
Security Analysis and Enhancement for

Prefix-Preserving Encryption Schemes

Liangliang Xiao
University of Texas at Dallas

xll052000@utdallas.edu

I-Ling Yen
University of Texas at Dallas

ilyen@utdallas.edu

Abstract

Prefix-preserving encryption (PPE) is an important type of encryption scheme, having a wide range
of applications, such as IP addresses anonymization, prefix-matching search, and rang search. There
are two issues in PPE schemes, security proof and single key requirement. Existing security proofs for
PPE only reduce the security of a real PPE scheme to that of the ideal PPE object by showing their
computational indistinguishability [1, 14]. Such security proof is incomplete since the security of the
ideal encryption object is unknown. Also, existing prefix-preserving encryption schemes only consider a
single encryption key, which is infeasible for a practical system with multiple users (Implying that all
users should have the single encryption key in order to encrypt or decrypt confidential data).

In this paper we develop a novel mechanism to analyze the security of the ideal PPE object. We
follow the modern cryptographic approach and create a new security notion IND-PCPA. Then, we show
that such weakened security notion is necessary and the ideal PPE object is secure under IND-PCPA.
We also design a new, security-enhanced PPE protocol to support its use in multi-user systems, where
no single entity in the system knows the PPE key. The protocol secret shares and distributes the PPE
key to a group of key agents and let them “distributedly encrypt” critical data. We develop a novel
distributed PPE algorithm and the corresponding request and response protocols. Experimental results
show that the protocol is feasible in practical systems.

Key Words: Prefix-preserving encryption, security notion, IND-CPA, IND-PCPA, cryptographical security
proof, multi-user systems, distributed prefix-preserving encryption algorithm.

1 Introduction

Prefix-preserving encryption (PPE) supports search on ciphertexts. In PPE, the longest common prefix of
any two ciphertexts is of the same length as the longest common prefix of the corresponding plaintexts. Two
PPE algorithms have been proposed in the literature. In [14], a PPE was first proposed for securely processing
real-world Internet traffic traces without disclosing the IP addresses in them. The PPE is constructed bit by
bit, where the i-th bit of the ciphertext is constructed by applying an instantiating function to the previous
i − 1 bits of the plaintext to preserve the prefix consistency. In [10], the authors suggested that PPE
constructed in [14] can also be used to support range search on encrypted data. For a given range [a, b], the
range query can be transformed into at most 2 log2 b−1 prefix-matching queries. In [1], the authors designed
a PPE to support secure processing of prefix-matching queries (such as searching area-code starting with
310), where the prefix is generalized to a sequence of blocks (e.g. 64 bits or 4 UTF-16 characters) instead
of a sequence of bits in [14]. To search for matching entries with a prefix x, the system encrypts x into E(x)
and use E(x) as the prefix to perform prefix matching on the ciphertexts. Since the plaintext has a matching

1

prefix of x if and only if the corresponding ciphertext has a matching prefix of E(x), the prefix matching
computation can be achieved in logarithmic-time if the ciphertexts are organized in some standard tree data
structures.

Although PPE can be applied to various applications, the security of PPE is weakened since some prefix
information of plaintexts is leaked from ciphertexts. Thus, security analysis of PPE becomes crucial. Unfor-
tunately, existing work does not offer sufficient security analysis of the PPE schemes. Most of the existing
security analyses of the PPE schemes are informal: either they prove the security against the author-defined
attacks, or they illustrate the security based on experiments. The authors in [1] initiated the cryptographic
study of PPE scheme. They defined the security notion by the real PPE scheme and the ideal PPE object.
In the ideal PPE object, the encryption function is uniformly randomly selected from the set of all prefix-
preserving functions. A real PPE scheme is defined to be “secure” if it is computationally indistinguishable
from the ideal PPE object. According to this security definition, the authors proved that their real PPE
construction based on HCBC is “secure” (i.e. computationally indistinguishable from the ideal PPE object).
In fact, the authors in [14] have also proved that their PPE scheme is computationally indistinguishable
from the ideal PPE object, except that they did not user the crypto terminologies.

These security proofs are incomplete because the security of the ideal PPE object is unknown. If the security
of the ideal object is unacceptable, then the proof of indistinguishability between the real scheme and the
ideal object is not very indicative in security assurance. In modern cryptography, the security notions IND-
CPA (indistinguishability under the chosen-plaintext attack) and IND-CCA (indistinguishability under the
chosen-ciphertext attack) [9] have been developed to qualify the security of various encryption schemes. In
[2], a weakened security notion IND-DCPA (indistinguishability under the distinct chosen-plaintext attack) is
defined for the security qualification of the deterministic symmetric encryption scheme. However, the attempt
for finding a qualifying security notion for the OPE (order preserving encryption, a similar approach as PPE)
schemes has not been successful. In [3], the weakened security notion IND-OCPA (indistinguishability under
the ordered chosen-plaintext attack) is defined to qualify the security of OPE scheme, but no OPE scheme
that can satisfy this security notion has been found. Such attempt for PPE has not been considered due to the
same challenge. In this paper, we develop a novel mechanism to analyze the security of the ideal PPE object.
We follow the same approach to seek a necessarily and sufficiently weakened security notion to qualify the
security of the ideal PPE object. First, we prove that no PPE scheme is secure under IND-CPA by designing
a DLLCP attack (let the adversary query two plaintext pairs with different lengths of longest common prefix
strings). Then we weaken the security notion from IND-CPA to IND-PCPA (indistinguishability under the
prefixed chosen-plaintext attack) and prove that (1) such weakened security notion is necessary (otherwise
the DLLCP attack will be successful), and (2) the ideal PPE object is secure under IND-PCPA. From (1)
and (2), we conclude that the security notion IND-PCPA exactly qualifies the security of the idea PPE
object.

Another limitation in all the existing PPE schemes is that there is no consideration of users. Generally, a
system would deal with multiple users with different access privileges. Consider a database hosted in the
cloud and is accessed by many users. The critical data in the database are encrypted by a PPE scheme using
a master encryption key. The server should not have the knowledge of the master key. When a user sends
a query to the server, critical data in the query need to be encrypted and the returned results need to be
decrypted. PPE schemes allow the database server to perform lookup operations on encrypted data without
knowing the encryption key. However, in order for the server to have interactions with users, some entities in
the system need to know the encryption key. In conventional PPE schemes, it is implicitly assumed that the
users know the master key and, hence, are able to encrypt and decrypt the corresponding data. However, in
practice, giving the master key to all the users is insecure. There is a significant probability for the server
(or an adversary who compromises the server) to collude with one of the users and compromise the entire
database.

A potential solution to the problem above is to use different encryption keys for different data. But it may
not be easy to design a PPE to support search on data that are encrypted using different keys. Another
possible solution is to use a key agent to host the keys to perform encryption and decryption to bridge the
users and the server. However, in this case, the key agent will know the master key and the client data and,

2

hence, defeat the purpose of the PPE scheme. Thus, we need provide a secure protocol to support multiple
users communicating with the server while satisfying that (1) no entity in the system has the knowledge of
the master encryption key, and (2) the users’ data is only known to the users, no one else. Our solution to
achieve the goal is to use multiple key agents and secret share the master encryption key. Consider a PPE
system consisting of a server DB hosting data encrypted by PPE using a master encryption key k. Assume
that a user sends a query to DB which contains a confidential data x. In our PPE protocol, k is secret
shared and distributed to the group of key agents. The user secret shares its confidential data x and passes
the shares to the key agents. The key agents then “distributedly” encrypt the data shares into cipher shares,
which in turn, are assembled into the ciphertext by the DB.

However, “distributed encryption” for PPE is not straightforward. In this paper, we develop a novel dis-
tributed PPE algorithm based on the PPE algorithm E constructed in [14]. In the original PPE algorithm,
the i-th bit of the ciphertext y = y1 · · · yl is computed from the first i bits of the plaintext x = x1 · · ·xl
such that yi = xi ⊕ L(R(x1, · · · , xi−1, k)), where L denotes the least significant bit and R can be any pseu-
dorandom function. If we directly make this algorithm distributed, it is necessary for the key agents to
“distributedly” compute the shares of R(x1, · · · , xi−1, k) and then L(R(x1, · · · , xi−1, k)) based on the shares
of x1, · · · , xi−1 and the shares of k. First, we invent a method based on the threshold technique developed
in [11] to “distributedly” evaluate the shares of R(x1, · · · , xi−1, k) based on the shares of x1, · · · , xi−1 and
k. However, we still have the problem for “distributedly” evaluating the shares of L(R(x1, · · · , xi−1, k))
based on the shares of R(x1, · · · , xi−1, k). Note that L(R(x1, · · · , xi−1, k)) and R(x1, · · · , xi−1, k) are in
different domains. It is very difficult to directly map the shares of R(x1, · · · , xi−1, k) to the domain of
L(R(x1, · · · , xi−1, k)) consistently. It is also insecure for any entity to reconstruct R(x1, · · · , xi−1, k). In
fact, L is used to extract the least significant bit. Thus, instead of distributedly computing L, we eliminate
L and let the bit xi be encrypted to a block zi = H ′(xi) · R(x1 · · ·xi−1, k), where H ′ is a hash function,
hashing xi to a block.

Although z = z1 · · · zl can be used to realize the desired PPE protocol, its large size will increase the
overhead during search (comparisons). We design a reduction algorithm RA to reduce z = z1 · · · zl to the
final ciphertext y = y1 · · · yl, where yi is a single bit, 1 ≤ i ≤ l. Note that If some plaintexts have a common
prefix x1 · · ·xi−1, then they have the same R(x1 · · ·xi−1, k) value. Thus, their zi can only be two values since
H ′(xi) can only have two values. Thus, we map zi to an arbitrary yi value if zi has not appeared before;
otherwise, it is mapped to the same yi assigned previously. As long as we maintain the mapping history, the
reduction can be done consistently.

The response can be processed in a reverse way of the request processing. However, in many data centric
applications, it is likely that the response would contain many confidential data objects. The cost for
“distributedly decrypt” many confidential data objects may be high. Thus, we use a simple, but very
effective solution, which maintains two ciphers, one encrypted using PPE with the master encryption key
and the other encrypted using a regular encryption scheme (different objects are encrypted with different
keys). Search can be performed on the ciphers from PPE. In a response, we only need to include the
ciphertexts encrypted using the regular encryption algorithm, greatly reducing the overhead.

Here we summarize our contributions in this paper.

• This paper is the first to successfully define a security notion, IND-PCPA, to exactly qualify the security
of PPE. Specifically, we design the DLLCP attack to show that it is necessary to weaken the security
notion from IND-CPA to IND-PCAP for the ideal PPE object. We also proof that the ideal PPE
object is secure under IND-PCPA.

• We develop a PPE protocol to support the multi-user systems, making PPE feasible for practical use.
The major invention in this protocol is the distributed PPE encryption by a group of key agents.
We cryptographically prove the security of our protocol by defining an ideal model for PPE protocols
and showing that our PPE protocol is computationally indistinguishable from the ideal model. We
also conduct experiments to study the performance of the protocol, showing that it has a reasonable
overhead.

3

The rest of the paper is organized as follows. In Section 2, we present the concept of PPE scheme and the
ideal PPE object, and define the security notion IND-CPA. In Section 3 we design the DLLCP attach and
show that PPE scheme is not secure under IND-CPA due to this attack. Then, we weaken the security notion
from IND-PCA to IND-PCPA for PPE and prove that the ideal PPE object is secure under IND-PCPA.
In Section 4 we extend PPE to multi-user systems. Experimental studies and performance results for our
multi-user PPE protocol is presented in Section 5. Finally, Section 6 concludes the paper.

2 Background

This section introduces the background of the PPE scheme and the security analysis techniques. In Subsec-
tion 2.1, we present the concept of PPE schemes and introduce the ideal PPE object definition given in [1].
Then, in Subsection 2.2, we define the standard security notion IND-CPA.

Here we define some preliminary notations. Let λ be the security parameter and ν be a negligible function.

Let x
$←− A denote that x is uniformly randomly selected from set A, x

$←− X denote that randomized
algorithm X returns value x, and XY denote that algorithm X is accessible to oracle Y.

2.1 PPE Schemes and the Ideal PPE Object

PPE algorithm should have the prefix-preserving property: the longest common prefix of any two ciphertexts
is of the same length as the longest common prefix of the corresponding plaintexts. Assume that the plaintexts
and ciphertexts are in {0, 1}l, where {0, 1}l denotes the set of binary strings of length l. Let LCP (x1, x2)
denote the longest common prefix function which returns the longest common prefix of two binary strings
x1 and x2, and |LCP (x1, x2)| denote the length of LCP (x1, x2). Then the PPE scheme can be defined as
follows.

Definition 2.1 (PPE scheme [14]). A PPE scheme SE = (K, E ,D) is a deterministic symmetric-key en-
cryption scheme, where K : {0, 1}∗ → {0, 1}∗ is a key generation algorithm, E : {0, 1}l × {0, 1}∗ → {0, 1}l
is a deterministic symmetric-key encryption algorithm, and D : {0, 1}l × {0, 1}∗ → {0, 1}l is a decryption
algorithm. The encryption algorithm E satisfies the “prefix-preserving” property:

|LCP (x1, x2)| = |LCP (E(x1, k), E(x2, k))|

for any x1, x2 ∈ {0, 1}l and key k. �

For the ideal PPE object, the encryption function is uniformly randomly selected from all the prefix-
preserving functions. Let

FPPE
{0,1}l,{0,1}l , {f : {0, 1}l → {0, 1}l | |LCP (x1, x2)| = |LCP (f(x1), f(x2))|,∀x1, x2 ∈ {0, 1}l}

be the set of prefix-preserving functions mapping {0, 1}l to {0, 1}l. In Lemma 2.2, we (1) prove that the
prefix-preserving functions are invertible and, hence, the ciphertexts of the ideal PPE can be decrypted, and
(2) compute the cardinality of FPPE

{0,1}l,{0,1}l which will be used to prove the equivalence of the prefix-preserving

function and the tree-based function in Proposition 3.6.

Lemma 2.2. f is a bijection for any f ∈ FPPE
{0,1}l,{0,1}l and

∣∣∣FPPE
{0,1}l,{0,1}l

∣∣∣ = 22
l−1.

Proof. For f ∈ FPPE
{0,1}l,{0,1}l , since the domain and range of f have the same (finite) cardinality, it suffices

to prove that f is injective. Assume that f(x1) = f(x2). Then |LCP (x1, x2)| = |LCP (f(x1), f(x2))| = l.
Hence x1 = x2.

Let N(l) denote the number of prefix-preserving functions with domain and range {0, 1}l. For l = 1 there are
two prefix-preserving functions, which are f(0) = 0 and f(1) = 1; f(0) = 1 and f(1) = 0. Thus, N(1) = 2.

4

Let f1 and f2 denote any two prefix-preserving functions with domain and range {0, 1}l−1. Then it can be
used to construct the prefix-preserving function f and g with domain and range {0, 1}l. For x ∈ {0, 1}l, let
x = x1 · · ·xl where xi ∈ {0, 1}, 1 ≤ i ≤ l. We define

f(x1x2 · · ·xl) ,
{

0f1(x2 · · ·xl) if x1 = 0
1f2(x2 · · ·xl) if x1 = 1

and g(x1x2 · · ·xl) ,
{

1f1(x2 · · ·xl) if x1 = 0
0f2(x2 · · ·xl) if x1 = 1

.

It can be verified that f and g are different prefix-preserving functions and any prefix-preserving functions
with domain and range {0, 1}l−1 must agree with the form of f or g. Hence, N(l) = 2N(l − 1)2. We can

derive N(l) = 22
l−1 by solving the close form of N(l) from the established equations N(l) = 2N(l− 1)2 and

N(1) = 2.

Now we present the formal definition of the ideal PPE object in Definition 2.3.

Definition 2.3 (Ideal PPE object). We say that SE∗(K∗, E∗,D∗) is the ideal PPE object if

- K∗ uniformly randomly selects f ∈ FPPE
{0,1}l,{0,1}l ;

- E∗ encrypts x to f(x);

- D∗ decrypts y to f−1(y). �

Remark 1. The ideal PPE object is computationally infeasible since it involves choosing f uniformly ran-

domly from the set FPPE
{0,1}λ,{0,1}λ , which is on the order of 22

λ−1. In [1], the authors construct a real PPE

scheme SE(K, E ,D), and prove that the real PPE scheme is computationally indistinguishable from the ideal
PPE object.

2.2 Security Notion IND-CPA

Let LR denote a left-or-right encryption oracle which knows the description of a given symmetric-key encryp-
tion scheme SE and the encryption key k. Also, let A denote an adversary who also knows the descriptions
of SE , but not the key k. The definition of the security notion IND-CPA is defined as follows.

Definition 2.4 (IND-CPA). Let SE = (K, E ,D) be a symmetric-key encryption scheme and b ∈ {0, 1}. Let
Ek(LR(·, ·, b)) be a left-or-right encryption oracle such that for queries {(x0u, x1u)}hu=1, it returns

E(xbu, k)
$←− Ek(LR(x0u, x

1
u, b))

for 1 ≤ u ≤ h. Let A be an adversary that can access Ek(LR(·, ·, b)) and finally returns a bit b′ as a guess
of b. Consider the following experiment.

Experiment ExpIND-CPA-b
SE,A

k
$←− K; b′

$←− AEk(LR(·,·,b)); Return b′

The encryption scheme SE is said to be secure under IND-CPA if for every probabilistic polynomial time
(PPT) adversary A, the advantage of A, defined by

AdvIND-CPA
SE,A = Pr[ExpIND-CPA-1

SE,A = 1]− Pr[ExpIND-CPA-0
SE,A = 1],

is bounded by a negligible function of the security parameter. �

3 Security Proof for PPE Schemes

Existing cryptographic security proofs for PPE schemes only reduce the security of real PPE schemes to the
security of the ideal PPE object by showing that they are computationally indistinguishable. However it is

5

not a complete security proof since the security of the ideal PPE object is unknown and there has been no
security analysis in the literature to show its security level. In this section, we complete the existing security
proof by developing a security notion IND-PCPA and showing that it exactly qualifies the ideal PPE object.

In Subsection 3.1, we design a DLLCP attack and use it to prove that PPE is not secure under IND-CPA.
Then we define a weakened security notion IND-PCPA in Subsection 3.2. Such weakening is necessary
because otherwise the PPE will be broken by the DLLCP attack. In Subsection 3.3.2, we prove that the
ideal PPE object is secure under IND-PCPA.

3.1 Security Notion IND-CPA and DLLCP Attack

IND-CPA is a well established security notion in cryptography. However, PPE schemes require the cipher-
texts to preserve the prefix of the plaintexts and cannot be qualified by IND-CPA. Consider the following
DLLCP (differentiated length of longest common prefix) attack against the PPE scheme SE = (K, E ,D)
with respect to IND-CPA.

Adversary A
In the experiment ExpIND-CPA-b

SE,A ,A chooses the set of plaintext pairs

{(x01, x11), (x02, x
1
2) | LCP (x01, x

0
2) 6= LCP (x11, x

1
2)},

and sends it to LR;

LR computes the set of ciphertexts {E(xbi , k)}2i=1, and sends it back to A;

Finally A outputs b′ =

{
0 if |LCP (x01, x

0
2)| = |LCP (E(xb1, k), E(xb2, k))|;

1 otherwise.

In the DLLCP attack, the adversary queries (x01, x
1
1) and (x02, x

1
2), where LCP (x01, x

0
2) 6= LCP (x11, x

1
2). If

b = 0, x01 and x02 will be encrypted; if b = 1, x11 and x12 will be encrypted. Since PPE preserves prefix,
the adversary can distinguish whether the plaintexts are x01 and x02 or x11 and x12 by comparing LCP (y1, y2)
with LCP (x01, x

0
2) and LCP (x11, x

1
2), where y1 and y2 are the returned ciphertexts of the encryption oracle.

If LCP (y1, y2) = LCP (x01, x
0
2), then the plaintexts are x01 and x02 and, hence, b = 0. If LCP (y1, y2) =

LCP (x11, x
1
2), then the plaintexts are x11 and x12 and, hence b = 1. Thus, the advantage of the adversary A

is 1. We summarize the conclusion in the following lemma.

Lemma 3.1. PPE is not secure under IND-CPA.

3.2 Security Notion IND-PCPA for the Ideal PPE object

In [3], it has been shown that an OPE scheme (order-preserving encryption scheme, requiring the ciphertexts
to preserve the order of the plaintexts) does not satisfy IND-CPA and a weakened security notion IND-OCPA
has been defined to qualify the security of OPE schemes (though no OPE schemes satisfy IND-OCPA either
and no security notion has been found to properly qualify OPE yet). Inspired by this approach, we define a
weaken security notion IND-PCPA to qualify the security of PPE schemes. According to the DLLCP attack,
the adversary should only be allowed to query the plaintext pairs in the set

PPPh = {(x0i , x1i) ∈ {0, 1}l × {0, 1}l, 1 ≤ i ≤ h | |LCP (x0u, x
0
v)| = |LCP (x1u, x

1
v)|, 1 ≤ u, v ≤ h}.

Accordingly, we define the security notion IND-PCPA (indistinguishability under prefixed chosen-plaintext
attack) in Definition 3.2.

Definition 3.2 (IND-PCPA). IND-PCPA has the same definition as that of IND-CPA in Definition 2.4
except that the adversary is only allowed to query the prefixed plaintext pairs in the set PPPh. �

It is obvious that IND-PCPA is the necessarily weakened security notion (with respect to indistinguishability
and left-or-right encryption oracle) for PPE. We show that it is also the sufficiently weakened security notion
for PPE by proving that the ideal PPE object is secure under IND-PCPA.

6

3.3 Security Proof of the Ideal PPE Object Under IND-PCPA

To prove that the ideal PPE object is secure under IND-PCPA, we need to show the number of the prefix-
preserving functions mapping x0i to E∗(xbi , k) equals to that of the prefix-preserving functions mapping x1i
to E∗(xbi , k), where (x0i , x

1
i) are the plaintext pairs the adversary queries, 1 ≤ i ≤ h. In other words, there

is no bias for the adversary’s guess. However, the proof is not straightforward because it needs to use the
prefix-preserving property to count the number of prefix-preserving functions mapping x0i (resp. x1i) to
E∗(xbi , k), where x0i , x1i , and E∗(xbi , k) are indeterminates, 1 ≤ i ≤ h.

To overcome the difficulties, we represent the prefix-preserving function by the tree-based function. The
tree-based function consists of a plaintext tree and a ciphertext tree. The plaintext tree is a complete binary
tree. Each edge connecting a parent node to its left child node is labeled by 0, and each edge connecting
a parent node to its right child node is labeled by 1. Each leaf node in the plaintext tree is labeled by the
binary string composed of the labels of the edges from the root to itself (the label represents the plaintext
string). The ciphertext tree is the same as the plaintext tree except for its labels. Each edge connecting
a parent node to its left child node could be labeled by 0 or 1. If it is labeled by 0 (resp. 1), then the
corresponding edge connecting the parent node to its right child node must be labeled by 1 (resp. 0). A
tree-based function maps the i-th leaf node in the plaintext tree to the i-th leaf node in the cipertext tree.
It implies that the labels of each path in the ciphertext tree (from the root node to the leaf node) represent
the ciphertext of the plaintext represented by the corresponding path in the plaintext tree. In other words,
the label of the i-th leaf node in the cipertext tree represents the cipertext of the label of the i-th leaf node
in the plaintext tree.

Once the prefix-preserving function is represented by the tree-based function, it suffices to show that the
number of the tree-based functions mapping x0i to E∗(xbi , k) equals to that of the tree-based functions
mapping x1i to E∗(xbi , k), 1 ≤ i ≤ h. An important observation is that given h plaintext ciphertext pairs,
some labels of the edges in the ciphertext tree will be determined while others will not. Also, the number of
the undetermined labels of the edges in the ciphertext tree decides the number of the tree-based functions.
Therefore the security proof can be reduced to show that the number of the undetermined labels of the
edges in the ciphertext tree given (x0i , E∗(xbi , k)) equals to that of the undetermined labels of the edges in the
ciphertext tree given (x1i , E∗(xbi , k)), 1 ≤ i ≤ h. We use mathematical induction on h to prove the equality
of these two numbers.

3.3.1 Tree-Based Function Definition

Before defining the tree-based function, we first define some preliminary concepts. Then, the tree-based
function is formally defined in Definition 3.5.

Definition 3.3. Let T = (V T , ET) be a tree where V T denotes the set of nodes and ET denotes the set of
edges. The nodes in V T can be partitioned into the set of internal nodes V T

I and the set of leave nodes V T
L ,

where V T = V T
I

⋃
V T
L and V T

I

⋂
V T
L = ∅.

Let vL,T
i denote the i-th leaf node in T where the leave nodes are indexed from the left most leaf node (the

first) to the right most leaf node (the |V T
L |-th), 1 ≤ i ≤ |V T

L |. For v ∈ V T
L with depth n, let P (v) denote the

path from the root to v and P (v)[1] · · ·P (v)[n+ 1] denote the nodes on the path, where P (v)[1] is the root,
P (v)[n+ 1] = v, and P (v)[2], · · · , P (v)[n] are internal nodes connecting root and v. Let PI(v) = {P (v)[i] |
1 ≤ i ≤ n} denote the set of internal nodes on the path P (v), PL(v) = {v} denote the set of leaf node in
the path P (v), and PE(v) = {P (v)[i]P (v)[i+ 1] | 1 ≤ i ≤ n} denote the set of edges on the path P (v). �

In the tree-based function, the domain of the plaintexts and the range of the ciphertexts are two labeled trees.
The labeling rules (defined in Definition 3.4) can guarantee the prefix-preserving property of the tree-based
function. In Definition 3.4, we first define the internal nodes labeled (INL) tree where the internal nodes are
labeled with 0 or 1, and define the nodes and edges labeled (NEL) tree where the labels are extended from
the internal nodes to the edges and leave nodes.

7

Definition 3.4 (INL and NEL trees). Internal nodes labeled (INL) tree is defined to be a pair (T,L), where
T = (V T , ET) is a tree and

L : V T
I → {0, 1}

is a label function over internal nodes, which is called INL function. Given an INL tree (T,L), it uniquely
defines the nodes and edges labeled (NEL) tree (T,L∗), where the NEL function

L∗ : V T
⋃
ET → {0, 1}∗

is defined by the following rules.

(1) For v ∈ V T
I , L∗(v) , L(v).

(2) Let e ∈ ET where e = v1ev2e and v1e, v2e denote the two endpoints of e. Without loss of generality,
assume that v1e is the parent node and v2e is the child node. Then L∗(e) , L(v1e) if v2e is the left child
node of v1e; L∗(e) , 1⊕ L(v1e) if v2e is the right child node of v1e.

(3) For v ∈ V T
L with depth n, L∗(v) is a string of n bits. Let PE(v) = {P (v)[i]P (v)[i+1] | 1 ≤ i ≤ n} denote

the set of edges on the path P (v), where P (v)[1] is the root, P (v)[n + 1] = v, and P (v)[2], · · · , P (v)[n] are
internal nodes connecting root and v. Then

L∗(v) , L∗(P (v)[1]P (v)[2]) · · · L∗(P (v)[n]P (v)[n+ 1]). �

Now we are ready to define the tree-based function, which is given in Definition 3.5. The tree-based function is
defined with respect to two NEL trees, which are called the plaintext tree and the ciphertext tree, respectively.
It maps the label of the i-th leaf node in the plaintext tree to the i-th leaf node in the ciphertext tree.

Definition 3.5 (tree-based function). The tree-based function is defined with respect to two NEL trees:
the plaintext tree PTl = (TPTl ,L∗PTl

) and the ciphertext tree CTl = (TCTl ,L∗CTl
), where TPTl and TCTl are

two complete binary trees with heights l. In the plaintext tree PTl, the INL function LPTl(v) ≡ 0 for any

internal node v ∈ V TPTl
I . But in the ciphertext tree CTl, the INL function LCTl(v) could be 0 or 1 for any

internal node v ∈ V TCTl
I . The INL functions LPTl and LCTl uniquely define the NEL functions L∗PTl

and
L∗CTl

following the rules defined in Definition 3.4.

Given PTl = (TPTl ,L∗PTl
) and CTl = (TCTl ,L∗CTl

), we define the corresponding tree-based function

fPTl,CTl : {0, 1}l → {0, 1}l

fPTl,CTl(L∗PTl
(v

L,TPTl
i)) , L∗CTl

(v
L,TCTl
i),

where v
L,TPTl
i and v

L,TCTl
i denote the i-th leave nodes in the plaintext tree and ciphertext tree, respectively,

1 ≤ i ≤ 2l. Let TBFl denote the set of all tree-based functions, i.e.,

TBFl = {fPTl,CTl | LCTl : V
TCTl
I → {0, 1}}. �

Remark 2. In the definition of the tree-based function fPTl,CTl , the plaintext tree PTl is fixed since LPTl is
fixed; but the ciphertext tree is not fixed. Since LCTl uniquely defines L∗CTl

, it also determines the ciphertext
tree CTl. Therefore, the INL function of ciphertext tree LCTl uniquely determines the tree-based function
fPTl,CTl .

We show the equivalence of the tree-based function and the prefix-preserving function in Proposition 3.6,
but omit the proof due to the space limitation.

Proposition 3.6. TBFl = FPPE
{0,1}l,{0,1}l .

8

Remark 3. According to the proof of Proposition 3.6, the prefix-preserving property of the tree-based
function can be geometrically interpreted as follows. For any x ∈ {0, 1}l, it corresponds to the j-th leaf

node v
L,TPTl
j in the plaintext tree V

TPTl
L . Actually j = B(x) + 1 where B(x) denotes the binary number of

x. For x1, x2 ∈ {0, 1}l, the paths P (v
L,TPTl
j1

) and P (v
L,TPTl
j2

) on the plaintext tree share |LCP (x1, x2)| many

common edges. The tree-based function has the prefix-preserving property such that the paths P (v
L,TCTl
j1

)

and P (v
L,TCTl
j2

) on the ciphertext tree also share |LCP (x1, x2)| many common edges.

Based on Definition 2.3 and Proposition 3.6, we give an alternative definition for the ideal PPE object in
Definition 3.7.

Definition 3.7 (alternative definition of the ideal PPE object). It has the same definition as that of
Definition 2.3 except that K∗ uniformly randomly selects f from TBFl instead of FPPE

{0,1}l,{0,1}l . �

3.3.2 Security Proof

Now we prove that the ideal PPE object is secure under IND-PCPA. It also implies that the real PPE
schemes, which are computationally indistinguishable to the ideal PPE object, achieve the highest security
notion for PPE. Essentially, we need to show that in the security notion IND-PCPA, the number of the tree-
based functions mapping x0i to E∗(xbi , k) equals to that of the tree-based functions mapping x1i to E∗(xbi , k),
where (x0i , x

1
i) are the queried plaintexts pairs, 1 ≤ i ≤ h. Since LCTl uniquely determines the tree-based

function, in order to count those numbers, we need to consider the effect towards LCTl (partial mapping will
be determined) when given the plaintext ciphertext pairs (x0i , E∗(xbi , k))/(x1i , E∗(xbi , k)), 1 ≤ i ≤ h.

Lemma 3.8. Given h plaintext ciphertext pairs (xi, yi) of fPTl,CTl , then the labels of the internal nodes on
h paths P (vji) are determined, where vji is decided by xi and the labels are decided by yi, 1 ≤ i ≤ h.

Proof. Consider plaintext ciphertext pair (xi, yi) ∈ {0, 1}l × {0, 1}l such that fPTl,CTl(xi) = yi. We assume

that xi = L∗PTl
(v

L,TPTl
ji

) where v
L,TPTl
ji

denotes the ji-th leaf node in the plaintext tree, and yi = yi1 · · · yil,
yiu ∈ {0, 1}, 1 ≤ u ≤ l. According to the definition of tree-based function,

yi = fPTl,CTl(xi) = fPTl,CTl(L∗PTl
(v

L,TPTl
ji

)) = L∗CTl
(v

L,TCTl
ji

).

Therefore, L∗CTl
(P (v

L,TCTl
ji

)[u]P (v
L,TCTl
ji

)[u + 1]) = yiu for 1 ≤ u ≤ l according to the definition of L∗CTl
. It

implies that the labels of the edges on the path P (v
L,TCTl
ji

) are determined by yi. Since the labels of the
internal nodes on the path and the labels of the edges on the same path can be mutually decided, the labels

of the internal nodes on the path P (v
L,TCTl
ji

) are decided by yi. Hence, given the plaintext ciphertext pairs

(xi, yi) where xi = L∗PTl
(v

L,TPTl
ji

), for the INL function LCTl , the labels of the internal nodes on the path

P (v
L,TCTl
ji

) are determined, 1 ≤ i ≤ h.

Consider the adversary counting the number of tree-based functions mapping x0i /x1i to E∗(xbi , k), 1 ≤ i ≤ h.
Since the tree-based function is uniquely determined by the INL function LCTl (Remark 2), it is equivalent
to count the number of INL functions. The important observation is: according to Lemma 3.8, the
labels of the internal nodes on the corresponding h paths are determined. Therefore it suffices to count
the rest undetermined labels since they decides the number of INL functions. Following such idea, we use
mathematical induction on h to prove that the two numbers are identical in Lemma 3.9.

Lemma 3.9. The number of the tree-based functions mapping x0i to E∗(xbi , k)) equals to that of the tree-based
functions mapping x1i to E∗(xbi , k)), 1 ≤ i ≤ h.

Proof. Let x0i = L∗PTl
(v

L,TPTl
j0i

) where v
L,TPTl
j0i

denotes the j0i -th leaf node in the plaintext tree, and x1i =

L∗PTl
(v

L,TPTl
j1i

) where v
L,TPTl
j1i

denotes the j1i -th leaf node in the plaintext tree, 1 ≤ i ≤ h. For tree-based

9

functions mapping x0i to E∗(xbi , k), the labels of the internal nodes on the path P (v
L,TCTl
j0i

) in the ciphertext

tree are determined; for tree-based functions mapping x1i to E∗(xbi , k), the labels of the internal nodes on the

path P (v
L,TCTl
j1i

) in the ciphertext tree are determined, 1 ≤ i ≤ h (Lemma 3.8). Hence it suffices to prove

that the determined labels of the internal nodes in that two ciphertext trees are assigned consistent values
and the number of the undetermined labels of the internal nodes in that two ciphertext trees are identical,
i.e.

| ∪1≤i≤h PI(v
L,TCTl
j0i

)| = | ∪1≤i≤h PI(v
L,TCTl
j1i

)| (1)

where PI(v) (defined in Definition 3.3) denotes the set of internal nodes on the path P (v).

We use mathematical induction on h to prove it. For h = 1, it is obvious that the labels in PI(v
L,TCTl
j01

)/PI(v
L,TCTl
j11

)

are assigned consistent values with respect to E∗(xb1, k) according to the proof of Lemma 3.8. Also |PI(v
L,TCTl
j01

)| =

l−1 = |PI(v
L,TCTl
j11

)|. So we assume that the induction assumption holds for h < h′ and consider the situation

for h = h′. According to the inductional assumption, the labels in ∪1≤i≤h′−1PI(v
L,TCTl
j0i

)/∪1≤i≤h′−1PI(v
L,TCTl
j1i

)

are assigned consistent values. Also, |∪1≤i≤h′−1PI(v
L,TCTl
j0i

)| = |∪1≤i≤h′−1PI(v
L,TCTl
j1i

)| and |PI(v
L,TCTl
j0
h′

)| =

|PI(v
L,TCTl
j1
h′

)|. Since (x0i , x
1
i) ∈ PPPh′ , LCP (x0h′ , x

0
i) = LCP (x1h′ , x

1
i) for 1 ≤ i ≤ h′ − 1 according to the

definition of PPPh′ . Note that x0i = L∗PTl
(v

L,TPTl
j0i

) and x1i = L∗PTl
(v

L,TPTl
j1i

) for 1 ≤ i ≤ h′, we have

|PI(v
L,TPTl
j0
h′

) ∩ PI(v
L,TPTl
j0i

)| = |PI(v
L,TPTl
j1
h′

) ∩ PI(v
L,TPTl
j1i

)| for 1 ≤ i ≤ h′ − 1 according to the definition of

NEL function L∗PTl
. Therefore

|PI(v
L,TCTl
j0
h′

) ∩ PI(v
L,TCTl
j0i

)| = |PI(v
L,TCTl
j1
h′

) ∩ PI(v
L,TCTl
j1i

)| (2)

for 1 ≤ i ≤ h′ − 1 according to the conclusions in Remark 3. Without loss of generality, we assume b = 0.

So the labels in PI(v
L,TCTl
j0
h′

)/PI(v
L,TCTl
j0i

) are assigned consistent values for 1 ≤ i ≤ h′ − 1, i.e., the labels

in PI(v
L,TCTl
j0
h′

) ∩ PI(v
L,TCTl
j0i

) are assigned the same values no matter with respect to E∗(xbh′ , k) or E∗(xbi , k)

for 1 ≤ i ≤ h′ − 1. Consequently, the labels in PI(v
L,TCTl
j1
h′

) ∩ PI(v
L,TCTl
j1i

) are assigned the same values no

matter with respect to E∗(xbh′ , k) or E∗(xbi , k) for 1 ≤ i ≤ h′ − 1 based on the proof in Lemma 3.8 and (2),

which implies that the labels in PI(v
L,TCTl
j1
h′

)/PI(v
L,TCTl
j1i

) are assigned consistent values for 1 ≤ i ≤ h′ − 1.

Therefore, the labels in ∪1≤i≤h′PI(v
L,TCTl
j0i

)/∪1≤i≤h′PI(v
L,TCTl
j1i

) are assigned consistent values. Also, let

1 ≤ i0 ≤ h′ − 1 such that

|PI(v
L,TCTl
j0
h′

) ∩ PI(v
L,TCTl
j0i0

)| = max
1≤i≤h′−1

{|PI(v
L,TCTl
j0
h′

) ∩ PI(v
L,TCTl
j0i0

)|}

and

|PI(v
L,TCTl
j1
h′

) ∩ PI(v
L,TCTl
j1i0

)| = max
1≤i≤h′−1

{|PI(v
L,TCTl
j1
h′

) ∩ PI(v
L,TCTl
j1i0

)|}.

Then

| ∪1≤i≤h′ PI(v
L,TCTl
j0i

)| = |(∪1≤i≤h′−1PI(v
L,TCTl
j0i

)) ∪ PI(v
L,TCTl
j0
h′

)|

= | ∪1≤i≤h′−1 PI(v
L,TCTl
j0i

)|+ |PI(v
L,TCTl
j0
h′

)| − |PI(v
L,TCTl
j0
h′

) ∩ PI(v
L,TCTl
j0i0

)|

= | ∪1≤i≤h′−1 PI(v
L,TCTl
j1i

)|+ |PI(v
L,TCTl
j1
h′

)| − |PI(v
L,TCTl
j1
h′

) ∩ PI(v
L,TCTl
j1i0

)|

= |(∪1≤i≤h′−1PI(v
L,TCTl
j1i

)) ∪ PI(v
L,TCTl
j1
h′

)| = | ∪1≤i≤h′ PI(v
L,TCTl
j1i

)|.

It completes the induction.

10

In Theorem 3.10, we prove the security of the ideal PPE object.

Theorem 3.10. The ideal PPE object SE∗ is secure under IND-PCPA.

Proof. According to Proposition 3.6 and Lemma 3.9, the number of the prefix-preserving functions mapping
x0i to E∗(xbi , k)) equals to that of the prefix-preserving functions mapping x1i to E∗(xbi , k)), 1 ≤ i ≤ h.
Therefore Pr(ExpIND-PCPA-b

SE∗,A = 1) = 1
2 for b = 0, 1. Hence,

AdvIND-PCPA
SE∗,A = Pr(ExpIND-PCPA-1

SE∗,A = 1)− Pr(ExpIND-PCPA-0
SE∗,A = 1) = 0,

which implies that the ideal PPE object SE∗ is secure under IND-PCPA.

4 PPE for Multi-user Systems

In this section we develop a security-enhanced protocol to support PPE in multi-user systems. The multi-
user system we consider consists of a single server hosting a database and a set of users. Let DB denote the
server and U = {Uj | j ≥ 1} denote the set of users. The system operations consist of a request protocol Q,
in which a user Ui issues a request (query) q to DB, where q may contain some secret data x that needs to
be transmitted with q to DB, and a response protocol P , in which the DB sends back the response r to the
user, where r may include a returned data object y in encrypted form. Note that a request or a response
may include multiple data objects, but the processing will be the same. For simplicity, we assume that there
is only one secret data item in q or r.

The PPE protocol should guarantee functionality requirements including: (1) When q reaches DB, x should
have been encrypted by the PPE using the key k; (2) When r is returned to the user, the user should be able
to obtain the plaintext y of r. The protocol should also satisfy some security requirements, such as no entity
in the system should have the knowledge of the key k and x should be protected against all system entities
but the owner. To avoid informal security descriptions and facilitate formal security proofs, we define the
security requirements via an ideal model, in which (1) encryption and decryption are performed by a trusted
party TP who holds the key k (key agents replaced by TP); (2) the communication channels between TP
and users/DB are secure. The ideal model implies the highest security level that the real PPE protocol
(including Q and P) can achieve and we will prove that The real protocol is “equivalent” to the ideal model.

The system entities, users, DB, and key agents, may collude to acquire additional information. We unify the
possible collusions and construct a passive adversary A who tries to gain extra information by compromising
some entities in the system. We assume that the key agents and DB are better protected than the users,
and the adversary can compromise less than t key agents (t ≤ m

2 + 1) simultaneously. Thus, the adversary
structure is defined as

Z = {UA ∪KAA, UA ∪KAA ∪ {DB} | UA ⊂ U, |KAA| < t ≤ m

2
+ 1}, (3)

where UA is the set of compromised users and KAA is the set of compromised key agents (note that UA and
KAA could be empty).

In Subsection 4.1, we introduce the general system design. Then, we discuss the response and request
protocols in the following two subsections. The proof that shows our PPE protocol achieves the functionality
requirements is given in Subsection 4.4. In Subsection 4.4 we formally define the security requirement and
prove that our PPE protocol achieves the requirement.

4.1 General System Design

For convenience, we assume that there are only numerical data in DB. Data of other types can be represented
by numerical data easily. For each critical data item x, theDB maintains the ciphertexts (CPPE(x), CCE(x)).

11

CPPE(x) is encrypted using a PPE scheme with a master key k. CCE(x) is encrypted using a classical en-
cryption scheme (e.g. AES). The purpose of storing CCE(x) is to support efficient transmission of responses.
For each data item x, a different data key dkx is used to generate CCE(x). A user with access privilege to
data item x will be granted key dkx. In real implementation, the data items with the same access privileges
can be grouped together into an access domain and only one key is needed for each access domain. For
example, if data items x and y can be accessed by exactly the same set of users, then x and y can be in the
same access domain, i.e., we can have dkx = dky.

Request protocol Q should transfer q to DB while ensuring the correct and secure encryption of CPPE(x)
and CCE(x) in the request transmission process. (Note that Ui can encrypt x using dkx and obtain CCE(x).
But since Ui does not have the PPE master key k, it is not possible for Ui to compute CPPE(x). Thus, a set
of key agents (KA) are introduced to perform PPE encryption in the request protocol. Let KA = {KAj |
1 ≤ j ≤ m} denote the set of key agents. The key k is shared among the key agents such that no single entity
in the system knows the master encryption key k. The user shares x and sends the shares to the key agents
in KA. The key agents distributedly encrypt the shares of x with the shares of k and send the encrypted
shares to DB. DB reconstructs the shares and get the ciphertexts CPPE(x). The “distributed” encryption
process is similar to the decryption process in the threshold public-key crypto system [13, 5, 6, 12, 7, 8]. For
the response protocol P , we use a simple but innovative design to achieve efficiency without going through
the key agents.

4.2 Response Protocol

In the response protocol P , w simply include CCE(y1), CCE(y2), · · · , CCE(yt) in r. The user should have
access rights to y1, y2, · · · , yt and, hence, should have the encryption keys to decrypt the data items in
r. Consider the security of the system against adversary A (assume that A has not compromised the
users in Uy1 , · · · , Uyt , where Uyj is the set of users who can access yj). Since the protocol only transfers
CCE(y1), CCE(y2), · · · , CCE(yt), A cannot get the encryption keys and cannot compromises y1, y2, · · · , yt.
Note that the design of P is fully discussed here and will not be discussed further.

4.3 Request Protocol

We design the request protocol Q which consists of the distributed PPE protocol PEd and the reduction
algorithm RA. In PEd , the key agents “distributedly” evaluated PPE Ed and the DB assembles the result
shares into the intermediate ciphertext z. In RA, z is reduced (in size) to the single-bit ciphertext y based
on a mapping function f . In the following subsections, we introduce the primitives used in the protocol and
discuss the details of PEd and RA.

4.3.1 Primitives

Here we introduce the primitives used for constructing PEd , including the secret sharing algorithm Π and
reconstructing algorithm Re over Zp where p is a prime number, another secret sharing algorithm Π′ and
reconstructing algorithm Re′ over a multiplicative group G satisfying that the decisional Diffie-Hellman
(DDH) problem is hard over G, the hash function H mapping strings to Zp, and the hash function H ′

mapping strings to G.

Let G be a cyclic group where |G| = p and p is a prime number, and g ∈ G be a generator. Without loss of
generality, let G be a multiplicative group with the identity 1. We assume that the decisional Diffie-Hellman
(DDH) problem is hard over G, i.e. (g, gu, gv, guv) and (g, gu, gv, gw) are computationally indistinguishable
for randomly selected u, v, w from Zp. Let H : {Null} ∪ {0, 1}∗ → Zp be a cryptographic hash function,

where Null denotes the empty string. We assume that H is a random oracle, and then R(x, k) , gH(x)·k is
a pseudorandom function according to [11]. Let H ′ : {0, 1}∗ → G be a cryptographic hash function. Since a
cryptographic hash function should be collision-free, we assume that H ′(0) 6= H ′(1).

12

Let Π and Re be the sharing and reconstructing algorithms of the (t,m) threshold secret sharing scheme
over Zp [13]. For secret x ∈ Zp,

Π(x) = (s1, · · · , sm) ∈ Zm
p ,

where si = f(i) and f is a randomly selected polynomial over Zp with degree t− 1 satisfying f(0) = x. The
reconstructing algorithm

Re(si1 , · · · , sin) = x

for any n (n ≥ t) shares si1 , · · · , sin ∈ {s1, · · · , sm} by using the Lagrange’s interpolation formula. The
(t,m) threshold secret sharing scheme can be extended to the group G [6, 11]. Let Π′ and Re′ be the sharing
and reconstructing algorithms of the (t,m) threshold secret sharing algorithm over G. For any secret x′ ∈ G

Π′(x′) = (s′1, · · · , s′m) ∈ Gm,

where s′i = x′ · gf ′(i) and f ′ is a randomly selected polynomial over Zp with degree t− 1 satisfying f ′(0) = 0.
The reconstructing algorithm

Re′(s′i1 , · · · , s
′
in) = x′

for any n (n ≥ t) shares s′i1 , · · · , s
′
in
∈ {s′1, · · · , s′m} by using the Lagrange’s interpolation formula to the

exponents.

4.3.2 Protocol PEd

Suppose that the master encryption key k ∈ Zp is shared by Π, i.e., Π(k) = (k1, · · · , km), and the share
ki is distributed to KAi for 1 ≤ i ≤ m. We describe the protocol PEd to “distributedly” evaluate the
PPE algorithm Ed in Algorithm 1. It encrypts the plaintext x = x1 · · ·xl to the intermediate ciphertext
z = z1 · · · zl.

Algorithm 1 Protocol PEd
goal: distributedly encrypt x = x1 · · ·xl to z = z1 · · · zl
for i = 1 to l do

the user shares H ′(xi) and H(x1, · · · , xi−1) by Π′ and Π, respectively;
let Π′(H ′(xi)) = (h′i1, · · · , h′im) and Π(H(x1, · · · , xi−1)) = (hi1, · · · , him);
for j = 1 to m do the user sends (h′ij , hij) to KAj ; end for

end for
for i = 1 to l do

for j = 1 to m do KAj computes h′′ij = h′ij · ghij ·kj and sends it to the DB; end for
end for
for i = 1 to l do

the DB selects n (n ≥ 2t− 1) shares h′′ij1 , · · ·h
′′
ijn

and computes zi = Re′(h′′ij1 , · · ·h
′′
ijn

);
end for
the DB retrieves the intermediate ciphertext z = z1 · · · zl;

As shown in Algorithm 1, for plaintext x = x1 · · ·xl, the user shares H ′(xi) and H(x1, · · · , xi−1) to the key
agents, the key agents distributedly encrypt it, and DB assembles the encrypted shares into an intermediate
ciphertext z = z1 · · · zl. We prove the correctness of this protocol in Lemma 4.1.

Lemma 4.1. The DB retrieves the ciphertext encrypted by Ed in the end of the distributed protocol PEd .

13

Proof. According to PEd , H ′(xi) and H(x1, · · · , xi−1) are shared by the user. Let h′ij = H ′(xi) · gf
′
i(j)

be the shares of H ′(xi), where f ′i is a randomly selected polynomial over Zp with degree t − 1 satisfying
f ′i(0) = 0, 1 ≤ j ≤ m. Let hij = fi(j) be the shares of H(x1, · · · , xi−1), where fi is a randomly selected
polynomial over Zp with degree t − 1 satisfying fi(0) = H(x1, · · · , xi−1), 1 ≤ j ≤ m. The key agent KAj

will compute h′′ij = h′ij · ghij ·kj = H ′(xi) · gf
′
i(j) · gfi(j)·kj = g(logg H′(xi))+f ′i(j)+fi(j)·kj , 1 ≤ j ≤ m. Notice that

(loggH
′(xi)) + f ′i(j) is the share of loggH

′(xi) using a polynomial over Zp with degree t − 1, 1 ≤ j ≤ m.
And fi(j) · kj is the share of H(x1, · · · , xi−1) · k using a polynomial over Zp with degree 2t− 2, 1 ≤ j ≤ m.
Therefore (loggH

′(xi))+f ′i(j)+fi(j) ·kj is the share of (loggH
′(xi))+H(x1, · · · , xi−1) ·k using a polynomial

over Zp with degree 2t− 2, 1 ≤ j ≤ m. Hence the DB reconstructs

zi = H ′(xi) ·R(x1, · · · , xi−1, k),

where R(x1, · · · , xi−1, k) = gH(x1,··· ,xi−1)·k by using n (n ≥ 2t− 1) shares based on the Lagrange’s interpo-
lation to the exponents, 1 ≤ i ≤ l.

We show that Ed preserves prefix and it is secure under IND-PCPA in Lemma 4.2, but omit the proof due
to the space limitation.

Lemma 4.2. The encryption Ed preserves prefix (i.e., two plaintexts share i common prefix if and only if
the ciphertexts share i common pre-blocks). Furthermore, it is secure under IND-PCPA.

4.3.3 Reduction Algorithm

Since Ed(x) = z preserves prefix, the ciphertext z = z1 · · · zl can support prefix search already. But Ed
increases the size of the ciphertext since zi is a block instead of a bit. This can impact the search performance
significantly. We develop a reduction algorithm RA to reduce the intermediate ciphertext z = z1 · · · zl to
the final single-bit ciphertext y = y1 · · · yl, 1 ≤ i ≤ l. We use a mapping function f to record the mapping
between zi and yi. For a node v, let l(v) denote the left child node, r(v) denote the right child node, vl(v)
denotes the edge connecting v and l(v), and vr(v) denotes the edge connecting v and r(v). RA is designed
in Algorithm 2.

14

Algorithm 2 The Reduction Algorithm RA

goal: reduce the intermediate ciphertext z = z1 · · · zl to the final ciphertext y = y1 · · · yl
initialization: the mapping function f = null
v = root;
while v 6= leaf node do

if f(vl(v)) = f(vr(v)) = null then

b
$←− {0, 1}

if b = 0 then f(vl(v)) = zi; yi = 0; v = l(v);
else f(vr(v)) = zi; yi = 1; v = r(v);
end if

end if
if f(vl(v)) 6= null & f(vr(v)) = null then

if zi = f(vl(v)) then yi = 0; v = l(v);
else f(vr(v)) = zi; yi = 1; v = r(v);
end if

end if
if f(vr(v)) 6= null & f(vl(v)) = null then

if zi = f(vr(v)) then yi = 1; v = r(v);
else f(vl(v)) = zi; yi = 0; v = l(v);
end if

end if
if f(vl(v)) 6= null & f(vr(v)) 6= null then

if zi = f(vl(v)) then yi = 0; v = l(v);
else yi = 1; v = r(v);
end if

end if
end while
return y = y1 · · · yl;

In Algorithm 2, if f has recorded that zi has already been mapped to a bit, then the mapping should be
retained. Otherwise, zi is mapped to a chosen bit and f records this new mapping. Lemma 4.3 proves the
security and prefix preserving properties of the algorithm, the proof is omitted due to the space limitation.

Lemma 4.3. RA is efficient. Furthermore, the encryption algorithm RA ◦ Ed preserves prefix and is secure
under IND-PCPA.

4.4 Functionalities and Security Requirements Proofs for the Protocols

In this section, we prove that our PPE protocol satisfies the functionality and security requirements. In The-
orem 4.4 we prove that the request protocol Q and response protocol P satisfy the functionality requirements
(1) and (2), respectively.

Theorem 4.4. The request protocol Q realizes the functionality requirement (1) and the response protocol
P realizes the functionality requirement (2).

Proof. According to Lemmas 4.1, 4.2, and 4.3, the DB receives the ciphertext of x encrypted by the PPE
RA◦Ed in Q. Therefore the request protocol Q realizes the functionality requirement (1). In P the returned
data object y will be encrypted. The recipient user will have the encryption key and, hence, can decrypt the
ciphertext and obtain y. Hence the response protocol P realizes the functionality requirement (2).

We adopt the security definition for multiparty computation [4] to define the security requirement for our
system, which is based on real model and ideal model defined in Definition 4.5.

15

Definition 4.5 (Real model and ideal model). The real model is exactly the request protocol Q and response
protocol P . In the ideal model, there are users, the DB, and a trusted (incorruptible) party TP who holds
the key. There are secure communication channels between the TP and users/DB. In the ideal model the
TP receives/sends the message from/to users/DB, and does all the encryptions/decryptions needed in the
protocols Q and P . �

Now we define the security requirement in Definition 4.6. Essentially, it requires that the real model is
“equivalent” to the ideal model.

Definition 4.6 (Security requirement). Let V IEWR(Z) be the instance event randomly selected from the
event space of what the adversary A can observe in the real model by compromising entities in the set Z ∈ Z.
Let V IEWI(Z) be the instance event randomly selected from the event space of what the adversary A can
observe in the ideal model by compromising the entities in the set Z −KA, the real model is secure if the
adversary cannot retrieve more information from the real model than the ideal model, or equivalently, if there
exists a PPT simulator S such that V IEWR(Z) is computationally indistinguishable from S(V IEWI(Z)),
i.e. the advantage of A, defined by

AdvA , Pr[A(V IEWR(Z)) = 1]− Pr[A(S(V IEWI(Z))) = 1],

is bounded by a negligible function of the security parameter for any Z ∈ Z. �

We prove that our system achieves the security requirement in Theorem 4.7.

Theorem 4.7. Our system achieves the security requirement in Definition 4.6.

Proof. First we consider the security of Q. In both the real model and the ideal model, the adversary A
can compromise some users and view the same thing. In the real model A can compromise less than t key
agents; while in the ideal model A cannot compromise the trusted party TP . Since the user shares H ′(xi)
and R(x1, · · · , xi−1, k) to the key agents by using (t,m) secret sharing scheme and A compromises less than
t shares, the view of A is random numbers and, hence, can be simulated by S. In the real model A can
compromise the DB and view the intermediate ciphertext z = z1 · · · zl, the final ciphertext y = y1 · · · yl, and
the mapping function f ; while in the ideal model A can only view the final ciphertext y. Since the difference
between the intermediate ciphertext z and final ciphertext y is that zi is a random block and yi is a random
bit. Therefore z can be simulated by S based on y. The mapping function f can be simulated accordingly
based on z and y. Hence, V IEWR can be simulated by S based on V IEWI .

Then we consider the security of P . In P only the users who can access rights to the data will have the
key. Thus, the adversary A cannot get the encryption keys unless A compromises the corresponding users.
Therefore P achieves the security requirement because the adversary cannot achieve more information in P
than in the ideal model.

5 Experimental Study

We conduct experiments to study the performance of the request protocol Q. Specifically, we study the
performance of Ed since it is the dominant factor. First, we consider the secret sharing factor in Ed. In Ed,
two secret sharing schemes have been used, one is Π and Re over Zp, and the other is Π′ and Re′ over G.
Various groups can be used for G and here we use the Schnorr group, i.e., G is a multiplicative subgroup of
Z∗q , where |G| = p and p is a 256-bit prime number. We implemented the algorithms and ran them 104 trials
on a PC with 2.50GHz Intel Core 2 Duo Processor. The average execution times are shown in Figure 1.

16

2 3 4 5 6

0

5 · 10−2

0.1

t

T
im

e
(m

il
li

se
co

n
d
s)

Π
Re

2 3 4 5 6

0

0.5

1

1.5

2

t

Π′

Re′

Figure 1: Computation Cost of Secret Sharing over Zp and G (Share Number m = 6).

As shown in Figure 1, Π′ and Re′ has a higher computation cost than Π and Re because the computation
of Π′ and Re′ needs extra group operations. Since the Lagrange’s interpolation is linear, the reconstruction
algorithm has a lower computation cost than the sharing algorithm which requires polynomial evaluation.
Both the sharing time and the reconstruction time increase when the threshold t increases (which is obvious
from the sharing and reconstruction approach).

To factor in the communication latencies between the system entities, we allocate the user, the key agents and
the DB to different PlanetLab computers and measure the communication latencies between them. The user
is in Dallas and the DB is in Los Angeles. Six key agents (i.e., m = 6) are allocated to Phoenix (Arizona),
Salt Lake City (Utah), Carson City (Nevada), Eugene (Oregon), Albuquerque (New Mexico), and Denver
(Colorado). Both hash functions H and H ′ are SHA-2. We assume that the request message without the
critical data is of size 170 bytes (based on the average size of some common queries). The critical data size
is l bits and we set l = {8, 16, 32, 64, 128, 256, 512, 1024}. Since the threshold t should satisfy the condition
t ≤ m

2 + 1 (Condition (3)), we set t = 2, 3, 4. For comparison purpose, we also consider a “No Encryption”
protocol and a “PPE” protocol. In “No Encryption”, the user directly sends the query (with the critical
data) to the DB without any encryption. In “PPE”, we assume that the user has the encryption key and
encrypts the critical data by the PPE constructed in [14], and then sends the query (with the encrypted
critical data) to the DB. The experimental results are given in Figure 2 and summarized in Table 1.

17

0 200 400 600 800 1,000

200

400

600

l

T
im

e
(m

il
li

se
co

n
d
s)

No Encryption
PPE

0 200 400 600 800 1,000
0

1,000

2,000

3,000

4,000

5,000

l

Ed(t = 2)

Ed(t = 3)

Ed(t = 4)

Figure 2: Encryption Cost Comparisons for Different Protocols.

l “No Encryption” “PPE” Ed(t = 2) Ed(t = 3) Ed(t = 4)

8 88.11 92.14 305.01 306.27 309.71
16 88.16 96.22 373.55 376.05 382.94
32 88.27 104.38 483.21 488.21 502.00
64 88.47 120.70 661.87 671.88 699.46
128 88.88 153.33 960.05 980.07 1035.24
256 89.67 218.56 1471.30 1511.34 1621.67
512 91.16 348.95 2371.91 2451.98 2672.65
1024 93.86 609.45 3999.07 4159.23 4600.57

Table 1: Encryption Cost (in milliseconds) Comparisons for Different Protocols.

As shown in Figure 2 and Table 1, the encryption cost of “No Encryption” < the encryption cost of “PPE”
< the encryption cost of Ed for t = 2 < the encryption cost of Ed for t = 3 < the encryption cost of Ed
for t = 4. The encryption costs of all protocols increase when l increases because the length of the critical
data increases. “No Encryption” requires approximately 90 millisecond, and its encryption time increases
slowly when the length of the critical data increases because it does not incur encryption overhead but only
incurs communication overhead. “PPE” requires 92 milliseconds to 609 milliseconds when l increases from
8 to 1024. The encryption costs of PPE and Ed grow linearly with the increase of the critical data size.
Relatively, Ed incurs a much higher encryption cost than pure “PPE”, from 3 folds when data size is 8 bits
to 6 folds when data size becomes 1024. This is because it also incurs the sharing and reconstructing cost
as well as a higher communication cost due to the use of intermediate key agents. However, a multi-user
PPE protocol is essential and the cost is bearable. When t increases, the computation cost of secret sharing
increases and, hence, the encryption cost of Ed increases, but the increase is relatively slow. Thus, using
additional key agents to enhance security can be a feasible method.

6 Conclusion

Existing cryptographic security proofs for PPE schemes are based on the indistinguishability of the real
PPE scheme and the ideal PPE object. This is insufficient because the security of the ideal PPE object is

18

unknown. We developed the first complete security proof for PPE by qualifying the security of the ideal
PPE object. We created a new security notion, IND-PCPA, and proved that the ideal PPE object is secure
under IND-PCPA and can at the best reach IND-PCPA security.

We also built a protocol and extended an existing PPE scheme to support multi-user systems, in which users
do not know the master encryption key (in fact, no single entity in the system knows the master encryption
key) for encrypting and decrypting the data to be sent to and received from the server, respectively. We
solve the challenge and designed a distributed PPE encryption scheme for the multi-user protocol. The
correctness and security of the multi-user protocol have been proven rigorously. The performance of the
protocol is studied experimentally to illustrate its feasibility.

References

[1] G. Amanatidis, A. Boldyreva and A. O’Neill, Provably-secure schemes for basic query support in out-
sourced databases, Working Conference on Data and Applications Security, 2007, pp. 14-30.

[2] M. Bellare, T. Kohno, and C. Namprempre, Authenticated encryption in SSH: provably fixing the SSH bi-
nary packet protocol, Proceedings of the 9th ACM conference on Computer and Communications Security
(CCS-02), 2002, pp. 1-11.

[3] A. Boldyreva, N. Chenette, Y. Lee, A. O’Neill, Order-preserving symmetric encryption, Eurocrypt 2009,
pp. 224-241.

[4] R. Cramer, I. Damgard, J. Nielsen, Multiparty Computation, an Introduction, 2009,
http://cs.au.dk/ jbn/smc.pdf.

[5] Y. Desmedt, Society and group oriented cryptography: an new concept, Advances in Cryptography -
CRYPTO ’87, 1987, Springer-Verlag LNCS 293, pp. 120-127.

[6] Y. Desmedt and Y. Frankel, Threshold Crypto-Systems, Advances in Cryptography - CRYPTO ’89, 1989,
Springer-Verlag LNCS 435, pp. 307-315.

[7] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, Robust and efficient sharing of RSA functions,
Advances in Cryptology - CRYPTO ’96, 1996, Springer-Verlag LNCS 1109, pp. 157-172.

[8] P. Gemmell, An introduction to threshold cryptography, Cryptobytes, 1997, pp. 7-12.

[9] J. Katz, Y. Lindell, Introduction to Modern Cryptography: Principles and Protocols, Chapman &
Hall/CRC, 2007.

[10] J. Li, E. R. Omiecinski, Efficiency and security trade-off in supporting range queries on encrypted
databases, Data and Applications Security 2005, pp. 69-83.

[11] M. Naor, B. Pinkas, O. Reingold, Distributed Pseudo-Random Functions and KDCs, Advances in Cryp-
tology EUROCRYPT’99 1999, pp. 327-346.

[12] T. Pederson, A threshold crypto-system without a trusted dealer, Advances in Cryptology - EUROCRYPT
’91, 1991, Springer-Verlag LNCS 547, 522-526.

[13] A. Shamir, How to share a secret, Communications of the ACM 1979, 22, pp. 612-613.

[14] J. Xu, J. Fan, M.H. Ammar, and S.B. Moon, Prefix-preserving IP address anonymization: Measurement-
based security evaluation and a new cryptography-based scheme, IEEE International Conference on Net-
work Protocols, pp. 280-289, 2002.

19

