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Abstract. Blind signatures have proved an essential building block for applications that protect privacy
while ensuring unforgeability, i.e., electronic cash and electronic voting. One of the oldest, and most
efficient blind signature schemes is the one due to Schnorr that is based on his famous identification
scheme. Although it was proposed over twenty years ago, its unforgeability remains an open problem, even
in the random-oracle model. In this paper, we show that current techniques for proving security in the
random oracle model do not work for the Schnorr blind signature by providing a meta-reduction which
we call “personal nemesis adversary”. Our results generalize to other important blind signatures, such as
the one due to Brands. Brands’ blind signature is at the heart of Microsoft’s newly implemented UProve
system, which makes this work relevant to cryptographic practice as well.
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1 Introduction

In a blind signature scheme, first introduced by Chaum in 1982 [16], a user can have a document signed
without revealing the contents of the document to the signer, and in such a way that the signer will
not be able to recognize it later, when he sees the signature. Blind signatures have proven to be a very
useful building block in applications requiring both anonymity and unforgeability, such as electronic
cash (ecash) and anonymous credentials [12, 15, 14, 13, 5, 32]. For example, in the ecash application, a
bank acts as the signer and signs a coin’s serial number and some other useful information without
seeing it, so that when the coin is later spent, the bank cannot link it to any specific user.

Transactions that ensure unforgeability without violating privacy are of growing interest to cryp-
tographic practice. The European Union E-Privacy Directive [36] limits the scope of the data that
organizations are allowed to collect; so, to make sure that it is not in violation of this directive, an
online bank or vendor interacting with a user has an incentive to learn as little as possible about this
user. Therefore, industry leaders such as Microsoft and IBM [35, 42] have been developing, implement-
ing and promoting cryptographic software tools that promise the best of both worlds: unforgeability
for the banks and vendors, and privacy for the users.

As a result, research on blind signatures has flourished, and provably secure solutions have been
proposed based on well-established theoretical complexity assumptions in the standard model [14, 3,
24, 28] while some of these have been adapted for practical use by IBM [14]. However, schemes in
the standard model either require exponentiation in the RSA group or bilinear pairings, which are
typically considerably slower than, say, elliptic curve operations.

Thus, more efficient solutions that are provably secure in the random-oracle (RO) model [8] remain
of practical importance [2, 9, 6]. Some of the earliest proposed solutions [12, 41, 27] do not have proofs
of security even in the RO model; in fact, the security properties of the Schnorr blind signature is
an important open problem. Moreover, Microsoft’s UProve proposal [34, 35] is based on one of the
unproven blind signatures, namely the one due to Brands [12]. In fact, UProve is currently part of
a pilot project by NSTIC (National Strategy for Trusted Identities in the Cyberspace) that will be
used quite extensively in a situation that will potentially affect millions of people [1]. Therefore, the
security properties of these unproven but important blind signatures, is a natural topic to look at.

In a nutshell, a blind signature scheme is secure if it satisfies two key properties: one-more unforge-
ability, which means that an adversary cannot produce more signatures than have been issued; and
blindness, which means that an adversary cannot link a particular signature to a particular signing
instance. These were formalized by Pointcheval and Stern [38, 40] who also proved that a variant of
the Schnorr blind signature [31] satisfies these.



Recall the Schnorr blind signature scheme which is the most efficient of all the blind signature
schemes proposed in the literature given that it can also be implemented using elliptic curves. The
signer’s secret key is an exponent x, while his public key is h = gx. A signature on a message m
is obtained, via the Fiat-Shamir heuristic, from the Schnorr identification protocol, i.e. the three-
round proof of knowledge of x. Thus, a signature on a message m is of the form σ = (a, r) such that
gr = ahH(m,a), where H is a hash function that’s modeled as a random oracle in the security proof.
A blind issuing protocol was proposed for this signature back in the 1980s [41], and, on a high level,
it works by having the user “blind” the value a he receives from the signer into some unrelated a′,
then the user obtains c = H(m, a′) and, again, “blinds” it into some unrelated c′ which he sends to
the signer. The signer responds with r which the user, again, “blinds” into r′ such that (a′, r′) are a
valid signature on m.

But, how secure is this blind signature? Note that, if the Schnorr identification scheme is not
secure (i.e., after some number of interactions with the prover, the adversary can impersonate him),
then the blind Schnorr signature is not one-more unforgeable. Recently, Pass showed that the security
of the Schnorr identification scheme cannot be proven under the discrete-logarithm assumption using
black-box reductions in the standard model [37], so at the very least, it seems that Schnorr blind
signatures require that we assume the security of Schnorr identification (also studied by Bellare and
Palacio [7]). Perhaps an even stronger assumption may be reasonable. Can we prove it secure under
even this or a stronger assumption?

To make this question more interesting, let us make it more general. Let us consider not just the
Schnorr blind signature, but in general the blind variants of all Fiat-Shamir based signature schemes
constructed along the lines described above: the signer acts as the prover in an identification protocol.
And let us see if they can be proven secure under any reasonable assumption (by reasonable, we mean
an assumption that is not obviously false), not just specific ones.

1.1 PS Reduction, Meta-Reductions and our Results

Pointcheval and Stern showed that we can prove the security of blind signature schemes in the RO
model when the underlying identification scheme is a witness-indistinguishable proof protocol for
proving knowledge of a secret key, such that many secret keys are associated with the same public key
[38, 40]. Their result does not apply to the original Schnorr blind signature, in which there is exactly
one secret key corresponding to the public key. Other important blind signatures to which it does not
apply are the Brands’ blind signatures (the ones at the heart of Microsoft’s UProve system), and the
blind signatures based on the GQ signature [12, 27].

The idea of the Pointcheval-Stern reduction (also called “an oracle replay reduction”) is to replay
the attack polynomially many times with different random oracles in order to make the attacker
successfully forge signatures. More precisely, we first run the attack with random keys, tapes and
oracle f . Then, we randomly choose an index j and we replay with same keys and random tapes but
with a new, different oracle f ′ such that the first j − 1 answers are the same as before. We expect
that, with non-negligible probability we will obtain two different signatures, σ, σ′ of the same message
m and we will be able to use them to solve a hard algorithmic problem (usually the one underlying
the blind signature scheme) in polynomial time.

This proof technique works for standard (i.e. not blind) versions of the Schnorr, Brands and GQ
signatures. They also showed that it works for a modification of Schnorr blind signature which is less
efficient than the original Schnorr’s. A very natural question is: can it work for the original Schnorr
blind signature and its generalizations, such as the Brands or GQ blind signatures?

Our results: Let us take a closer look at oracle replay reductions, as used by Pointcheval and Stern.
Their reduction can be modeled as a Turing machine that has a special tape that is used specifically
for answering random oracle queries; it always uses the next unused value when answering, afresh, the
next random oracle query. We call this type of reductions: Naive RO replay reductions and as we will
discuss in Section 3.1 it can be used to model every known reduction for proving the security of digital
signature schemes. Our result is that, in fact, naive RO replay reductions cannot be used to prove
security of generalized Schnorr blind signatures, no matter how strong an assumption we make. Our
result also holds for interactive assumptions or even if we assume the security of the blind signature
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scheme itself! Put another way, any such reduction can be used in order to break the underlying
assumption.

In our proof we make use of the “meta-reduction” method [10]: a separation technique com-
monly used to show impossibility results in cryptography. Let A be an adversary who breaks the
unforgeability of generalized Schnorr blind signatures with non-negligible probability. We will use a
meta-reduction (which we call “personal nemesis adversary”) to show that there cannot exist a naive
RO replay reduction, B, which turns A into a successful adversary for any hard assumption that
may be considered. We do that by transforming B through the meta-reduction into an algorithm that
breaks the underlying assumption, without relying on the existence of a successful adversary.

What makes our technique particularly interesting is that for the first time we introduce a meta-
reduction (our personal nemesis adversary) that does not need to reset the reduction B, as it is usually
done when using the meta-reduction paradigm [21]. For example, our personal nemesis adversary could
reset the reduction B, get an additional signature and return this signature back to B as his forgery.
However, this resetting makes things more complicated since the two executions are correlated. Our
technique, instead, is much simpler: the personal nemesis adversary, pA, will simply interact with the
reduction B the way an actual adversary would (but taking advantage of powers not available to an
adversarial algorithm, such as remembering its prior state if and when the reduction resets it, and
having access to the reduction’s random oracle tape), without resetting it at any time. When B halts,
if it succeeded in breaking the assumption (as it should with non-negligible probability, or it wouldn’t
be a valid security reduction), pA has succeeded too — but without assuming the existence of an
actual adversary that breaks the security of the underlying signature scheme.

What are the implications of our results on the security of Schnorr blind signatures and general-
izations? We must stress that our results do not in fact constitute an attack, and so for all we know,
these schemes might very well be secure. However, we have essentially ruled out all known approaches
to proving their security. So in order to give any security guarantee on these signature schemes, the
cryptographic community would have to come up with radically new techniques.

1.2 Related work

Security of blind signature schemes. Schnorr and Jakobsson [18] proved security of the Schnorr
blind signature in the combined random oracle and generic group model. The generic group model
is a very restricted setting in which the only way to sample group elements is by applying group
operations; this does not correspond to any intractability assumption.

Fischlin and Schröder [24] show that proving security of a broad class of blind signature schemes
(which, in particular, includes what we refer to as generalized Schnorr blind signatures) via black-box
reductions in the standard model is as hard as solving the underlying hard problem. Their technique
uses the meta-reduction paradigm to show that black-box reductions for this type of blind signatures
can be turned into solvers for hard non-interactive assumptions. However, their result does not rule
out reductions in the random-oracle model, and in fact is technically very different from ours for that
reason.

Recently, Rafael Pass studied the assumptions needed for proving security of various cryptographic
schemes [37]. In particular, relevant to our work, he considers the Schnorr identification scheme and
variants, and a category of blind signatures called “unique blind signatures.” Pass considers whether
so-called r-bounded-round assumptions are strong enough to prove, in a black-box fashion in the
standard model, the security of certain schemes when repeated more than r times. His results apply
to Schnorr blind signatures (and their generalizations) in the following way: he shows that no so-called
bounded-round assumption can imply secure composition of the Schnorr identification scheme using
black-box reductions (and therefore the Schnorr blind signature).

Here is how our work goes beyond what was shown by Pass [37] for “unique blind signatures.”
First of all, we do not limit our consideration to r-bounded-round assumptions but we show that
our result applies for every possible intractability assumption. Thus, we rule out the existence of
a very special type of reduction, the naive RO replay one, that models all the known reductions
for proving security of digital signatures, irrespective of assumption. As an example, consider the
One More Discrete Logarithm assumption (OMDL) [6] which has been used to prove security of the
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Schnorr identification scheme against active attacks [7]. Our result directly implies that Schnorr blind
signature cannot be proven secure under the OMDL assumption in the RO model. Finally, our result
applies even after just one signature was issued whereas Pass’ result questions the security of schemes
when repeated more than r times.

Finally, we study a very specific way of programming the random oracle reductions. Other variants
of random oracle reductions have been considered in the literature and their relative strengths have
been studied in prior work [23, 30]. In Section 3.1, we compare these variants with ours.

The meta-reduction technique. On a relevant note, the meta-reduction technique has been used to
analyze security of Schnorr signatures among other cryptographic schemes. Paillier and Vergnaud [33]
showed that the security of Schnorr signatures cannot be based on the difficulty of the one more discrete
logarithm problem in the standard model. Fischlin and Fleischhacker [22] extended their result by
showing that the security of Schnorr signatures cannot be based to the discrete logarithm problem
without programming the random oracle. Their work is also relevant to ours since the meta-reduction
they define also doesn’t need to reset the reduction1. However, their result applies to non-programming
reductions while our naive RO replay reductions fall somewhere in between the programmable and
non-programmable setting (see Section 3.1 for a discussion about programmability).

2 Preliminaries

Prior to presenting our results, we are going to provide the necessary notation and definitions of the
building blocks used. We also explicitly define the class of blind signatures that our result applies to.

2.1 Unique witness relation

A witness relation for a language L ∈ NP is defined as [25]:

Definition 1 (Witness relation). A witness relation for a language L ∈ NP is a binary relation RL
that is polynomially bounded (i.e., (h, x) ∈ RL implies |x| ≤ poly(|h|)), is polynomial-time-recognizable
and characterizes L by: L = {h : ∃x s.t. (h, x) ∈ RL}.

For h ∈ L, any x satisfying (h, x) ∈ RL is called a witness (for the membership h ∈ L). By RL(h)
we denote the set of witnesses for the membership h ∈ L; that is, RL(h) = {x : (h, x) ∈ RL}. If for
each h ∈ L, there exists a unique x ∈ RL(h) then we say that RL is a unique-witness relation. An
example of a unique witness relation is the discrete logarithm problem where RG,g,q = {h, x s.t. x ∈
Zq and gx = h} and g, h are members of a cyclic group G of order q.

2.2 Intractability Assumptions

We will use the definition given by Pass [37]: an intractability assumption is modeled as an interaction
between a probabilistic machine C (the challenger) and an attacker A where they are both given as
input 1k (k is the security parameter). A’s running time is measured as a function of k.2 Once A halts,
the challenger outputs 1 or 0. Any challenger C together with a threshold function t(·) intuitively
corresponds to the assumption:

For every polynomial time adversary A there exists a negligible function ν such that for
all k, the probability that C outputs 1 after interacting with A is bounded by t(k) + ν(k).

We say that A breaks C with respect to t with advantage p if: Pr[〈A,C〉(1k) = 1] ≥ t(k) + p.
As Pass [37] notes, we can easily model all standard cryptographic assumptions as a challenger

C and a threshold t. For example, the discrete logarithm assumption corresponds to the threshold
t(k) = 0 and the 2-round challenger C who on input 1k picks a random x and sends gx to A. If the
attacker responds with x′ = x then C outputs 1.

1 This is a result that Fischlin and Fleischhacker [22] obtained after the first version of our manuscript appeared on
eprint; our result is in fact the first in which a meta-reduction works without resetting the reduction B.

2 Pass also requires that there be a limit to the rounds of interaction between A and C: an r-bounded assumption is
one in which there exists some polynomial r(·) such that C on input 1k communicates with A for at most r(k) rounds;
in this paper, however, assumptions that do not bound the number of rounds are still meaningful.
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2.3 Σ-Protocols

Σ-protocols are a class of interactive proofs (see Appendix B) where (P, V ) have a common input
h and an x such that (h, x) ∈ RL is P ’s private input. Their main characteristic is that they have
exactly 3 rounds of the following type: (1) P sends a message a to V , (2) V responds with a random
challenge c chosen from a domain of size Θ(k) and (3) P resends a reply r. V decides whether to
accept or not given the information he has seen: (h, a, c, r). Formally:

Definition 2 (Σ-Protocol). A protocol P is said to be a Σ-protocol for a relation RL if:
– P is of the above three rounds form, and if (P, V ) follow the protocol, the verifier always accepts.
– From any h and any pair of accepting conversations on input h, (a, c, r), (a, c′, r′) where c 6= c′,

one can efficiently compute x such that (h, x) ∈ RL (special soundness).
– There exists a polynomial-time simulator S, which on input h and a random c, outputs an accepting

conversation of the form (a, c, r), with the same probability distribution as conversations between
the honest P, V on input h (special honest-verifier zero-knowledge).

A Σ-protocol is said to be unique-witness Σ-protocol (UWΣ) if RL is a unique-witness relation.

An example of a Σ-protocol is the Schnorr Identification scheme [41]. Let G be a group of prime order
q with generator g, and let Zq denote the field of integers modulo q. Schnorr’s identification scheme
works as follows:

Prover(q, g, h = gx) Verifier(q, g, h)

y ← Zq, a = gy a−−−→
c←−−− c← Zq

r = y + cx mod q r−−−→ gr
?
= ahc

Σ-protocols are an essential building block for blind signatures and anonymous credentials. For exam-
ple Brands [12] scheme is based on a Σ-protocol while CL anonymous credentials [14] uses ZK proofs
which are based on Σ-protocols.

2.4 Fiat-Shamir Heuristic

Fiat and Shamir [20] proposed a method to transform any three-round interactive proof system with
negligible soundness error, like Σ-protocols, into a digital signature scheme using a hash function,
modeled as a random oracle.

To transform a three-round proof system into a signature scheme, one could, instead of a random
c, compute c = H(a,m), where H → {0, 1}∗ is a hash function. Famous digital signatures that have
been constructed from Σ-protocols using the Fiat-Shamir heuristic include Schnorr’s [41] and GQ
signatures [27] and they have been proven secure in the RO model [38].

Going back to our running example, Schnorr’s identification scheme can be easily turned into a
signature scheme using the Fiat-Shamir heuristic. The Signer has a secret/public key pair (h, x) and
a message m. To sign m the following steps take place: (1) y ← Zq, (2) a = gy, (3) c = H(m, a),
and (4) r = y + cx mod q. The signature on the message is σ(m) = (c, r) and in order to verify the
signature, one should check whether c = H(m, gr/hc).

2.5 Blind Signatures

Blind signatures are a special case of digital signatures. They have a blind signature issuing protocol
in which the signer doesn’t learn anything about the message he is signing. Formally, a blind signature
scheme is a four-tuple consisting of two interactive Turing machines, the Signer and the User, (S,U)
and two algorithms (Gen,Verify) [29]:
– Gen(1k): is a PPT key-generation algorithm which takes as an input a security parameter 1k and

outputs a pair (pk, sk) of public and secret keys.
– S(sk, pk), U(pk,m): S and U engage in an interactive protocol of some polynomial (in the security

parameter) number of rounds. At the end of this protocol S outputs either “completed” or “not-
completed” and U outputs either “fail” or σ(m). The signing algorithm Sign(sk, pk,m) is implicitly
defined from S and U (i.e., in order to compute a signature σ on a message m, the signer simulates
the interaction between S(sk, pk) and U(pk,m)).
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– Verify(pk,m, σ(m)): is a deterministic polynomial-time algorithm, which outputs “accept”/“reject”
with the requirement that for any message m, and for all random choices of key generation algo-
rithm, if both S and U follow the protocol then S always outputs “completed”, and the output of
U is always accepted by the verification algorithm.

A blind digital signature scheme is secure if (informally) for all the probabilistic poly-time algorithms
A there exists a security parameter kA such that for all k > kA the following two properties hold [29]:

- Blindness: the signer is unable to view the messages he signs (protection for the user). Furthermore,
a malicious signer cannot link a (m,σ(m)) pair to any particular execution of the protocol.

- One-more Unforgeability: a user interacting with a signer S cannot output an additional, valid
message/signature pair (m,σ(m)) no matter how many (`) pairs of messages/signatures of S he has
seen (protection for the signer).

For the full versions of the above definitions please refer to [29] or Appendix C.
Blind signature issuing protocols have been proposed for many traditional digital signature schemes

constructed via the Fiat-Shamir heuristic. For the Schnorr signature, which is our running example,
the proposed blind issuing protocol [18] would work as follows:

Signer(q, g, h = gx) User(q, g, h,m)

y ← Zq, a = gy a−−−→
c←−−− α, β ← Zq, c′ = H(m, agαhβ), c = c′ + β

r = y + cx mod q r−−−→ gr
?
= ahc, r′ = r + α, output r′, c′

We denote gr
′
h−c

′
by a′. The signature is: σ(m) = (a′, c′, r′) and the verification checks whether

c′ = H(m, a′).
Ever since this protocol was proposed, its security properties were an open problem. Okamoto

proposed a modification of the protocol [31]; Pointcheval and Stern proved security of this modification
[38, 40]. Our work studies this blind signature and its generalizations, defined as follows:

Definition 3 (Generalized Blind Schnorr Signature). A blind signature scheme (Gen, S, U,Verify)
is called Generalized Blind Schnorr Signature if:

1. (pk, sk) ∈ RL is a unique witness relation for a language L ∈ NP.
2. There exists a Σ-protocol (P, V ) for RL such that for every (pk, sk) ∈ RL the prover’s algorithm,

P (pk, sk), is identical to the signer’s blind signing algorithm S(pk, sk).
3. Let Sign(pk, sk,m) be the signing algorithm implicitly defined by (S,U). Then, there exists a Σ-

protocol P (pk, sk), V (pk) such that, in the random oracle (RO) model, a signature σ = (a, c, r),
where c = H(m, a) is distributed identically to a transcript of the Σ-protocol.

4. There exists an efficient algorithm that on input (pk, sk) a “valid tuple” (a, c, r) and a value c′,
computes r′ s.t. (a, c′, r′) is a valid tuple. (By “valid tuple” we mean a signature for which the
verification equation holds.) Note that no additional information about a is required, such as, e.g.
its discrete logarithm.

Let’s go back to our running example of Schnorr’s blind signature and see why it falls under the
generalized blind Schnorr signature category. (1) The secret/public key pair is an instance of the DL
problem which is a unique witness relation; (2) the signer’s side is identical to the prover’s side of the
Schnorr identification scheme, which is known to be a Σ-protocol; (3) the signature σ(m) = (a′, c′, r′) is
distributed identically to the transcript of the Schnorr identification protocol since a′ comes uniformly
at random from G; c′ is truly random in the RO model, and r′ is determined by α (4) finally, for a
tuple (a, c, r) and a value c′ one can compute r′ = r − cx+ c′x so that (a, c′, r′) is still a valid tuple.

The definition also captures other well-known blind signature schemes, such as the blind GQ [27]
and Brands [12] (for Brands also see Section 4).

3 Security of Blind Signatures

As we mentioned above, one-more unforgeability of generalized blind Schnorr signatures is an open
problem. In this section we will first define a general class of RO reductions and we will then prove
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that generalized blind Schnorr signature schemes cannot be proven unforgeable, and thus secure, using
these reductions.

3.1 Naive RO replay reductions

We first explicitly describe the type of reductions that our result rules out.

Definition 4 (Naive RO replay reduction). Let B be a reduction in the random-oracle model that
can run an adversary A, and may also reset A to a previous state, causing A to forget B′s answers
to its most recent RO queries. We assume, without loss of generality, that if A has already queried
the RO on some input x, and hasn’t been reset to a state that’s prior to this query, then A does not
make a repeat query for x.
We say that B is a naive RO replay reduction if: B has a special random tape for answering the RO
queries as follows: when A queries the RO, B retrieves the next value v from its RO tape, and replies
with c = f(b, v) where b is the input to the reduction, and f is some efficiently computable function.

Discussion Let’s now take a closer look at known reductions for proving security of signatures in
the RO model and see whether they fall under the naive RO replay reduction category. We first look
at the reduction given by Pointcheval and Stern [38] for proving security of blind signatures. Their
reduction could be easily modeled as a naive RO replay reduction with f being the identity function
on its second input. PS reductions are perfect since they always create a signature. The same holds
for the reduction given by Abe and Okamoto [4]. To convince the reader that our way of modeling
reductions in the RO model is a very natural one, let us also look at the reduction given by Coron [17]
proving the security of full domain hash (FDH) RSA signature. Coron’s reduction works as follows:
the reduction, B, gets as input (N, e, y) where (N, e) is the public key and y is a random element
from Z∗N and tries to find x = yd mod n. B runs an adversary A, who can break the signature, with
input the public key. As usual, A makes RO and signing queries which B answers. Whenever A makes
an RO query, B picks a random r ∈ Z∗n and either returns h = re mod N with probability p or
returns h = yre mod N with probability 1 − p. So, it is pretty straightforward that we could model
Coron’s reduction as a naive RO replay reduction by interpreting the contents of an RO tape as r and
the output of a p-biased coin flip (return either re or yre). Other well-known reductions used in the
literature to prove security of digital signatures in the RO model can be modeled as naive RO replay
reductions as well [9, 6, 8].

Note that B may invoke a new run of A based on an RO query received from an existing run. In
that case, we still assume that, when B is ready to respond to an RO query from A, it will do so with
the value that is currently next up in the RO tape.

Programmability Let us compare naive RO replay reductions with other previously defined types. Non-
programmable random-oracle reductions [30] do not give the reduction the power to set the answers to
the RO queries; instead these answers are determined by some truly random function. Naive RO replay
reductions can be more powerful than that: they can, in fact, answer the adversary’s queries in some
way they find convenient, by applying the function f to the next value of their RO tape. However,
they are not as powerful as the general programmable RO reductions: naive RO replay reductions
are not allowed, for example, to compute an answer to an RO query as a function of the contents of
the query itself. Fischlin et al. [23] also consider an intermediate notion of programmability, called
“random re-programming reductions”, which are incomparable to ours (but it would be interesting
to extend our results to these reductions as well).

3.2 Theorem for perfect naive RO replay reduction

Our first result is on a simpler class of reductions called “perfect”. We will extend it to non-perfect
reductions in Section 3.3.

Definition 5 (Perfect-Naive RO replay reduction). A naive RO replay reduction B is called
perfect naive RO replay reduction if B always gives valid responses to A, i.e. its behavior is identical
to that of the honest signer.
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We show that perfect naive RO replay reductions cannot be used to prove security of generalized blind
Schnorr signature schemes.

Theorem 1. Let (Gen, S, U, V erify) be a generalized blind Schnorr signature scheme. Assume that
there exists a polynomial-time perfect naive RO replay reduction B such that BA breaks an interactive
intractability assumption C for every A that breaks the unforgeability of the blind signature (S,U).
Then, C can be broken in polynomial time.

We prove this theorem below. What are the consequences of this theorem for the Schnorr blind
signatures, which is our running example? What we have shown is that, even if we assume security
of the Schnorr identification scheme, and not just the hardness of the discrete logarithm problem,
we still cannot exhibit a perfect naive RO replay reduction that will prove Schnorr blind signatures
secure. In fact, somewhat oddly, even if we assume that the Schnorr blind signature scheme is secure,
we still cannot find a perfect naive RO replay reduction B that will break this assumption should A
be able to violate the unforgeability of the scheme. This is because a perfect naive reduction requires
that the hash function queries be handled in a very specific way.

Proof of theorem for perfect naive RO replay reduction We start by introducing some ter-
minology. Note that the reduction B is given black-box access to A and is allowed to run A as many
times as it wishes, and instead of running A afresh every time, it may reset A to some previous state.
At the same time, B is interacting with its own challenger C; we do not restrict C in any way.

Consider how B runs A. B must give to A some public key pk for the signature scheme as input.
Next, B runs the blind signing protocol with A; recall that a generalized blind Schnorr signing protocol
always begins with a message a from the signer to the user. When B runs A again, it can choose to
give it the same (pk , a) or different ones. It is helpful for the description of the adversary we give, as
well as for the analysis of the interaction, to somehow organize various calls that B makes to A.

Every time that B runs A, it either runs it “anew”, providing a new public key pk and first
message a, or it “resets” it to a previous state, in which some pk and a have already been given to
A. In the latter case, we say that A has been “reincarnated”, and so, an incarnation of A is defined
by (pk , a). Note that B may reincarnate A with the same (pk , a) several times. In this case, we say
that this incarnation is repeated. Thus, if this is the ith time that A has been reset to a previous state
for this specific (pk , a), then we say that this is the ith repeat of the (pk , a) incarnation. Without
loss of generality, B never runs A anew with (pk , a) that it has used (i.e., if B has already created an
incarnation for (pk , a), it does not create another one).

Let us consider what happens once A receives (pk , a). The signing protocol, in which A is acting
as the user, expects A to send to B the challenge c. Additionally, A is free to make any random oracle
queries it chooses. Once B receives c, the signing protocol expects it to send to A the response r.
After that, the security game allows A to either request another signature, or to output a one-more
signature forgery, i.e., a set of signatures (one more than it was issued); also, again, A can make RO
queries. The adversaries that we consider in the sequel will not request any additional signatures, but
will, at this point, output two signatures (or will fail).

Note that, if B is a perfect naive RO replay reduction (as defined above), then it will always
provide to A a valid response r to the challenge c; while if it is not perfect, then it may, instead,
provide an invalid response, or stop running A at this point altogether. Thus, a particular run can
be:

– Uncompleted: no valid response, r, was given by B at the end of the protocol (cannot happen if B
is perfect).

– Completed but unsuccessful: a valid r was given but A was not able to output a forgery.
– Completed and successful: a valid r was given and A did output a forgery.

The technique we follow to prove our theorem is the following. We first define a special adversary
which we call the super adversary, sA, who exists if it is easy to compute the signing key for this
signature scheme from the corresponding verification key. We do not show how to construct such an
adversary (because we do not know how to infer the signing key for generalized blind Schnorr, and
in fact we generally assume that it is impossible to do so in polynomial time); instead, we construct
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another adversary, the personal nemesis adversary, pA, whose behavior, as far as the reduction B can
tell, will be identical to sA.

Note that, generally, an adversary is modeled as a deterministic circuit, or a deterministic non-
uniform Turing machine: this is because, inside a reduction, its randomness can be fixed. Thus, we
need sA to be deterministic. Yet, we need to make certain randomized decisions. Fortunately, we can
use a pseudorandom function for that. Thus, sA is parametrized by s, a seed to a pseudorandom
function Fs : {0, 1}∗ → {0, 1}k 3. Additionally, it is parameterized by two messages m1,m2: signatures
on these messages will be output in the end.

Consider sAs,m1,m2 that interacts with a signer as follows:

Definition 6 (Perfect super adversary sAs,m1,m2). On input the system parameters:

1. Begin signature issue with the signer and receive (pk, a).

2. Find sk.

3. Use sk to compute the signatures: pick a1, a2 and make two RO queries (m1, a1) and (m2, a2).
Produce two forged signatures for m1,m2, denote them as σ1 and σ2 (remember that sA is deter-
menistic so if reincarnated he makes the same RO queries).

4. Resume the signature protocol with the signer: send to the signer the value c = Fs(trans) where
trans is the current transcript between sAs,m1,m2, the RO and the signer, and receive from the
signer the value r in response (which will always be valid for the perfect naive RO reduction B).

5. Output the two message-signature pairs, (m1, σ1) and (m2, σ2).

Note that when sA executes the signature issue protocol with the signer it computes c as a pseudo-
random function of its current transcript with the RO and the signer. Thus, there is only a very small
probability (of about 2−k) for sA to send the same c in another run.

The following lemma follows directly from the definition of a reduction B:

Lemma 1. If a perfect naive RO replay reduction B exists, then BsA(·) (pk, system params) solves
the assumption C.

Lemma 1 works even if the assumption C is an interactive one. That is why, sA and pA are defined
in such a way that they do not reset the reduction B.

Next, we define the personal nemesis adversary, pA. Similarly to sA, it is parameterized by
(s,m1,m2); and so we denote it pAs,m1,m2 . To the reduction B, pAs,m1,m2 will look exactly the
same as sAs,m1,m2 , even though pAs,m1,m2 cannot compute sk . Instead, pAs,m1,m2 looks inside the
reduction B itself; this is why we call pAs,m1,m2 “B’s personal nemesis”:

Definition 7 (Perfect B’s personal nemesis adversary pAs,m1,m2). On input the system pa-
rameters, pAs,m1,m2 performs a “one-more” forgery attack, using the following special powers: (1)
pAs,m1,m2 has full access to B’s random oracle tape; (2) in case pAs,m1,m2 is rewound, he remembers
his previous state.

pAs,m1,m2 performs the one-more forgery for ` = 1. Thus, he runs one signature issuing session
with the signer and then outputs two valid signatures. Specifically, in it’s ith incarnation, pA does the
following:

1. Begin signature issue with the signer, and receive (pk, a).

2. Do nothing (pA cannot find sk).

3. – If (pk , a) is the same as in some previous incarnation j then make the same RO queries as the
last time this incarnation was run (sA remembers the previous RO queries; obviously it will
receive different c1, c2 than before).

– If (pk , a) is a new tuple, then this is a new incarnation; do the following:

• If pA has already computed the sk for this pk, then use this power to forge two signatures
on (m1, m2); call the resulting signatures σ1 and σ2,

3 We know that if B exists then secure signatures exist which imply one way functions existence and PRFs existence,
so this is not an extra assumption.
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• else (if sk not already known), pA computes two signatures using its special access to B by
looking in advance what the next c1, c2 are going to be, then picking random 4 r1, r2 and solv-
ing for a1, a2 using the third property of generalized blind Schnorr signatures and the simula-
tor from the underlying Σ-protocol. pA makes two RO queries of the form (m1, a1), (m2, a2)
and gets c1, c2 in response. Call the resulting signatures σ1 and σ2.

4. Resume the signature issue protocol with the signer: send to the signer the value c = Fs(trans)
where trans is the current transcript between pA, the RO and the signer, and receive from the
signer the value r in response (which will be valid for the perfect naive RO reduction B).

5. – If this is the first time for this incarnation, then output the two message-signature pairs,
(m1, σ1) and (m2, σ2) (completed and successful run).

– If this is a repeat of some incarnation j, and the value c = Fs(trans) 6= cj, where cj is the
corresponding value from incarnation j, then using r and rj, property 3 of generalized blind
Schnorr signatures and the extractability of the Σ-protocol, compute sk (if you don’t already
know it for this pk). Next, compute σ1 and σ2 consistent with the RO queries from incarnation
j, using property 4 of generalized blind Schnorr signatures (completed and successful run).

– If i is a repeat of j, and the value c = Fs(trans) = cj, then fail (completed and unsuccessful
run).

Given the definition above it becomes clear why our naive RO reductions are not allowed to
compute answers to the RO queries as a function of the query itself. It is important that the personal
nemesis adversary (pA) has full access to the reduction’s special RO tape and he should able to see
what the next answer would be before forming his query. In particular, on the second case of step 3 in
Definition 7, the pA first looks into B’s RO tape to see what’s the next c1, c2 and then formulates his
RO query which depends on c1, c2. In this case, our analysis would break if the answer to the query
was computed as a function of the content of the query itself.

Lemma 2. If B is a perfect naive RO replay reduction, then B’s view in interacting with pAs,m1,m2

is indistinguishable from its view when interacting with sAs,m1,m2.

Proof. In order to prove this, we will analyze the behavior of sA and pA step by step, as they were
defined, and we will show that B receives indistinguishable views when interacting with sAs or pAs
with all but negligible probability (to simplify notation we will omit writing the messages m1,m2

to the parameters given to the adversaries). We begin by defining sARand and pARand who behave
exactly as sAs and pAs do but using a truly random source instead of the pseudorandom function
Fs. We will use the following hybrid argument:

sAs ≈ sARand ≈ pARand ≈ pAs

Let us first argue that sAs ≈ sARand. This follows by a straightforward reduction that contradicts
the pseudorandomness of Fs. Similarly, it holds that pARand ≈ pAs.

We prove that sARand ≈ pARand by examining step by step the behavior of sARand and pARand.

1. In the first step, both sARand and pARand begin the signature issuing with the Signer and wait
for him to respond with (pk, a). From the point of view of B there is no difference whether talking
to sARand or pARand.

2. In the second step there is no interaction with B.
3. Here we have two different cases on pARand’s behavior depending on whether the current incar-

nation is repeated or not. In both cases the interaction between pARand and B consists of pARand
making two RO queries where pARand either makes two RO queries on fresh values that it com-
puted on the current step or makes the same RO queries as in the repeated incarnation (so, there
is no difference for B). Thus, in Step 3, no matter who B is talking to, B receives two RO queries
distributed identically.

4. Step 4 is identical for both sARand and pARand. Just send c = R(trans), where R is a random
function and receive from the signer the value r in response.

4 Recall that pA uses a PRF that takes as input its current state in order to make each random choice.
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5. Since r will always be a valid response (recall that B is perfect), sARand will always output two
message-signature pairs, (m1, σ1) and (m2, σ2). pARand will also output (m1, σ1) and (m2, σ2),
which are distributed identically to the ones output by sARand unless it is the case that the
incarnation is a repeat of j and c = R(trans) = cj . In that case pARand fails. The probability that
c = R(trans) = cj is only 2−Θ(k). Thus, with probability 1−2−Θ(k) B’s view is identical no matter
whether he is talking to sARand or pARand.

So, by the hybrid argument we defined at the beginning of the proof, it holds that sAs ≈ pAs. ut

Remark: we don’t explicitly exploit blindness and in fact our result would go through even if a signature
could be linkable to an issuing instance. For example, including the first message of the signer into
the RO query would produce a contrived scheme in which the resulting signatures are linkable to the
issuing instance; yet it would not affect our negative result.

3.3 Theorem for Non-perfect naive RO replay reductions

Let’s apply our result to a broader class of reductions by removing the requirement that our reduction
be perfect, i.e. always outputs valid responses. Instead, we will require an upper bound L on the
number of times that the reduction can invoke the adversary which is independent of A’s success
probability. Note that, of course, B’s success probability needs to depend on A’s success probability.
However, the number of times it invokes A need not; in fact known reductions (such as Coron or
Pointcheval and Stern) as a rule only invoke the adversary a constant number of times.

Definition 8 (L-Naive RO replay reduction). A naive RO replay reduction B is called L-naive
RO replay reduction if there is a polynomial upper bound L on how many time B resets A; this upper
bound is a function of the number of RO queries that A makes, but otherwise is independent of A, in
particular, of A’s success probability.

Our previous analysis wouldn’t work for the L-naive RO replay reduction. Think of the scenario where
pA receives a message a from B for the first time but is not given a valid r at the end. Then in the
repeat of this incarnation, pA will have to make the same two RO queries he did before and output
forgeries if given a valid r at the end. But, given the definitions of B and pA we gave before, pA will
now get different c1 and c2 for his RO queries and thus he will not be able to output the same forgeries
he had prepared before.

What changes in our new analysis is that: (a) pA is also given write access to B’s RO tape, and
(b) both pA and sA will be successful in producing a forgery with probability only 1/(

(
L
2

)
+ L).

The following theorem shows that L-naive RO replay reductions cannot be used to prove security
of generalized blind Schnorr signature schemes.

Theorem 2. Let (Gen, S, U, V erify) be a generalized blind Schnorr signature scheme. Suppose that
there exists a polynomial-time L-naive RO replay reduction B such that BA breaks an intractability
assumption C for every A that breaks the unforgeability of the blind signature (S,U). Then, C can be
broken in polynomial time.

This theorem rules out a broader class of security reductions. If we look back to our running example
of Schnorr blind signatures, this theorem shows that under any assumption (DL, security of Schnorr
identification, etc.) we cannot find an L-naive RO replay reduction to prove its security.

Proof of theorem for L-naive RO replay reduction Similar to what we did before, we first
define the super adversary sAs,m1,m2,L who knows L and works as follows:

Definition 9 (Super adversary sAs,m1,m2,L). On input the system parameters:

1. Begin signature issue with the signer and receive (pk, a). Decide whether this is going to be a
successful incarnation: choose “successful” with probability 1/(

(
L
2

)
+ L) and “unsuccessful” with

probability 1− 1/(
(
L
2

)
+ L).
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2. Find sk.
3. Use sk to compute the signatures: pick a1, a2 and make two RO queries (m1, a1) and (m2, a2).

Produce two forged signatures for m1,m2, denote them as σ1 and σ2.
4. Resume the signature protocol with the signer: send to the signer the value c = Fs((trans)) where

trans is the current transcript between sA, the RO and the signer, and receive from the signer the
value r in response.

5. – If r is not valid, then this was an uncompleted run, then fail.
– If r valid (completed run) and in Step 1 it was decided that this is a successful incarnation,

output the two message-signature pairs, (m1, σ1) and (m2, σ2). Otherwise fail.

The following lemma (similar to Lemma 1) follows from the definition of B:

Lemma 3. If an L-naive RO replay reduction B exists, then BsA(·) (pk, system params) solves the
assumption C.

Now we are going to define the personal nemesis adversary, pAs,m1,m2,L.

Definition 10 (B’s personal nemesis adversary pAs,m1,m2,L). On input the system parameters,
pAs,m1,m2,L performs a “one-more” forgery attack, using the following special powers: (1) pAs,m1,m2,L

has full read and write access to B’s random oracle tape; (2) in case pAs,m1,m2,L is rewound, it does
remember his previous state.

pAs,m1,m2,L performs the one-more forgery for ` = 1. Thus, it runs one signature issuing session
with the signer and then outputs two valid signatures with probability 1

(L2)+L
. Specifically, in it’s ith

incarnation 5, pAs,m1,m2,L does the following:

1. Begin signature issue with the signer, and receive (pk, a).
2. Do nothing.
3. – If (pk, a) is received for the first time, then this is a new incarnation; do the following:

• If pA has already found sk for this pk, then use this power to forge two signatures on
(m1,m2) (still required to make two RO queries); call these signatures σ1 and σ2,
• else, pA guesses (i1, i2) where i1(≤ i2) denotes the repeat where c1 will be given in response

to pA’s next RO query; and i2 is pA’s guess for the first completed repeat of this incarnation.
Then, pA randomly picks v1, v2, computes c1 = f(v1), c2 = f(v2), picks r1, r2, solves for
a1, a2 using the third property of generalized blind Schnorr signatures and the simulator
from the underlying Σ-protocol and computes two signatures σ1 and σ2.

– pA makes two RO queries of the form (m1, a1), (m2, a2) (the two RO queries are always the
same for a specific incarnation).

– If this is the repeat incarnation i1, and B wants a fresh answer to the query (m1, a1) then write
v1 on B’s RO tape; else (if this isn’t repeat i1) write a random v′1.

– If this is the repeat incarnation i2 then write v2 on B’s RO tape; else (if this isn’t repeat i2)
write a random v′2.

4. Resume the signature issue protocol with the signer: send to the signer the value c = Fs(trans)
where Fs is a PRF and trans is the current transcript between pA, the RO and the signer, and
wait to receive the value r as a response from the signer.

5. – If r is valid (completed run):
• If already know the secret key, sk, then output (m1, σ1) and (m2, σ2) with probability 1

(L2)+2

or else fail.
• If this is the first time for this incarnation, then output the two message-signature pairs,

(m1, σ1) and (m2, σ2).
• If this is the second successful repeat for this incarnation and the value c = Fs(trans) 6= cj,

where cj is the corresponding value from the jth run of this incarnation, then using r and
rj solve for sk using property 4 of generalized Schnorr signatures. Next, compute σ1 and
σ2 consistent with the RO queries from this incarnation.

5 Recall that the terms “incarnation”, “completed” run, “successful run” were defined in Section 3.2.
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• If this is the second successful repeat for this incarnation but c = Fs(trans) = cj, then fail
(unsuccessful run).
• If the guess (i1, i2) was correct (that is, this is repeat i2 of this incarnation, it was successful,

and B’s answer to (m1, a1) was the same as in incarnation i1; and in incarnation i1, B
wanted a fresh answer to the (m1, a1) RO query) then output the two message-signature
pairs, (m1, σ1) and (m2, σ2).
• If the guess (i1, i2) was wrong then fail (unsuccessful run).

– If r is not valid or r was not received then fail.

Lemma 4. If B is an L-naive RO replay reduction, then B’s view in interacting with pAs,m1,m2 is
indistinguishable from its view when interacting with sAs,m1,m2.

Proof. Similarly to the proof of Lemma 2, we first consider pA and sA that, instead of access to a
pseudorandom function Fs have access to a truly random function Rand . Just as before, by pseu-
dorandomness of Fs, pAs,m1,m2 ≈ pARand ,m1,m2 and sAs,m1,m2 ≈ sARand ,m1,m2 ; so it is sufficient to
show that pARand ,m1,m2 ≈ sARand ,m1,m2 . (We will omit the subscripts “Rand ,m1,m2” in the rest of
the proof.)

Consider B’s view when interacting with sA for fixed (pk , a), i.e. in a given incarnation. Until B
completes the incarnation by sending a valid response r, B does not know whether this incarnation
is successful or not; thus B’s view with sA is identical to his view with sA′ defined as follows: sA′
remembers previous times when B ran it. It is identical to sA, except that it decides (at random)
whether or not this incarnation is successful the first time that B correctly completes this incarnation
by sending to sA′ the correct r in Step 4. The way that sA′ will determine whether this is a successful
incarnation is by picking (i1, i2) the way that pA does, and then making the incarnation successful if
it picked them correctly; note that sA′ makes an incarnation successful if it picks the unique correct
(i1, i2) out of

(
L
2

)
+ L possibilities (

(
L
2

)
ways of picking i1 6= i2, L ways to pick i1 = i2).

Next, let us compare B’s view with sA′ with his view with pA. They make identically distributed
queries to the RO; then they successfully produce forgeries whenever they have correctly guessed i1 and
i2 (except if pA sends the same query c in both the first and second complete run of this incarnation,
which happens with only negligible probability). Therefore, the views that B receives when talking to
sA′ and pA are statistically indistinguishable, which completes the proof of the lemma. ut

4 Brands’ Blind Signature Scheme

Here we show that our results apply to the blind signature scheme given by Brands [11] that is in the
heart of his well-known e-cash and anonymous credentials systems which is implemented by Microsoft.

Let’s first describe his construction. G is a group of order q, where q a k-bit prime, and g is a
generator of the group. The signer holds a secret key x← Zq and the corresponding public key h = gx,
while the user knows signer’s public key h as well as g, q. H is a collision resistant hash function. The
signature issuing protocol works as follows:

Signer (g, h, x) User(g, h)

α←−−−−−− m = gα

w ∈R Zq, z ← mx, a← gw, b← mw z, a, b
−−−−−−−→

s, t ∈R Zq, m′ ← msgt, z′ ← zsht

u, v ∈R Zq, a′ ← augv, b′ ← autbus(m′)v

c←−−−−− c′ ← H(m′, z′, a′, b′), c← c′/u mod q

r ← w + cx mod q r−−−−−−→ hca
?
= gr, zcb

?
= mr, r′ ← ur + v mod q

A signature on m′ is σ(m′) = (z′, a′, b′, c′, r′). Anyone can verify a signature by first computing c′ =

H(m′, z′, a′, b′) and then checking whether the following equations hold: hc
′
a′

?
= gr

′
, (z′)c

′
b′

?
= (m′)r

′
.
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4.1 Security of Brands’ Blind Signatures

Brands never gave a formal proof of security for his blind signatures. In this section, we argue that
the security of his scheme cannot be proved via a perfect naive or an L-naive RO replay reduction.

Corollary 1. If there exists a perfect or an L-naive RO replay reduction B that solves any intractabil-
ity assumption C using an adversary A that breaks the unforgeability of Brands’ signature, then as-
sumption C can be solved in polynomial time with non-negligible probability.

In order for this corollary to hold we need to show that Brands’ blind signature is a generalized
blind Schnorr signature. We can show this by inspecting one by one the needed requirements: (1)
Brands public/secret key pair is (h = gx, x), which is a unique witness relation for L = {h : gx =
h} ∈ NP, (2) the signer’s side of Brands blind signature is the same as the prover’s side in Schnorr’s
identification scheme, which is known to be a Σ-protocol, (3) Brands blind signature is of the form
σ(m′) = ((z′, a′, b′), c′, r′) which has identical distribution to a transcript of a Σ-protocol, as we will
explain below (4) given the secret key x and a valid transcript of Brands scheme: (â, c′1, r

′
1), where

â = (z′, a′, b′), then ∀ c′2 we can compute r′2 as: r′2 = r′1 − c′1x + c′2x so that (â, c′2, r
′
2) is still a valid

transcript. Let’s take a closer look at Brands blind signature and see why it is a Σ-protocol. We will
do so by inspecting the three properties of Σ-protocols: (a) it’s a three-round protocol, (b) for any
h and any pair of accepting conversations (â, c′1, r

′
1) and (â, c′2, r

′
2) where c′1 6= c′2 one can efficiently

compute x such that h = gx and (c) there exists a simulator S who on input h and a random c′ picks
r′, m and z, solves for a′, b′, so he can output an accepting conversation of the form ((z′, a′, b′), c′, r′).

Thus, by applying Theorems 1 and 2, we rule out perfect and L-naive RO replay reductions for
Brands’ blind signatures 6.

Pointcheval and Stern [38] suggest that for their proof approach to work, the public key of the
scheme should have more than one secret key associated with it. One could modify Brands’ scheme sim-
ilarly to how the original Schnorr blind signature was modified to obtain the variant that Pointcheval
and Stern proved secure. In Appendix E we propose such a modification; the public key of the signer
will be of the form H = Gw1

1 Gw2
2 where (H,G1, G2) are public and (w1, w2) are the secret key. As a

blind signature, the resulting signature scheme is inferior, in efficiency, to the provably secure variant
of the Schnorr blind signature. As far as its use in an electronic cash protocol is concerned, it is still an
open problem whether provable guarantees against double-spending can be given for our modification
of Brands. Thus, although Brands’ e-cash scheme has attractive efficiency and blindness properties,
proving its unforgeability would require radically new techniques.
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A Standard Assumptions

We start by describing two standard cryptographic assumptions useful in the rest of the paper.

Definition 11 (Discrete Logarithm Assumption). Let k be the security parameter. Let G be an
abelian group of order q (k-bit prime) and generator g. Then, for every polynomial time algorithm A
it holds that:

Pr[h← G;x← A(h) : x = logg h] ≤ ν(k)

where ν(k) is a negligible function.

Definition 12 (RSA Assumption). Let k be the security parameter. Let N = pq where p and q are
k-bit, distinct odd primes. Let e be a randomly chosen positive integer less than and relatively prime
to φ(N) = (p− 1)(q − 1). Then, for every polynomial time algorithm A it holds that:

Pr[h← Z∗N ;x← A(N, e) : xe ≡ h mod N ] ≤ ν(k)

where ν(k) is a negligible function.

B Interactive Proofs

Informally speaking, an interactive proof system for a language L is a two-party protocol between a
prover and a probabilistic polynomial-time verifier satisfying the following two conditions with respect
to the common input, denoted h. If h ∈ L, then, with very high probability, the verifier is “convinced”
of this fact, after interacting with the prover (completeness). If h 6∈ L, then no matter what the prover
does, with very high probability, he fails to convince the verifier that “h is in L”(soundness).

Definition 13 (Interactive Proof System [26]). An interactive proof system with soundness error
s ∈ [0, 1]for a language L with witness relation RL is a pair of algorithms (P, V ) where v is probabilistic
polynomial time and the following properties hold:

1. Completeness. For every h ∈ L and every x ∈ RL(h),

Pr[〈P (x), VL〉(h) = 1] = 1.

2. s-Soundness. For every h 6∈ L, every z ∈ {0, 1}∗ and every interactive algorithm P ∗

Pr[〈P ∗(z), V 〉(h) = 0] ≥ 1− s.

A useful property in the above setting would be if the verifier V wouldn’t learn anything useful from
P about the witness x besides the fact that P knows x. This property is called zero knowledge. If
soundness error s is negligible, then this interactive proof system has strong soundness.

Definition 14 (Honest Verifiable Zero Knowledge (HVZK)). An interactive proof system
(P, V ) for a language L is said to be honest verifiable zero knowledge if there exists a probabilis-
tic polynomial time algorithm S (the Simulator) such that for all h ∈ L:

viewV [P (h)↔ V (h)] ≈ S(h),

where viewV is the view of the honest verifier V of the interaction between V and P on input h.
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C Blind Signatures Definitions

We present the formal definitions for blind signatures as they were described in [29]. A blind signature
scheme is a four-tuple consisting of two interactive Turing machines, the Signer and the User, (S,U)
and two algorithms (Gen,Verify).

– Gen(1k): is a probabilistic polynomial time key-generation algorithm which takes as an input a
security parameter 1k and outputs a pair (pk, sk) of public and secret keys.

– S(pk, sk), U(pk,m): are polynomially- bounded probabilistic Interactive Turing machines who
have the following (separate) tapes: read-only input tape, write-only output tape, a read/write
work tape, a read-only random tape, and two communication tapes, a read-only and a write-only
tape. They are both given (on their input tapes) as a common input a pk produced by a key
generation algorithm. Additionally, S is given on her input tape a corresponding private key sk
and U is given on her input tape a message m, where the length of all inputs must be polynomial in
the security parameter 1k of the key generation algorithm. Both S and U engage in an interactive
protocol of some polynomial (in the security parameter) number of rounds. At the end of this
protocol S outputs either “completed” or “not-completed” and U outputs either “fail” or σ(m).

– Verify(pk,m, σ(m)): is a deterministic polynomial-time algorithm, which outputs “accept”/“reject”
with the requirement that for any message m, and for all random choices of key generation algo-
rithm, if both S and U follow the protocol then S always outputs “completed”, and the output of
U is always accepted by the verification algorithm.

A blind digital signature scheme is secure if for all the probabilistic polynomial time algorithms A
there exists a security parameter kA such that for all k > kA the following two properties hold [29]:

- Blindness: the signer is unable to view the messages he signs (protection for the user). Furthermore,
a malicious signer cannot link a (m,σ(m)) pair to any particular execution of the protocol. In order
to define blindness formally consider the following experiment. Let A control the signer but not the
user and b ∈ {0, 1} is a randomly chosen bit which is kept secret from A. A will try to guess the value
of b by performing the following steps:

1. (pk, sk)← Gen(1k)
2. {m0,m1} ← A(1k, pk, sk) (i.e. A produces two documents, polynomial in 1k, where {m0,m1} are

by convention lexicographically ordered and may even depend on pk and sk).
3. We denote by {mb,m1−b} the same two documents {m0,m1}, ordered according to the value

of bit b, where the value of b is hidden from A. A(1k, pk, sk,m0,m1) engages in two parallel
(and arbitrarily interleaved) interactive protocols, the first with U(pk,mb) and the second with
U(pk,m1−b).

4. If the fist User outputs on her private tape σ(mb) (i.e. does not output fail) and the second user
outputs on her private tape σ(m1−b) (i.e., also does not output fail) then A is given as an additional
input {σ(m0), σ(m1)}.(We remark that we do not insist that this happens, and either one or both
users may output fail).

5. A outputs a bit b′ (given her view of steps 1 through 3, and if conditions are satisfied on step 4 as
well).

Then the probability, taken over the choice of b, over coin-flips of the key-generation algorithm, the
coin-flips of A, and (private) coin-flips of both users (from step 3), that b′ = b is at most 1

2 + ν(k),
where ν(k) is a negligible function.

-One-more Unforgeability: a user interacting with a signer S cannot output an additional, valid
message/signature pair (m,σ(m)) no matter how many pairs of messages/ signatures of S he has seen
(protection for the signer). To define that formally, consider an adversary A who controls the user
but not the signer and executes the following experiment in order to get “one-more” signature (this
is also called “one-more” forgery).

1. (pk, sk)← Gen(1k)
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2. A(pk) engages in polynomially many (in k) adaptive, parallel and arbitrarily interleaved interactive
protocols with polynomially many copies of S(pk, sk), where A decides in an adaptive fashion when
to stop. Let ` be the number of executions, where the Signer outputted “completed” in the end of
Step 2.

3. A outputs a collection {(m1, σ(m1)), . . . , (mj , σ(mj))} subject to the constraint that (mi, σ(mi))
for 1 ≤ i ≤ j are all accepted by V erify(pk,mi, σ(mi)), and all mi’s are distinct.

Then the probability, taken over coin-flips of key-generation algorithm, the coin-flips of A, and over
the (private) coin-flips of the Signer, that j > ` is at most ν(k).

D DLP with Schnorr Prover

Brands argues that his blind signature construction is secure under the existence of a Schnorr prover
[12]. In this section we formally define DLP with access to a Schnorr’s prover and show that this can
be modeled as an intractability assumption. Thus, even if we give a perfect or an L- naive RO replay
reduction access to the prover side of the Schnorr identification scheme (we will call him Schnorr
prover from now on) and an adversary A that performs a one-more forgery attack on the Brands
signature scheme, the reduction cannot solve the discrete logarithm problem unless the DLP is easy
in this setting. Let us now define the discrete logarithm problem in the setting with a Schnorr prover.

Definition 15 (DLP with the Schnorr prover). Let A(·)(·) be an oracle Turing machine that
takes as input a discrete logarithm instance (G, q, g, h) and has oracle access to the Schnorr prover
Schnorr(G, q, g, x) for h = gx. (That is to say, A may act as the verifier in the Schnorr protocol, as
many times as it wishes.) Upon termination, A outputs a value x′. We say that A solves the discrete
logarithm problem with the Schnorr prover if x′ = x.

Assumption 1 (Security of DLP with Schnorr) For any probabilistic poly-time family of oracle
Turing machines, A(·)(·), there exists a negligible function ν(k) such that

Pr[(G, q, g, gx)← S(1k);x′ ← ASchnorr(g,x)(g, gx) : x′ = x] = ν(k).

where S(1k) samples Discrete Logarithm instances of size k.

DLP with Schnorr can easily be modeled as an intractability assumption similar to the standard
DLP. It corresponds to threshold t(k) = 0 and a 2-round challenger C who on input 1k picks a random
x and sends gx to the adversary A which works as defined in Definition 10. A, having oracle access
to the Schnorr prover responds with x′ to the challenger. If x′ = x then C outputs 1.

E Modifying Brands

We will modify Brands’ scheme in such a way that the Bank will use more that one secret key to
compute her public key. We will be using the modular representation of e-cash systems provided by
Cramer et al. in [19] to present our scheme and explain the building blocks besides e-cash systems.

Setup The setup is similar as the one of the commitment scheme. There exists a group G of prime order
q and three generators G1, G2, g2 ∈ Gq. No one in the system should be able to compute logG1

G2.
The Bank samples uniformly at random w1, w2 ∈ Zq and computes

H = Gw1
1 Gw2

2 .

The values (H,G1, G2) are public, and used as the Bank’s verification key while the values (w1, w2)
are kept secret.
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User Registration When a User opens an account at the Bank the following take place. The User picks
U ∈ Zq uniformly at random and secretly stores U which represents his identity. Then, he defines

g1 = GU1 G2

and sends g1 to the Bank. As a part of the registration, the User also needs to prove knowledge of
U ∈ Zq such that g1 = GU1 G2. The Bank first verifies the proof of knowledge sent by the User, then
picks w3 ∈ Zq uniformly at random and computes

h = gw1
1 gw3

2

which sends to the User. The User stores (g1, h) and U . The Bank records that this particular user
registered under the public identifier g1.

Withdrawal In each withdrawal, User and Bank use the instance

X = ((H,G1, G2), (h, g1, g2)).

The User and the Bank are going to run a blind signature scheme so that the user will receive a signed
coin by the Bank. The withdrawal proceeds as follows;

1. The Bank picks v1, v2, v3 ∈ Zq uniformly at random and sends to the User:

V1 = Gv11 G
v2
2

V2 = gv11 g
v3
2 .

2. The User selects uniformly random r′, z′1, z
′
2, z
′
3 and computes the simulated values:

V ′1 = G
z′1
1 G

z′2
2 H

−r′

V ′2 = g
z′1
1 g

z′3
2 h
−r′ .

Alternative we could say that the User uses a NIZK simulator and samples a valid conversation
((H,G1, G2), (h, g1, g2), (V

′
1 , V

′
2), r′, (z′1, z

′
2, z
′
3)).

3. Then, the User selects s, k ∈ Zq uniformly at random and computes:

h̃ = hsgk2

g̃1 = gs1

Ṽ1 = V1V
′
1

Ṽ2 = (V2V
′
2)s.

Note that g̃1 = GUs1 Gs2, where we can write W1 = Us and W2 = s and the User is actually proving
that he knows a witness (W1,W2) such that g̃1 = GW1

1 GW2
2 .

4. As a next step, User picks b1, b2 ∈ Zq and computes

m = Gb11 G
b2
2 .

5. Now, the User is going to compute the hash:

r̃ = H(m, (H,G1, G2), (h̃, g̃1, g2), (Ṽ1, Ṽ2))

and sends to the Bank the blinded value r = r̃ − r′.
6. Upon receiving r, the Bank computes:

zi = rwi + v1, i ∈ {1, . . . , 3}

and forwards the zi’s to the User.
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7. The User first checks:

V1H
r ?

= Gz11 G
z2
2

V2h
r ?

= gz11 g
z3
2

and if the equations verify computes:

z̃1 = z1 + z′1

z̃2 = z2 + z′2

z̃3 = (z3 + z′3)s+ kr̃.

The blind signature on (m, g̃1) is

σB(m, g̃1) = ((H,G1, G2), (h̃, g̃1, g2), (Ṽ1, Ṽ2), (z̃1, z̃2, z̃3))

.
In order for somebody to verify the signature, he needs to check:

Ṽ1H
r̃ ?

= Gz̃11 G
z̃2
2

Ṽ2h̃
r̃ ?

= g̃1
z̃1gz̃32 .

The registration phase and the withdrawal protocol can be found in Table 1.

Spending Assume that the User wants to spent the coin in a Shop, with unique identity Is. The
protocol begins with the Shop sending to the user pid where:

pid = H(Is, date/ time).

Then, the user is going to “sign” pid by sending to the bank:

p1 = pid W1 + b1

p2 = pid W2 + b2

plus the coin (m, g̃1) and σB. The Shop verifies the validity of the coin and checks whether:

mg̃1
pid ?

= Gp11 G
p2
2 .

If both verifications hold, the Shop accepts the payment and stores ((m, g̃1), σB, (p1, p2), pid).

Deposit When the Shop needs to deposit a coin in the Bank just needs to send the spending transcript
((m, g̃1), σB, (p1, p2), pid) and the date/time of the transaction. The Bank needs to first check that
pid encodes the identity of the Shop and the date/time in order to make sure that the Shop is not
trying to deposit the same coin again. If something is wrong the bank doesn’t accept the coin.

If everything was all right then the Bank needs to verify the signature on the coin and that (p1, p2)

are valid (by checking whether mg̃1
pid ?

= Gp11 G
p2
2 . If so, then the bank stores (m, g̃1), σB, (p1, p2), sid)

if something doesn’t verify, the bank aborts.
In the case that a user is trying to double spend, then the Bank will receive the same ((m, g̃1), σB)

but with new (p′1, p
′
2), /sid

′. Then, the Bank is able to catch the User who is double spending by
computing the following:

G
p1−p′1

pid−pid′
1 G

p2−p′2
pid−pid′
2

which is equal to
GW1

1 GW2
2

and by knowing W1 and W2 which are equal to W1 = Us and W2 = s, the Bank can compute the
secret key of the User who was double spending.
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Signer((H,G1, G2), (w1, w2)) Receiver(H,G1, G2)

U ∈ Zq

g1 = GU
1 G2, π = proof of knowledge of U

g1, π←−−−−−−−−
verify π
w3 ∈ Zq

h = gw1
1 gw3

2

h−−−−−→
v1, v2.v3 ∈R Zq

V1 = Gv1
1 G

v2
2

V2 = gv11 gv32
V1, V2−−−−−−−→

r′, z′1, z
′
2, z
′
3 ∈R Zq

V ′1 = G
z′1
1 G

z′2
2 H

−r′

V ′2 = g
z′1
1 g

z′3
2 h−r′

s, k ∈R Zq

h̃ = hsgk2
g̃1 = gs1
Ṽ1 = V1V

′
1

Ṽ2 = (V2V
′
2 )s

b1, b2 ∈R Zq

m = Gb1
1 G

b2
2

r̃ = H(m, (H,G1, G2), (h̃, g̃1, g2), (Ṽ1, Ṽ2))
r = r̃ − r′

r−−−−−−→
zi = rwi + vi, i ∈ {1, . . . , 3}

z1, z2, z3−−−−−−−−−→
V1H

r ?
= Gz1

1 G
z2
2

V2h
r ?

= gz11 gz32
z̃1 = z1 + z′1
z̃2 = z2 + z′2
z̃3 = (z3 + z′3)s+ kr̃

Table 1. Brands’ blind signature modified
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E.1 Unforgeability of Withdrawal Protocol

By modifying Brands e-cash scheme so that the bank uses more than secret keys to compute the
public key, we can apply the technique proposed in [38] to prove the unforgeability of the modified
withdrawal protocol. We will prove the following Theorem.

Theorem 3. Consider the modified Brands’ withdrawal/blind signature scheme in the random oracle
model. If there exists a probabilistic polynomial time Turing machine which can perform a “one - more”
forgery, with non-negligible probability, even under a parallel attack, then the discrete logarithm can
be solved in polynomial time.

Proof. We first describe an outline of the proof, then we will simplify the notations and finally we will
complete the proof.

Outline of the proof Let A be the attacker who can be described as a probabilistic polynomial time
Turing machine with random tape ω. Thus, there exists an integer ` such that after ` interactions with
the bank (v1,i, v2,i, ri, z1,i, z2,i, z3,i) for i ∈ {1, . . . , `}, and a polynomial number Q of queries asked to
the random oracle, Q1, . . . ,QQ, A returns `+ 1 valid signatures (coins), (mi, g̃1,i), h̃i, (Ṽ1,i, Ṽ2,i), (z̃1,i,
z̃2,i, z̃3,i, for i = 1, . . . , ` + 1 (to verify the signature (coin) you would first need to compute r̃i =
H(mi, (H,G1, G2), (h̃i, g̃1,i, g2), (Ṽ1,i, Ṽ2,i))).

The bank possesses a secret key (w1, w2) associated to a public key H = Gw1
1 Gw2

2 , and a random
tape Ω. The secret key is stored on the knowledge tape of the Turing machine.

Through a collision of the Bank and the attacker, we want to compute the discrete logarithm of
G1 relatively to G2. The technique used is the one described in [39] as technique of “oracle replay”.
We first run the attack with random keys, tapes and oracle f (which answers the hash queries).
We randomly choose an index j and then replay with same keys and random tapes, but a different
oracle f ′ such that the first j − 1 answers remain unchanged. We expect that, with non-negligible
probability, both executions output a common Ṽ1 and Ṽ2 coming from the jth query having two
distinct representations relatively to G1 and G2. Specifically, we expect to get the same Ṽ1 for the
two different sets (r̃, z̃1, z̃2, z̃3) and (ˆ̃r, ˆ̃z1, ˆ̃z2, ˆ̃z3), whereˆdenotes the second execution. We could also
choose to work with Ṽ2 but it wouldn’t make any difference. So, we would have:

Ṽ1 = H−r̃Gz̃11 G
z̃2
2

Ṽ1 = H−
ˆ̃rG

ˆ̃z1
1 G

ˆ̃z2
2

and

logG1
G2 =

r′1 − w1c
′ − r̂′1 + w1ĉ′

r̂′2 − w2ĉ′ − r′2 + w2c′

where the reduction knows the secret key of the Bank, (w1, w2).

Cleaning up Notations Before proceeding to the actual proof we will clean up some notation issues.
Without loss of generality, we assume that all the (mi, (H,G1, G2), (h̃, g̃1,i, g2), (Ṽ1,i, Ṽ2,i)) are queries
which have been asked during the attack (otherwise, the probability of success would be negligi-
ble due to the randomness of the random oracle outputs). Then, we can assume that the indices,
(Ind1, . . . , Ind`+1), of (m1, (H,G1, G2), (h̃, g̃1,1, g2), (Ṽ1,1, Ṽ2,1), . . . , (m`+1, (H,G1, G2), (h̃, g̃1,`+1, g2),
(Ṽ1,`+1, Ṽ2,`+1)) in the list of queries is constant. As a result, the probability of success decreases from
ε to ρ ≈ ε/Q`+1 (where Q the number of queries asked to the random oracle).

(w1, w2) is the secret key used by the Bank. The random tape of the Bank, Ω, determines the
pairs (v1,i, v2,i, v3,i) such that V1,i = G

v1,i
1 G

v2,i
2 and V2,i = g

v1,i
1 g

v3,i
2 for i = 1, . . . , `. The distribution of

(w1, w2, H) where w1 and w2 are random and H = Gw1
1 Gw2

2 , is the same as the distribution (w1, w2, H)
where w1 and H are random and w2 is the unique element such that H = Gw1

1 Gw2
2 . Accordingly, we

replace (w1, w2) by (w1, H) and, similarly, each (v1,iv2,i) by (v1,i, V1,i) and (v1,iv3,i) by (v1,i, V2,i).

For the rest of the proof, we will group (ω,H, (V1,1, V1,2), . . . , (V1,`, V1,`)) under variable ν, and
(v1,i, . . . , (v1,`) under the variable τ . S will denote the set of all successful data, i.e. quadruples
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(ν, w1, τ, f) such that the attack succeeds. Then,

Prν,x1,τ,f [(ν, w1, τ, f) ∈ S] ≥ ρ.

Before continuing with the proof we state a well - know probabilistic lemma:

Lemma 5. (The probabilistic lemma). Let A be a subset of X×Y such that Pr[A(x, y)] ≥ ε, then
there exists Ω ⊂ X such that

1. Pr[x ∈ Ω] ≥ ε/2
2. whenever a ∈ Ω, Pr[A(a, y)] ≥ ε/2.

The probabilistic lemma is useful to split a set X in two subsets, a non-negligible subset Ω con-
sisting of “good” x’s which provide a non-negligible probability of success over y, and its complement,
consisting of “bad” x’s.

Lemma 6. (The forking lemma.) Randomly choose an index j, the keys and the random tapes.
Run the attack twice with the same random tapes and two different random oracles, f and f ′, providing
identical answers to the j− 1 first queries. With non-negligible probability, the different outputs reveal
two different representations of some Ṽ1,i, relatively to G1 and G2.

Proof. By proving this lemma we basically prove Theorem 3. What we want to show is, that after a
replay, we can obtain a common Ṽ1,i such that:

Ṽ1,i = G
z̃1,i
1 G

z̃2,i
2 H−r̃i = G

z̃1,i−w1r̃i
1 G

z̃2,i−w2r̃i
2

= G
ˆ̃z1,i
1 G

ˆ̃z2,i
2 H−

ˆ̃ri = G
ˆ̃z1,i−w1

ˆ̃ri
1 G

ˆ̃z2,i−w2
ˆ̃ri

2

where, z̃1,i−w2r̃i 6= ˆ̃z1,i−w1
ˆ̃ri. We can remark that, for each i, Ṽ1,i only depends on (ν, w1, τ) and the

first Indi−1 answers of f . What is left to study is whether or not the random variable χi = r′1i−x1c′i
is sensitive to queries asked at steps Indi, Indi + 1, etc. We expect the answer to be yes. We can
consider the most likely value taken by χi when (ν, w1, τ) and the Indi−1 first answers of f are fixed.
Then, we are led to consider a function ei(ν, w1, τ, fi), where fi ranges over the set of answers to the
first Indi − 1 possible queries. Set

λi(ν, w1, τ, fi, e) = Pr
f

[(χi(ν, w1, τ, f) = e) & ((ν, w1, τ, f) ∈ S) |f extends fi] .

We define ei(ν, w1, τ, fi) as any value e such that λi(ν, w1, τ, fi, r) is maximal. We then define the
“good” subset G of S whose elements satisfy, for all i, χi(ν, w1, τ, f) = ei(ν, w1, τ, fi), where fi denotes
the restriction of f to queries of index strictly less than Indi, and the “bad” B its compliments in S.

Definition 16. We denote by Φ the transformation which maps any quadruple (ν, w1, τ, f) to (ν, w1+
1, τ − c, f), where τ − r = (v1,1 − r1, . . . , v1,` − r`).

Lemma 7. Both executions corresponding to (ν, w1, τ, f) and Φ(ν, w1, τ, f) are totally identical with
respect to the view of the attacker. Especially, outputs are the same.

Proof. Let (ν, w1, τ, f) be an input for the collusion. Replay with ŵ1 = w1 + 1 and τ̂ = τ − r, the
same ν and the same oracle f . The answers of the oracle are unchanged and the interactions with the
bank become

ˆz1,i(ŵ1, v̂1,i, ri) = v̂1,i + ŵ1ri = (v1,i − ri) + ri(w1 + 1) = v1,i + riw1 = z1,i(w1, v1,i, ri).

Thus, everything remains the same.

Corollary 2. Φ is a one-to-one mapping from S onto S.

Lemma 8. For fixed (ν, w1, τ), the probability

Pr
f

[((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ G) ≤ 1/q.
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Which means that Φ sends the set G into B, except for a negligible part.

Proof. We will prove the above lemma by contradiction. Assume that Prf [(ν, w1, τ, f) ∈
⋃
r1,...,r`

Y (r1, . . . , r`)] >
1/q, where the set Y (r1, . . . , r`) is defined by the conditions (ν, w1, τ, f) ∈ G, Φ(ν, w1, τ, f) ∈ G and
(r1, . . . , r`) are the successive questions asked to the authority. Then, there exists a `-tuple (r1, . . . , r`)
such that Prf [Y (r1, . . . , r`)] > 1/(q`+1). Thus, there exist two oracles f and f ′ in Y (r1, . . . , r`) which
provide distinct answers for some queries QIndj = (mj , (H,G1, G2), (h̃j , g̃1,j , g2), (Ṽ1,j , Ṽ2,j)) to the
oracle, for some j ∈ 1, . . . , `+ 1, and are such that answers to queries not of the form of QIndj are

similar. We will denote by i the smallest such index j. Then fi = f ′i and r̃i 6= ˆ̃
ir. Also, we have

(ν, w1, τ, f) ∈ G, Φ(ν, w1, τ, f) ∈ G and similarly (ν, w1, τ, f
′) ∈ G, Φ(ν, w1, τ, f

′) ∈ G. Because of the
property of Φ (see lemma 3), and by definition of G,

ei(ν, w1, τ, fi) = z1,i(ν, w1, τ, f)− w1r̃i

= z1,i(Φ(ν, w1, τ, f))− w1r̃i

= ei(ν, w1 + 1, τ − r, fi) + ((w1 + 1)− w1)r̃i

ei(ν, w1, τ, f
′
i) = z1,i(ν, w1, τ, f

′)− xw1 ˆ̃
ir

= z1,i(Φ(ν, w1, τ, f
′))− w1

ˆ̃
ir

= ei(ν, w1 + 1, τ − r̂, f ′i) + ((w1 + 1)− w1) ˆ̃
ir

The equality fi = f ′i implies ei(ν, w1, τ, fi) = ei(ν, w1, τ, f
′
i). Since we have assumed (r1, . . . , r`) =

(r̂1, . . . , r̂`), then ei(ν, w1 + 1, τ − r, fi) = ei(ν, w1 + 1, τ − r̂, f ′i). Thus, r̃i = ˆ̃ri which contradicts the
hypothesis.

Lemma 4 says that for any (ν, w1, τ),

Prf [((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ G)] ≤ 1/q.

By making the sum over all the triplets (ν, w1, τ), and using the bijectivity of Φ (corollary 1), we
obtain

Pr[G] = Prν,w1,τ,f [((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ G)]

+Prν,w1,τ,f [((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ B)]

≤ 1

q
+ Prν,w1,τ,f [Φ(ν, w1, τ, f) ∈ B] ≤ 1

q
+ Pr[B]

Then, Pr[B] ≥ (Pr[S] − 1/q)/2. Since 1/q is negligible w.r.t Pr[S], for enough large keys, we have,
Pr[B] ≥ Pr[S]/3 ≥ ρ/3.

Conclusion We will use this probability to show the success of forking.

ρ

3
≤ Pr[B] = Prν,w1,τ,f [S & ((∃i)χi(ν, w1, τ, f) 6= ei(ν, w1, τ, fi))]

≤
∑`+1

i=1
Pr

ν,w1,τ,f
[S & (χi(ν, w1, τ, f) 6= ei(ν, w1, τ, fi))].

There exists k such that Pr[S & (χk(ν, w1, τ, f) 6= ei(ν, w1, τ, fk))] ≥ ρ/3`+ 1. Let us randomly choose
the forking index i. With probability greater than 1/(`+ 1), we have guessed i = k. The probabilistic
lemma ensures that there exists a set X such that

1. Prν,w1,τ,f [(ν, w1, τ, fi) ∈ X] ≥ ρ/6(`+ 1)

2. for all (ν, w1, τ, fi) ∈ X, Prf [(ν, w1, τ, f) ∈ S & (χi 6= ei)| extends fi] ≥ ρ/6(`+ 1).

Let us choose a random quadruple (ν, w1, τ, f). With probability greater than (ρ/6(`+1))2, (ν, w1, τ, f) ∈
S, (ν, w1, τ, fi) ∈ X and χi(ν, w1, τ, f) 6= ei(ν, w1, τ, fi). We will denote by α the value χi(ν, w1, τ, f)
and by β the value ei(ν, w1, τ, fi). Then, two cases appear relatively to λi(ν, w1, τ, fi, α):

24



– if λi(ν, w1, τ, fi, α) ≥ ρ/12(` + 1), then, by definition of ei, we know that λi(ν, w1, τ, fi, β) ≤
ρ/12(`+ 1).

– otherwise,
λi(ν, w1, τ, fi, α) + Prf ′ [S & (χi(ν, w1, τ, fi, α

′) 6= α)|f ′ extends fi]
= Prf ′ [S|f ′ extends fi]
≥ Prf ′ [S & (χi(ν, w1, τ, f

′) 6= β)|f ′ extends fi] ≥ ρ/6(`+ 1).

Both cases lead to Prf ′ [S & (χi(ν, w1, τ, f
′) 6= α)|f ′ extends fi] ≥ ρ/12(`+ 1). Thus, if we replay with

the same keys and random tapes but another random oracle f ′ such that f ′i = fi, we obtain, with
probability at least ρ/12(`+1), a new success with χi(ν, w1, τ, f

′) 6= α. Then, both executions provide
two different representations of ai with respect to G1 and G2.

Global Complexity of the Reduction By using a replay oracle technique with a random forking index,
the probability of success is greater than

1

`+ 1
×
(

ρ

6(`+ 1)

)2

× ρ

12(`+ 1)
×
(

1

6(`+ 1)
× ε

Q`+1

)3

where ε is the probability of success of an `, ` + 1-forgery and Q the number of queries asked to the
random oracle.
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