
An Efficient Homomorphic Encryption Protocol

for Multi-User Systems

Liangliang Xiao

University of Texas at Dallas
xll052000@utdallas.edu

Osbert Bastani

Harvard University
obastani@fas.harvard.edu

I-Ling Yen

University of Texas at Dallas
ilyen@utdallas.edu

Abstract. The homomorphic encryption problem has been an open one for three decades. Recently,
Gentry has proposed a full solution. Subsequent works have made improvements on it. However, the time
complexities of these algorithms are still too high for practical use. For example, Gentry’s homomorphic
encryption scheme takes more than 900 seconds to add two 32 bit numbers, and more than 67000 seconds
to multiply them. In this paper, we develop a non-circuit based symmetric-key homomorphic encryption
scheme. It is proven that the security of our encryption scheme is equivalent to the large integer
factorization problem, and it can withstand an attack with up to � lnpoly��	 chosen plaintexts for any
predetermined �, where � is the security parameter. Multiplication, encryption, and decryption are almost
linear in ��, and addition is linear in ��. Performance analyses show that our algorithm runs
multiplication in 108 milliseconds and addition in a tenth of a millisecond for � = 1024 and � = 16.

We further consider practical multiple-user data-centric applications. Existing homomorphic
encryption schemes only consider one master key. To allow multiple users to retrieve data from a server,
all users need to have the same key. In this paper, we propose to transform the master encryption key into
different user keys and develop a protocol to support correct and secure communication between the users
and the server using different user keys. In order to prevent collusion between some user and the server to
derive the master key, one or more key agents can be added to mediate the interaction.

Keywords: Homomorphic encryption, one-wayness security, large integer factorization, data centers,
cloud.

1 Introduction

It has been a common practice for companies to outsource their online business logics to Web hosting
service providers for over a decade. Generally, databases as well as the business logics of a company are
hosted by a third party to save the IT management time and cost. The cloud computing further pushes
forward this paradigm. There are many cloud based data centers which store a very large amount of data
from different sources and support data-centric computation. Security can be a major concern for such data
centers when the data they host are sensitive. A data center may be attacked and compromised. Also, there
are the potential of insider attacks. If there is a change in management, such as reorganization or buyout
[12], the potential threat increases due to the additional exposure to multiple management personnel and
the unestablished policies regarding the handling of critical information in such situations.

The security problems with the outsourced databases can be solved if the critical data are encrypted.
Naturally it leads to the problem of how the data center can perform computation on encrypted data [18].
Homomorphic encryption is a promising solution for this problem. Over the last three decades, the problem
of homomorphic encryption has been studied extensively. The main works on homomorphic encryption
algorithms are circuit based. They develop the encryption schemes and computation algorithms
considering a single bit plaintext. All operations on various operand types can then be achieved by
constructing the corresponding circuits. In [1], an encryption scheme based on elliptic curve is proposed,
which allows computation on the ciphertexts directly if the computation involves at most one
multiplication with any number of additions. In [19], a homomorphic encryption scheme has been
constructed. This scheme doubles the ciphertext for each binary operation. Since the operations are bit-by-
bit, the computation time and space overhead for arithmetic operations on general �-bit numbers (e.g., �	 = 	32 or 64) can be excessive. In [8], Gentry designs a full homomorphic encryption scheme based on
the mathematical object ideal lattices and uses the bootstrapping technique. It is semantically secure and
the security of the scheme is based on the splitkey distinguishing problem. However the computational

complexity of the scheme is �����	 for evaluating a gate over two bits, where � is the security parameter

and ������		 = �����	log����		 for some � and. Dijk et al. conceptually simplify Gentry’s construction
by using a different hard problem, the approximate-GCD problem over integers [23]. [22] improves the

security analysis, reducing the computational complexity of [8] from ������ to �����	, and the

computational complexity of [23] from ����� 	 to ���� ."#	. In [20], a different full homomorphic
encryption scheme is constructed based on the elementary theory of algebraic number fields. However, all
of these existing homomorphic encryption schemes have high time complexities [22].

Another approach to the homomorphic encryption problem is non-circuit based. The idea is to construct
homomorphic encryption algorithms with plaintexts over a finite domain such as finite field. Compared to
circuit-based approaches, this approach can be more efficient since it does not require additional circuit
computation overhead. In [6], the homomorphic encryption algorithm called Polly Cracker is proposed. It
encrypts a plaintext over a field by adding a random polynomial that vanishes under operations using the
technique of Gröbner bases. Following Fellows and Koblitz’s work, many non-circuit based homomorphic
encryption algorithms using Gröbner bases have been proposed [13] [14] [16]; however, they have all
either been broken [2] [5] [7] [11] [21] or lack conclusive security evidence. Hence, the problem of
constructing a non-circuit based homomorphic encryption scheme remains open.

In this paper, we construct a non-circuit based encryption scheme that is homomorphic in both addition
and multiplication. We downgrade the security requirement to achieve efficiency. Specifically, our
encryption algorithm encrypts plaintexts over $% into the matrix ring &'�$%	 by applying a similarity
transformation by the key � ∈ &'�$%	 to a diagonal matrix with two entries equal to the plaintext. Here)
is the product of 2� prime numbers and is of size �* bits. Decryption is performed by applying the
inverse similarity transformation. Addition and multiplication are matrix addition and matrix
multiplication. Although the algorithm is not semantically secure, we have proven that when facing an
adversary with up to �ln poly��	 chosen plaintext and ciphertext pairs, the security of our algorithm is
equivalent to the large integer factorization problem. Here, � is any predetermined constant that is

polynomial in the security parameter �. Note that the security of the commonly used RSA encryption is no
harder than the large integer factorization problem [17]. Thus, our homomorphic encryption scheme can be
used in applications where semantic security is not required and one-wayness security is sufficient.

In our scheme, addition has time complexity ����	. Multiplication, encryption, and decryption have
time complexity ���� log�� log log��	. For relatively small �, multiplication and addition operations
run very quickly. We implement our homomorphic encryption scheme and study its performance on a
personal computer. When we choose m so that our scheme can withstand an attack with at least 1000
chosen plaintext and ciphertext pairs, the algorithm runs addition in only tenth of a millisecond and runs
multiplication in 108 milliseconds. In contrast, Gentry’s homomorphic encryption scheme [8] requires
more than 900 seconds to add two 32-bit integers and more than 67000 seconds to multiply two 32-bit
integers (based on the performance data given in [9]). As can be seen, our algorithm has real world
applicability, especially when the large-scale plaintext attack is not an issue. Also, our algorithm is simple
and elegant and can be easily implemented in practice.

Our encryption scheme is symmetric-key based while most of the existing homomorphic encryption
schemes are public-key based. In public-key based schemes, the user can encrypt the data using the public
key and send them to the data center for storage without needing to know the private key (the
homomorphic encryption key). However, in almost all applications, it is necessary for the user to not only
write to the data, but also retrieve the data from the data center. In order to decrypt the encrypted data
retrieved from the data center, one solution is to let all the users have the private key. But this will severely
weaken the security of the overall system. Another potential solution is to let different users use different
keys, but it will prevent the data center from performing computations on the ciphertext encrypted using
different keys. Currently, there is no solution to this problem in existing homomorphic encryption schemes.

We consider multi-user systems and propose a protocol to allow our symmetric-key homomorphic
encryption scheme to be used in such systems. The data in the data center are encrypted using
homomorphic encryption with a “master key” �. Different keys are assigned to different users. Let �+
denote the key held by user Ci. Correspondingly, the data center holds a matching key �′+, where �+ ⋅ �′+ =�. When sending a request to the data center, Ci encrypts the secret data . in the request using key �+, and
sends /�., �+	 with the request to the data center. The data center transforms the encryption key from �+ to � by the similarity transform on the cipher: �′+1� ∙ /�., �+	 ∙ �′+ = /�., �+ ∙ �′+	 = /�., �	 using the
matching key �′+. Similarly, when the data center sends a response to user Ci, the cipher /�., �	 is

transformed into �′+ ∙ /�., �	 ∙ �′+1� = /�., �+ ∙ �′+1�� = /�., �+	 and sent with the response to Ci. Ci

decrypts it with the key �+ to obtain d. To avoid collusion of the user and the data center to reconstruct the
master key, one or more agents in between Ci and the data center using the same key transformation
technique can be introduced to enhance system security.

The rest of the paper is organized as follows. In Section 2, we prove a few preliminary lemmas
related to our algorithm and define the concept of the homomorphic encryption scheme. In Section 3 we
construct the homomorphic encryption scheme, prove its correctness and security. In Section 4 we extend
the encryption scheme to multi-user systems by considering multiple user keys and establishing the
corresponding request/response communication protocol. In Section 5 we analyze the real world
performance of our algorithm. Section 6 concludes this paper. All proofs in the paper are relegated to the
Appendix due to space limitation.

2 Preliminaries

2.1 The Ring 34

In our homomorphic encryption scheme, all computations are performed in the ring of integers $%. Let � denote the security parameter and let poly��	 denote some fixed polynomial in �. We construct) as
follows. First, 2� prime numbers 5+ and 6+ of size �/2 bits are chosen, where � ln poly��	 is the number

of plaintext attacks which the algorithm can withstand. Then let 8+ = 5+6+ and) = ∏ 8+:+;� . In the

following, we show that such an) can be constructed in polynomial time. Specifically, we show that it is
possible to find 2� prime numbers of �/2 bits for some given � and �. Note that � is required to be
polynomial in � to ensure that there are enough primes of length �/2 bits.

Lemma 1: Given � and �, where � = ��poly��		 (more precisely, � ≪ √2>1'), it is possible to obtain 2� prime numbers of length �/2 bits in polynomial time.

Theoretically, for � = 1024, � is only bounded by � ≪ √2�?"'1' = 2#�?. Therefore, for practical
purposes, � can be chosen to be arbitrarily large.

Next, we show that factoring any of the 8+ 	is infeasible if large integer factorization (factoring numbers
of the form 8 = 56 for large primes 5 and 6) is infeasible.

Lemma 2: Suppose that large integer factorization is infeasible. Let 8+ = 5+6+ for large primes 5+ and 6+,
where 1 ≤ A ≤ �. Then given B = C8+D+;�: , it is infeasible to factor any of the 8+ ∈ B, i.e. there does not
exist a PPT (probabilistic polynomial time) algorithm that can return a factor of 8+ for any 1 ≤ A ≤ � with
nonnegligible probability.

2.2 Matrices over 34

In the algorithm, we need to randomly choose an invertible matrix � ∈ EF'�$%	. Lemma 3
demonstrates that an arbitrary matrix over $% is likely to be invertible, so that it is possible to choose � in

polynomial time. For convenience, in the next lemma, we define) = ∏ 5+:+;� , since our results do not
depend on the prime factors of) coming in pairs.

Lemma 3: Let) = ∏ 5+:+;� , where the 5+ are prime and � = ��poly��		. A random matrix G ∈ &'�$%	
is invertible with a high probability.

2.3 Definition of the Homomorphic Encryption Scheme

A homomorphic encryption scheme allows both addition and multiplication to be performed directly on
encrypted data. Let �H, /, I	 denote an encryption scheme, where / and I are the encryption and
decryption algorithms and H is the corresponding key generation algorithm. In Definition 1, we define a
homomorphic encryption scheme �H, /, I, B	.

Definition 1: �H, /, I, B	 is a homomorphic encryption scheme if H, /, and I form an encryption scheme �H, /, I	 with / and I being the encryption and decryption algorithms, respectively, and H being the
corresponding key generation algorithm. B is a polynomial time algorithm such that H�B�/�J�, �	, … , /�JL , �	, 8���, … , �L		, �	 	= 	8�J�, … , JL	 for any plaintexts J�	,… , JL and any
polynomial function 8���, … , �L	. Here � is the encryption key in �H, /, I	, /�J+ , �	 are the original

ciphertexts, and B�/�J�, �	, … , /�J: , �	, 8���, … , �:	� is the computed ciphertext.

3 The Homomorphic Encryption Scheme

In this section, we present a fully homomorphic encryption scheme �H, /, I, B	 , and prove that the
algorithm is secure under the assumption that it is infeasible to factor large integers of the form 8 = 56
for large primes 5 and 6. In Subsection 3.1 we introduce the idea of the design. In Subsection 3.2, we
discuss the encryption, decryption, and key generation algorithms �H, /, I	. Subsection 3.3 proves the
security of �H, /, I	 and Subsection 3.4 derives time complexity of the encryption and decryption
schemes. Subsection 3.5 gives the computation algorithm B and proves the correctness of B. The
complexity of B is derived in Subsection 3.6.

3.1 Design Concept

We first discuss the design idea of our homomorphic encryption scheme. We start from the Rabin’s

encryption algorithm. Given a plaintext x, the encryption algorithm is /��	 = �"mod)
where)	 = 	8	 = 	56. Although Rabin’s encryption algorithm is homomorphic in multiplication, it is not
homomorphic in addition. Thus, we can try to generalize the ciphertext domain from ZN to ring of matrices
over ZN. In particular, consider the encryption algorithm /���	 = O� 00 PQmod).
The homomorphic properties in addition and multiplication can be easily verified. However, since x is the

eigenvalue of the eigenvector R�,?SSSSSST= �1,0	U, the adversary can easily reverse � given the ciphertext by

solving the linear equation system /���	 R�,?SSSSSST	= 	� R�,?SSSSSST.
To cope with the problem above, we apply a randomly selected similarity transform � to O� 00 PQ,

which is the ciphertext in /� and we call it the pre-transformed cipher from now. Note that the eigenvector
corresponding to � is also transformed by k. As a result, the encryption algorithm becomes

E2(x, k) = �1� O� 00 PQ � mod)

where k is a randomly selected 2 × 2 invertible matrix. We give some informal reasoning as to why such
an algorithm should be secure. Note that the similarity transformation transforms the eigenvector of � from R�,?SSSSSST to �1� R�,?SSSSSST. Since the adversary does not know the key �, he/she does not know the transformed

eigenvector, so he/she cannot establish the linear equation system to obtain the plaintext. Also, although
the adversary can derive the characteristic equation det�YZ	–	/"��, �	� = 	0	mod)	⇔	Y"	–	��	 + 	P	Y	 + 	�P	 = 	0	mod),
it is infeasible for him/her to solve the quadratic equation, because this is equivalent to the factorization of) (the security of Rabin’s encryption algorithm is also based on the infeasibility of solving quadratic
equation in $%).

Unfortunately, the encryption algorithm E2 cannot resist the chosen plaintext attack. Suppose that the
adversary gets the plaintext and ciphertext pair O�, /"��, �	 = 	�1� O� 00 PQ �Q

Then the adversary can establish the equation �/"��, �	 − 	�Z	 RT	= 	0, and derive the transformed
eigenvector because

 �/"��, �	 	− 	�Z	 	RT	= 	0 ⇒	�1� ^O� 00 PQ − �Z_ �RT = 0 ⇒ O0 00 P − �Q�RT = 0

 ⇒ kRT=R�,?SSSSSST ⇒ RT= �1� R�,?SSSSSST.
Consequently, the adversary can solve for `, if given an additional ciphertext /�`, �	 = �1� O` 00 PQ �mod), by solving the linear equation system /�`, �	 RT	= 	` RT.

One remedy is to use different keys to encrypt different plaintexts, but then the homomorphic properties
in addition and multiplication is lost. Also, increasing the number of primes in N cannot improve security
since the attack does not depend on the number of primes in N.

To improve the encryption algorithm so that it can withstand the chosen plaintext attack, we associate
the eigenvalue � with two eigenvectors R�SSSST and R"SSSST instead of one. We choose the same R�SSSST for all plaintexts
so that the homomorphic properties in addition and multiplication are guaranteed. On the other hand, R"SSSST
cannot be the same for all plaintexts; otherwise, any linear combination of R�SSSST and R"SSSST is an eigenvector of
all plaintexts, becoming the same as /". Instead, we randomly choose R"SSSST following a probability
distribution I (to be given). Note that since � is associated with two eigenvectors and there are choices in R"SSSST, we need to work in matrices of a higher dimension. For example, we can have R�SSSST= �1,0,0,0	 and R"SSSST
can be randomly chosen between �0,1,0,0	U and �0,0,1,0	U following D.

When encrypting a plaintext, we construct the pre-transformed ciphertext a with R�SSSST and R"SSSST as
eigenvectors of a corresponding to eigenvalue �. Then we perform a similarity transformation with key �.
Let E3 denote this encryption scheme.

Now, the adversary has to derive the transformed eigenvector �1� R�SSSST in order to compromise the
encryption scheme. Suppose that the adversary gets a single plaintext and ciphertext pair. Then he/she
cannot derive �1� R�SSSST because any linear combination of �1�R�SSSST and �1� R"SSSST is an eigenvector of a with
eigenvalue x.

Next consider the case where the adversary gets two pairs of plaintexts and ciphertexts. If R"SSSST	=	R�SSSST,
then, same as above, the adversary cannot derive R�SSSST. If R"SSSST	≠	R�SSSST, then, the probability of success with which

the adversary can derive �1� R�SSSST after an attack with �′ chosen plaintexts follows a probabilistic
distributions related to I. Without loss of generality, let 5:’ denote the probability for the adversary to
derive R�SSSST after an attack with �′ chosen plaintext and ciphertext pairs. To improve the strength of
encryption, we want to apply /� multiple times. More precisely, let) = ∏ 8+:+;� , where 8+ = 5+6+. For

each A, we apply /� to encrypt the plaintext � over $cd. Then, the ciphertext over $% is obtained by

applying the Chinese remainder theorem to the individual encryption results over $cd, for all A. Let /'

denote this new encryption scheme.

Now, the adversary has to derive the corresponding eigenvectors over all $cd in order to reverse the

plaintext over $%. The probability for the adversary to derive all corresponding eigenvectors over all $cd
after an attack with �’ chosen plaintexts decreases to 5:’

: . Hence, by carefully selecting parameters I and �, /' can resist the chosen plaintext attack with a predetermined number �’ of plaintexts.
The discussion above is to give a high level concept of our design of a non-circuit based

homomorphic encryption scheme. We will formally prove the security of the encryption scheme by
reduction to the large integer factorization problem. In particular we will show that if there exists a PPT
algorithm that can reverse the ciphertext with nonnegligible probability after the chosen plaintext attack
with �’ plaintexts, then there exists a PPT algorithm to factor).

3.2 Encryption and Decryption Algorithms

To formally set up the encryption algorithm following the concept for constructing /', we first pick a
random 4 × 4 invertible matrix � as the key for our encryption scheme. This can be done efficiently as
proven in Lemma 3. We then construct the diagonal matrix diag��, g, h, i	, where g, h, and i, the
solutions to a sets of linear congruences depending on � and a random value P ∈ $%, are computed using
the Chinese Remainder Theorem. The corresponding ciphertext a is the similarity transform of this matrix

by �, a = �1�diag��, g, h, i	�. The encryption algorithm is formally presented as follows.
Given C8+D+;�: with) = ∏ 8+:+;� , and a plaintext � ∈ $%, we encrypt � into a ciphertext a ∈ &'�$%	 as

follows:
1. Choose a random value P ∈ $%.
2. Define a set of numbers g+ , h+, and i+, for 1 ≤ A ≤ �, as follows. For each A, exactly one of g+ , h+

and i+, is equal to �. Let g+ = � with probability 1 − �:j�, h+ = � with probability
�"�:j�	, and i+ = � with probability

�"�:j�	. Set the other two values equal to P. This way, for each A, one of the

values g , h, and i, equals � and the other two equal P.
3. By the Chinese Remainder Theorem, let g, h, i, be the solution to the set of simultaneous

congruences g = g+mod 8+, h = h+mod 8+, and i = i+mod 8+, for 1 ≤ A ≤ �.

4. Let a = �1�diag��, g, h, i, 	�.

Given ciphertext a and key �, the decryption algorithm compute the plaintext � = ��a�1�	??.
The correctness of the encryption scheme is proven in Lemma 4.

Lemma 4: The encryption scheme �H, /, I	 is correct.
The following is an example of our encryption and decryption algorithms. Let � = 2, and consider the

values 8� = 3 × 5 = 15 and 8" = 2 × 7 = 14, so that) = 210. We randomly choose key

� = m17 4491 121 169 12684 8585			 710			 85 119 25201 44 p with inverse �1� = m35		 3144		 57 29 0113 2974 15759 27 37 194152 103p.

We encrypt the plaintext 42 ∈ $"�? using our encryption algorithm. First we randomly choose P = 91 ∈$"�?. Next, we let g� = � = 42 and h� = i� = P = 91, and let g" = i" = P = 91 and h" = � = 42. Then
we use the Chinese Remainder Theorem to solve for the values g , h , and i where g = 42mod 15 and g = 91mod14, and where h = 91mod 15 and h = 42mod 14, and where i = 91mod15 and i =91mod 14, and get g = 147 , h = 196, and i = 91. Finally we construct our ciphertext, a = �1�diag�42, 147, 196, 91	�

				= m35		 3144		 57 29 0113 2974 15759 27 37 194152 103p ∙ m42 00 147 0					 00					 00					 00					 0 196 00 91p ∙ m17 4491 121 169 12684 8585			 710			 85 119 25201 44 p = m 77		 9135		 84 154 3549 189175 13335 98 140 11949 175p

Then we decrypt our ciphertext and extract the plaintext �,
 � = ��a�1�	??

 = qrm
17 4491 121 169 12684 8585			 710			 85 119 25201 44 p ∙s sm 77		 9135		 84 154 3549 189175 13335 98 140 11949 175p ∙ m35		 3144		 57 29 0113 2974 15759 27 37 194152 103ptu??

 = m42 00 147 0					 00					 00					 00					 0 196 00 91p??
= 42.

3.3 Security of the Encryption Scheme

We proceed with the proof of security by reductions. In Lemma 6 we establish the existence of matrices �+ which will be used in the proof of security because, as will be shown in Lemma 7, given the ciphertext a, an adversary cannot distinguish between /��, �	 and /�`, �+�	. Lemma 8 demonstrates that this fact
implies that, if a PPT algorithm exists to extract the plaintext �, with nonnegligible probability, from the
ciphertext a without the key �, then a PPT algorithm exists to factor 8+ ∈ B, for some arbitrarily chosen B = C8+D+;�: , for some A, with nonnegligible probability. Then, by Lemma 2, there would exist a PPT
algorithm for large integer factorization with nonnegligible probability. Lemmas 9 and 10 prove that, given �v ≤ � plaintext and ciphertext pairs C��L , aL	DL;�:w

, if a PPT algorithm exists to find the plaintext � given

the corresponding ciphertext a with nonnegligible probability, then a PPT algorithm exists to factor 8+ ∈ B = C8+D+;�:w
, implying that there exists a PPT algorithm for large integer factorization with

nonnegligible probability. Finally, Theorem 1 proves the same result with the weaker condition �v ≤� ln poly��	. In other words, if given less than � ln poly��	 plaintext ciphertext pairs, then decryption of a
ciphertext without the key is at least as hard as the well known integer factorization problem.

Lemma 5: For 1 ≤ A ≤), there exists a unique element �+ ∈ EF'�$%	 so that �+ = m0 11 0 0 00 00 00 0 0 11 0pmod5+, �+ = Zmod 6+, and �+ = Zmod8x for y ≠ A where Z is the identity matrix in EF'�$%	. Additionally, �+ = �+1�.

Lemma 6: Given plaintext �, key � and random element P, there exist ` and z such that /��, �	 =/�`, �+�	. Additionally, ` − � divides 6+, and ` − �	does not divide 5+ with probability
�:j� O1 − �{dQ.

Lemma 7: If a PPT algorithm |}�a	 exists that, given a = /��, �	, returns � with probability 5, then

there exists a PPT algorithm |c to return a factor 8+ for some A with probability 5v = {:j� O1 − �{dQ.

Lemma 8: Let �v be the number of plaintext and ciphertext pairs the adversary has access to. If for some �v there exists an algorithm |} Oa = /��, �	, 	~��L , aL = /��L , �	��L;�:w Q such that, given �v chosen

plaintext and ciphertext pairs ��L , aL	 and a ciphertext a, returns � with some probability 5, then there

exists a PPT algorithm |c using |} as an oracle to factor 8+ for some A with probability

5v = 5 �1 − 15+��1 − �1 − 1� + 1�1 − 1� + 1�:w�:�.

Lemma 9: Assuming that the probability to factor an � bit integer in polynomial time is negligible, the
encryption scheme is secure for �v ≤ �.

We now prove the security of our homomorphic encryption algorithm.

Theorem 1: The bound of �v in Lemma 10 can be weakened to �v ≤ � ln poly��	, where poly��	
denotes some fixed polynomial in �.

We have shown that, under an attack with � ln poly��	 chosen plaintext and ciphertext pairs, our
encryption scheme reduces to the large integer factorization problem, under an attack with � ln poly��	
chosen plaintext and ciphertext pairs. Note that there is no constraint on the chosen plaintexts. In
particular, the adversary can choose a plaintext multiple times.

3.4 Complexity of the Encryption and Decryption Algorithms

We need to choose 2� primes in the encryption scheme. As shown in Lemma 1 this takes polynomial
time. Note that the primes can be precomputed. The decryption algorithm involves only two matrix
multiplications, which, as shown later in Section 3.6, takes ���� log�� log log��	 time. The
encryption algorithm requires both two matrix multiplications and also an algorithm to solve the � linear
congruences that define the values g, h, and i. It takes time ����	 to construct the solution to these
linear congruences, so the overall complexity for encryption is also ���� log�� log log��	.
3.5 Computation Algorithms

Multiplication and addition of encrypted elements is simply normal matrix multiplication and
addition, respectively.

Lemma 10: The multiplication and addition algorithms are correct.

3.6 Complexity of the Computation Algorithms

We now consider the complexity of our multiplication and addition algorithms. First consider the size
of the integers in the ring $%. The value) is the product of � numbers of length � bits, so it is
approximately an �� bit number. There exist efficient algorithms for multiplication of h bit integers with
complexity ��h log h log log h	. For h = �� this becomes ���� log �� log log��	. In our case matrix
multiplication involves 64 multiplications and 64 additions. Since addition can be done in linear time, the
algorithm is dominated by multiplication and thus has complexity ���� log�� log log��	. Addition is
linear and thus has complexity ����	.
4 Homomorphic Encryption in Multi-user Systems

The homomorphic encryption scheme discussed in Section 3 cannot be securely used in practical
systems. To allow computation on encrypted data, the data in the data center should be encrypted by the
same master key. The master key then has to be shared by multiple users who need to access the data in the
data center. A user may need to encrypt secret data and send them with a request to the data center. Also,
the data center may send a response, which contains some encrypted data, to a user and the user needs to

decrypt the ciphertexts in the response. Having all users holding the master key can compromise the
security of the system, especially if the users are from many different domains.

Our solution is let each user hold a unique user key �+ and use a transformation function to transform
the ciphertext encrypted by the user key �+ to the ciphertext encrypted by the master key �. Such a
transformation scheme may not always be easy to obtain for some encryption algorithms. In our scheme,
data are encrypted into matrix representation and a similarity transform function can be used to achieve
the goal. We develop the corresponding communication protocol for sending secret data between the
users and the data center using individual user keys and then use similarity transform to convert the user
keys to the master encryption key. In Subsection 4.1, we define a model for the multi-user systems. In
Subsection 4.2, we present the protocols for the user to send requests and receive responses while using
her own user key to encrypt and decrypted the data in the request and the response, respectively.

4.1 System Model

We consider a simplified system model where the data center consists of a single server hosting a
database and a set of users accessing the data in the database. For security assurance, a key agent is added
in between the server and the users. Let DB denote the database server, KA denote the key agent, and C =

{Ci | i ≥ 1} denote the set of users. User Ci holds a user key �+, KA holds the first matching key of �+,
denoted as �+′. DB holds the second matching key of �+, denoted as �+′′, where � = �+ ⋅ �+v ⋅ �+vv. The keys
are generated and distributed by a trusted party TP at the system initialization time.

Each entity DB, KA, or a user may be malicious or may be compromised by an external attacker (we
will refer to this as malicious in general) and will act like a passive attacker to compromise some critical
information. One or more users may collude with DB or KA to acquire critical information. Since DB and
KA are generally better protected, the probability that both of them are malicious is extremely small. Thus
we assume that it is not possible to have malicious DB, KA, and at least a user to collude. Specifically, we
assume the adversary structure

AS = {{DB}, {KA}, CA, {DB, KA}, {DB}∪CA, {KA}∪CA | CA ⊂ C}.
We also assume that an adversary can access all the information its role allows.

The data hosted by the DB may have different criticality levels and may be protected in different
ways. We only consider the data that should be protected during computation time and encrypt them
using our homomorphic encryption scheme. Additional protection can be added by encrypting these data
using a conventional encryption scheme, such as AES, when they are in memory or disk and decrypt them
in CPU. Also, we assume that the communications between any two entities are via secure channels (e.g.
messages are properly encrypted and communication keys are properly established). The adversary
cannot know the content of the communication unless it compromises at least one entity. (In our protocol,
we do not discuss the additional protection mechanisms but only consider the steps relevant to our
homomorphic encryption.)

4.2 The Multi-User Access Protocol

Here, we first introduce the similarity transformation function, which plays the central role in the
construction of the protocols, and discuss its property. Let � be the similarity transformation function ��a, �′	 = �′1� ∙ a ∙ �′
where a = /��, �	 is the ciphertext, and �,	�′ are encryption keys. Then � can transform the encryption
key from	� to � ∙ �′ based on the following lemma.

Lemma 11: If	a = /��, �	, then ��a, �′	 = /��, � ∙ �′	.

The process of the system consists of two phases: the system initialization phase, and the request-
response phase. At the system initialization time, a trusted party TP generates and distributes the keys to
the DB, KA, and users, then TP exits the system and destroys all the key related knowledge. In the request-
response phase, the user Ci sends a request to DB, and DB processes it, and sends a response to Ci.

Key generation and distribution. TP generates the master key � by the method discussed in Section
3.2. Then TP generates many key triples �+ , �′+ , �′′+ 	. It uses the same method (Section 3.2) to randomly
generate user key �+ and the first matching key �′+. Then, it computes the second matching key �′′+ =�′+1� ∙ �+1� ∙ �. TP sends �+ to user Ci, �′+ to KA, and �′′+ to DB. In a static system, TP exits the system
after key initialization and distribution. In a dynamic system where new users may join the system
dynamically, a key manager KM is also introduced to manage user keys. TP sends the list of unused user
keys to KM to be distributed to new users later. TP exits after key initialization and distribution. Note that
matching keys can be associated using their indices.

Request-response protocol. The main issue in the request-response protocol is how to encrypt the data
to be sent with the request and how to decrypt the data in the response. The pseudo code for the request-
response protocol is given in Figure 1. In the protocol, the critical data in the request is encrypted (Line 1),
and the encryption key is then transformed (Lines 2 and 3) by the KA and DB, respectively. Then, in Line
4, the DB processes the request and generates the response (with an encrypted data in the response). The
encryption key of the critical data in the response is transformed (Lines 5 and 6) by the DB and KA,
respectively. Finally, the user decrypts and gets the result (Line 7).

Figure 1. Request processing protocol.

Theorem 2: Suppose that the adversary attacks the multi-user system with the adversary structure AS. The
system is secure if the adversary collects less than � lnpoly��	 plaintext-ciphertext pairs.

5 Performance of Our Homomorphic Encryption Scheme

We implement our algorithm and evaluate its execution time. The large integer multiplication and
addition were implemented using the GNU Multiple Precision (GMP) Arithmetic Library [10]. In Figure 2,
we give the number of milliseconds required to perform addition and multiplication of encrypted data
(4 × 4 matrices over the ring $%). The computations were performed on a 2.16GHz Intel Core 2 Duo
Processor. The security parameter considered was � = 1024. The data was gathered from running 10000
additions and multiplications of randomly selected numbers of length �� bits.

As can be seen from Figure 2, for a small enough �, the algorithm is very efficient. For example, for � = 1024 and � = 16, the algorithm runs multiplication in only 108 milliseconds and runs addition in a

tenth of a millisecond. For such � and �, we can choose poly��	 = ��? = 2�?? , which translates into 1109 chosen plaintexts in an attack that our algorithm can withstand. This makes the algorithm practical
for real world implementation where large scale plaintext attacks are not an issue.

For the purpose of comparison, we estimate the computation time of Gentry’s homomorphic encryption
scheme [8]. In [9], the performance of the primitive operations has been studied: The bootstrapping (re-
crypt) time is 6 seconds, which dominates the time of the operations. For l-bit numbers, the addition circuit
needs 5*l gates and the multiplication circuit needs 11*l

2 gates [15]. Thus, Gentry’s homomorphic
encryption scheme needs 5*32*6 (> 900) seconds to add two 32 bit numbers, and 11*322*6 (> 67000)
seconds to multiply two 32 bit numbers. This is far slower than our homomorphic encryption scheme (0.1
milliseconds to add two 32 bit numbers and 108 milliseconds to multiply two 32 bit numbers).

We also study the performance of our request and response protocols for multi-user data processing
systems. Assume that the size of the secret data in the request and response is the same as the security

1. Ci prepares a request q with a sensitive data .. It encrypts . with �+, obtaining /�., �+	, and
sends q with /�., �+	 to KA.

2. KA computes ��/�., �+	, �v+	 = /�., �+ ⋅ �′+	 and sends the updated request q to DB.
3. DB computes ��/�., �+ ⋅ �v+	, �vv+	 = /�., �+ ⋅ �v+ ∙ �′′+	 = /�., �	.
4. DB processes q with /�., �	 and generates response r with an encrypted data /�.′, �	.
5. DB computes ��/�.′, �	, �vv+1�� = /�.′, �+ ⋅ �v+	 and sends /�.v , �+ ⋅ �+v	 with r to KA.

6. KA further computes ��/�.v , �+ ⋅ �+v	, �v+1�� = /�.v, �+	 and sends /�.v, �+	 with r to Ci.

7. Ci receives the response and decrypts /�.v , �+	 with �+ and gets .′.

parameter. To factor in the communication cost, we simulate the case where the user is at UTD, the KA is
at ASU, and the DB is at UCLA. The performance results for � = 1024 and � = 16 are shown in Table 1
and the execution time are measured in milliseconds.

Operation Process Description Performance

Encryption Encrypt one data item 215 ms

Decryption Decrypt one data item 34 ms

Transform Local one-time transformation 215 ms

The user sends a
request to DB

User encrypts the data and sends the request to KA, KA
transforms the embedded data and sends the request to
DB, DB further transforms the data in the request.

807 ms
(85 ms if the data in the request is not encrypted
and is sent from user to DB directly)

DB sends a
response to the user

DB transforms the data in the response and sends the
response to KA, KA transforms the data and sends the
response to the user, the user decrypts the data

806 ms
(77 ms if the data in the response is not
encrypted and is sent from DB to user directly)

Table 1. The performance of the communication protocol

As can be seen, by using the communication protocol with our homomorphic encryption algorithm,
the performance for sending a request and receiving a response is degraded by approximately 10 times
from the case where encryption is not used, but it is still a reasonable cost to achieve the desired security.

6 Conclusion

We have presented a novel non-circuit based homomorphic encryption algorithm. Our scheme is fully
homomorphic, but it is not semantic secure. The security of our homomorphic encryption scheme is
equivalent to the well known large integer factorization problem (which is also the security basis for RSA),
but it requires a chosen bound on the plaintext attack. Even though Gentry’s and the subsequent solutions
are semantic secure, their time complexity is too high for practical use. Also, its circuit based approach
suffers from a significant overhead. Our scheme yields a very practical time complexity for encryption,
decryption, and computation on ciphertexts. Specifically, to withstand a chosen plaintext attack with over
1000 plaintexts, the algorithm runs addition in only tenth of a millisecond and multiplication in hundred
milliseconds. In contrast, Gentry’s algorithm requires more than 900 seconds for addition and more than
67000 seconds for multiplication.

Due to the realistic performance and the simplicity of our algorithm, it can be used in real world
applications with moderate performance requirements and where the large-scale plaintext attack is
unlikely. For example, in large scale key management systems, such as some SCADA [3] systems, it is
necessary to use many distributed key servers to avoid overloading. In this case, some key servers may not
be fully trusted or may be compromised by internal or external attackers. Untrustable key servers pose very
severe consequences. Our homomorphic encryption algorithm can be used to confidentially generate,
validate, and update communication and authentication keys without knowing the actual information of
these keys. Also, in mobile agent based systems, the agents may use homomorphic encryption algorithms
to protect their data and securely perform transactions on a remote host.

Our homomorphic encryption algorithm is symmetric-key based while most of the existing algorithms
are public key based. The only advantage of the public key homomorphic encryption schemes is the
possibility of encrypting data without needing to know the private key, i.e., so that many clients can issue
the requests to the encrypted database. However, in almost all applications, it is necessary, but not secure,
for the client to know the private key in order to read back and decrypt the data in the response. Our
request-response communication protocol for our symmetric-key homomorphic encryption scheme can
secure the request and response processes in multi-user systems.

Our novel approach to secure computation, encrypting data into matrices over finite integer rings with
eigenvalue equal to the plaintext, will potentially lead to even more efficient homomorphic encryption
algorithms. We plan on continuing to use this approach to improve the efficiency of our scheme,
especially for systems requiring protection against the chosen plaintext attack with a large number of
plaintext and ciphertext pairs, and to investigate possible further improvements in the security of our
approach.

Figure 2. The size of � against the speed of addition and multiplication of two encrypted data (in milliseconds).

0

2

4

6

8

10

1 4 16 64 256 512 768 1024

T
im

e
 (

m
s)

m

Addition

0

5000

10000

15000

20000

25000

1 8 64 384 768

T
im

e
 (

m
s)

m

Multiplication

7 Bibliography

[1] G. Bebek. “Anti-tamper database research: Inference control techniques”, Technical Report EECS

433 Final Report, Case Western Reserve University, 2002.

[2] S. Bulygin, T. Rai, “Countering Chosen-Ciphertext Attacks against Noncommutative Polly Cracker
Cryptosystems”, Special Semester on Gröbner Bases, Linz, Austria, May 2006.

[3] D. Choi, H. Kim, D. Won, and S. Kim, “Advanced Key Management Architecture for Secure
SCADA Communications”, IEEE Transactions on Power Delivery, Vol. 24, No. 3, pp. 1154-1163,
2009.

[4] R. Dingledine; N. Mathewson, P. Syverson. "Tor: The Second-Generation Onion Router",
Proceedings of the 13th USENIX Security Symposium, August 2004.

[5] R. Endsuleit, W. Geiselmann, R. Steinwandt, “Attacking a Polynomial-Based Cryptosystem: Polly
Cracker”, International Journal of Information Security, Vol. 1, No. 3, pp. 143-148, 2002.

[6] M. Fellows and N. Koblitz, “Combinatorial Cryptosystems Galore!”, Finite fields: theory,

applications, and algorithms, volume 168 of Contemp. Math., pp 51-61, 1994.

[7] W. Geiselmann, R. Steinwandt, “Cryptanalysis of Polly Cracker”, IEEE Transactions on Information

Theory 48(11), pp. 2990-2991, 2002.

[8] C. Gentry, “Fully homomorphic encryption using ideal lattices”, 41st ACM Symposium on Theory of

Computing (STOC), 2009.

[9] C. Gentry, “A working implementation of fully homomorphic encryption”,
http://eurocrypt2010rump.cr.yp.to/9854ad3cab48983f7c2c5a2258e27717.pdf.

[10] GMU MP library, http://gmplib.org/.

[11] D. Hofheinz, R. Steinwandt, “A Differential Attack on Polly Cracker”, Proceedings of IEEE

International Symposium on Information Theory, pp. 211, 2002.

[12] M. Kane and D. Kawamoto, “Oracle buys PeopleSoft for $10 billion”, http://news.cnet.com/Oracle-
buys-PeopleSoft-for-10-billion/2100-1001_3-5488298.html.

[13] F. Levy-dit-Vehel, L. Perret, “A Polly Cracker System Based on Satisfiability”, Progress in

Computer Science and Applied Logic, pp 177-192, 2004.

[14] L. Ly, “Polly Two − A New Algebraic Polynomial-Based Public-Key Scheme”, Applicable Algebra

in Engineering, Communication and Computing, 17, pp. 267-283, 2006.

[15] M. Morris Mano, Digital Design, Prentice Hall; 3 edition, August 1, 2001.

[16] T. Rai, “Infinite Gröbner bases and Noncommutative Polly Cracker Cryptosystems”, PhD Thesis,
Virginia Polytechnique Institute and State Univ, 2004.

[17] R. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems”, Communications of the ACM 21 (2), pp. 120–126, 1978.

[18] R.L. Rivest, L. Adleman and M.L. Dertouzos, “On data banks and privacy homomorphisms”,
Foundations of Secure Computation, eds. R. A. Demillo et al., Academic Press, 1978, pp. 167-179.

[19] T. Sander, A. Young, M. Yung, “Non-Interactive CryptoComputing For NC1”, FOCS 1999, pp. 554-
567.

[20] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively small key and
ciphertext sizes”, Accepted to PKC 2010. Available at http://eprint.iacr.org/2009/571.

[21] R. Steinwandt, “A Ciphertext-Only Attack on Polly Two”, preprint, 2006.

[22] D. Stehle and R. Steinfeld, “Faster Fully Homomorphic Encryption”, Cryptology ePrint Archive:

Report 2010/299, 2010.

[23] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption over the
integers”, Accepted to Eurocrypt 2010. Available at http://eprint.iacr.org/2009/616.

8 Appendix

Lemma 1: Given � and �, where � = ��poly��		 (more precisely, � ≪ √2>1'), it is possible to obtain 2� prime numbers of length �/2 bits in polynomial time.
Proof. By the Prime Number Theorem, there are approximately � ln �⁄ prime numbers 5 ≤ �. Consider
primes of length � bits. There are

 	 "��� "� − "����� "��� ≈ ���" O"�� − "����1�Q = ���" ��1�	"�1�"������1�	

 = ���" "�"���1"�1�"������1�	 = ���" �"���1"����1�	 = ���" �1"���1�	2�1�

such primes. Since we need to find 2� primes, at any point there are at least
���" �1"���1�	 2�1� − 2�

primes left of length � bits. Note that there are 2� − 2�1� = 2�1� integers of length � bits, so at any point

the probability that a random number chosen is prime is at least

���� ��������	"���1":"��� = ���" �1"���1�	 − ":"���. For

� = �" this becomes
���"

��1"��O��1�Q − ":
"���� = ���" ">1�>�>1"	 − :√"���. If � is polynomial in � (i.e. � ≪ √2�1'),

then this probability is nonnegligible. Since it is possible to check whether a number is prime in
polynomial time, each of the primes can be found in polynomial time. Since � is polynomial in �, the
number of primes we must find is polynomial in �, so the time complexity of the algorithm is polynomial
in �. ∎

Lemma 2: Suppose that large integer factorization is infeasible. Let 8+ = 5+6+ for large primes 5+ and 6+,
where 1 ≤ A ≤ �. Then given B = C8+D+;�: , it is infeasible to factor any of the 8+ ∈ B, i.e. there does not
exist a PPT (probabilistic polynomial time) algorithm that can return a factor of 8+ for any 1 ≤ A ≤ � with
nonnegligible probability.
Proof. Assume that a PPT algorithm |� exists that, given a set of large integers B = C8+D+;�: , can randomly

factor one of the 8+ with some probability 5′. Let |" be an algorithm to factor some large integer 8 = 56
for primes 5 and 6 as follows. First construct the set B = C8�, … , 8:1�, 8: = 8D where 8+ is random for 1 ≤ A ≤ � − 1, and then run |� on this set B, and return the result. Note that |� successfully factors one

of the 8+ with probability 5′, and the probability that A = � is
�:. Thus |" is successful with nonnegligible

probability
{′:. Clearly |" is a PPT algorithm, completing the proof. ∎

Lemma 3: Let) = ∏ 5+:+;� , where the 5+ are prime and � = ��poly��		. A random matrix G ∈ &'�$%	
is invertible with a high probability.

Proof. Note that an � × � matrix Gv = �α� , … ,αL	U over a field ${ , where � denotes the transpose of a

matrix and α+ ∈ �${�L, is not invertible if and only if ∃i+ ∈ ${ and i+� ≠ 0 for some A?, s.t. ∑ i+α+L+;� = 0.

The condition is equivalent to α+� = ∑ i+′α++�+� , where i+v = −i+�i+. Since Gv has �" entries, totally there

are 5L� possibilities for Gv. Since A ≠ A?, there are a total of 5L1� possibilities for i+′, and 5L�1L possibilities

for α+ . Hence, given G′, the probability that α+� = ∑ i+′α++�+� is
{���{����{�� = �{. Note that 1 ≤ A? ≤ �, so G′

is not invertible with probability at most
L{.

We show that a matrix G over the ring $% is invertible if and only if it is invertible over every field ${d,
where 1 ≤ A ≤ �. Note that if G is invertible over $%, then we can construct G1�mod 5+. Since GG1� = Z
(the identity matrix), GG1� = Zmod5+, so G1�mod 5+ is the inverse of Gmod5+, so G is invertible over

each field ${d. Now assume that G is invertible over each field 5+ with inverse �+, and consider the set of

linear congruences � = �+mod5+, which has a unique solution over $% by the Chinese Remainder

Theorem. Then we have the set of linear congruences G� = G�+mod5+ = Zmod 5+. But Z is clearly a
solution to these congruences, and by the Chinese Remainder Theorem, this solution is unique over $%, so G� = Z, so G is invertible with inverse �. As shown above, this means that G ∈ &'�$%	 is not invertible
with negligible probability

1 −��1− 45+�
:
+;� ≤� 45+

:
+;� ≤ 4�min��+�: 5+ .

This completes the proof. ∎

Lemma 4: The encryption scheme �H, /, I	 is correct.
Proof: Note that ���1�	1���1�diag��, g, h, i	�	�1�	?? = diag��, g, h, i	?? = �. ∎

Lemma 5: For 1 ≤ A ≤), there exists a unique element �+ ∈ EF'�$%	 so that

�+ = m0 11 0 0 00 00 00 0 0 11 0pmod5+, �+ = Zmod6+, and �+ = Zmod 8x for y ≠ A where Z is the identity matrix in

EF'�$%	. Additionally, �+ = �+1�.

Proof. The first claim follows from the Chinese Remainder Theorem. The fact that �+ = �+1� follows from
the fact that

�+" = m0 11 0 0 00 00 00 0 0 11 0pm
0 11 0 0 00 00 00 0 0 11 0pmod 5+ = m1 00 1 0 00 00 00 0 1 00 1pmod5+ = Zmod 5+

and the trivial fact that Z = Z1�. ∎

Lemma 6: Given plaintext �, key � and random element P, there exist ` and z such that /��, �	 =/�`, �+�	. Additionally, ` − � divides 6+, and ` − �	does not divide 5+ with probability
�:j� O1 − �{dQ.

Proof. Note that a ′ = diag��, g, h, i	 satisfies the congruences	a ′ = diag��, g+ , h+, i+	mod8+, so 													�+a ′�+1�mod 5+ = �+diag��, g+ , h+ , i+	�+1�mod5+
 														= m0 11 0 0 00 00 00 0 0 11 0p�

� 00 g+ 0 00 00 00 0 h+ 00 i+�m0 11 0 0 00 00 00 0 0 11 0pmod5+
 												= diag�g+, �, i+ , h+	mod5+

Also, �+av�+1�mod6+ = Za′Z mod 6+ = a′mod 6+ and similarly �+av�+1�mod8x = a′mod8x for y ≠ A.
Let I′ = diag�`, gv, hv, i′	. Then the set of congruences I′ = diag�g+ , �, i+ , h+	mod 5+, I′ = a′mod 6+,
and I′ = a′mod8x has a unique solution by the Chinese Remainder Theorem. Note that this solution

satisfies Iv = �+av�+1�, so �+1�Iv�+ = av and ��+�	1�Iv��+�	 = �1��+1�Iv�+� = �1�av� = /��, �	.
But this means that /��, �	 = ��+�	1�Iv��+�	 = /�`, �+�	, proving the first claim. Note that additionally ` = �mod6+ so that ` − � divides 6+, but ` = g+mod 5+. Note that g+ = P (i.e., g+ ≠ �) with probability �:j�. Additionally, P ≠ �mod 5+ with probability 1 − �{d since P is chosen uniformly randomly on $%, and

thus with probability 1 − �{d, P − � does not divide 5+. Thus ` − � divides 6+, and ` − �	does not divide 5+
with probability

�:j� O1 − �{dQ, proving the second claim. ∎

Lemma 7: If a PPT algorithm |}�a	 exists that, given a = /��, �	, returns � with probability 5, then

there exists a PPT algorithm |c to return a factor 8+ for some A with probability 5v = {:j� O1 − �{dQ.

Proof. Let the algorithm |c first choose a random plaintext � and a random key �, and construct ciphertext a = /��, �	 using the encryption scheme. Then, |c runs |}�a	 to obtain value J. Then |c returns

gcd�8+ , J − �	. Note that |c is clearly a PPT algorithm assuming that |} is a PPT algorithm. We also

show that |c is correct with some probability 5v. Note that since /��, �	 = /�`, �+�	, |} will also return ` with probability 5. Note that 6+ = gcd�8+ , J − �	 = gcd�8+ , ` − �	 with probability
�:j� O1 − �{dQ since ` − � divides 6+ but not 5+ with this probability. Since 8+ has only factors 5+ and 6+, the GCD of this pair of

numbers is thus 6+. If p is nonnegligible, then |c is thus correct with nonnegligible probability 5v ={:j� O1 − �{dQ. Clearly |c is a PPT algorithm if |} is a PPT algorithm, completing the proof. ∎

Lemma 8: Let �v be the number of plaintext and ciphertext pairs the adversary has access to. If for some �v there exists an algorithm |} Oa = /��, �	, 	~��L , aL = /��L , �	��L;�:w Q such that, given �v chosen

plaintext and ciphertext pairs ��L , aL	 and a ciphertext a, returns � with some probability 5, then there

exists a PPT algorithm |c using |} as an oracle to factor 8+ for some A with probability

5v = 5 �1 − 15+��1 − �1 − 1� + 1�1 − 1� + 1�:w�:�.
Proof. As before, let the algorithm |c first choose random plaintexts �+ ∈ $% for 1 ≤ A ≤ �′, an

additional random plaintext � ∈ $%, and a random key �, and construct ciphertexts a+ = /��+ , �	 and a = /��, �	 using the encryption scheme. Then let |c run |}�a	 to obtain J. Then let |c return gcd�8+ , J − �	 as a factor of 8+ for some A. We find the probability that |c succeeds in factoring 8+ for some A. Consider the case where, for some A?, for all of the ciphertexts aL, gL,+� = �L, and where for the ciphertext a, g+� = P. Here gL,+� refers to the g+� in the encryption process of aL, and g+� refers to the g+� in the

encryption process of a. If this is the case, then as seen in the proof of lemma 7, /��L , �	 = /��L , �+���
(since gL,+� is assumed to equal �L), so the adversary cannot differentiate � from �+��. Additionally, as in

lemma 7, /��, �	 = /�`, �+��� for some ` for which ` − � divides 6+�. Also, ` = g+� mod5+� =Pmod 5+�, so J − � = ` − � does not divide 5+� with probability 1 − �{d�. Since the adversary cannot

differentiate � from �+��, if running |}�a	 returns � with probability 5, it must also return ` with

probability 5. Then the probability that J = ` is 5, and if this happens the probability that J − � = ` − �

divides 6+ and does not divide 5+ is 1 − �{d�. Thus if A? exists then |c succeeds with probability 5 O1 − �{dQ.

To find the probability that such an A? exists, note that the probability that, for a specific � and A, gL,+ = �L is 1 − �:j�, so the probability that for all �, gL,+ = �L is O1 − �:j�Q:w
. The probability that,

additionally, g+ = P is
�:j� O1 − �:j�Q:w

. Then the probability that this does not occur for a given A is

1 − �:j� O1 − �:j�Q:w
, so the probability that this does not occur for any A is ^1 − �:j� O1 − �:j�Q:w_:,

and finally the probability that this occurs for some A is thus 1 − ^1 − �:j� O1 − �:j�Q:w_:.

Finally we integrate the derivations and get

5v = 5 �1 − 15+��1 − �1 − 1� + 1�1 − 1� + 1�:w�:� .∎

Lemma 9: Assuming that the probability to factor an � bit integer in polynomial time is negligible, the
encryption scheme is secure for �v ≤ �.

Proof. As seen the equation of 5v in Lemma 9, O1 − �{dQ is nonnegligible. If 1 − ^1 − �:j� O1 −

�:j�Q:w�: is further nonnegligible, then 5 is negligible if and only if 5v is negligible. Thus, it implies that

the encryption scheme is secure. Otherwise, if a PPT adversary can attack the scheme with nonnegligible
success probability 5, then there will exist a PPT algorithm to factor some integer with nonnegligible
success probability 5v, which contradicts to Lemma 2. Therefore, the encryption scheme is secure if 1 − ^1 − �:j� O1 − �:j�Q:w_: is nonnegligible.

Note that
}}¡ O1 − �¡Q¡ = ¢ O1 − �¡Q¡1� ¢1" = O�1�£Q£��¡ > 0 for ¢ > 0. Thus the function is

monotonically increasing, so on $j it achieves its minimum at ¢ = 1, where it takes the value O1 −��j�Q�j� = �'. Additionally, since lim¡→¦ O1 − �¡Q¡ = �§ and since O1 − �¡Q¡ is monotonically increasing, O1 − �¡Q¡ ≤ �§. Then we obtain

 1 − ^1 − �:j� O1 − �:j�Q:w_: ≥ 1 − �1 − �:j� O1 − �:j�Q:j��: ≥ 1 − O1 − �'�:j�	Q:

 = 1 − �O1 − �'�:j�	Q'�:j�	� ©��©ª�	

 ≥ 1 − O�§Q ©��©ª�	 ≥ 1− O�"Q ����ª�	 = 1− O�"Q�« ≥ 1 − .92 = .08 ∎

Theorem 1: The bound of �v in Lemma 10 can be weakened to �v ≤ � ln poly��	, where poly��	
denotes some fixed polynomial in �.

Proof. As shown in Lemma 10, the encryption scheme is secure if 1 − ^1 − �:j� O1 − �:j�Q:w_: is

nonnegligible. In other words, we require that 1 − ^1 − �:j� O1 − �:j�Q:w_: = �¬­�®�>	 for some fixed

polynomial in �. Then

 �v = ��	��:j�	^�1��1 �¯°�±��		 �©_�
��O�1 �©ª�Q

Before estimating the lower bound of �v, we first derive two inequalities. Note that }}¡ Oln�1 − ¢	 + ¡�1¡Q = ¡��1¡	� > 0 for 0 < ¢ < 1, and Oln�1 − ¢	 + ¡�1¡Q |¡;? = 0.

Therefore ln�1 − ¢	 > − ¡�1¡ for 0 < ¢ < 1. Also, note that }}¡ �¢ − 1 + ´1¡	 = 1 − ´1¡ > 0 for 0 < ¢ < 1, and �¢ − 1 + ´1¡	|¡;? = 0.

Therefore ¢ > 1 − ´1¡ for 0 < ¢ < 1. Thus,

 ln O1 − �¬­�®��	Q > − �¯°�±��	�1 �¯°�±��	 = − �¬­�®��	1�

 → ln O1 − �¬­�®��	Q �© = �: ln O1 − �¬­�®��	Q > − �:�¬­�®��	1�	 → O1 − �¬­�®��	Q �© > ´1 �©�¯°�±��	��	
										→ 1 − �1 − 1poly��	�

�: < 1− ´1 �:�¬­�®��	1�	 < 1��poly��	 − 1	

 → lnm�� + 1	 ^1 − O1 − �¬­�®��	Q �©_p < ln :j�:�¬­�®��	1�	 = −ln O:�¬­�®��	1�	:j� Q = − ln poly��			�∗	
The last equation in �∗	 is obtained by replacing poly��	 with the polynomial poly��	 + 1 + ¬­�®��	: . Also,

we have

	ln �1 − 1� + 1� > − 1� + 11 − 1� + 1 = − 1� → 1ln O1 − 1� + 1Q < −�		�∗∗	
Hence, by multiplying �∗	 and �∗∗	, we get

�v = ln	m�� + 1	 �1 − �1 − 1poly��	� �:�p
ln O1 − 1� + 1Q > � ln poly��	 .					∎

Lemma 10: The multiplication and addition algorithms are correct.
Proof. First we show that addition is correct. Note that /��, �	 + /�`, �	 = �1�diag��, g, h, i	� + �1�diag�`, gv, hv, iv	� = �1��diag��, g, h, i	 + diag�`, gv, hv, iv	�� = �1�diag�� + `, g + gv, h + hv, i + i′	� = /�� + `, �	

Next we show that multiplication is correct. Note that /��, �	/�`, �	 = �1�diag��, g, h, i	��1�diag�`, g′, h′, i′	� = �1�diag��, g, h, i	diag�`, g′, h′, i′	� = �1�diag��`, ggv, hhv, iiv	� = /��`, �	.																																			∎

Lemma 11: If	a = /��, �	, then ��a, �′	 = /��, � ∙ �′	.
Proof. ��a, �v	 = ��/��, �	, �v	 = �v1� ∙ /��, �	 ∙ �v = �v1� ∙ �1�diag��, g, h, i, 	� ∙ �v

 = �� ∙ �v	1� ∙ diag��, g, h, i, 	 ∙ �� ∙ �v	 = 	/��, � ∙ �′	. ∎

Theorem 2: Suppose that the adversary attacks the multi-user system with the adversary structure AS. The
system is secure if the adversary collects less than � lnpoly��	 plaintext-ciphertext pairs.
Proof. We consider three compromising situations with respect to the adversary structure AS.

Case 1. The adversary compromises DB and KA. Then �′′+ and �′+ are compromised, but the master
key � and the key �+ of the user Ci are intact. Therefore the adversary can neither reverse the ciphertext
encrypted by � stored on DB, nor the ciphertext encrypted by �+ sent from Ci to KA.

Case 2. The adversary compromises DB and CA. Then �′′+ are compromised, �x are compromised if Cj

∈ CA, but the master key � and the key �xv of the user Ci’ are intact if Cj’ ∉ CA. Therefore the adversary can

neither reverse the ciphertext encrypted by � stored on DB, nor the ciphertext encrypted by �xv ∙ �′xv sent

from KA to DB.

Case 3. The adversary compromises KA and CA. Then �′+ are compromised, �x are compromised if Cj

∈ CA, but the key �xv of the user Ci’ are intact if Cj’ ∉ CA. Therefore the adversary cannot reverse the

ciphertext encrypted by �xv sent from Cj’ to KA, nor the ciphertext encrypted by �xv ∙ �′xv sent from DB to

KA.
Thus it completes the proof. ∎

