈ dom µ̃1.

Lemma 47 (Substitution for Public Similarity Relation). If ẽ1 ≈ιΨ ẽ2 and ṽ1 ≈ιΨ ṽ2, then ẽ1[ṽ1/x] ≈ιΨ
ẽ2[ṽ2/x].

Proof. By induction on the similarity relation ẽ1 ≈ιΨ ẽ2.

Lemma 48 (Public Similarity Relation Contains All Addresses). If ẽ1 ≈ιΨ ẽ2, then Addrs(ẽ1) ⊆ dom Ψ and
Addrs(ẽ2) ⊆ cod Ψ.

Proof. By induction on the similarity relation ẽ1 ≈ιΨ ẽ2.

Lemma 49 (Phi Preserves Public Equivalence of Values). If (ṽ1)a ≈ιΨ (ṽ1)b, (ṽ2)a ≈ιΨ (ṽ2)b, (ṽ3)a ≈ιΨ (ṽ3)b,
ṽ′a = Φι

1((ṽ1)a, (ṽ2)a), (ṽ3)a), and ṽ′b = Φι
1((ṽ1)b, (ṽ2)b), (ṽ3)b), then ṽ′a ≈ιΨ ṽ′b.

Proof. By case analysis on the statement ṽ′a = Φι
1((ṽ1)a, (ṽ2)a), (ṽ3)a).

Lemma 50 (Phi Preserves Public Equivalence of Stores). If (ṽ1)a ≈ιΨ (ṽ1)b, (µ̃2)a ≈ιΨ (µ̃2)b, (µ̃3)a ≈ιΨ (µ̃3)b,
µ̃′a = Φι

1((ṽ1)a, (µ̃2)a), (µ̃3)a), and µ̃′b = Φι
1((ṽ1)b, (µ̃2)b), (µ̃3)b), then µ̃′a ≈ιΨ µ̃′b.

Proof. Follows by applying Lemma 49 for each address in dom µ̃2 ∩ dom µ̃3 (and follows by definition for
other addresses).

Lemma 51 (Store Update Preserves Public Equivalence). If µ̃a ≈ιΨ µ̃b, ṽa ≈ιΨ ṽb, ṽ′a ≈ιΨ ṽ′b, µ̃
′
a = updateι1(µ̃a, ṽa, ṽ

′
a),

and µ̃′b = updateι1(µ̃b, ṽb, ṽ
′
b), then µ̃′a ≈ιΨ µ̃′b.

Proof. By induction on the statement µ̃′a = updateι1(µ̃a, ṽa, ṽ
′
a), applying Lemma 50 in the inductive case.

Lemma 52 (Store Selection Preserves Public Equivalence). If µ̃a ≈ιΨ µ̃b, and ṽa ≈ιΨ ṽb, ṽ′a = selectι2(µ̃a, ṽa),
and ṽ′b = selectι2(µ̃b, ṽb), then ṽ′a ≈ιΨ ṽ′b.

Proof. By induction on the statement ṽ′a = selectι2(µ̃a, ṽa), applying Lemma 49 in the inductive case.

Lemma 53 (Safety of Phi of Values). If (ṽ1)a ≈ιΨ (ṽ1)b; (ṽ2)a ≈ιΨ (ṽ2)b; (ṽ3)a ≈ιΨ (ṽ3)b; Ta = Φι
2((ṽ1)a,

(ṽ2)a), (ṽ3)a); and Tb = Φι
2((ṽ1)b, (ṽ2)b), (ṽ3)b), then SAFE(ι, Ta, Tb).

Proof. By case analysis on the statement Ta = Φι
2((ṽ1)a, (ṽ2)a), (ṽ3)a). If (ṽ2)a, (ṽ3)a are not primitive

values, then the traces are empty and the result is immediate. On the other hand, if (ṽ2)a, (ṽ3)a are primitive
values, then the conditions of public similarity immediately give SAFEOP(ι, Ta, Tb), as desired.



Lemma 54 (Safety of Phi of Stores). If (ṽ1)a ≈ιΨ (ṽ1)b; (µ̃2)a ≈ιΨ (µ̃2)b; (µ̃3)a ≈ιΨ (µ̃3)b; Ta = Φι
2((ṽ1)a,

(µ̃2)a), (µ̃3)a); and Tb = Φι
2((ṽ1)b, (µ̃2)b), (µ̃3)b), then SAFE(ι, Ta, Tb).

Proof. We note that the definition of Φ on stores proceeds in lexicographical order by type signature. Since
(µ̃2)a ≈ιΨ (µ̃2)b and (µ̃3)a ≈ιΨ (µ̃3)b, for each address ã ∈ dom µ̃2 ∩ dom µ̃3, we have (sig(µ̃2)a(ã),
sig(µ̃3)a(ã)) = (sig(µ̃2)b

(Ψ(ã)), sig(µ̃3)b
(Ψ(ã))). Thus, the components of the traces for each individual ad-

dress are safe, by Lemma 53, and hence their concatenation is also safe.

Lemma 55 (Safety of Store Update). If µ̃a ≈ιΨ µ̃b; ṽa ≈ιΨ ṽb; ṽ′a ≈ιΨ ṽ′b; Ta = updateι2(µ̃a, ṽa, ṽ
′
a); and

Tb = updateι2(µ̃b, ṽb, ṽ
′
b), then SAFE(ι, Ta, Tb).

Proof. By induction on the statement Ta = updateι2(µ̃a, ṽa, ṽ
′
a), applying Lemma 54 in the inductive case.

Lemma 56 (Safety of Store Selection). If µ̃a ≈ιΨ µ̃b; ṽa ≈ιΨ ṽb; Ta = selectι2(µ̃a, ṽa); and Tb = selectι2(µ̃b, ṽb),
then SAFE(ι, Ta, Tb).

Proof. By induction on the statement Ta = selectι2(µ̃a, ṽa), applying Lemma 53 in the inductive case.

Lemma 57 (Safety of Traces). If (ẽa, µ̃a, ι) ⇓ (ṽ′a, µ̃
′
a, Ta,Oa), (ẽb, µ̃b, ι) ⇓ (ṽ′b, µ̃

′
b, Tb,Ob), (ẽa, µ̃a) ≈ιΨ

(ẽb, µ̃b), and Ψ : dom µ̃a ↔ dom µ̃b, then neither of Oa and Ob is a proper prefix of the other; and, if
Oa = Ob, then for some Ψ′ ⊇ Ψ, (ṽ′a, µ̃

′
a) ≈ιΨ′ (ṽ′b, µ̃

′
b), Ψ′ : dom µ̃′a ↔ dom µ̃′b, and SAFE(ι, Ta, Tb).

Proof. By induction on the first evaluation derivation (ẽa, µ̃a, ι) ⇓ (ṽ′a, µ̃
′
a, Ta,Oa). If ẽa is a value, then by

inspection ẽb is a value, so the claim follows trivially; thus, we only treat the cases in which ẽa is not a value.

• Suppose ẽa = if (ẽ1)a then (ẽ2)a else (ẽ3)a, so that ẽb = if (ẽ1)b then (ẽ2)b else (ẽ3)b and:

– ((ẽ1)a, µ̃a, ι) ⇓ ((ṽ1)a, (µ̃1)a, (T1)a, (O1)a)

– ((ẽ2)a, (µ̃1)a, ι) ⇓ ((ṽ2)a, (µ̃2)a, (T2)a, (O2)a)

– ((ẽ3)a, (µ̃1)a, ι) ⇓ ((ṽ3)a, (µ̃3)a, (T3)a, (O3)a)

– dom(µ̃2)a ∩ dom(µ̃3)a = dom(µ̃1)a

– ṽ′a = Φι
1((ṽ1)a, (ṽ2)a, (ṽ3)a)

– µ̃′a = Φι
1((µ̃1)a, (µ̃2)a, (µ̃3)a)

– Oa = (O1)a‖(O2)a‖(O3)a

– Ta = (T1)a‖(T2)a‖(T3)a‖Φι
2((ṽ1)a, (ṽ2)a, (ṽ3)a)‖Φι

2((µ̃1)a, (µ̃2)a, (µ̃3)a)

By inversion on the second evaluation derivation, we obtain the analogous facts:

– ((ẽ1)b, µ̃b, ι) ⇓ ((ṽ1)b, (µ̃1)b, (T1)b, (O1)b)

– ((ẽ2)b, (µ̃1)b, ι) ⇓ ((ṽ2)b, (µ̃2)b, (T2)b, (O2)b)

– ((ẽ3)b, (µ̃1)b, ι) ⇓ ((ṽ3)b, (µ̃3)b, (T3)b, (O3)b)

– dom(µ̃2)b ∩ dom(µ̃3)b = dom(µ̃1)b

– ṽ′b = Φι
1((ṽ1)b, (ṽ2)b, (ṽ3)b)

– µ̃′b = Φι
1((µ̃1)b, (µ̃2)b, (µ̃3)b)

– Ob = (O1)b‖(O2)b‖(O3)b

– Tb = (T1)b‖(T2)b‖(T3)b‖Φι
2((ṽ1)b, (ṽ2)b, (ṽ3)b)‖Φι

2((µ̃1)b, (µ̃2)b, (µ̃3)b)



Now, by the inductive hypothesis, neither of (O1)a and (O1)b is a proper prefix of the other; thus, either
(O1)a = (O1)b, or else Oa 6= Ob and they differ on some position within the length of O1 (i.e., neither
of Oa and Ob is a proper prefix of the other, satisfying the only required condition). Thus, we may
assume without loss of generality that (O1)a = (O1)b, so that ((ṽ1)a, (µ̃1)a) ≈ιΨ1

((ṽ1)b, (µ̃1)b) for
some Ψ1 ⊇ Ψ, SAFE(ι, (T1)a, (T1)b), and Ψ1 : dom(µ̃1)a ↔ dom(µ̃1)b. Proceeding in the same
fashion with (O2)a and (O3)a, we obtain the following:

– (O2)a = (O2)b

– ((ṽ2)a, (µ̃2)a) ≈ιΨ2
((ṽ2)b, (µ̃2)b)

– Ψ2 ⊇ Ψ1 ⊇ Ψ

– SAFE(ι, (T2)a, (T2)b)

– Ψ2 : dom(µ̃2)a ↔ dom(µ̃2)b

– (O3)a = (O3)b

– ((ṽ3)a, (µ̃3)a) ≈ιΨ3
((ṽ2)b, (µ̃3)b)

– Ψ3 ⊇ Ψ1 ⊇ Ψ

– SAFE(ι, (T3)a, (T3)b)

– Ψ3 : dom(µ̃3)a ↔ dom(µ̃3)b

In addition, setting Ψ′ = Ψ2 ∪Ψ3 ⊇ Ψ1 ⊇ Ψ (well-defined since dom(µ̃2)a ∩ dom(µ̃3)a = dom(µ̃1)a
and dom(µ̃2)b ∩ dom(µ̃3)b = dom(µ̃1)b), we note that by Lemma 12, Ψ′ : dom µ̃′a ↔ dom µ̃′b; and,
by Lemma 46, the above public-equivalence judgments carry over to Ψ′. Thus, Lemmas 49 and 50 give
(ṽ′a, µ̃

′
a) ≈ιΨ′ (ṽ′b, µ̃

′
b); Lemma 53 gives SAFE(ι,Φι

2((ṽ1)a, (ṽ2)a, (ṽ3)a),Φ
ι
2((ṽ1)b, (ṽ2)b, (ṽ3)b)); and

Lemma 54 gives SAFE(ι,Φι
2((µ̃1)a, (µ̃2)a, (µ̃3)a),Φ

ι
2((µ̃1)b, (µ̃2)b, (µ̃3)b)), proving the claim.

• Suppose ẽa = (ẽ0)a (ẽ1)a, so that ẽb = (ẽ0)b (ẽ1)b. Then we have the following subcases.

– ẽa evaluates to a lambda abstraction, i.e.:

∗ ((ẽ0)a, µ̃a, ι) ⇓ (λx.(ẽ′0)a, (µ̃0)a, (T0)a, (O0)a)

∗ ((ẽ1)a, (µ̃0)a, ι) ⇓ ((ṽ1)a, (µ̃1)a, (T1)a, (O1)a)

∗ ((ẽ′0)a[(ṽ1)a/x], (µ̃1)a, ι) ⇓ ((ṽ′)a, µ̃
′
a, (T2)a, (O2)a)

∗ Oa = (O0)a‖(O1)a‖(O2)a

∗ Ta = (T0)a‖(T1)a‖(T2)a

By inversion on the second evaluation derivation, we obtain the analogous facts with b in place of
a. Further, by the same argument as in the conditional case, we have:

∗ (O0)a = (O0)b, (O1)a = (O1)b

∗ SAFE(ι, (T0)a, (T0)b), SAFE(ι, (T1)a, (T1)b)

∗ ((λx.(ẽ′0)a), (µ̃0)a) ≈ιΨ0
((λx.(ẽ′0)b), (µ̃0)b)

∗ ((ṽ1)a, (µ̃1)a) ≈ιΨ1
((ṽ1)b, (µ̃1)b)

∗ Ψ0 : dom(µ̃0)a ↔ dom(µ̃0)b, Ψ1 : dom(µ̃1)a ↔ dom(µ̃1)b

∗ Ψ1 ⊇ Ψ0 ⊇ Ψ

Now, by definition, (ẽ′0)a ≈ιΨ0
(ẽ′0)b, and thus Lemma 47 gives (ẽ′0)a[(ṽ1)a/x] ≈ιΨ0

(ẽ′0)b[(ṽ1)b/x]
(and, by Lemma 46, (ẽ′0)a[(ṽ1)a/x] ≈ιΨ1

(ẽ′0)b[(ṽ1)b/x]). So, again by the same argument as in the
conditional case, we have:

∗ (O2)a = (O2)b

∗ (ṽ′a, µ̃
′
a) ≈ιΨ′ (ṽ′b, µ̃

′
b)



∗ SAFE(ι, (T2)a, (T2)b)

∗ Ψ′ : dom µ̃′a ↔ dom µ̃′b,

and the claim follows immediately.

– ẽa evaluates to a fixpoint definition. The proof is exactly the same as in the previous case, except
that we perform the substitution (ẽ′0)a[(fix f.λx.(ẽ

′
0)a)/f, (ṽ1)a/x] rather than (ẽ′0)a[(ṽ1)a/x]

(again using Lemma 46 to conclude that (fix f.λx.(ẽ′0)a) ≈ιΨ1
(fix f.λx.(ẽ′0)b) follows from

(fix f.λx.(ẽ′0)a) ≈ιΨ0
(fix f.λx.(ẽ′0)b)).

– ẽa evaluates to a phi symbol, i.e.:

∗ b̃a ∈ E`1(bool)

∗ ((ẽ0)a, µ̃a, ι) ⇓ (ϕ(b̃a, (ṽ2)a, (ṽ3)a), (µ̃0)a, (T0)a, (O0)a)

∗ ((ẽ1)a, (µ̃0)a, ι) ⇓ ((ṽ1)a, (µ̃1)a, (T1)a, (O1)a)

∗ ((ṽ2)a (ṽ1)a, (µ̃1)a, ι) ⇓ ((ṽ′2)a, (µ̃2)a, (T2)a, (O2)a)

∗ ((ṽ3)a (ṽ1)a, (µ̃1)a, ι) ⇓ ((ṽ′3)a, (µ̃3)a, (T3)a, (O3)a)

∗ dom(µ̃2)a ∩ dom(µ̃3)a = dom(µ̃1)a

∗ (ṽ′a, (T4)a) = Φι(b̃a, (ṽ
′
2)a, (ṽ

′
3)a)

∗ (µ̃′a, (T5)a) = Φι(b̃a, (µ̃2)a, (µ̃3)a)

∗ Oa = (O0)a‖ . . . ‖(O3)a

∗ Ta = (T0)a‖ . . . ‖(T5)a

The proof now proceeds as in the conditional case.

• Suppose ẽa = ((ẽ1)a := (ẽ2)a), so that ẽb = ((ẽ1)b := (ẽ2)b), and:

– ((ẽ1)a, µ̃a, ι) ⇓ ((ṽ1)a, (µ̃1)a, (T1)a, (O1)a)

– ((ẽ2)a, (µ̃1)a, ι) ⇓ ((ṽ2)a, (µ̃2)a, (T2)a, (O2)a)

– Oa = (O1)a‖(O2)a

– Ta = (T1)a‖(T2)a‖updateι2((µ̃2)a, (ṽ1)a, (ṽ2)a)

– µ̃′a = updateι1((µ̃2)a, (ṽ1)a, (ṽ2)a)

– ṽ′a = ()

By inversion on the second evaluation derivation, we obtain the analogous facts with b in place of a.
Further, by the same argument as in the conditional case, we have:

– (O1)a = (O1)b, (O2)a = (O2)b

– ((ṽ1)a, (µ̃1)a) ≈ιΨ1
((ṽ1)b, (µ̃1)b)

– ((ṽ2)a, (µ̃2)a) ≈ιΨ2
((ṽ2)b, (µ̃2)b)

– SAFE(ι, (T1)a, (T1)b), SAFE(ι, (T2)a, (T2)b)

– Ψ1 : dom(µ̃1)a ↔ dom(µ̃1)b, Ψ2 : dom(µ̃2)a ↔ dom(µ̃2)b

– Ψ2 ⊇ Ψ1 ⊇ Ψ

By Lemma 46, ((ṽ1)a, (µ̃1)a) ≈ιΨ2
((ṽ1)b, (µ̃1)b). Thus, setting Ψ′ = Ψ2, Lemma 51 gives ((), µ̃′a) ≈ιΨ′

((), µ̃′b); Lemma 55 gives SAFE(ι,updateι2((µ̃2)a, (ṽ1)a, (ṽ2)a),updateι2((µ̃2)b, (ṽ1)b, (ṽ2)b)); and Lem-
mas 13 and 48 gives Ψ′ : dom µ̃′a ↔ dom µ̃′b, proving the claim.

• Suppose ẽa =!(ẽ1)a, so that ẽb =!(ẽ1)b, and:

– ((ẽ1)a, µ̃a, ι) ⇓ ((ṽ1)a, (µ̃1)a, (T1)a, (O1)a)



– Oa = (O1)a

– Ta = (T1)a‖selectι2((µ̃1)a, (ṽ1)a)

– ṽ′a = selectι1((µ̃1)a, (ṽ1)a)

– µ̃′a = (µ̃1)a

By inversion on the second evaluation derivation, we obtain the analogous facts with b in place of a.
Further, by the same argument as in the conditional case, we have:

– (O1)a = (O1)b

– SAFE(ι, (T1)a, (T1)b)

– ((ṽ1)a, (µ̃1)a) ≈ιΨ1
((ṽ1)b, (µ̃1)b)

– Ψ0 : dom(µ̃0)a ↔ dom(µ̃0)b, Ψ1 : dom(µ̃1)a ↔ dom(µ̃1)b

– Ψ1 ⊇ Ψ0 ⊇ Ψ

Thus, setting Ψ′ = Ψ1, Lemma 52 gives (ṽ′a, µ̃
′
a) ≈ιΨ′ (ṽ′b, µ̃

′
b), and Lemma 56 gives SAFE(ι, selectι2((µ̃2)a, (ṽ1)a, (ṽ2)a), selectι2((µ̃2)b, (ṽ1)b, (ṽ2)b)),

proving the claim.

• Suppose ẽa = ref (ẽ1)a, so that ẽb = ref (ẽ1)b, and:

– (ẽa, µ̃a, ι) ⇓ (ṽa, (µ̃1)a, (T1)a, (O1)

– la /∈ dom µ̃a

– µ̃′a = (µ̃1)a[la 7→ ṽa]

– T ′a = (T1)a

– Oa = (O1)a

By inversion on the second evaluation derivation, we obtain the analogous facts with b in place of a.
Further, by the same argument as in the conditional case, we have:

– (O1)a = (O1)b

– SAFE(ι, (T1)a, (T1)b)

– ((ṽ1)a, (µ̃1)a) ≈ιΨ1
((ṽ1)b, (µ̃1)b)

– Ψ1 : dom(µ̃1)a ↔ dom(µ̃1)b

– Ψ1 ⊇ Ψ

Setting Ψ′ = Ψ1[la 7→ lb], the claim is then immediate.

• Suppose ẽa = reveal (ẽ1)a, so that ẽb = reveal (ẽ1)b, and:

– ((ẽ1)a, µ̃a, ι) ⇓ ((ṽ1)a, (µ̃1)a, (T1)a, (O1)a)

– Oa = (O1)a‖π1(Dec((ṽ1)a, ι))

– Ta = (T1)a‖π2(Dec((ṽ1)a, ι))

– µ̃′a = (µ̃1)a

– ṽ′a = π1(Dec((ṽ1)a, ι))

By inversion on the second evaluation derivation, we obtain the analogous facts with b in place of a.
Further, by the same argument as in the conditional case, we have:

– (O1)a = (O1)b



– ((ṽ1)a, (µ̃1)a) ≈ιΨ1
((ṽ1)b, (µ̃1)b)

– SAFE(ι, (T1)a, (T1)b)

– Ψ1 : dom(µ̃1)a ↔ dom(µ̃1)b

– Ψ1 ⊇ Ψ

Again setting Ψ′ = Ψ1, we note that Now, since (O1)a = (O1)b, we have π1(Dec((ṽ1)a, ι)) =
π1(Dec((ṽ1)b, ι)) (and thus also π1(Dec((ṽ1)a, ι)) ≈ιΨ′ π1(Dec((ṽ1)b, ι))). The assumptions of the
secure execution platform then give SAFE(ι, π2(Dec((ṽ1)a, ι)), π2(Dec((ṽ1)a, ι))), as desired.

• Suppose ẽa = opti((e1)a, . . . , (er)a), so that ẽb = opti((e1)b, . . . , (er)b), and:

– ∀1 ≤ j ≤ r.((ej)a, (µ̃j−1)a, ι) ⇓ ((ỹj)a, (µ̃j)a, (Tj)a, (Oj)a)
– (ỹj)a ∈ E(`j)a((Yj)a)

– Enc(`1)a,...,(`j)a(opti)((ỹ1)a, . . . , (ỹr)a, ι) = (ṽ′a, T
′
a)

– Ta = (T1)a‖ . . . ‖(Tr)a‖T ′a
– Oa = (O1)a‖ . . . ‖(Or)a

By inversion on the second evaluation derivation, we obtain the analogous facts with b in place of a. In
addition, we obtain (Yj)a = (Yj)b = Yj , (`j)a = (`j)b = `j , and (ỹj)a, (ỹj)b ∈ Ê ι`j (Yj). Further, by the
same argument as in the conditional case, we have:

– (Oj)a = (Oj)b
– ((ṽj)a, (µ̃j)a) ≈ιΨj

((ṽj)b, (µ̃j)b)

– SAFE(ι, (Tj)a, (Tj)b)

– Ψj : dom(µ̃j)a ↔ dom(µ̃j)b

– Ψr ⊇ . . . ⊇ Ψ1 ⊇ Ψ

Finally, setting Ψ′ = Ψr, the cryptographic correctness assumptions of the secure execution platform
give ṽ′a ≈ιΨ′ ṽ′b; and, since each (ṽj)a ≈ιΨj

(ṽj)b, the indistinguishability conditions give:

SAFE(ι,Enc`1,...,`j (opti)((ỹ1)a, . . . , (ỹr)a, ι),Enc`1,...,`j (opti)((ỹ1)b, . . . , (ỹr)b, ι)

as desired.



B Examples of secure execution platforms

B.1 Shamir secret sharing

We now define Shamir secret sharing in the notation of our framework (Section 4), and show that it is a secure
execution platform (Definition 1), thereby concluding all of the correctness and security results of Section 5
as applied to λ→P,S. In particular, we consider an (N, k) sharing scheme over the finite field Fp, where we
require N ≥ 2k. We define Y = {int,bool, unit}, where each is concretely represented by Fp (and as-
sumed to be tagged); values in bool will be restricted to {0, 1} ⊂ Fp, and values in unit restricted to {0}.
Our primitive operations are addition and multiplication modulo p, on int; and logical operators, on bool.
(Without loss of generality, we describe only int and its operations.) In addition, for any Y ∈ Y , we specify
opBr(Y )(b, y1, y2) = by1 + (1− b)y2; we define its secure implementation similarly (invoking the secure equiv-
alents of addition and multiplication); so, without loss of generality, we will omit opBr(Y ) from our discussion
below (its correctness and security properties follow immediately from those of the constituent operations). We
also define the set M of protocol messages to be Fp. We define the set of “hidden equivalents” ES(Fp) to be
FNp . During computations, we will be concerned specifically with inhabitants of ES(Fp) that represent each of
the N servers’ shares of some base value. Thus, for y ∈ Fp, we define:

ES(y) = {(p(1), . . . , p(N)) : p ∈ Fp[t], deg p = k − 1, p(0) = y}

We also note that for any given ỹ = (y1, . . . , yn), by polynomial interpolation, there is exactly one y with
ỹ ∈ ES(y); thus, {ES(y) : y ∈ int} is a partition of ES(int). Apart from the initial secret sharing, there is no
initialization phase, so we let I be the singleton set {()}.

The hiding, unhiding, and primitive operations are defined using the standard Shamir secret sharing con-
structions. In particular:

• EncS(y, ()) = ((y1, . . . , yN ), {(C, Si, yi) : i ∈ {1, . . . , N}}), where yi = y +
∑k−1

j=1 rji
j , with the rj

drawn uniformly at random from Fp. (To share a value y, the client choose a degree-(k − 1) polynomial
p(t) uniformly at random such that p(0) = y, then sends p(i) to each server i.)

• DecS((y1, . . . , yN ), ()) = ((V −1
k )1 · (y1, . . . , yk), {(Si, Sj , yi)}1≤i,j≤N ), where (V −1

k )1 is the first row
of the inverse Vandermonde matrix, (Vk)i,j = ij−1. (To recover a value y, the servers exchange all
shares, then recompute the original value by polynomial interpolation.)

• EncP,S(+)(y, (z1, . . . , zN ), ()) = ((y+z1, . . . , y+zN ), ()). (To add a public constant to a shared value,
each server simply adds that constant to its share.)

• EncS,S(+)((y1, . . . , yN ), (z1, . . . , zN ), ()) = ((y1 + z1, . . . , yN + zN ), ()). (To add two shared values
together, each server simply adds that constant to its share.)

• EncP,S(∗)(y, (z1, . . . , zN )) = ((y · z1, . . . , y · zN ), ()). (To multiply a shared value by a public constant,
each server simply multiplies its share by that constant.)

• EncS,S(∗)((y1, . . . , yN ), (z1, . . . , zN ), ()) = ((d1, . . . , dN ), {(Si, Sj , hi,j)}1≤i≤2k,1≤j≤N ), where hi,j =

yizi +
∑k−1

a=1 r
(a)
i ja and dj = (V −1

2k )1 · (h1,j , . . . , h2k,j), with the r(a)
i drawn uniformly at random from

Fp. (To multiply two shared values together, each server i multiplies its shares pointwise, and commu-
nicates a new sharing of that product, (hi,1, . . . , hi,N ); then, the servers collectively perform polynomial
interpolation on the resulting degree-2k polynomial to obtain shares of the original product.)

Now, since any base value has only one distribution that can result from using uniform randomness (namely,
the uniform distribution over all valid sharings), we define the set of safe distributions to contain only this one:

Ê ιS(y) = {D(y)} = {π1(EncS(y))}



We also define A, the family of valid untrusted subsets of the servers, to include exactly those subsets with
cardinality less than k, and we specify that the system should provide information-theoretic security.

Assuming this specification, we can now prove the required correctness and indistinguishability properties
of the platform. In particular, the following properties are obtained by direct computation from the definitions
above:

• EncP,S(+)(c,D(y), ()) = D(c+ y)

• EncS,S(+)(D(y),D(z), ()) = D(y + z)

• EncP,S(∗)(c,D(y), ()) = D(cy)

• EncS,S(∗)(D(y),D(z), ()) = D(yz)

The correctness requirements are therefore immediate. In addition, it is known that for a uniformly random
polynomial p of degree at least k− 1 over a finite field, the sequence of values (p(i1), . . . , p(im)) for m < k is
also uniformly random. Thus:

• For any valid setA = {Si1 , . . . , Sim} ∈ A of untrusted servers, and for any y, z ∈ Fp, (D(y)i1 , . . . ,D(y)im) =
(D(z)i1 , . . . ,D(z)im), as joint random variables.

Given this fact, the indistinguishability requirements are now straightforward to show:

• For the initial sharing Enc, we have ΠA(π2(Enc(y), ())) = ΠA(π2(Enc(z), ())) (as distributions), and
thus by definition they are information-theoretically indistinguishable.

• For any Dec operation, the only values in the trace are shares of y, whose distribution is a function of
D(y). Thus, if two traces invoke Dec on equal values y, the distributions are identical (and hence, as
above, information-theoretically indistinguishable by definition).

• For the secure primitives, the only one that produces a nonempty trace is EncS,S(∗). In that case,
ΠA(π2(EncS,S(∗)(D(y),D(z), ()))) is a function of (hi,j)Sj∈A. But this is precisely the concatenation
of ΠA(D(yizi)) for all i; and each ΠA(D(yizi)), as above, is uniformly random, independent of yizi.
Hence the traces again are information-theoretically indistinguishable.

Thus, we conclude that Shamir secret sharing is a secure execution platform.

B.2 Fully homomorphic encryption

In addition to secure multiparty computation, a variety of homomorphic encryption schemes can also serve as
secure execution platforms for standard primitive operations. In particular, we will now show that any fully
homomorphic encryption scheme, is a secure execution platform, achieving security against a computationally-
bounded adversary. Although traditionally the operations provided under fully homomorphic encryption would
be a complete set of circuit gates, in order to provide a better analogy with secret sharing, we assume the
operations of the cryptosystem work over Z2k ; they may be implemented in terms of the underlying circuit
operations. In fully homomorphic encryption, the number of servers, N , is 1; the client simply sends encrypted
values to the server, and the server performs the computation homomorphically, returning the encrypted result.
As above, we define Y = {int, bool,unit}, where each is concretely represented by Z2k (and assumed to be
tagged); values in bool will be restricted to {0, 1} ⊂ Z2k , and values in unit restricted to {0}. Our primitive
operations are addition and multiplication in the ring, on int; and logical operators, on bool. (Without loss
of generality, we describe only int and its operations.) In addition, we define the branching operators by
arithmetization, as above: opBr(Y )(b, y1, y2) = by1 + (1− b)y2.



The initialization step is just Init() = KeyGen(λ) = (sk,pk) generating the secret/public key pair,
where λ is the security parameter to the system; the set M of messages in M consists of plaintexts and
ciphertexts. To begin the computation, the client sends the public key to the server (i.e., Π{S1}(ι) here is
Π{S1}((sk,pk)) = pk), then encrypts the initial values and and sends the corresponding ciphertexts to the server
(i.e., EncS(y, (sk, pk)) = (Enc(pk, y), {(C, S1, ỹ)})). During the computation, the server itself performs ad-
ditions and multiplications on the ciphertexts by homomorphically evaluating the corresponding circuits, pro-
ducing no communication trace with the client (i.e., EncS,S(op)(ỹ1, ỹ2, (sk, pk)) = (Eval(pk, op, ỹ1, ỹ2), ε));
when one of the operands is a public value (i.e., EncS,P, EncP,S), the server simply “hides” it using Enc(pk, ·),
and then uses EncS,S. For reveal operations, the server sends back to the client a ciphertext to be de-
crypted, and the corresponding plaintext (some base value) is returned to the server (i.e., DecS(ỹ, (sk, pk)) =
(y, {(S1, C, ỹ), (C, S1, y)}) where y = Dec(sk, ỹi)). Finally, given these operations, we define Ê ιS(y) tautolog-
ically, as the set of all distributions that result when a computation (yielding y on the corresponding plaintexts)
is performed on values originating from Enc(pk, ·). We can then define ES(y) naturally as the union of the
supports of Ê ιS(y).

Correctness of the primitives now follows immediately from the homomorphic properties of the encryption
scheme. Indistinguishability is immediate for partial traces derived from opi, since these operations produce
empty traces. For the other partial traces (i.e., the initial encryptions EncS), indistinguishability follows from
CPA-security of the encryption scheme, since the only values in the traces are the encryptions of each of the bits
of the secret client inputs. Thus, fully homomorphic encryption is a secure execution platform, and as above,
all of the results of Section 5 hold of programs in λ→P,S when it is given the semantics of fully homomorphic
encryption (now obtaining security guarantees against a computationally bounded adversary, as determined by
the semantic security properties of the cryptosystem).
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