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Abstract. Similarity coefficients play an important role in many application aspects. Recent-
ly, a privacy-preserving similarity coefficients protocol for binary data was proposed by Wong
and Kim (Computers and Mathematics with Application 2012). In this paper, we show that
their protocol is not secure, even in the semi-honest model, since the client can retrieve the
input of the server without deviating from the protocol. Also we propose a secure similarity
coefficients computation in the presence of malicious adversaries, and prove it using the stan-
dard simulation-based security definitions for secure two-party computation. We also discuss
several extensions of our protocol for settling other problems. Technical tools in our protocol
include zero-knowledge proofs and distributed ElGamal encryption.
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1 Introduction

Similarity coefficients (SC) aim at quantifying the extent to which objects resemble each
other. Many application domains need this parameter to analyze the data, such as ecology
and biogeography [7, 18, 16, 19], privacy-preserving data mining [12, 36], biometric areas [34],
etc. The description about the importance of similarity coefficients can be found in [35].

The functionality of the privacy-preserving similarity coefficients for binary data in [35]
(denoted by FSC) can be described as follows. Consider that user P1 has a binary dataset
X = {x1, x2, · · · , xn}, similarly P2 has Y = {y1, y2, · · · , yn}, where xi, yi ∈ {0, 1}. After the
computation, P1 gets the result: n11, n10, n01, n00, where n11 denotes the number of (xi, yi)
when xi = yi = 1 in the set CXY = {(x1, y1), (x2, y2), · · · , (xn, yn)}, similarly n10 (n01, and
n00) denotes the number about the case xi = 1, yi = 0 (xi = 0, yi = 1, and xi = 0, yi = 0,
respectively).

There are many variations of similarity coefficients. For instance, (1). SC with n00:
Rusell-Rao Index [31] n11/n, Sokal-Michener [33] (n11+n00)/n, etc.; (2). SC without consid-
ering n00: Jaccard’s index [21] n11/(n11+n10+n01), etc., where n = n11+n10+n01+n00. All
these similarity coefficients can be correctly computed using n11, n10, n01, n00. In case n11/n,
P1 can compute it only with n11. However, in case n11/(n11 +n10 +n01), P1 needs to know
n11 and n10+n01 at least, since our protocols only output the numbers of n11, n10, n01, n00,
or the sum of elements in the subset of them, rather than similarity coefficients directly.

Secure two-party computation allows two parties to jointly compute some functions with
their private inputs, while preserving some kinds of properties. Research on the general
functionality of secure computation in the computational model was first proposed in [37]



in the semi-honest model, extended in [17, 27, 25, 26] in the malicious model. However, these
general protocols are inefficient for practical uses (because these protocols were constructed
based on the boolean circuit or the arithmetic circuit of the functionality, and do not
utilize the properties of specific functionality). Therefore, these protocols are not practical
to compute FSC in the malicious model.

We note that protocol in [35] can not protect P2’s privacy, since P1 can retrieve P2’s
input from the communication transcript. More detailed analysis about this attack will be
given in Section 3. Also adversaries considered in [35] are semi-honest, which means that
P1 and P2 have to correctly behave the protocol. We argue that this level of security is not
sufficient in the application.

Our results. In this paper, we first analyze the security of the protocol in [35], and give out
an attack on it, by which P1 can retrieve P2’s input without deviating from the protocol.
Also we note that the correctness of the protocol in [35] is not sound, since the result of the
multiplication of some parameters may overflow from the plaintext space.

Next, we construct a secure protocol (denoted by ΠSC)computing the functionality
FSC in the presence of malicious adversaries, and also give out its standard simulation-
based security proof. We also construct another protocol (denoted by ΠSC1) by modifying
our first protocol ΠSC . In ΠSC1, P1 can only obtain the number n11, rather than that P1

obtains four numbers in ΠSC . This can perfectly protect P2’s privacy if P1 only needs the
similarity coefficient n11/n [31]. Similarly, a simple extension can be made, in order that
P1 obtains the sum of elements in the subset of {n11, n10, n01, n00}. Not only for the binary
data, our protocol can also be modified to settle the other kinds of data, such as hex number
system.

Our main technical tools include distributed ElGamal encryption and zeo-knowledge
proofs of knowledge. Our protocol is similar with a pattern matching protocol in [20]. How-
ever, we can not directly use a secure pattern matching protocol to settle the similarity
coefficients problem.

Related works. Wong and Kim [35] gave out the first solution to compute FSC in the
semi-honest model. However, their protocol is not secure. Also the security model in [35] is
semi-honest model, which is not sufficient.

Private equality test protocol [23, 13] can only output the result that whether two inputs
of P1 and P2 are equal or not without leaking any extra information. Whereas, in FSC , P1

needs to know n11, n10, n01, n00, rather than n11+n00. Also the modification should be made
to protect the privacy of P2, since bit-by-bit equality test can leak the information about
P2’s input. Therefore, Private equality test protocol is not suitable to settle the similarity
coefficients computation.

Scalar product protocol [8, 10] only outputs the scalar product of two vectors owned by
P1 and P2 respectively. Therefore, it only reveals the number n11 with the inputs X,Y .
Pattern matching protocol [20] is used to find the positions that one pattern p appears in
the other long text t. Therefore, with inputs X,Y , it only outputs the number n11 or n00

separately. Also, it is not suitable here. Meanwhile, as discussed in [35], private matching
[1], private similarity search [30, 24], and similarity-based text retrieval [22, 38] are also not
suitable.



Therefore, we can not directly use these prior works to settle this similarity coefficients
computation, except these inefficient general results. Also we note that most of the above
protocols are only secure in the semi-honest model.

Organization. This paper is organized as follows: In Section 2, we present the security
definition and tools used in our protocol. Review of the protocol [35] and its analysis will be
given in Section 3. In Section 4, we construct a secure similarity coefficients computation
protocol ΠSC in the presence of malicious adversaries, and give out its standard simulation-
based security proof. In Section 5, we will give out the protocol ΠSC1 by modifying ΠSC ,
and discuss its extensions. The conclusion is in Section 6.

2 Preliminaries and Tools

2.1 Definitions

Notations. We denote the security parameter by n. A function µ(·) is negligible in n, if
for every polynomial p(·) and all sufficiently large n, it holds that µ(n) < 1

p(n) . Let X =

{X(a, n)}n∈N,a∈{0,1}∗ and Y = {Y (b, n)}n∈N,b∈{0,1}∗ be distribution ensembles. Then, we say

that X and Y are computationally indistinguishable, denote X
c≡ Y , if for every polynomial

non-uniform distinguisher D, there exists a negligible function µ(·) such that for every
a ∈ {0, 1}∗,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| < µ(n).

Security definitions. Details about malicious adversary model in the two-party computation
setting can be found in [14]. Please refer to Appendix A for the formal description about
this model.

Hybrid Model. In this paper, we regard zero-knowledge proof of knowledge as a subprotocol,
and use the hybrid model in our protocol. Results in [4] show that we could analyze the
security of our protocol in a hybrid model. This means that in our protocol, parties interact
with each other and have access to a trusted party that computes the zero-knowledge proof
of knowledge for them. Therefore, in the real and ideal model simulation proof, we could
cut the proof shorter. We note that the composition theorem of [4] holds for the case that
the subprotocol executions are all run sequentially. For more details, please refer to [4].

2.2 ElGamal Encryption Scheme

In our protocol, we use an additively homomorphic variation of ElGamal encryption [11]
with distributed decryption over a Group Gq in which DDH is hard, i.e., Enpk(m, r) =
(gr, gmhr). This is a modified version of Brandt [2], in which the ElGamal encryption format
with distributed decryption is Enpk(m, r) = (gr,mhr). For ciphertexts C = (α, β), C ′ =
(α′, β′), and r ∈ Zq, we use Cr and C/C ′ to denote (αr, βr) and (α/α′, β/β′), respectively.

2.3 Zero-knowledge Proofs

For the purpose of preventing malicious behavior, we use zero-knowledge proof in the pro-
tocol to confirm that all the parties behave the protocol correctly. We will use Σ-protocols
made secure against malicious verifiers with standard techniques as [20]. We denote these



associated functionalities by FDL, FEqDL, FisBit, and Fperm. All of them are proved in the
cyclic group Gq with prime order q, where q is the parameter in the ElGamal Encryption.
Next, we simply describe the associated zero-knowledge protocols: πDL, πEqDL, πisBit, and
πperm.

πDL [32]. The prover can prove to the verifier that he knows the knowledge of the
solution x to a discrete logarithm.

RDL = {((Gq, q, g, h), x)| h = gx}.

πEqDL [6]. The prover can prove to the verifier that the solutions of two discrete loga-
rithm problems are equal.

REqDL = {((Gq, q, g, g1, g2, g3), x)| g1 = gx ∧ g3 = gx2}.

πisBit. The prover can prove to the verifier that the encrypted message m of ciphertext
C equals to 0 or 1. This can be obtained from πEqDL using the technique of Cramer et al.
[5].

RisBit = {(Gq, q, g, h, C = (α, β)), (m, r)|(α, β) = (gr, gmhr) ∧m ∈ {0, 1}.}

πperm. [15] The prover can prove to the verifier that a set of ciphertexts is a permutation
and rerandomization of another set of ciphertexts.

Rperm = {((pk, {Ci}i, {C ′
i}i), (π, {ri}i)) s.t. (α′

i, β
′
i) = (απ(i)g

ri , βπ(i)h
ri)}.

2.4 Distributed ElGamal Encryption

We adopt the distributed ElGamal Encryption in our protocol, rather than ElGamal encryp-
tion [11] and Paillier encryption [28]. Details about the distributed ElGamal Encryption can
be found in [20]. Diffie-Hellman key exchange [9] is required to modify the private key gen-
eration algorithm on the original ElGamal scheme, in order to let the two parties additively
share the private key [29]. Here we simply describe the protocol.

In a distributed ElGamal Encryption protocol, the parties P1 and P2 first agree on the
parameter Gq and g. P1 randomly chooses s1, and sends gs1 to P2. Then P1 proves to P2

that he has s1 via πDL. Similarly, P2 randomly chooses s2 and sends gs2 to P1, then proves
the knowledge about s2. Thus, the public key is pk = (Gq, q, g, h = gs1+s2), the private key
is (sk1, sk2) = (s1, s2), shared by P1 and P2. We denote this protocol as πKeyGen, and its
functionality as FKeyGen(1

k, 1k) = ((pk, sk1), (pk, sk2)).

When they want to decrypt C = (α, β), P2 sends α
s2 to P1, and proves that (g, gs2 , α, αs2)

is a DH-tuple via πEqDL. At last, P1 obtains g
m via c2/(c1)

s1+s2 , then computes out m after
computing the discrete log of gm base g. We denote this part as πdec, and its functionality
as Fdec. If 0 ≤ m ≤ T , this takes expected time O(

√
T ) using Pollard’s Lambda method.

Thus, the plaintext space should be limited. A similar decryption algorithm can be found
in [3]. For simplicity, we use C = En(gm) to denote the encryption of gm.

The semantic security of this scheme follows from the hardness of decisional Diffie-
Hellman (DDH) in Gq. For more details, please refer to [20]. The additively homomorphic
can be computed easily, e.g., for C1 = En(gm1) = (gr1 , gm1hr1) and C2 = En(gm2) =
(gr2 , gm2hr2), thus C1C2 = En(gm1+m2) = (gr1+r2 , gm1+m2hr1+r2).



3 Review of the Protocol in [35] and its Security Analysis

In this section, we first review the protocol computing similarity coefficients in [35], then
give out an attack method, by which P1 can retrieve P2’s input.

3.1 Review of the Protocol in [35]

Wong et al. [35] adopted the original ElGamal encryption [11]- Enpk(m) = (gr,mhr) in their
protocol. This encryption has the multiplicative homomorphic property, i.e., for ciphertext
C1 = En(m1), C2 = En(m2), we have C1C2 = En(m1m2). Next is the protocol:

– Inputs: The input of P1 is a binary set with order n: X = {x1, x2, · · · , xn}. Similarly,
P2’s input is Y = {y1, y2, · · · , yn}.

– Auxiliary inputs: The parties share a security parameter 1k.
– The protocol:

1. Both P1 and P2 generate a pair of cryptography keys (i.e., (pk1, sk1), (pk2, sk2)),
send the public key pk1, pk2 to each other, and keep the secret key privately.

2. P1 randomly chooses non-zero numbers t, s, u1, u2, · · · , un ∈ Zq, conditioned on that
u1, u2, · · · , un are not multiples of t or s. For each xi ∈ X, P1 replaces it with uit or
uis as follows: if xi = 1, define x′i = uit; otherwise, define x′i = uis.

3. P1 encrypts x′1, x
′
2, · · · , x′n with his public key pk1:

En1(X
′) = {En1(x

′
1), En1(x

′
2), · · · , En1(x

′
n)}.1

Then P1 sends En2(t), En2(s), and En1(X) to P2.
4. P2 decrypts En2(t) and En2(s) to obtain t and s using sk2, and randomly chooses

non-zero numbers v1, v2, · · · , vn ∈ Zq, conditioned on that they are not multiples of t
or s. For each yi ∈ Y , P2 replaces it with vi or vis as follows: if yi = 1, define y′i = vi;
otherwise, define y′i = vis.

5. P2 encrypts y′1, y
′
2, · · · , y′n using pk1: En1(Y

′) = {En1(y
′
1), En1(y

′
2), · · · , En1(y

′
n)},

then multiples En1(X
′) and En1(Y

′) using the multiplicative homomorphic proper-
ty. Then P2 has:

En1(X
′Y ′) = {En1(x

′
1y

′
1), En1(x

′
2y

′
2), · · · , En1(x

′
ny

′
n)}.

Next P2 uses a shuffle protocol to rerandomize and permute the ciphertexts En1(X
′Y ′),

and sends the permuted ciphertexts to P1. We denote the permuted result as En1(X
′′Y ′′).2

6. P1 decrypts En1(X
′′Y ′′) with sk1, then obtains the messages x′′1y

′′
1 , x

′′
2y

′′
2 , · · · , x′′ny′′n.

Next, P1 computes three modulus functions for each x′′i y
′′
i with respect to t, ts, and

s2 as follows: pi = (x′′i y
′′
i ) mod t, qi = (x′′i y

′′
i ) mod ts, ri = (x′′i y

′′
i ) mod s2. At last,

P1 evaluates these values as follows: for i ∈ {1, 2, · · · , n},
(a) if pi = 0, qi 6= 0, ri 6= 0, then x̂i = 1 and ŷi = 1;
(b) if pi = 0, qi = 0, ri 6= 0, then x̂i = 1 and ŷi = 0;
(c) if pi 6= 0, qi 6= 0, ri 6= 0, then x̂i = 0 and ŷi = 1;
(d) if pi 6= 0, qi 6= 0, ri = 0, then x̂i = 0 and ŷi = 0.
Then P1 obtains the numbers n11, n10, n01, n00 after counting the numbers of (1, 1),
(1, 0), (0, 1), (0, 0) in the set: {(x̂1, ŷ1), (x̂2, ŷ2), · · · , (x̂n, ŷn)}.

1 We use En1(m) to denote the encryption of m using the public key pk1. Similarly, En2(m) denotes the
ciphertext using pk2.

2 The order of the ciphertexts is shuffled. However, the plaintexts set of them are not changed.



3.2 Security Analysis

In this section, we analyze the above protocol in two parts: (1). the result of the multi-
plication x′′i y

′′
i may overflow the plaintext space; (2). P1 can retrieve P2’s input Y without

deviating from the protocol.

In order to make sure that the modulus functions pi = (x′′i y
′′
i )mod t, qi = (x′′i y

′′
i )mod ts,

ri = (x′′i y
′′
i ) mod s2 output the correct values, x′′i y

′′
i should not overflow the plaintext space

of the ElGamal encryption. Or else, the modular algorithms of pi, qi, and ri are not sound.

For instance, if x̂i = 1, ŷi = 0, then x′′i y
′′
i = uitvis. We assume that the plaintext

space of their ElGamal encryption is Zq. Thus, if x
′′
i y

′′
i = uitvis > q, P1 can get the result

x′′i y
′′
i = uitvis mod q after the decryption. However, the outputs pi, qi, ri of x

′′
i y

′′
i do not

satisfy the case pi = 0, qi = 0, ri 6= 0 after modular over q. Therefore, protocol in [35] should
add a restriction on the random numbers that the value uitvis < q, for i ∈ {1, 2, · · · , n},
e.g., assume that ui, t, vi, s < q1/4, for i ∈ {1, 2, · · · , n}.

The most important problem of the above protocol is the privacy. Now we give out a
way to retrieve P2’s input using the communication transcripts of P1. We assume that in
the last step P1 has the decryption results: {x′′1y′′1 , x′′2y′′2 , · · · , x′′ny′′n}. Thus the communication
transcripts of P1 include t, s, {u1, u2, · · · , un}, and {x′′1y′′1 , x′′2y′′2 , · · · , x′′ny′′n}. Next is the simple
retrieving method. For i ∈ {1, 2, · · · , n},

1. P1 first checks the parameters pi, qi, ri of x
′′
i y

′′
i , and determines the pair x̂i, ŷi.

2. P1 checks that which parameter uj can divide x′′i y
′′
i , i.e. x

′′
i y

′′
i mod uj = 0, for j ∈

{1, 2, · · · , n}.
3. P1 obtains that the jth input of P2 equals to ŷi, if x

′′
i y

′′
i mod uj = 0 and xj = x̂i.

If any two numbers of {u1, u2, · · · , un} are coprime, and ui does not divide vi,
3 for i ∈

{1, 2, · · · , n}, the above algorithm will always uniquely retrieve P2’s input. Also if we only
assume that any two numbers of {u1, u2, · · · , un} are coprime, the above algorithm will
always retrieve one bit of P2’s input with high probability. We note that if P1 could correctly
retrieve one bit from the above method, the protocol is not secure anymore.

Now, we give out a simple example. Assume that p1 = 0, q1 6= 0, r1 6= 0 for x′′1y
′′
1 , which

means that there exists x̂1 = 1, ŷ1 = 1 in the set {(x1, y1), (x2, y2), · · · , (xn, yn)}. Here we
assume that only u2 divides x′′1y

′′
1 and x2 = x̂1, which means that x′′1y

′′
1 = u2tv2, since

x̂1 = 1, ŷ1 = 1. Therefore, before shuffling, En1(x
′′
1y

′′
1 ) is at the second place of the set

En1(X
′Y ′). Hence, the second input of P2 is ŷ1 = 1. In the end, after executing all the

values x′′i y
′′
i , for i ∈ {1, 2, · · · , n}, P1 retrieves P2’s input bit-by-bit.

Since the users in the protocol [35] are semi-honest (they all correctly follow the proto-
col), and u1, u2, · · · , un and v1, v2, · · · , vn are all not multiples of t or s, the above retrieving
method will always break the privacy of P2. Therefore, their protocol is not secure. Also,
we can not give out a modification on their protocol to avoid this attack.

3 As the spaces of ui, t, vi, s are restricted for the correctness (e.g., ui, t, vi, s < q1/4), and P2 correctly
follows the protocol in the semi-honest model, ui can be selected largely in order that any multiples of ui

will overflow the space of vi. Hence ui does not divide vi.



4 Secure Similarity Coefficients Computation in the Presence of
Malicious Adversaries

In this section, we give out the secure similarity coefficients computation protocol (ΠSC) in
the presence of malicious adversaries. First, we give out the ideal functionality of similarity
coefficients FSC as follows:

((x1, x2, · · · , xn), (y1, y2, · · · , yn)) 7→ ((n11, n10, n01, n00), λ),

where λ means P2 gets nothing after the computation, and nb1b2 denotes the numbers of
the pair (b1, b2) in the set {(x1, y1), (x2, y2), · · · , (xn, yn)}, for b1, b2 ∈ {0, 1}. In the ideal
model, P1 sends the binary dataset {x1, x2, · · · , xn} to the trusted party, similarly P2 sends
{y1, y2, · · · , yn} to the trusted party. At last, the trusted party sends (n11, n10, n01, n00) back
to P1, and nothing to P2.

The main tools in our protocol include distributed ElGamal encryption (rather than the
original ElGamal encryption used in [35]) and zero-knowledge proofs. Next is the protocol,
ΠSC .

– Inputs: The input of P1 is a binary set with order n: X = {x1, x2, · · · , xn}. Similarly,
P2’s input is Y = {y1, y2, · · · , yn}.

– Auxiliary inputs: Both parties have the security parameter 1k.
– The protocol:

1. P1 and P2 engage in the protocol πKeyGen(1
k, 1k) to generate the public key pk =

(Gq, g, h = gs1+s2), and the private keys s1 and s2, shared by P1 and P2 respectively.
2. P1 computes Cxi = En(xi, rxi), i ∈ {1, 2, · · · , n}, and sends them to P2. Then the

parties run the zero-knowledge proof of knowledge πisBit, allowing P2 to verify that
the plaintext of Cxi is a bit known to P1, for i ∈ {1, 2, · · · , n}.

3. Similarly, P2 computes Cyi = En(yi, ryi), i ∈ {1, 2, · · · , n}, and sends them to P1.
Then the parties run the zero-knowledge proof of knowledge πisBit, allowing P1 to
verify that the plaintext of Cyi is a bit known to P2, for i ∈ {1, 2, · · · , n}.

4. Both parties compute: for i ∈ {1, 2, · · · , n},

Ci = C2
xi
Cyi = En(2xi + yi, 2rxi + ryi).

5. P2 picks a uniformly random permutation π : Zn → Zn and applies π to the set
{C1, C2, · · · , Cn},

{C ′
1, C

′
2, · · · , C ′

n} ← π{C1, C2, · · · , Cn},
and rerandomizes all the encryptions, C ′′

i ← C ′
i ·En(0, ri) for every i ∈ {1, 2, · · · , n},

where r1, r2, · · · , rn are randomly chosen from Zq. Then P2 sends {C ′′
1 , C

′′
2 , · · · , C ′′

n}
to P1.

6. P1 and P2 execute πperm on ({C1, C2, · · · , Cn}, {C ′′
1 , C

′′
2 , · · · , C ′′

n}) allowing P1 to ver-
ify that the plaintexts of {C ′′

1 , C
′′
2 , · · · , C ′′

n} correspond to those of {C1, C2, · · · , Cn}.
7. Finally, P1 and P2 execute πdec on each ciphertext in {C ′′

1 , C
′′
2 , · · · , C ′′

n}. P1 obtain-
s the result {gm1 , gm2 , · · · , gmn} of {C ′′

1 , C
′′
2 , · · · , C ′′

n} after distributed decryption.
Note that gmi ∈ {g3, g2, g1, g0}. At last, P1 obtains the parameters n11, n10, n01, n00,
where n11, n10, n01, n00 equal to the number of g3, g2, g1, g0 in {gm1 , gm2 , · · · , gmn},
respectively.



Correctness. Since the zero-knowledge proof πisBit and πperm make P1 and P2 behave
the protocol correctly, each plaintext of {C ′′

1 , C
′′
2 , · · · , C ′′

n} belong to the set {0, 1, 2, 3}. In
other words, 0 ≤ 2xi + yi ≤ 3, where xi, yi ∈ {0, 1}, for i ∈ {1, 2, · · · , n}. We note that
the rerandomization and permutation over the set {C1, C2, · · · , Cn} just randomize the
ciphertexts and obfuscate the order of the ciphertexts, and do not change the plaintexts in
it. Therefore, P1 always obtains the correct results.

Next, we give out the security proof of the above protocol.

Theorem 1. Assume that πKeyGen, πdec, πisBit and πperm are as described in Section 2

and that (Gen,En,Dec) is the ElGamal scheme. Then ΠSC securely computes FSC in the

presence of malicious adversaries.

Proof. We prove this theorem in the hybrid model, where a trusted party is used to com-
pute the ideal functionality FKeyGen, Fdec, FisBit and Fperm. We also separately analyze
the case “P1 is corrupted” and the case “P2 is corrupted”.

P1 is Corrupted. Assume that P1 is corrupted by adversary A with the auxiliary input z
in the real model, we construct a simulator S, who runs in the ideal model with the trusted
party computing the functionality FSC . S works as follows:

1. S is given A’s input and auxiliary input, and invokes A on these values.

2. S first emulates the trusted party for πkeyGen as follows. It first chooses two random
elements s1, s2 ∈ Zq, and hands A s1 and the public key (Gq, q, g, h = gs1+s2).

3. S receives from A n encryptions and A’s input for the trusted party for FisBit, then
defines A’s inputs as X.

4. Then, S sends X to the trusted party computing FSC to complete the simulation in the
ideal model. Let (n11, n10, n01, n00) be the returned numbers from the trusted party.

5. Next, S randomly chooses Y ′ = {y′1, y′2, · · · , y′n}, conditioned on that the numbers of
(1, 1), (1, 0), (0, 1), (0, 0) in the set {(x1, y1), (x2, y2), · · · , (xn, yn)} equal to (n11, n10, n01,
n00). S completes the execution as the honest P2 would on inputs Y ′.

6. If at any step, A sends an invalid message, S aborts, sends ⊥ to the trusted party for
FSC . Otherwise it outputs whatever A does.

The different part between the above simulation and the real hybrid model is that S who
does not have the real P2’s input Y , simulates following steps with the randomly chosen
parameter Y ′ under the condition that the outputs of them (n11, n10, n01, n00) are the same.
The computationally indistinguishability of them can be deduced from the semantic securi-
ty of ElGamal encryption. In other words, if A can distinguish the simulation from the real
execution, we can construct a distinguisher D to attack the semantic security of ElGamal
encryption. Since this reduction has been proved in [20], we omit it here. Next, the distri-
bution of the zero-knowledge proofs can be assured by the definition of the zero-knowledge
proof. Therefore, the distribution of the above simulation is computationally indistinguish-
able from the hybrid model. Since the distribution of hybrid model is also indistinguishable
from the real model [4], therefore we prove the security in the case “P1 is corrupted”.

P2 is corrupted. The proof of this part is similar with the above. We construct a simulator
S in the ideal model, based on the real adversary A in the real model.



1. S is given A’s input and auxiliary input, and invokes A on these values.
2. S first emulates the trusted party for πkeyGen as follows. It first chooses two random

elements s1, s2 ∈ Zq, and hands A s2 and the public key (Gq, q, g, h = gs1+s2).
3. S randomly chooses X ′ = {x′1, x′2, · · · , x′n}, where xi ∈ {0, 1}, for i ∈ {1, 2, · · · , n}, then

encrypts them using the public key.
4. Next, S sends these ciphertexts to A, and proves to A that all the plaintexts of them

belong to the set {0, 1} using πisBit.
5. S receives from A n encryptions and A’s input to the trusted party for FisBit, then

defines A’s inputs as Y .
6. Then, S completes the next steps as the honest P1.
7. If at any step, A sends an invalid message, S aborts, and sends ⊥ to the trusted party for
FSC . Otherwise S sends Y to the trusted party computing FSC , and outputs whatever
A does.

Similar to the case P1 is corrupted, the difference between the simulation and the real model
is that S uses X ′ as P1’s inputs. However, X

′ is encrypted by the public key of a semantic
secure ElGamal encryption. Same as the above, the analysis of this simulation distribution
can be assured by the zero-knowledge proof definition and semantic security of ElGamal
encryption.

In summary, we complete the proof of ΠSC in the presence of malicious adversaries. �

Complexity of ΠSC . In our protocol, since the round of the zero-knowledge is constant,
and the batched technology can be used to reduce the communication round (e.g., P1 (P2)
can prove all his ciphertexts by using n zero-knowledge proofs for πisBit in parallel), the
round complexity is constant. Further, the number of group elements exchanged is bounded
by O(2n), as the length of the input and the number of zero-knowledge proofs are all equal
to n. Also, ΠSC requires O(2n) exponentiations and O(2n) multiplications.

5 Extensions to Other Similarity Coefficients Computation

In this section, we give out several extensions of ΠSC , in order to settle the next problems:

– P1 can only obtain the number n11;
– P1 can only obtain the sum of the elements in the subset of {n11, n10, n01, n00};
– settling the same problem of other kinds of data, such as hex number system.

Next, we give out the constructions to settling the above problems.

5.1 Protocol ΠSC1

In protocol ΠSC1, P1 can only obtain the number n11, rather than {n11, n10, n01, n00}, as
in some applications (e.g., [31]), P1 only needs to know n11/n. Privacy of P2 will be leaked
if we let P1 get {n11, n10, n01, n00}. Therefore, we construct the protocol ΠSC1. This type
of property can be realized by deleting the other kinds of pairs in {C1, C2, · · · , Cn} of ΠSC .
After the protocol, we will give out a method to modify ΠSC1 in order that P1 obtains
anyone of {n11, n10, n01, n00}.

Next is the protocol, ΠSC1.



– Inputs: The input of P1 is a binary set with order n: X = {x1, x2, · · · , xn}. Similarly,
P2’s input is Y = {y1, y2, · · · , yn}.

– Auxiliary inputs: Both parties have the security parameter 1k.

– The protocol:

1. P1 and P2 do the first four steps of ΠSC . Both parties have: for i ∈ {1, 2, · · · , n},

Ci = C2
xi
Cyi = En(2xi + yi, 2rxi + ryi).

2. Assuming Ci = (Ci1, Ci2), both parties compute: for i ∈ {1, 2, · · · , n},

Ĉi = (Ci1, Ci2/g
3) = (g2rxi+ryi , g2xi+yi−3h2rxi+ryi ) = En(2xi + yi − 3, 2rxi + ryi).

3. P2 randomly chooses k1, k2, · · · , kn from Zq, and computes Ĉi
ki
, for i ∈ {1, 2, · · · , n}.

Then send them to P1. Both parties execute πDL on (Ĉi, Ĉ
ki
i ) allowing P1 to verify

that P2 owns the solution ki, for i ∈ {1, 2, · · · , n}. For simplicity, we define C̄i := Ĉi
ki
,

for i ∈ {1, 2, · · · , n}.
4. Next, P2 rerandomizes and permutates {C̄1, C̄2, · · · , C̄n} as P2 does in step 5 in ΠSC ,

and obtains {C ′′
1 , C

′′
2 , · · · , C ′′

n}. Also P1 and P2 executes πperm on ({C̄1, C̄2, · · · , C̄n},
{C ′′

1 , C
′′
2 , · · · , C ′′

n}) after sending {C ′′
1 , C

′′
2 , · · · , C ′′

n} to P1.
5. Finally, P1 and P2 execute πdec on each ciphertext in {C ′′

1 , C
′′
2 , · · · , C ′′

n}. P1 obtains
the format of plaintexts {gm1 , gm2 , · · · , gmn} of {C ′′

1 , C
′′
2 , · · · , C ′′

n}, and then denotes
n11 as the number of gmi = g0 = 1 in {gm1 , gm2 , · · · , gmn}. At last, P1 obtains the
parameters n11.

Correctness. All the plaintexts of {C̄1, C̄2, · · · , C̄n} are shuffled, except the plaintext 0.
Thus P1 only obtains the number of 0 in the plaintexts in the last step, which equals to
the number of 3 in {2x1 + y1, 2x2 + y2, · · · , 2xn + yn}. Therefore, this protocol can correctly
compute out the parameter n11, and securely protect the other types of data (numbers of
(1, 0), (0, 1), (0, 0)).
Remark. Parameters k1, k2, · · · , kn only obfuscate the plaintexts of Ĉ1, Ĉ2, · · · , Ĉn, excep-
t plaintext 0. For instance, assuming C = En(m, r) = (gr, gmhr), we have that Ck =
(grk, gmkhrk). Thus if m = 0, the plaintext of Ck is still 0. However, if m 6= 0, the plaintext
of Ck is uniformly distributed, as k is randomly selected. This is similar as πdec0 in [20]. We
advance this exponentiation ahead, in order to reduce the computation for rerandomization.

Theorem 2. Assume that πKeyGen, πdec, πDL, πisBit and πperm are as described in Section

2 and that (Gen,En,Dec) is the ElGamal scheme. Then ΠSC1 securely computes FSC1 in

the presence of malicious adversaries.

Formal simulation is analogous to that in Section 3. We omit it here.

Remark. In order to let P1 only obtain n10, we can modify step 2 of ΠSC1:

Ĉi = (Ci1, Ci2/g
2) = (g2rxi+ryi , g2xi+yi−2h2rxi+ryi ) = En(2xi + yi − 2, 2rxi + ryi).

Similarly, P1 can obtains n01 or n00 with the same modification. Therefore, the above
protocol can perfectly settle the problem that P1 only needs to obtain one parameter in
{n11, n10, n01, n00}.



5.2 The Sum of Elements in Subset of {n11, n10, n01, n00}

We can modify the protocol ΠSC1 with a simple extension, in order that P1 obtains the
sum of elements in subset of {n11, n10, n01, n00}, rather than only one number as ΠSC1.

For simplicity, we assume that P1 wants to obtain n11 + n10. Here we only give out the
simple description about the modification. We modify step 2 of ΠSC1: for i ∈ {1, 2, · · · , n},

Ĉi = (Ci1, Ci2/g
3) = En(2xi + yi − 3, 2rxi + ryi),

Ĉ ′
i = (Ci1, Ci2/g

2) = En(2xi + yi − 2, 2rxi + ryi).

Thus, both parties have {Ĉ1, Ĉ2, · · · , Ĉn; Ĉ
′
1, Ĉ

′
2, · · · , Ĉ ′

n}. Next steps are the same as ΠSC1,
except that the permutation, rerandomization and other operations are over the above set
{Ĉ1, Ĉ2, · · · , Ĉn; Ĉ

′
1, Ĉ

′
2, · · · , Ĉ ′

n} with length 2n (rather than n).

Remark that the correctness and security are analogous to ΠSC1. The disadvantage of
this modification is that the length has to extend to 2n. Thus complexity is higher. However,
this protocol can fully settle this problem that P1 can only obtain n11+n10 in the presence
of malicious adversaries.

Meanwhile, we can still make some exchanges on step 2, in order that P1 obtains the
other sum of elements in subset of {n11, n10, n01, n00}. By extending the result of the step
2 to {Ĉ1, Ĉ2, · · · , Ĉn; Ĉ

′
1, Ĉ

′
2, · · · , Ĉ ′

n; Ĉ
′
1, Ĉ

′
2, · · · , Ĉ ′

n}, P1 obtains the number n11 + 2n10.
Therefore, all the linear combinations of n11, n10, n01, n00 can be privately computed with
the similar extension.

5.3 Settling the Other Kinds of Data

Our protocol can be easily extended to settle the same problem of other kinds of data
(which can be represented by the binary number system), rather than that protocol in [35]
only considers the similarity coefficients for binary data. Also it is hard to make a simple
extension on protocol in [35] for settling other kinds of data.

Here, we give out a simple modification settling the hex number system. We assume
that P1 owns the set X = {x1, x2, · · · , xn}, P2 owns the set Y = {y1, y2, · · · , yn}, where
xi, yi ∈ {0, 1, · · · , 9, A,B, · · · , F}, for i ∈ {1, 2, · · · , n}. In this case, xi, yi can be transformed
to 4 bits, i.e., xi = xi4||xi3||xi2||xi1, yi = yi4||yi3||yi2||yi1, where || denotes bit concatenation.
Thus in step 4 of ΠSC , P1 and P2 computes

Ci = En(24(23xi4 + 22xi3 + 2xi2 + xi1) + (23yi4 + 22yi3 + 2yi2 + yi1), r̂),

where r̂ denotes the corresponding random parameter. The other executions are the same
with ΠSC .

With the similar method as the above, other kinds of data, which can be represented
by the binary number system, can be privately computed.

6 Conclusion

In this paper, we first analyze the security of the protocol in [35], and propose an attack
method retrieving P2’s input without deviating from the protocol. Also we point out that



the correctness of the protocol in [35] is not sound. Meanwhile, we construct a secure proto-
col ΠSC computing the functionality FSC in the presence of malicious adversaries, and also
give out its standard simulation-based security proof. Extensions of ΠSC are also given, in
order to protect the privacy of P2 while P1 only needs to obtain the sum of element in the
subset of {n11, n10, n01, n00}. For other kinds of data (can be expressed by binary number
system), we also give out a simple solution.
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A Security in the Presence of Malicious Adversaries

In this section, we briefly give out the standard security definition in the presence of mali-
cious adversary for two-party computation. For more details, please refer to [14].

Two-party Computation. A two-party computation could be simply described as a random
process that maps two random inputs to pairs of outputs. We use a function to denote the
process as f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every
pairs of inputs (x, y), the process outputs (f1(x, y), f2(x, y)), where P1 gets f1(x, y), P2 gets
f2(x, y).

Adversary behavior. Loosely speaking, the aim of secure two-party computation is to
protect an honest party against a dishonest party. In a malicious model, the corrupted party
could do anything during the protocol. It may abort the protocol at any time, may send



the wrong input, etc. Here we consider the malicious adversary, in order to give out the
security definition in the presence of malicious adversary.

Security of Protocols (Informal). According to the comparison what an adversary can
do in a real protocol execution to what it can do in an ideal scenario, we analyze the secu-
rity of the protocol. In the ideal scenario, there exists a trusted party, to whom parties P1

and P2 send their inputs. After getting these inputs, the trusted party computes correctly
and sends back the outputs for them. A protocol is secure if any adversary interacting in
the real protocol can do no more harm than if it was involved in the above described ideal
computation. Next, we describe the detailed definition of malicious security.

Execution in the Ideal Model.

– Inputs: P1 obtains his input x, P2 obtains his input y (|x| = |y|). The adversary A
obtains the auxiliary input z.

– Sends Inputs to the trusted party: An honest party correctly sends his inputs to
the trusted party. The corrupted party (e.g., P1) controlled by A may, depending on
his input (e.g., x) and z, either abort or send another input (e.g., x′, |x′| = |x|) to the
trusted party.

– The trusted party answers the first party: In case it has obtained an input pair
(x, y), then the trusted party first reply to the first party f1(x, y). Otherwise (i.e., in
case it receives only one input), the trusted party replies to both parties with a special
symbol ⊥.

– The trusted party answers the second party: In case the first party is malicious,
it may decide to stop the the trusted party by sending ⊥ after receiving his output,
depending on its input and the trusted party’s answers. In this case, the trusted party
sends ⊥ to the second party. Otherwise, the trusted party sends f2(x, y) to the second
party.

– Outputs: An honest party always outputs the message it has obtained from the trusted
party. A malicious party may output an arbitrary function of its input, the auxiliary
input z and the message obtained from the the trusted party.

Let f be a two-party functionality, where f = (f1, f2), let A be a nonuniform PPT machine,
and let I ⊆ [2] be the set of corrupted parties, i.e., at least one party is honest. The ideal
execution of f on inputs (x, y), auxiliary input z to A and security parameter l, denoted
IDEALf,A(z),I(x, y, l), is defined as the output pair of the honest party and the adversary
A from the above ideal execution.

Execution in the Real Model. The malicious adversary may follow an arbitrary fea-
sible strategy in the real model. Let f be as above and Π be as a two-party protocol for
computing f . Furthermore, let A be a nonuniform PPT machine and I be the corrupted
party. Then the real execution of Π on inputs (x, y), auxiliary input z to A and security
parameter l, denoted by REALΠ,A(z),I(x, y, l), is defined as the output vector of the honest
parties and the adversary A from the real execution of Π.

Security as Emulation of a Real Execution in the Ideal Model. Having defined
the ideal and real models, we can define security of protocols. The definition asserts that



a secure party protocol (in the real model) emulates the ideal model (in which the trusted
party exists). This is formulated by saying that adversaries in the ideal model are able to
simulate execution of the real model protocol.

Definition 1. Let f and Π be as above. Protocol Π is said to securely compute f with

abort in the presence of malicious adversaries if for every nonuniform probabilistic

polynomial-time adversary A for the real model, there exists a nonuniform probabilistic

polynomial-time adversary S for the ideal model such that for every I ⊆ [2],

{IDEALf,S(z),I(x, y, n)}x,y,z∈{0,1}∗,n∈N
c≡ {REALΠ,A(z),I(x, y, n)}x,y,z∈{0,1}∗,n∈N,

where |x| = |y|.


