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Abstract. In [16], Sakumoto et al. presented a new multivariate identification scheme,
whose security is based solely on the MQ-Problem of solving systems of quadratic equations
over finite fields. In this paper we extend this scheme to a threshold ring identification and
signature scheme. Our scheme is the first multivariate scheme of this type and generally the
first multivariate signature scheme with special properties. Despite the fact that we need
more rounds to achieve given levels of security, the signatures are at least twice shorter
than those obtained by other post-quantum (e.g. code based) constructions. Furthermore,
our scheme offers provable security, which is quite a rare fact in multivariate cryptography.
Keywords: Threshold Ring Signature, Post-Quantum Cryptography, Multivariate Cryp-
tography, MQ Problem

1 Introduction

Since the introduction of threshold ring signatures in 2002 [6], a number of schemes in this area
were proposed [5,13]. Most of them are based on number theoretic problems and share two disad-
vantages:

1) the signature length and/or the computational complexity depends not only on the
number of users N , but also on the number of actual signers t

2) they will be broken when large enough quantum computers are built [2].
Therefore we need alternatives for these schemes. In the last years much work has been done to
develop post-quantum threshold ring signature schemes. These schemes are based on mathemat-
ical problems which are not affected by Shor’s algorithm [17] and therefore are believed to resist
attacks with quantum computers [2]. We want to mention here the code-based construction by
Aguilar et al. [1] and the lattice-based scheme of Cayrel et al. [7].
In this paper we propose a new threshold ring signature scheme based on multivariate polyno-
mial systems. We achieve this by extending the identification scheme of [16] to a threshold ring
identification scheme and applying the Fiat-Shamir paradigm [11] to transform it into a signature
scheme. Although our scheme requires more rounds than code- and lattice-based schemes to reach
the same level of security, it produces significantly shorter signatures. In particular, both the sig-
nature length and the computational complexity of our scheme are independent of t and linear in
N . Our scheme is the first multivariate scheme of this type and generally the first multivariate
signature scheme with special properties. The security of our scheme is based solely on the MQ-
Problem of solving systems of multivariate quadratic equations over finite fields. Therefore our
scheme is provably secure, which is quite a rare fact in multivariate cryptography.
The outline of this paper is as follows: In the next section we recall the basic definitions about
threshold ring signatures and the Fiat-Shamir paradigm. Section 3 introduces the identification
scheme of [16] which is the basis of our construction. In Section 4 we show how to extend this
scheme to a threshold ring identification and signature scheme and describe our scheme in detail,
whereas Section 5 considers the security of the scheme. In Section 6 we give concrete parame-
ters for our scheme and compare it with other existing threshold ring signature schemes. Finally,
Section 7 concludes the paper.
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2 Preliminaries

2.1 Threshold Ring Signatures

Threshold ring signatures were introduced in 2002 by Bresson, Stern and Szydlo [6].
The receiver of a (t,N)-threshold ring signature shall be convinced that t (among a larger group
of N) users have signed a message without being able to identify this subgroup.

Definition 1. Let t < N be integers. A (t,N)-threshold ring signature scheme consists of 3 algo-
rithms

– KeyGen: is a probabilistic algorithm which outputs N pairs of private and public keys
(sk1, pk1), . . . , (skN , pkN ).

– Sign: is a probabilistic interactive protocol between t users, involving a set (pk1, . . . , pkN ) of
public keys, a set (ski1 , . . . , skit) of private keys and a message m, and which outputs a (t,N)-
threshold ring signature σ for the message m.

– Verify: is a deterministic algorithm which takes as input a threshold value t, a set of pub-
lic keys (pk1, . . . , pkN ) and a message/signature pair (m,σ), and outputs 1 if σ is a valid
(t,N)-threshold ring signature for the message m w.r.t. the public keys (pk1, . . . , pkN ) and 0
otherwise.

The basic security criteria of a threshold ring signature scheme are

– Correctness: A fairly generated (t,N)-threshold ring signature is accepted with overwhelming
probability.

– Unforgeability: Without the knowledge of at least t secret keys it is infeasible to generate a
valid (t,N)-threshold ring signature. More formally we can define this property by the following
game:
1. The challenger C uses algorithm KeyGen to produce key pairs ski, pki (i = 1, . . . , N). He

gives all the public keys to the forger F and keeps the secret keys for himself.
2. F is allowed to ask the following queries:
• Signing query: F chooses a message m and gives it to C. The challenger uses algorithm

Sign to produce a threshold ring signature σ for the message m and gives it to F .
• Corrupt query: F chooses an integer i ∈ 1, . . . , N . C gives him the corresponding secret

key ski. Note that the number of corrupt queries must be strictly less than t.
F wins the game, if he can generate a valid threshold ring signature σ? for a new message
m?. A threshold ring signature scheme, for which the success probability of F is negligible, is
called existentially unforgeable under chosen message attacks.

– Source-Hiding: Given a message-signature pair (m,σ), it is infeasible for the verifier to reveal
which t-subset of signers contributed to σ. More formally, we can define this property by the
following game: An attacker is given two different sets of signers S1 = {P11, . . . , P1t} and
S2 = {P21, . . . , P2t}. He can ask both groups to sign messages. Finally, he gets a message m?

and a signature σ? which was generated by one of the groups. He succeeds, if he can decide
which group signed the message with probability > 1

2 .

Many threshold ring signature schemes are based on a threshold ring identification scheme and
the Fiat-Shamir paradigm.
In a threshold ring identification scheme the t signers choose a leader L, which gathers the indi-
vidual commitments and responses and communicates with the verifier. Figure 1 shows one round
of such a scheme.

2.2 Fiat-Shamir heuristic

The Fiat-Shamir heuristic [11] is a general way to convert an identification scheme into a signature
scheme. The idea is to start from a 3-pass identification scheme (with commitment Com, challenge
Ch and response Rsp). To sign a message m, the signer produces a valid transcript (Com,Ch,Rsp)
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of the interactive identification protocol. Here, Ch = R(m,Com) for a random oracle R.
Since the challenge Ch can be computed out of the message and the commitments, it has not to
be part of the signature. Therefore, a signature has the form

σ = (Com|Rsp).3 (1)

As shown by Pointcheval and Stern in [14], an honest-verifier zero-knowledge 3-pass identification
scheme leads via the Fiat-Shamir heuristic to a signature scheme, which is existentially unforgeable
under chosen message attacks (see Subsection 2.1) in the random oracle model.

3 Multivariate Cryptography

Multivariate Cryptography is one of the main candidates to guarantee the security of communi-
cation in the post-quantum world. Since multivariate cryptosystems need only simple operations
(namely addition and multiplication over small finite fields), they require only modest compu-
tational resources which makes them suitable for the use on low cost devices like RFID chips
and smartcards. Additionally, multivariate schemes seem to be faster than classical Public-Key-
Cryptosystems like RSA and ECC [4,8]. A good overview on existing multivariate schemes can be
found in [9].

3.1 Multivariate quadratic systems

The basic objects of multivariate cryptography are systems of multivariate quadratic equations
over finite fields. We write such a system of m equations in n variables as

n∑
i=1

n∑
j=i

p
(1)
ij · xi · xj +

n∑
i=1

p
(1)
i · xi + p

(1)
0 = 0

...
n∑
i=1

n∑
j=i

p
(m)
ij · xi · xj +

n∑
i=1

p
(m)
i · xi + p

(m)
0 = 0. (2)

The security of multivariate cryptosystems is based on the

MQ-Problem: Given m quadratic polynomials p1, . . . , pm in n variables over a finite field F,
find a vector x = (x1, . . . , xn) ∈ Fn such that p1(x) = · · · = pm(x) = 0.

The MQ-Problem is proven to be NP-hard even for quadratic systems over the field of two ele-
ments [12].
The most efficient method for solving multivariate polynomial systems is the Hybrid approach [3]
of Bettale, Faugère and Perret, which combines exhaustive search and Faugères F5 algorithm [10].

Remark: The security of most of the existing multivariate schemes is based not only on the
MQ-Problem, but also on the EIP-Problem (Extended Isomorphism of Polynomials). This fact
prevented researchers to give security proofs for their schemes. The security of our threshold sig-
nature scheme is based solely on the MQ-Problem. Therefore, it is one of the first multivariate
schemes with provable security (see Section 5).

3 To achieve given levels of security, it might be neccessary to run the identification scheme several (say
M) times. In this case, the challenge is given as Ch = R(m,Com1, . . . , ComM ) and the signature has
the form σ = (Com1, . . . , ComM , Rsp1, . . . , RspM ).
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3.2 The MQ-based identification scheme

At CRYPTO 2011 Sakumoto et al. presented a new identification scheme whose security is based
solely on the MQ-Problem [16] .

Prover: P,v, s Verifier: P,v

Choose r0, t0 ∈R Fn, e0 ∈R Fm

r1 = s− r0, t1 = r0 − t0
e1 = P(r0)− e0

c0 = Com(r1,G(t0, r1) + e0)
c1 = Com(t0, e0)
c2 = Com(t1, e1) -

(c0, c1, c2)

� Ch

If Ch = 0, Rsp = (r0, t1, e1)
If Ch = 1, Rsp = (r1, t1, e1)
If Ch = 2, Rsp = (r1, t0, e0) -Rsp

Choose Ch ∈R {0, 1, 2}

If Ch = 0, check
c1

?= Com(r0 − t1,P(r0)− e1)
c2

?= Com(t1, e1)

If Ch = 1, check
c0

?= Com(r1, v − P(r1)− G(t1, r1)− e1)
c2

?= Com(t1, e1)

If Ch = 2 check
c0

?= Com(r1,G(t0, r1) + e0)
c1

?= Com(t0, e0)

Fig. 2. The identification scheme of [16]

In the scheme we have a multivariate quadratic system P : Fn → Fm which is viewed as a system
parameter and fixed for a large number of users. Every user chooses a vector s ∈ Fn as his secret
key and computes his public key as v = P(s) ∈ Fm.
To identify himself to a verifyer, he has to show that he indeed knows s (without revealing any
information about s).
To create a zero-knowledge proof of the vector s, we need the so called polar form of the multivariate
system P, which is defined as

G(x, y) = P(x+ y)− P(x)− P(y). (3)
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Note that G(x, y) is bilinear in x and y.

The basic observation of [16] is the following: The knowledge of s is equivalent to knowing a
tuple (r0, r1, t0, t1, e0, e1) satisfying

G(t0, r1) + e0 = v − P(r1)− G(t1, r1)− e1 (4)

(t0, e0) = (r0 − t1,P(r0)− e1). (5)

Under the assumption that there exists a computationally binding and statistically hiding com-
mitment scheme Com4, the authors of [16] used this observation to create a zero knowledge proof
for a solution of the system P(x) = v (see Figure 2).

The scheme as shown in Figure 2 has a cheating probability per round of 2
3 . Therefore, one

needs 52 rounds to reduce the impersonation probability to less than 2−30.
The authors of [16] propose for their scheme F = GF (2), n = 84, m = 80 to achieve a security
level of 80 bit. For this parameter set, the communication cost of the scheme (52 rounds) is 29,640
bits or 3.6 kB.

Additionally to the 3-pass version shown in Figure 2, the authors of [16] also presented a 5-pass
version of their scheme. In this paper, we restrict ourselves to the 3-pass version.

4 Our threshold ring signature scheme

4.1 From identification to threshold ring identification

The authors of [16] propose to use the system P as a system parameter which stays the same for
all users. Every user chooses randomly a vector s ∈ Fn as his private key and publishes v = P(s) as
a public key. In our scheme, we turn this around. In a threshold ring signature scheme, the leader
must be able to simulate the actions of the non-signers without knowing their secrets. To enable
this, we fix the vector v ∈ Fm of the identification scheme to zero. Then, every user Pi chooses
randomly a private key si ∈ Fn and creates a system Pi such that Pi(si) = 0 (see Subsection 4.2
and Algorithm 1). If the system Pi does not contain constant terms, the zero vector 0 ∈ Fn is
always a solution of the system. This enables the leader to simulate the actions of the non-signers
without knowing their secrets.

The verifier of the threshold ring signature scheme must be able to recognize how many of the
possible signers contributed to the signature. To enable this, we add the following test to the
scheme. For fields of characteristic 2 we have

s = r0 + r1 = 0⇔ r0 = r1 ”⇔ ” Com(r0) = Com(r1). (6)

Note that the second ”⇔” is not really an ”⇔ ”. While the ”⇒ ” always holds for a deterministic
commitment function the ”⇐” holds only computationally due to the binding property of the
commitment function. In the following we always work over fields of characteristic 2.

Basically we could make the test (6) at any point of the verification process. However, in a thresh-
old ring signature scheme, the verifier must not be able to identify non-signers. To achieve this,
we use a permutation Σ ∈ SN which permutes the N users before applying the test (6). This
leads to a rather difficult problem: Regardless of the challenge, the public key P (or its polar form
G) is used during the verification step of the identification scheme. Therefore, if we permute the
secret keys, the verification step can no longer be performed correctly. One possibility to solve this
problem is to extend the protocol as follows:
4 In practice this is realized by a collision- and pre-image resistant hash function.
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Each signer Pi sends the two additional commitments c(i)3 = Com(r(i)0 ) and c(i)4 = Com(r(i)1 ) to the
leader, which chooses randomly a permutation Σ ∈ SN and sends C3 = Com(Σ(c(1)3 , . . . , c

(N)
3 ))

and C4 = Com(Σ(c(1)4 , . . . , c
(N)
4 )) to the verifier. On the Challenge Ch = 3, the leader reveals

Σ(c(1)3 , . . . , c
(N)
3 ) and Σ(c(1)4 , . . . , c

(N)
4 ). The verifier checks the correctness of the commitments C3

and C4 and checks if there are at least t positions i with c
(i)
3 6= c

(i)
4 and therefore si 6= 0.

4.2 The Identification Scheme

Let U be a group of N users. A subgroup S ⊂ U of t signers wants to identify itself to a verifier.
To do this, the signers choose a leader L which gathers the commitments and responses of the
single signers and communicates with the verifier (see Figure 3).

Fig. 3. Threshold Ring Identification. For simplicity we assume that L = P1 and S = {P1, . . . , Pt}.

Key Generation Let F be a field of characteristic 2. Every user Pi ∈ U chooses randomly a
vector si ∈ Fn and creates a quadratic system Pi : Fn → Fm such that Pi(si) = 0. Pi must not
contain constant terms. Algorithm 1 shows the key generation process of our scheme.
Here, p(j)

t is the coefficient of xt in the j − th component of P.
The vector v computed in line 4 of the algorithm is a random looking vector in Fm. In line 7
we change some of the linear coefficients of the system P in such a way that all the non zero
elements of v are put to zero. Therefore we ensure that the public key derived by Algorithm 1
is a system P of m quadratic polynomials in n variables without constant terms such that P(s) = 0.

The homogeneous quadratic part of the system P can be seen as a system parameter which
is fixed for all N users and might be given by a random seed. This reduces the size of the public
key by a large factor (see Table 3).

Remark: Since both the vector s (line 1) and the coefficients of the system P (line 3) were
chosen uniformly at random from F, the coefficients of the public key pk derived by Algorithm 1
are uniformly distributed in F.

The public key of the group is simply the concatenation of all public keys, i.e. P = P1|| . . . ||PN .
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Algorithm 1 Key Generation process
Input: parameters m, n
Output: keypair (sk, pk)
1: Choose randomly a vector s ∈ Fn
2: t← max{j|sj 6= 0}
3: Choose randomly a system P of m quadratic polynomials in n variables without constant

terms
4: v ← P(s)
5: for j = 1 to m do
6: if vj 6= 0 then
7: p

(j)
t ← p

(j)
t −

vj

st

8: end if
9: end for

10: sk ← s
11: pk ← P

The Identification protocol One round of our threshold ring identification scheme works as
follows:

1. Each of the t signers Pi ∈ S (including the leader) chooses

r
(i)
0 , t

(i)
0 ∈ Fn, e(i)0 ∈ Fm,

computes
r
(i)
1 = si − r(i)0 , t

(i)
1 = r

(i)
0 − t

(i)
0 , e

(i)
1 = Pi(r(i)0 )− e(i)0 ,

c
(i)
0 = Com(r(i)1 ,Gi(t(i)0 , r

(i)
1 ) + e

(i)
0 ),

c
(i)
1 = Com(t(i)0 , e

(i)
0 ),

c
(i)
2 = Com(t(i)1 , e

(i)
1 ),

c
(i)
3 = Com(r(i)0 ),

c
(i)
4 = Com(r(i)1 ),

and sends c(i)0 , c
(i)
1 , c

(i)
2 , c

(i)
3 and c

(i)
4 to the leader.

2. The leader computes c(i)0 , c
(i)
1 , c

(i)
2 , c

(i)
3 and c

(i)
4 for the N − t non-signers Pi ∈ U \ S (us-

ing 0 as ”secret” si), chooses a random permutation Σ ∈ SN , computes the master commitments

C0 = Com(c(1)0 , . . . , c
(N)
0 )

C1 = Com(Σ, c(1)1 , . . . , c
(N)
1 )

C2 = Com(c(1)2 , . . . , c
(N)
2 )

C3 = Com(Σ(c(1)3 , . . . , c
(N)
3 ))

C4 = Com(Σ(c(1)4 , . . . , c
(N)
4 ))

and sends C0, C1, C2, C3 and C4 to the verifier.

3. The verifier chooses the challenge Ch ∈ {0, 1, 2, 3} and sends it to the leader. If Ch ∈ {0, 1, 2}
the leader sends Ch to the t− 1 co-signers.
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4. If Ch ∈ {0, 1, 2}, the t signers Pi ∈ S (including the leader) compute their responses Rspi,
namely

– If Ch = 0, Rspi = (r(i)0 , t
(i)
1 , e

(i)
1 )

– If Ch = 1, Rspi = (r(i)1 , t
(i)
1 , e

(i)
1 )

– If Ch = 2, Rspi = (r(i)1 , t
(i)
0 , e

(i)
0 )

and send Rspi to the leader.

5. The leader computes Rspi for the N − t non-signers, computes the master response RSP

– If Ch = 0, RSP = (Σ,Rsp1, . . . , RspN )
– If Ch = 1, RSP = (Rsp1, . . . , RspN )
– If Ch = 2, RSP = (Σ,Rsp1, . . . , RspN )
– If Ch = 3, RSP = (Σ(c(1)3 , . . . , c

(N)
3 ), Σ(c(1)4 , . . . , c

(N)
4 ))

and sends RSP to the verifier.

6. The verifier checks the correctness of the commitments

– If Ch = 0, he parses RSP into Σ, r(1)0 , t
(1)
1 , e

(1)
1 , . . . , r

(N)
0 , t

(N)
1 , e

(N)
1 .

For i = 1, . . . N he computes

c̃
(i)
1 = Com(r(i)0 − t

(i)
1 ,Pi(r(i)0 )− e(i)1 ),

c̃
(i)
2 = Com(t(i)1 , e

(i)
1 ) and

c̃
(i)
3 = Com(r(i)0 )

and checks, if
C1

?= Com(Σ, c̃(1)1 , . . . , c̃
(N)
1 ),

C2
?= Com(c̃(1)2 , . . . , c̃

(N)
2 ) and

C3
?= Com(Σ(c̃(1)3 , . . . , c̃

(N)
3 )).

– If Ch = 1, he parses RSP into r(1)1 , t
(1)
1 , e

(1)
1 , . . . , r

(N)
1 , t

(N)
1 , e

(N)
1 .

For i = 1, . . . N he computes

c̃
(i)
0 = Com(r(i)1 ,−Pi(r(i)1 )− Gi(t(i)1 , r

(i)
1 )− e(i)1 ) and

c̃
(i)
2 = Com(t(i)1 , e

(i)
1 )

and checks, if
C0

?= Com(c̃(1)0 , . . . , c̃
(N)
0 ) and

C2
?= Com(c̃(1)2 , . . . , c̃

(N)
2 ).

– If Ch = 2, he parses RSP into Σ, r(1)1 , t
(1)
0 , e

(1)
0 , . . . , r

(N)
1 , t

(N)
0 , e

(N)
0 .

For i = 1, . . . N he computes

c̃
(i)
0 = Com(r(i)1 ,Gi(t(i)0 , r

(i)
1 ) + e

(i)
0 ),

c̃
(i)
1 = Com(t(i)0 , e

(i)
0 ) and

c̃
(i)
4 = Com(r(i)1 )

and checks, if
C0

?= Com(c̃(1)0 , . . . , c̃
(N)
0 ),

C1
?= Com(Σ, c̃(1)1 , . . . , c̃

(N)
1 ) and

C4
?= Com(Σ(c̃(1)4 , . . . , c̃

(N)
4 )).
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– If Ch = 3, he parses RSP into c(Σ(1))
3 , . . . , c

(Σ(N))
3 , c

(Σ(1))
4 , . . . , c

(Σ(N))
4 .

He checks, whether

C3
?= Com(c(Σ(1))

3 , . . . , c
(Σ(N)
3 )),

C4
?= Com(c(Σ(1))

4 , . . . , c
(Σ(N)
4 ))

and that there are at least t indices i ∈ {1, . . . , N} with

c
(Σ(i))
3 6= c

(Σ(i))
4 . (7)

4.3 The Signature Scheme

By using the Fiat-Shamir paradigm we can transform this identification scheme into a threshold
ring signature scheme.

The key generation process for the signature scheme works just as for the threshold identifica-
tion scheme (see Algorithm 1).

To produce a threshold ring signature for a message m, the leader gathers the commitments of the
signers (for all rounds) and creates the master commitments C(1)

0 , C
(1)
1 , . . . , C

(1)
4 , C

(2)
0 , . . . , C

(#rounds)
4

(following step 2 of the threshold identification scheme). He then uses a hash functionH to produce
the challenge vector

Ch = H(m‖C(1)
0 ‖C

(1)
1 ‖ . . . ‖C

(1)
4 ‖C

(2)
0 ‖ . . . ‖C

(#rounds)
4 )|0−(2·#rounds−1)

5. (8)

He sends the vector Ch to his co-signers which compute their responses. Finally the leader com-
putes the master responses and creates the signature

σ = (C(1)
0 ‖C

(1)
1 ‖ . . . ‖C

(1)
4 ‖C

(2)
0 ‖ . . . ‖C

(#rounds)
4 ||RSP1||RSP2|| . . . ||RSP#rounds). (9)

Since the challenge can be computed out of the message m and the commitments, it does not have
to be part of the signature.

To verify the authenticity of a signature, the verifyer parses σ into C(1)
0 , C(1)

1 , . . . , C(1)
4 , C(2)

0 , . . . ,
C

(#rounds)
4 , RSP1, RSP2, . . . , RSP#rounds, computes the challenge vector (see equation (8)) and

tests for each i ∈ {1, . . . , #rounds} if RSPi is a correct response to Chi according to C(i)
0 , . . . , C

(i)
4 .

5 Security

Theorem 1. The scheme as described in Section 4 is a zero knowledge argument of knowledge,
with a cheating probability of 3

4 , that the group of signers knows t vectors si1 , . . . , sit ∈ Fn \ {0}
which fulfill Pij (sij ) = 0 ∀ j = 1, . . . , t.

Proof. We have to prove the three properties of completeness, soundness and zero knowledge. The
completeness of the scheme follows directly from our description in the previous section. The proofs
of soundness and zero-knowledge (see the next two lemmas) follow mostly the original proofs in
[16]. ut

Lemma 1. (Soundness) An attacker, which is able to pass r rounds of our scheme without detec-
tion with probability >

(
3
4

)r, can either break the binding property of the commitment scheme or
extract t vectors si1 , . . . , sit ∈ Fn \ {0} with Pij (sij ) = 0 ∀ j = 1, . . . t.

5 For 193 rounds (corresponds to 80 bit security) the length of the hash value must be ≥ 386 bits.
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Proof. Let’s assume that an attacker is able to pass r rounds of the threshold ring identification
scheme with probability >

(
3
4

)r. Then he must be able to answer all four challenges in at least one
round correctly. Assuming the binding property of the commitment scheme we show that such an
attacker is able to extract t vectors si1 , . . . , sit ∈ Fn \ {0} with Pij (sij ) = 0 (j = 1, . . . , t).
Let’s denote by c̃(i,j)k the value of c̃k the verifier computes in step 6 of the protocol for the user i and
the challenge j. Furthermore we have to cover the fact that in step 5 of the protocol an attacker
might use different permutations to perturb the c(i)3 and c

(i)
4 . We denote these permutations by

Σ(3) and Σ̂(3) respectively. Due to the binding property of the commitment scheme we get

c̃
(1,1)
0 = c̃

(1,2)
0 , . . . , c̃

(N,1)
0 = c̃

(N,2)
0 (10)

Σ(0) = Σ(2), c̃
(1,0)
1 = c̃

(1,2)
1 , . . . , c̃

(N,0)
1 = c̃

(N,2)
1 (11)

c̃
(1,0)
2 = c̃

(1,1)
2 , . . . , c̃

(N,0)
2 = c̃

(N,1)
2 (12)

Σ(0)(c̃(1,0)3 , . . . , c̃
(N,0)
3 ) = (c̃(Σ

(3)(1),3)
3 , . . . , c̃

(Σ(3)(N),3)
3 ) (13)

Σ(2)(c̃(1,2)4 , . . . , c̃
(N,2)
4 ) = (c̃(Σ̂

(3)(1),3)
4 , . . . , c̃

(Σ̂(3)(N),3)
4 ) (14)

The equations (10), (11) and (12) yield (for all i = 1, . . . , N)

(r(i,1)1 ,Pi(r(i,1)1 )− Gi(t(i,1)1 , r
(i,1)
1 − e(i,1)1 )) = (r(i,2)1 ,Gi(t(i,2)0 , r

(i,2)
1 ) + e

(i,2)
0 ) (15)

(r(i,0)0 − t(i,0)0 ,Pi(r(i,0)0 )− e(i,0)1 ) = (t(i,2)0 , e
(i,2)
0 ) (16)

(t(i,0)1 , e
(i,0)
1 ) = (t(i,1)1 , e

(i,1)
1 ) (17)

As shown in [16], these three equations lead, for every i = 1, . . . , N , to a solution ŝi = r
(i,0)
0 +r

(i,2)
1

of Pi(x) = 0. We show that at least t of these solutions are 6= 0.
To pass challenge 3 of the protocol, the test (equation (7)) has to be fulfilled for at least t indices
i1, . . . , it. With our notation this can be written as

c̃
(Σ(3)(ij),3)
3 6= c̃

(Σ̂(3)(ij),3)
4 ∀ j = 1, . . . , t.

Due to Σ(0) = Σ(2) =: Σ (c.f. equation (11)) and equation (13) and (14) this is equivalent to

c̃
(Σ(ij),0)
3 6= c̃

(Σ(ij),2)
4 ∀ j = 1, . . . , t,

which again is computationally equivalent to

r
(Σ(ij),0)
0 6= r

(Σ(ij),2)
1 ∀ j = 1, . . . , t.

Finally, we see that this is equivalent to

ŝΣ(ij) = r
(Σ(ij))
0 + r

(Σ(ij),2)
1 6= 0 ∀ j = 1, . . . , t,

which means that the attacker has found t vectors ŝΣ(ij) ∈ Fn \ {0} with PΣ(ij)(ŝΣ(ij)) = 0
j = 1, . . . , t. ut

Remark: Lemma 1 states that, in order to pass r rounds of the scheme with probability ≥
(

3
4

)r,
an attacker has to break at least one instance of the MQ-Problem. The same holds for a group of
less than t signers.

Lemma 2. (Zero-knowledge) Our threshold ring identification scheme is statistically zero knowl-
edge if the commitment scheme Com is statistically hiding.
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Proof. Let S be a simulator which knows all the public keys Pi (i = 1, . . . , N), but does not
know t of the private keys. W.l.o.g. we can assume that S does not know any of the private keys.
Therefore we can neglect the interactions between the signers and the leader L and S simulates
just the interactions between the leader and a cheating verifier CV . At the beginning, S chooses
a value Ch? ∈ {0, 1, 2, 3}. Ch? is a prediction, of what challenge the verifier will not choose.
If Ch? = 3, the simulator sets all s̃i (i = 1, . . . , N) to zero, chooses randomly r̃

(i)
0 , t̃

(i)
0 ∈ Fn and

ẽ
(i)
0 ∈ Fm and computes r̃(i)1 = s̃i − r̃(i)0 , t̃

(i)
1 = r̃

(i)
0 − t̃

(i)
1 and ẽ

(i)
1 = Pi(r̃(i)0 ) − ẽ(i)0 . After that he

creates the commitments c̃(i)0 , c̃
(i)
1 , c̃

(i)
2 , c̃

(i)
3 and c̃(i)4 (i = 1, . . . , N), chooses a random permutation

Σ ∈ SN and creates the master commitments C̃0, C̃1, C̃2, C̃3 and C̃4 as described in step 2 of
the protocol. It is obvious that S can answer the challenges 0, 1 and 2 correctly.
If Ch? 6= 3, S chooses s̃i, r̃

(i)
0 , t̃

(i)
0 ∈ Fn and ẽ

(i)
0 ∈ Fm at random and computes r̃(i)1 = s̃i − r̃(i)0

and t̃
(i)
1 = r̃

(i)
0 − t̃

(i)
0 . If Ch? = 0, it computes ẽ(i)1 = Pi(r̃(i)0 ) + Pi(s̃i) − ẽ

(i)
0 , otherwise ẽ

(i)
1 =

Pi(r̃(i)0 ). If Ch? = 2, S computes c̃
(i)
0 = Com(r̃(i)1 ,−Pi(r̃(i)1 ) − Gi(t̃(i)1 , r̃

(i)
1 ) − ẽ

(i)
1 ), otherwise

c̃
(i)
0 = Com(r̃(i)1 ,Gi(t̃(i)0 , r̃

(i)
1 ) + ẽ

(i)
0 ). It computes c̃

(i)
1 = Com(t̃(i)0 , ẽ

(i)
0 ), c̃(i)2 = Com(t̃(i)1 , ẽ

(i)
1 ),

c̃
(i)
3 = Com(r̃(i)0 ) and c̃

(i)
4 = Com(r̃(i)1 ), chooses a random permutation Σ and creates the master

commitments C̃0, C̃1, C̃2, C̃3 and C̃4 following step 2 of the protocol.
If Ch? 6= Ch, S is able to answer Ch correctly.
Therefore, S outputs a valid transcript of one round of the threshold identification scheme with
probability 3

4 . Furthermore, this output is statistically close to a real transcript of the scheme. ut

Remark: It is also impossible for the leader to get information about the signers’ private keys.
The interactions between the leader and the signers follow the identification scheme of [16], which
is zero knowledge. Since the commitment scheme is statistically hiding, the two additional com-
mitments sent by each signer to the leader make no difference to this fact.

Corollary 1. The resulting threshold ring signature scheme obtained from the application of the
Fiat-Shamir paradigm on our threshold ring identification scheme (see Subsection 4.3) is existen-
tially unforgeable under chosen message attacks (see Subsection 2.1) in the random oracle model.

Proof. The proof runs straightforward as shown in [14]. ut

Theorem 2. The so obtained threshold ring signature scheme is unconditionally source hiding.

Proof. For the challenges 0,1 and 2 the responses of both a signer and a non-signer are completely
indistinguishable, since r0, t0 and e0 are chosen uniformly at random and therefore the responses
are random, too. So, the only possibility for the verifier to identify non-signers is challenge 3.
In this case he checks whether the two values Com(r0) and Com(r1) are equal, which implies
r0 = r1 and therefore s = r0 + r1 = 0. But in this case the possible signers are mixed by a random
permutation Σ. Since the verifier has no access to this permutation, he is not able to identify
non-signers. ut

6 Parameters and Comparison

For our threshold ring identification (and signature) scheme we propose the same parameters as
in [16], namely

F = GF (2), (m,n) = (80, 84).

Therefore, the public key size of our scheme is m · n·(n+3)
2 ·N = 292, 320 ·N bit or 35.7 ·N kB.

The communication cost of one round of our scheme depends on the challenge. Between the
signers and the leader the communication cost per round lies between 800 · (t− 1) (for Ch = 3 we
don’t need a response) and 1050 · (t− 1) bit.
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Between the leader and the verifier the communication cost is given by

802 + 248 ·N bit ≤ communication cost per round ≤ 802 + 320 ·N bit.

The overall communication cost per round is on average

988 · (t− 1) + 866 + 266 ·N bit.

6.1 Reducing the communication cost

To reduce the cost of communication, one can use the following trick:

In step 2 of the protocol, the leader sends COM = Com(C0, C1, C2, C3, C4) to the verifier. The
responses in step 5 are changed as follows

– If Ch = 0, RSP = (Σ,Rsp1, . . . , RspN , C0, C4)
– If Ch = 1, RSP = (Rsp1, . . . , RspN , C1, C3, C4)
– If Ch = 2, RSP = (Σ,Rsp1, . . . , RspN , C2, C3)
– If Ch = 3, RSP = (Σ(c(1)3 , . . . , c

(N)
3 ), Σ(c(1)4 , . . . , c

(N)
4 ), C0, C1, C2)

In step 6 of the protocol, the verifier computes the remaining Ci’s and checks, if COM was created
honestly. By doing so, one can reduce the communication cost per round by on average 240 bit.
Furthermore it is possible to perform all 73 (or 193) rounds of the scheme on parallel. Therewith,
the communication cost can be reduced further by 160 · (#rounds− 1) bit.
Table 1 shows the reduced communication cost of our scheme for different parameters.

cheating probability 2−30 2−80

(N, t) 73 rounds 193 rounds
(50, 30) 378 kB 998 kB
(100, 50) 672 kB 1777 kB

Table 1. communication cost

6.2 Reducing the signature length

The trick mentioned in the previous subsection can also be used to reduce the signature length of
our scheme.
After having computed the master commitments C(1)

0 , C
(1)
1 , . . . , C

(1)
4 , C

(2)
0 , . . . , C

(#rounds)
4 (see Sub-

section 4.3), the leader uses a hash function H to compute

COM = H(C(1)
0 ‖ C

(1)
1 ‖ . . . ‖C

(1)
4 ‖C

(2)
0 ‖ . . . ‖ C#rounds

4 ) (18)

The challenge vector is then obtained by

Ch = H(m‖COM) (19)

for a message m. By doing so, the leader gets a signature of the form

σ = (COM ||RSP1||RSP2|| . . . ||RSP#rounds), (20)

where the responses RSPi are computed as shown in Subsection 6.1.
To verify the authenticity of a signature, the verifyer computes for each round the remaining Ci
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and finally checks the correctness of COM .

The length of a so obtained signature is given by

|σ| = 160 + #rounds · (464 + 266 ·N) bits. (21)

In particular, the signature length is independent of t and linear in N . Table 2 shows the signature
lengths of our scheme for different values of N . The signature lengths shown in Table 2 correspond

(N, t) signature length
(50, 30) 324 kB
(100, 50) 638 kB

Table 2. Signature lengths

to 193 rounds of the scheme, which leads to a security level of 80 bit.

6.3 Computational Cost

The computationally most expensive operations in our scheme are the polynomial evaluations of
the systems Pi and Gi of which the latter can be performed by three evaluations of Pi. Therefore
we have on average 23

4 · N evaluations of systems of m equations in n variables per round. For
the whole scheme (193 rounds), we get a computational effort of 1110 ·N polynomial evaluations
and 1448 · (N + 1) hash function evaluations. In particular, the computational complexity of our
scheme is independent of t and linear in N .

6.4 Comparison

Table 3 compares our scheme with other existing Post-Quantum threshold ring signature schemes.

Security Scheme TRSS-C [1] TRSS-L [7] Our scheme

280

hash length 160 bit 160 bit 160 bit
rounds 140 80 193

public key 1.5 MB1 7.8 MB1 3.5 MB2

private key 700 bit 1280 bit 84 bit
signature length 1.4 MB 14.8 MB 0.64 MB

2100

hash length 224 bit 224 bit 224 bit
rounds 190 100 256

public key 2.2 MB1 17.0 MB1 6.9 MB 2

private key 850 bit 1728 bit 105 bit
signature length 2.4 MB 26.7 MB 1.07 MB

1 Using a PRNG these numbers can be reduced to several kB.
2 By viewing the homogeneous quadratic part of the public key as system parameter

(c.f. Subsection 4.2) the public key sizes can be reduced to 82 kB (80 bit security) or
117 kB (100 bit security) respectively.

Table 3. Comparison of different threshold ring signature
schemes (for (N, t)=(100, 50))

As Table 3 shows, our scheme produces shorter signatures than code- or lattice based construc-
tions. The reason for this is that the responses RSP in our threshold identification scheme (see
Section 4) are relatively short (on average 266 ·N bit compared to 828 ·N bit for the code-based
scheme). This has a much greater influence on the signature length than the number of rounds,
which is larger in our scheme.
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Remark: It is also possible to extend the 5-pass version of the MQ-identification scheme of
[16] to a threshold ring identification (and signature) scheme. But this does not lead to a more
efficient solution.

7 Conclusion and Future Work

In this paper we proposed a new threshold ring identification and signature scheme, whose secu-
rity is based solely on the MQ-problem. Our scheme is the first multivariate scheme of this kind
and the first multivariate signature scheme with special properties. Furthermore it offers provable
security, which is quite a rare fact in multivariate cryptography. Despite the fact that our scheme
requires more rounds than other post-quantum threshold ring signature schemes, the signatures
are significantly smaller. The scheme also enjoys smaller secret keys.

As Future work we plan to create other provable secure multivariate signature schemes with
special properties (forward secure, identity-based, etc.)
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