
SmartTokens: Delegable Access Control with
NFC-enabled Smartphones

(Full Version)

Alexandra Dmitrienko1, Ahmad-Reza Sadeghi2, Sandeep Tamrakar3, and
Christian Wachsmann4

1 Fraunhofer SIT Darmstadt, Germany
alexandra.dmitrienko@trust.cased.de

2 Technische Universität Darmstadt & Fraunhofer SIT Darmstadt, Germany
ahmad.sadeghi@trust.cased.de

3 Aalto University School of Science, Finland
sandeep.tamrakar@aalto.fi

4 Technische Universität Darmstadt (CASED), Germany
christian.wachsmann@trust.cased.de

Abstract. Today’s smartphones and tablets offer compelling computing
and storage capabilities enabling a variety of mobile applications with
rich functionality. The integration of new interfaces, in particular near
field communication (NFC) opens new opportunities for new applications
and business models, as the most recent trend in industry for payment
and ticketing shows. These applications require storing and processing
security-critical data on smartphones, making them attractive targets for
a variety of attacks. The state of the art to enhance platform security
concerns outsourcing security-critical computations to hardware-isolated
Trusted Execution Environments (TrEE). However, since these TrEEs
are used by software running in commodity operating systems, malware
could impersonate the software and use the TrEE in an unintended way.
Further, existing NFC-based access control solutions for smartphones are
either not public or based on strong assumptions that are hard to achieve
in practice. We present the design and implementation of a generic ac-
cess control system for NFC-enabled smartphones based on a multi-level
security architecture for smartphones. Our solution allows users to dele-
gate their access rights and addresses the bandwidth constraints of NFC.
Our prototype captures electronic access to facilities, such as entrances
and offices, and binds NFC operations to a software-isolated TrEE es-
tablished on the widely used Android smartphone operating system. We
provide a formal security analysis of our protocols and evaluated the
performance of our solution.

1 Introduction
Modern smartphones are equipped with a variety of communication interfaces
and enable mobile access to many different services, including Internet, web ser-

vices, e-mail, multi-media entertainment, navigation and location-based services.
The integration of additional communication interfaces, in particular near field
communication (NFC) [35], greatly enlarges the application area of smart devices.
NFC-based access control systems on smartphones and commercial NFC-based
applications for ticketing and payment are particularly promoted by industry.

Electronic access control tokens for smartphones offer a variety of appealing
features: they can be distributed and revoked remotely, delegated by users, and
may support context-aware and time-limited access control policies. There are
already some commercial systems on the market, including electronic hotel room
keys [1,7,15] that are sent to the customer via SMS or email, and electronic car
keys [14,40]. These applications require storing and processing security-critical
data on smartphones, raising risks of being targeted by attacks. However, the
security properties of current solutions are unclear, in particular because their
design and implementation details are not publicly available and most operating
systems for smartphones are vulnerable to malware [31,32].

A vast amount of research (such as in [16,25,11]) has been performed on
hardening platform security based on secure hardware that is already available
in many smartphones, such as M-Shield [3] and ARM TrustZone [2] on Nokia
devices. Existing security hardware typically provides a trusted execution envi-
ronment (TrEE) that enforces secure and isolated execution of small programs.
However, currently available TrEEs are typically resource-constrained and pre-
vent the implementation of important security functionalities, such as secure
user interfaces [11]. Further, even the verification of X.509 certificates within
a TrEE is challenging and requires a number of subsequent invocations of the
TrEE [11], which introduces additional performance overhead. Hence, practical
security architectures built on top of existing TrEEs must rely on additional
trusted components in the operating system.

The secure implementation of security critical NFC-based applications on
smartphones, such as electronic payment, ticketing and access control systems,
requires the underlying security architecture to isolate trusted and untrusted
components to prevent leakage and unintended manipulation of security-critical
data, such as authentication secrets. Furthermore, the underlying protocol design
must consider the bandwidth constraints of NFC.

Contribution and Outline. We present the design and implementation of an
access control system for NFC-enabled smartphones. The unique feature of our
scheme is that users can delegate (part of) their access rights to other users
without contacting a central token issuer. Our contributions are as follows:

Multi-level platform security architecture. Our SmartToken application runs on
top of a security architecture that protects the underlying authentication secrets.
The architecture combines a hardware-supported trusted execution environment
(TrEE) to handle cryptographic keys with software-based isolation of trusted
code controlling access to the TrEE (Section 2). The architecture provides a
two-line defense against software attacks and a trade-off between security and
resource constraints of common security hardware.

2

Delegatable SmartToken system. We present a generic token-based access control
system for NFC-enabled smartphones that, in contrast to previous solutions,
supports delegation of access rights without contacting a central token issuer
and that addresses the bandwidth constraints of NFC (Section 3). Our solution
is suitable for various applications, ranging from access control solutions for
digital objects, such as electronic documents, to physical resources like rooms or
cars. Further, we prove the security properties of our system (Section 4).

Reference implementation. We instantiate the SmartToken system for electronic
access control tokens (Section 5). The implementation is based on TrustDroid [10],
which extends the widely used Android smartphone operating system with software-
based isolation of trusted and untrusted compartments. Further, we conceptually
consider binding NFC operations to a hardware-based trusted execution environ-
ment (TrEE).

2 Multi-level Security Architecture
In this section we describe our multi-level security platform architecture, which
we deploy to protect user credentials on the device.

2.1 Model and Requirement Analysis

In the following, we describe our system model, formulate security objectives
and requirements, and define our trust and adversary model.

System Model. We consider mobile platforms that (1) run untrusted code,
such as user applications downloaded from untrusted sources, (2) store user
credentials, such as user passwords and cryptographic secrets that are used in
cryptographic protocols to authenticate the user to some service provider, and
that (3) run security-critical code that, e.g., operates on security sensitive data,
such as cryptographic keys.

Security Objectives and Requirements. The objective of our overall solu-
tion is to prevent the adversary from being able to authenticate to a service
provider. While attacks against the authentication protocols must be prevented
by protocol design (Section 3), the platform security architecture must ensure
(1) that the adversary cannot access user credentials stored on the platform and
(2) that he cannot exploit or modify code using them. More specifically, the
objective of the platform security architecture is to ensure confidentiality of and
to enforce access control to credentials, i.e., that any application on the plat-
form can use only those credentials that have been created or enrolled by this
application before. This results in the following security requirements:

– Confidentiality of user credentials: User credentials created or enrolled by
security-critical code must not be accessible by untrusted and other security-
critical code while stored or used on the platform.

– Code isolation: Security-critical code that processes user credentials must be
isolated from untrusted and other security-critical code on the platform.

3

Software isolation layer (SIL)

Trusted

Execution Environment (TrEE)

Untrusted

Compartment (UTrC)

Hardware

App1

Hardware

Appn…

Trusted

Compartment (TrC)

TrEE Access Ctrl …

Secure UI

TrEE iso lation layer (TIL)

AlgmAlg1 TrEE Mgr

Device Keys

Fig. 1. Generic multi-level platform security architecture

– Code access control: Only authorized code instances must be able to invoke
execution of security-critical code that has access to user credentials.

– Code integrity: The integrity of security-critical code that has access to user
credentials and the integrity of untrusted code that can invoke security-
critical code must be preserved.

Trust and Adversary Model. The adversary can perform software attacks
and install, modify or compromise arbitrary code on the device. However, he
cannot access or modify the hardware of the platform and its trusted computing
base, i.e., the code that enforces access control or isolation on the device.

2.2 Generic Security Architecture

Figure 1 illustrates our multi-level security platform architecture. At a high
level, the execution environment of the device is split into three isolated com-
partments (Figure 1): an untrusted compartment UTrC, a trusted compartment
TrC and a trusted execution environment TrEE. TrEE is isolated from the rest of
the system by the underlying security hardware and protected against software-
based attacks. However, TrEE is a resource-constrained component. UTrC is free
of strict resource constraints and isolated from the untrusted compartment by
means of software, which is less reliable compared to hardware-based isolation
since isolation can be broken upon successful compromise of the software iso-
lation layer. TrEE is used to run secure code that operates on user credentials,
while TrC handles system components that exceed the capabilities of TrEE. Par-
ticularly, TrC provides a secure user interface SecureUI, which is used to collect
security-sensitive user input (such as passwords) or to display output. Further,
TrC includes the TrAC component, which enforces access control to the code
running within TrEE.5

Security-sensitive applications are split into an untrusted host application
Appi running in UTrC and one or more security-sensitive algorithms Algj that
5 Note, that both SecureUI and TrAC have been shown to exceed resource-constraints
of commodity TrEEs [27,11].

4

are executed by TrEE and that can be invoked by Appi when necessary (Figure 1).
Communication between Appi and the algorithms Algj within TrEE is mediated
by TrAC, which ensures that Appi can communicate only to those Algj Appi is
supposed to communicate to. The software isolation layer verifies the integrity
of host applications (e.g., by comparing the hash digest of the application binary
to a reference value or by verifying the application’s signature upon application
loading) and reports it to TrAC, which then grants or denies access to the TrEE
based on the integrity of the host application.

Algorithms executed within TrEE may belong to different host applications
and thus are mutually untrusted. Thus, they are isolated from each other, which
is enforced by the TrEE isolation layer. Furthermore, TrEE includes the TrEEMgr
component, which has direct access to platform keys stored in secure memory and
that provides a sealing/unsealing functionality to the algorithms. More specifi-
cally, TrEEMgr encrypts/decrypts user credentials with a key that is cryptograph-
ically bound to the platform key and the identity of the algorithm (such as the
hash digest of its binary).

The trusted computing base of our architecture includes the software isolation
layer, trusted compartment, TrEE isolation layer and the TrEE manager.

Fulfillment of the Security Requirements. Our security architecture achieves
the security requirements described in Section 2.1: confidentiality of user creden-
tials is ensured by a trusted TrEEMgr component, which stores user credentials
only in an encrypted form and such that they can be decrypted only by autho-
rized algorithms (sealing). Isolation of security-critical code from untrusted code
is enforced by a hardware-isolated TrEE, while isolation from other security-
critical code is provided by the trusted isolation layer within the TrEE. Access
control to security-critical code is enforced by the TrAC component. The integrity
of security-critical code is ensured by the sealing functionality of TrEEMgr, which
ensures that user credentials can be decrypted only if the integrity of the algo-
rithm is preserved. Integrity of untrusted code is enforced by the software iso-
lation layer, which measures and verifies the application integrity upon loading
the application and denies access to TrC if the application has been modified.

Our security architecture provides higher security guarantees than approaches
using pure software-based isolation and solutions that rely only on hardware-
based TrEEs (such as [28,19,25,11]), where the secure user interface and access
control to the TrEE is typically outsourced to the untrusted commodity operat-
ing system that is vulnerable to various attacks.

2.3 Architecture Instantiation

Our security architecture can be instantiated based on different types of security
hardware and different approaches to software-based isolation. For instance, the
TrEE can be instantiated using ARM TrustZone [2], M-Shield [3], embedded
or removable secure elements, such as SIM cards, universal integrated circuit
cards (UICC), or secure memory cards (SMC). A detailed discussion of different
types of hardware security modules can be found in [34].

5

Software-enforced isolation can be implemented based on virtualization tech-
nology or hardened operating systems that enforce domain isolation by manda-
tory access control. Examples include the OKL4 microvisor [23], domain isolation
based on security kernels [42], and the TrustDroid [10] security enhancement of
the Android operating system.

Instantiation for Android doevices. We aim to instantiate our multi-level secu-
rity architecture on Android-powered devices, since Android is the most popular
smartphone operating system worldwide [18] and first NFC-enabled Android
devices appear on the market. On the other hand, most secure NFC-based ap-
plications target Nokia smartphones, most probably since NFC-enabled Nokia
smartphones are already available for some time and equipped with secure hard-
ware. At the time of writing, we are not aware of any instantiation of a secure
access control application for Android devices and aim to fill this gap.

To enforce the software isolation required by our architecture, we could follow
the virtualization approach, e.g., based on the OKL4 microvisor that can run
multiple instances of L4Android, as well as native applications. However, as
supported by OKL4-based developments [17], a number of challenges has to be
solved with regard to performance, power consumption and drivers portability
before virtualization approaches become a practical solution for mobile devices.
Thus, we opted for a more practical solution and adopted the TrustDroid security
extensions [10] to enforce isolation.

TrustDroid applies a coloring approach to isolation that has its origins in
information-flow theory [36]. Particularly, it uses the concept of application iden-
tifiers on Android and colors (tags) applications and application data upon appli-
cation installation. Based on the assigned colors, TrustDroid organizes applica-
tions along with their data in logical domains. At runtime, communication across
domains is prevented by means of mandatory access control applied on all com-
munication channels between applications, including inter-process communica-
tion (IPC) calls, Linux sockets, file system access and local network connections.
We extended TrustDroid to form isolated domains and enabled inter-domain
communication through well-defined interfaces, as required by our architecture.
The details of our implementation can be found in Section 5.

3 Smart Token System
We present a generic access control system that allows users to maintain their
access credentials for different resources on their smartphone. One of the key
features of our scheme is that users can delegate their credentials to other users
without contacting a central token issuer. The system is applicable to various
applications, ranging from access control solutions for digital objects, such as
electronic documents, to physical resources like rooms and cars.

3.1 Overview

The entities in our system are at least a token issuer I, a set of resources R (such
as electronic documents or doors) and a set of users U (Figure 2). We denote the

6

Registered User U

Issuer I

Resource R

(2) TU ,RevList

(3) TD

Mobile Platform PU

Defines access control policy

Issues credentials (token) TU

RevList

(1) Registration

(2a) Authentication

Delegated User D

Mobile Platform PD

(3a) Authentication

Stores TD

Host HD TrEE SD

Delegates TDStores TU

Host HU TrEE SU

Fig. 2. SmartToken system overview

adversary with A. Each U possesses a mobile platform PU , such as a smartphone
or tablet. I is a central authority that defines which U is allowed to access which
R. Further, I issues credentials (SmartTokens) TU to each U , which are used
later by U to authenticate to R. We distinguish between registered users and
delegated users. A registered user U can delegate his token TU to a delegated
user D, while a delegated user D cannot delegate his token TD.

Objectives. The objectives of our solution are as follows:

– Access control. Access to a resource R is granted only (1) to a registered user
U , who got a token TU for R from issuer I, and (2) to a delegated user D,
who got a token TD for R from a registered user U with TU for R.

– Delegation. Issuer I can allow registered users to delegate (share) their tokens
with other users.

– Revocation. Issuer I can revoke tokens of regular and/or delegated users.
Revoking token TU of a registered user U automatically revokes all delegated
tokens TD based on TU .

Note that our scheme provides basic protection against denial-of-service attacks
that permanently prevent a user from using the SmartToken scheme. However,
since the focus of this paper is delegatable authentication for NFC-enabled smart-
phones, we did not consider countermeasures against denial of-service attacks.

Protocols. Our scheme is composed of the following protocols:

– System initialization: Issuer I generates its authentication secrets and en-
cryption keys. Moreover, I generates and initializes each resource R with an
authentication secret and encryption key.

– User registration: User U registers its mobile platform PU with I and be-
comes a registered user.

7

– Token issuing: I generates and sends the authentication key, the delegation
key and token TU to the mobile platform PU of a registered user U .

– Token delegation: A registered user U delegates its smart token (its access
rights) to a user D, who then becomes a delegated user.

– User authentication: U or D authenticate to R. Access to R is granted or
denied based on the result of the authentication protocol.

– Token and user revocation: I revokes one or all tokens of U by updating the
revocation list RevList on each R.

Our scheme is inspired by Kerberos [30], which is a widely deployed and exten-
sively analyzed authentication protocol. Kerberos provides strong authentication
for client/server applications based on symmetric cryptography. Our protocols
follow a similar approach to distribute authentication secrets with tokens issued
by a key distribution center (KDC), which corresponds to the issuer in our
scheme. However, in contrast to Kerberos our scheme enables delegation of to-
kens by clients (mobile devices) without contacting the KDC. Further, tokens
are bound to the identity and the platform of their user by means of a one-time
password and a device-specific platform key, respectively.

Trust Model and Assumptions. We assume that each registered user U
and each delegated user D possesses a mobile platform P, which consists of
an untrusted operating environment (host) H and a trusted execution environ-
ment (TrEE) S (Figure 2). In Section 5, we show how the TrEE can be imple-
mented based on an isolated trusted software compartment. Further, we assume
issuer I, resource R and S to be trusted. Moreover, we assume that an authentic
and confidential out-of-band channel between I and U is available once before
the user registration protocol, and between U and D once before the token del-
egation protocol. Note that this is very natural since in many access control
scenarios users typically have to prove their identity (e.g., by showing their iden-
tity card) to I during registration and/or will get a personal welcome letter
with their access credentials from I. Furthermore, S provides countermeasures
against dictionary attacks.

Adversary Model. We consider adversaries A that have full control over the
communication between I, R, U and D, which means that A can eavesdrop,
modify, insert, delete and re-route protocol messages.6 Further, A can compro-
mise the untrusted part H of the user’s mobile platform P and gain access to
all information stored in H. However, as mentioned in assumptions, A cannot
compromise issuer I, resource R or TrEE S of P. In particular, A cannot change
the functionality of S and A cannot obtain any secret information stored in S.

3.2 Notation and Preliminaries

We denote with a ∈R A the uniform sampling of an element a from a set A. Let
A be a probabilistic algorithm. Then y ← A(x) means that on input x, algorithm
6 Note that we exclude relay attacks since the focus of this paper is delegatable authen-
tication for NFC-enabled smartphones. Relay attacks can be mitigated by distance
bounding techniques, which can be integrated into our scheme.

8

A assigns its output to variable y. Probability ε(l) is called negligible if for all
polynomials f() it holds that ε(l) ≤ 1/f(l) for all sufficiently large l. Further,
IDX is the unique identifier, skX the secret key, and pkX the public key of entity
X, respectively.

Encryption Schemes. An encryption scheme ES is a tuple of algorithms
(Genkey,Enc,Dec) where Genkey is the key generation, Enc is the encryption
and Dec is the decryption algorithm. A public-key encryption scheme is said to
be CPA-secure [21,4] if every probabilistic polynomial time (p.p.t.) adversary A
has at most negligible advantage of winning the following security experiment: an
algorithm CCPA

sk (CPA-challenger), generates an encryption key pk and decryp-
tion key sk using Genkey(1l), chooses b ∈R {0, 1}, encrypts cb ← Enc(pk ;mb)
and returns cb to A. Eventually, A must return a bit b′ that indicates whether
cb encrypts m0 or m1. A wins if b′ = b. Note that for symmetric encryption
schemes sk = pk .

Random Oracles. A random oracle RO [6] is an oracle that responds with a
random output to each given input. More precisely, RO starts with an empty
look-up table Γ . When queried with input m, RO first checks if it already knows
a value Γ [m]. If this is not the case, RO chooses r ∈R {0, 1}α and updates Γ
such that Γ [m] = r. Finally, RO returns Γ [m]. Random oracles model the ideal
security properties of cryptographic hash functions.

Note that our protocols use the MAC-then-encrypt paradigm [5], where for a
given plaintext m, first the message digest σ = RO(m) is computed and then
(m,σ) is encrypted with a CPA-secure encryption scheme.

3.3 Protocol Specification

System Initialization. Each mobile platform P has a unique platform key pair
(skP , pkP), where skP is only known to trusted execution environment (TrEE) S
of platform P. Further, host H of P stores a certificate certP issued by, e.g., the
platform manufacturer, which contains pkP and attests that pkP is the public
key of a genuine TrEE S and that skP is securely stored in and never leaves S.
Issuer I initializes the revocation list RevList ← ∅ and each resource R with
RevList , a resource-specific authentication key KRAuth and a resource-specific
encryption/decryption key KREnc.

User Registration. When a user U wants to register, I sends a new one-time
password pwdU to U over an authentic and confidential out-of-band channel.
After that, U can register as follows (Figure 3): U sends its identifier IDU and
pwdU to TrEE SU of its mobile platform PU = (HU ,SU). Then SU sends IDU and
a random NUreg to host HU , which sends both values and the platform certificate
certUP to I. Next, I verifies certUP and generates a new authentication secret
KU,IAuth and an encryption/decryption key KUEnc for U , which are used later in the
token issuing protocol. Further, I derives a temporary authentication secret K

9

Reg. user U TrEE SU Host HU Issuer I
skU

P pwdU

IDU , pwdU
IDU , NU

reg, cert
U
P

cregcreg

KU,I
Auth ∈R {0, 1}α

certUP valid?

certUP

KU
Enc ← Genkey(1δ)

certUP
?
6∈ RevList

(KU,I
Auth,K

U
Enc, N

I
reg, σ

I
reg)← Dec(skU

P ; creg)

pwdU

NU
reg ∈R {0, 1}µ IDU , NU

reg

creg ← Enc(pkU
P ;KU,I

Auth,K
U
Enc, N

I
reg, σ

I
reg)

Extract pkU
P from certUP

Abort if the above check fails

Store (KU,I
Auth,K

U
Enc)

K ← RO(NI
reg, N

U
reg, pwdU)

K ← RO(NI
reg, N

U
reg, pwdU)

σI
reg ← RO(K, IDI , IDU ,K

U,I
Auth,K

U
Enc)

σI
reg

?
= RO(K, IDI , IDU ,K

U,I
Auth,K

U
Enc)

Abort if any of the above checks fails

NI
reg ∈R {0, 1}µ

Store (KU,I
Auth,K

U
Enc)

σU
reg

σU
regσU

reg ← RO(NI
reg, IDU , IDI)

IDU
?
6∈ RevList

σU
reg

?
= RO(NI

reg, IDU , IDI)

Abort if the above check fails

Fig. 3. User registration protocol

from pwdU , computes authenticator σIreg forK
U,I
Auth andKUEnc, encrypts both keys

and σIreg with the platform key pkUP of SU , and sends the resulting ciphertext creg
to SU . On receipt of creg SU decrypts creg and, in case the verification of σreg is
successful, stores (KU,IAuth,K

U
Enc). Then, SU sends authenticatior σUreg to I, which

verifies σUreg and, in case the verification was successful, stores (KU,IAuth,K
U
Enc). In

case I already stores an authentication secret and encryption/decryption key for
U , I deletes the old keys and stores the newly generated ones.

Token Issuing. The token issuing protocol is depicted in Figure 4: user U
initiates the protocol at TrEE SU of its mobile platform PU , which then sends
IDU and a random Niss to I. Next, I generates authentication secret KU,RAuth,
delegation secret KUDel and token TU for U , which are used later by U in the
authentication and delegation protocols. Further, I computes σiss that authen-
ticates KU,RAuth, K

U
Del and TU , encrypts these keys, TU and σiss with KUEnc, and

sends the resulting ciphertext ciss to host HU of PU , which passes ciss to SU .
Next, SU decrypts ciss and, in case the verification of σiss is successful, stores
(KU,RAuth,K

U
Del). Eventually, SU sends TU to HU .

Authentication of Registered Users. The authentication protocol for reg-
istered users is depicted in Figure 5: user U initiates the protocol at TrEE SU
of its mobile platform PU , which sends an authentication request to resource R.

10

Reg. user U TrEE SU Host HU Issuer I
KU,I

Auth,K
U
Enc KR

Auth,K
R
Enc,K

U,I
Auth,K

U
Enc,RevList , pwdU

IDU
IDU , Niss

cissciss

KU,R
Auth ∈R {0, 1}α

IDU
?
6∈ RevList

KU
Del ← Genkey(1δ)

(TU ,K
U,R
Auth,K

U
Del, σiss)← Dec(KU

Enc; ciss)

σI := RO(KR
Auth,mI)

TU := Enc(KR
Enc;mI , σI)

pwdU

Niss ∈R {0, 1}µ IDU , Niss

sn ∈R {0, 1}β

mI := (sn, IDU ,K
U,R
Auth,K

U
Del)

ciss ← Enc(KU
Enc;TU ,K

U,R
Auth,K

U
Del, σiss)

TU

Abort if the above check fails

Else store (KU,R
Auth,K

U
Del)

Store TU

σiss ← RO(KU,I
Auth,TU ,K

U,R
Auth,K

U
Del, Niss)

σiss
?
= RO(KU,I

Auth,TU ,K
U,R
Auth,K

U
Del, Niss)

Abort if above check fails

Fig. 4. Token issuing protocol

Then R sends its identifier IDR and a random N to SU , which replies with σU to
HU that sends (σU ,TU) to R. Next, R decrypts TU with KREnc to obtain KU,RAuth,
verifies σI and σU using KRAuth and KU,RAuth, respectively, and accepts only if both
verifications are successful. Otherwise, R rejects.

Token Delegation. Registered user U and delegated user D establish a new
one-time secret pwdD over an authentic and confidential out-of-band-channel.
Then, the token delegation protocol (Figure 6) starts: D sends its identifier IDD
and pwdD to TrEE SD of its mobile platform PD = (SD,HD), which then
sends a random NDdel to host HD that passes (IDD, NDdel) together with the plat-
form certificate certDP of PD to host HU of the registered user’s mobile platform
PU = (SU ,HU). HU then sends (IDD, N

D
del, cert

D
P) and token TU of U to SU .

Next, SU verifies certDP , generates authentication secret KDAuth for D, computes
authenticator σU and delegated token TD. Further, SU derives a temporary au-
thentication secret K from pwdD and uses K to compute authenticator σdel.
Moreover, SU encrypts (KDAuth,TD,TU) with the platform key pkDP of SD and
sends the resulting ciphertext cdel to SD. Next, SD decrypts and, in case the
verification of σ is successful, stores KDAuth and sends (TD,TU) to HD, which are
used later in the authentication protocol.

Authentication of Delegated Users. Authentication of delegated users is
similar to authentication of registered users (Figure 5). The only difference is
that a delegated user D sends in addition to its delegated token TD also the token
TU of user U that created TD. Further,R first decrypts TU to obtainKUDel, which
is then used to decrypt KDAuth from TD. The rest of the authentication protocol
is the same as in Figure 5.

11

Reg. user U TrEE SU Host HU Resource R
KU,R

Auth,K
U
Enc

TU KR
Enc,K

R
Auth,RevList

N ∈R {0, 1}µ
start auth

start auth

IDR, NIDR, N
m := (IDU , IDR, N)

σU σU ,TU
(sn, IDU ,K

U,R
Auth,K

U
Del, σI)← Dec(KR

Enc;TU)

σI
?
= RO(KR

Auth, sn, IDU ,K
U,R
Auth,K

U
Del)

sn
?
6∈ RevList

IDU
?
6∈ RevList

Reject if any of the above checks fails

Else accept

σU ← RO(KU,R
Auth,m)

σU
?
= RO(KU,R

Auth, IDU , IDR, N)

Fig. 5. Authentication protocol for registered users

Reg. user U
pwdD

TrEE SU
KU,R

Auth,K
U
Del,RevList

Host HD

certDP

Host HU

TU

TrEE SD
skD

P

Del. user D
pwdD

IDD, pwdD
IDD, ND

del
IDD, ND

del, cert
D
P ,TU

cdel
cdel

KD
Auth ∈R {0, 1}α

certDP valid?

certDP
?
6∈ RevList

(TD,TU ,KD
Auth, σdel)← Dec(skD

P ; cdel)

σU := RO(KU,R
Auth,mU)

TD := Enc(KU
Del;mU , σU)

ND
del ∈R {0, 1}µ

sn ∈R {0, 1}β

mU := (sn, IDD,KD
Auth)

cdel ← Enc(pkD
P ;TD,TU ,KD

Auth, σdel)

Extract pkD
P from certDP

TD,TU

Abort if the above check fails

Else store KD
Auth

Store (TD,TU)

σdel ← RO(pwdD,TD,TU ,KD
Auth, N

U
del, N

D
del)

σdel
?
= RO(pwdD,TD,TU ,KD

Auth, N
U
del, N

D
del)

Abort if any of the above checks fails

IDD, ND
del, cert

D
P

cdel

pwdD, IDD

NU
del ∈R {0, 1}µ

Fig. 6. Token delegation protocol

Token and User Revocation. To revoke a token TU (or all tokens of user U),
sn (or IDU) is added to RevList .

4 Security Analysis

The security goal of the authentication scheme in Section 3.3 is token authentica-
tion, which means that only registered and delegated users, whose smartphone
has a valid token T and knows the corresponding authentication secret KAuth,
can make an honest resource R accept. This can be formalized by a security
experiment ExpAuth

A (q) = outπR, where a probabilistic polynomial time (p.p.t.)
adversary A must make an honest resource R to authenticate A either as a
registered user U or delegated user D by returning outπR = 1 in some instance
π of one of the authentication protocols (Section 3.3). Following the approach
by Canetti et al. [12], A can arbitrarily interact a limited number of times q

12

with I, U , D and their mobile platforms P = (H,S) and knows all information
stored on H. However, since we do not consider relay attacks, A is not allowed
to just forward all messages from S to R in instance π. Hence, at least some of
the protocol messages that made R accept must have been (partly) computed
by A without knowing the secrets of S. Note that, as discussed in Section 3.1,
by assumption A does not know any value, including intermediate computation
results, stored in S at any time and can only obtain the messages sent to S and
its responses.

Definition 1. A token-based authentication scheme achieves token authentica-
tion if for every p.p.t. adversary A Pr

[
ExpAuth

A (q) = 1
]
is negligible in q.

Theorem 1. The authentication scheme in Section 3.3 achieves token authenti-
cation (Definition 1) in the random oracle model under the assumption that the
underlying encryption schemes are CPA-secure (Section 3.2).

We give a proof sketch here, while the full proof can be found in Appendix A.

Proof (Sketch). Assume by contradiction that A is an adversary with non-negli-
gible success probability. We show that A can be used to construct an adversary
B that violates the definition of the underlying random oracle RO or the CPA-
security of the underlying encryption schemes (Section 3.2). More detailed, B
simulates the protocols in Section 3.3 according to their specification except
that B simulates all ciphertexts and tokens by encrypting random plaintexts.
Following the approach by Shoup [37], we show that the CPA-security of the
underlying encryption schemes ensures that the simulation by B has a negligible
effect on A’s success probability. A is allowed to arbitrarily interact with RO and
the simulation by B. Eventually, in protocol session π, A responds to message
(IDR, N) generated by B with outAπ , which is used by B to compute either a colli-
sion for RO or to predict the output of RO with non-negligible probability, which
violates the definition of RO (Section 3.2). Hence, RO and the CPA-security of
the underlying encryption schemes ensure that there is no p.p.t. A that violates
token authentication (Definition 1) with non-negligible probability. ut

5 SmartTokens Reference Implementation

In this section, we describe the implementation of the SmartToken design pre-
sented in Section 3.3 based on the security architecture described in Section 2.
We exemplarily consider the scenario, where a company plays the role of issuer I,
while users U correspond to employees and delegated users D to temporary vis-
itors or other employees. The resources R are the company premises, including
buildings and rooms.

5.1 Instantiation of the Multi-level Platform Security Architecture

In our current implementation, we instantiated a modified multi-level security
architecture that slightly differs from the one described in Section 2. The reason

13

Hardware

Software TrEEUntrusted

Domain

SmartTokens

App

Application level

SmartTokens

Secure App

OS level

Hardware

Android with TrustDroid extensions

NFC

TrEE Access Control

WiFi

Trusted Domain Trusted Domain

TrEE Mgr/

Key Storage

Fig. 7. Implemented Platform Security Architecture

is that we could not identify any Android device featuring both NFC and secu-
rity hardware that can be used by third party developers. In particular, we could
not find Android devices with M-Shield or ARM TrustZone, while Android plat-
forms with SIM cards or universal integrated circuit cards (UICC) do not allow
accessing the secure hardware. Moreover, there seems to be no Android device
on the market that provides both an NFC interface and a microSD slot, which
would have allowed using a removable secure memory card (SMC) as TrEE. How-
ever, we envision the availability of such devices in the near future and designed
our implementation such that it can be easily ported to these security modules
upon availability.

Due to this temporal limitation, our current prototype uses software-based
isolation to establish a trusted execution environment (TrEE) on the device. The
refined security platform architecture is depicted in Figure 7. It builds on the
top of TrustDroid [10], a security framework that enhances the standard An-
droid operating system with mandatory access control at all operating system
levels, wich allows to establish isolated compartments (or domains) on the device.
Further, TrustDroid allows to define inter-domain communication rules by spec-
ifying system-centric security policies.7 We realized acces control to the TrEE
as a security service of TrustDroid (thus, it resides at the level of the operating
system), while TrEE is realized as a number of application-level isolated compart-
ments. One TrEE-based compartment contains the TrEE Manager, while other
compartments are intended to run secure code associated with host applications
running in an untrusted compartment.

7 TrustDroid applies very simple rules that restrict inter-domain communication. How-
ever, the TrustDroid framework itself allows defining more sophisticated security
policies, e.g., to prevent application-level privilege escalation attacks [9,8].

14

Implementation Details. We implemented the SmartToken scheme in Sec-
tion 3.3 on Nexus S smartphones running Android 2.3.3 patched with TrustDroid
security extensions. The prototype implementation of resources uses a commod-
ity NFC reader (ACS ACR 122 U) connected to a Linux PC running Ubuntu
Oneiric.

NFC communication mode. We implemented our protocols using Android NFC
card reader and writer APIs, which provide direct access to different NFC tag
technologies using tag-specific application protocol data unit (APDU) command
and response structures. Specifically, we use the ISO Dep Android API that al-
lows direct access to smartcard properties and read/write operations according
to the widely used ISO 14443-4 standard for contactless smartcards. The NFC
reader emulates NFC Forum type 4 contactless smartcards that communicate
according to ISO 14443-4. We used libnfc open source libraries8 for accessing
the NFC reader from the Linux PC. The implementation of the token authenti-
cation and user delegation protocol (Figure 5 and 6) uses ISO/IEC 7816-4 and
ISO/IEC 7816-8 specific APDUs. ISO/IEC 7816-4 defines a standard interface
for identifying applications and accessing files and data on smartcards, while
ISO/IEC 7816-8 defines commands for security operations on smartcards. Fur-
ther, we implemented an application on the Linux PC emulating the resource in
the token authentication protocols.

Primitives and parameter sizes. Random oracle RO is implemented as HMAC
based on SHA-1, where α = 160. For the symmetric encryption scheme ES
we used AES, i.e., δ = 128. To achieve CPA-security (Section 3.2), which is
required by the MAC-then-encrypt paradigm [5] used in our protocols and our
security proof, AES is used in CBC mode with random padding. The public-key
encryption scheme is implemented based on RSA with random padding, which
means that platform keys are 2, 048 bit RSA keys. Further, we use β = 64 for
token serial numbers sn and µ = 128 for nonces. All identifiers ID are random
64 bit strings. For the one-time passwords pwd used in the user registration
(Figure 3) and token delegation protocol (Figure 6), we use ρ = 128. Note that
long passwords can be encoded in a barcode or data-matrix that can be printed
on the user’s welcome letter and scanned with the smartphone’s camera. For
delegated users, the barcode can be shown on the display of the registered user’s
smartphone and scanned by the camera of the delegated user’s phone.

Performance Analysis. Wemeasured the time required to complete an authen-
tication protocol session between the NFC reader and the phone for a registered
user and a delegated user. Table 1 shows the time for exchanging different proto-
col messages and the overall authentication session completion time. The average
data transmission rate between NFC reader and phone is around 10 kbps. Our
measurements show that it requires about 540ms to complete an authentication
session for a registered user and about 565ms for a delegated user.
8 www.libnfc.org

15

www.libnfc.org

Table 1. Transmission times for authentication protocol messages (units are in mil-
liseconds with 95% confidence interval)

User Connection Start Reading Sending Session
Type Estb. Msg. (IDR, N) (σD,TD,TU) Time

Registered 245.17(± .18) 42.19(±.52) 59.6 (± .51) 98.4 (± .53) 441.8(± .54)
Delegated 245.17(± .18) 42.19(±.52) 59.6 (± .51) 121.6 (± .54) 473.55 (± .54)

6 Related Work

There are several NFC-based applications for smartphones, including key storage
and management, payment and ticketing systems, and remote attestation.

Key storage and management. Mantoro et al. [29] propose a scheme to protect
the cryptographic keys of a PC by securely storing them in the SIM card of an
NFC-enabled phone. However, the scheme protects only against offline attacks
aiming to recover keys from the PC memory and is vulnerable to runtime attacks
since keys are uploaded to the PC when used and thus can be accessed by
malware. Noll et al. [33,26] propose a key management architecture that uses a
SIM card to securely manage the authentication secrets of a smartphone. They
describe several use cases, including an NFC-based access control system that
allows distributing electronic keys via SMS. However, the security of their scheme
is unclear since the use case is only sketched and neither protocols nor a security
analysis is provided.

NFC-based payment systems. Chen et al. [13] propose an NFC-based mobile pay-
ment system leveraging SIM-based authentication capabilities of GSM networks.
However, their scheme requires all involved parties to be subscribed to the same
mobile operator, which is not always guaranteed in practice and not required in
our scheme. Another NFC-based mobile payment system by Kadambi et al. [25]
is based on payment authorization tokens that are used to authorize transactions.
Their scheme protects privacy-sensitive user data, such as credit card numbers,
even against merchants. Although their solution uses secure hardware, access to
the secure environment is controlled by a commodity operating system that may
be vulnerable to various attacks [31,32]. In contrast, in our scheme access control
to the TrEE is enforced by trusted software components. Gauthier et al. [19] pro-
pose an offline payment system based on digital vouchers that can be transferred
from one to another device over NFC. However, their scheme heavily relies on
public-key operations resulting in low performance, while our scheme uses only
efficient symmetric techniques and tackles the bandwidth limitations of the NFC
interface (for the protocol running over NFC). The Merx system [38] provides a
solution for delegated electronic payments. Its system model involves four par-
ties: (1) a customer, (2) a concierge, (3) a merchant and (4) a bank, which can
be mapped to the entities of our model as follows: (1) a user, (2) a delegated
user, (3) a resource and (4) an issuer, respectively. The system requires online
interactions between merchant and bank on each purchase, which is common for

16

payment systems. However, when mapped into our use case, this scheme would
require an online connection between the issuer and the resource upon each ac-
cess of the user to the resource, which is highly undesirable in our use case and
not required by our scheme.

NFC-based ticketing systems. Tamrakar et al. [39] present an NFC-based au-
thentication scheme for electronic transport tickets. However, their scheme is
vulnerable to replay attacks and assumes the mobile device to be equipped with
a trusted time source, which is hard to achieve in practice and not required in
our scheme. Ghìron et al. [20] present a prototype implementation of an NFC-
enabled ticketing system. However, their work focuses on usability rather than
security aspects.

NFC-enabled remote attestation. Toegl et al. [24,41] propose verifying the in-
tegrity of public terminals, such as ticket vending machines, using NFC-enabled
smartphones. Their scheme requires terminals to be equipped with NFC-enabled
TPMs, which are not conform to the latest TPM specification [22] and not avail-
able on the market.

7 Conclusion and Future Work

We present the design of a token-based access control system for NFC-enabled
smartphones that can be used in many applications. The scheme allows users to
delegate (part of) their access rights to other smartphone users without involve-
ment of a central authority (a token issuer). Our scheme considers the bandwidth
constraints of NFC by using only symmetric cryptographic primitives for the pro-
tocols running over NFC. We provide a formal security analysis of our scheme
and instantiate it in the application scenario, where access control tokens are
used as electronic door keys. We propose an implementation of our system for
Android-powered Nexus S smartphones. Our performance analysis shows that
authentication can be performed within 474ms. Furthermore, we present a multi-
level security architecture to protect the underlying authentication secrets of our
protocols. The architecture combines a hardware-assisted trusted execution en-
vironment (TrEE) with software-based isolation and overcomes the drawbacks
of existing solutions.

Future work includes extending the implementation of our multi-level security
architecture for Android-based smartphones with security hardware, when these
devices are available on the market. Moreover, we are implementing the token-
based access control system and the multi-level security architecture on Nokia C7
phones, which feature an NFC interface and ARM TrustZone security hardware.

Acknowledgements. We thank our anonymous reviewers for their helpful com-
ments and Raphael Friedrich, Stephan Heuser and Daniel Steinmetzer for sup-
porting the implementation. This work has been supported in part by the Euro-
pean Commission through the FP7 programme under contract 238811 UNIQUE.

17

References

1. VingCard Elsafe’s NFC locking solution wins prestigious gaming indus-
try technology award, http://www.hotel-online.com/News/PR2011_3rd/Aug11_
VingCardHOT.html

2. Alves, T., Felton, D.: TrustZone: Integrated hardware and software security. Infor-
mation Quaterly 3(4) (2004)

3. Azema, J., Fayad, G.: M-Shield mobile security technology: making wireless se-
cure. Texas Instruments White Paper (2008), http://focus.ti.com/pdfs/wtbu/
ti_mshield_whitepaper.pdf

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: CRYPTO. vol. 1462, pp. 26–45
(1998)

5. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) Advances
in Cryptology (ASIACRYPT). LNCS, vol. 1976, pp. 531–545. Springer Berlin/Hei-
delberg (2000)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security (ACM CCS). pp. 62–73. ACM, New York, NY, USA (1993)

7. Brown, C.: NFC room keys find favour with hotel guests, http://www.nfcworld.
com/2011/06/08/37869/nfc-room-keys-find-favour-with-hotel-guests/

8. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: Xmandroid: A
new android evolution to mitigate privilege escalation attacks. Technical Report
TR-2011-04, Technische Universität Darmstadt (2011)

9. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-
wards taming privilege-escalation attacks on Android. In: 19th Annual Network &
Distributed System Security Symposium (NDSS) (2012)

10. Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.R., Shastry, B.: Prac-
tical and lightweight domain isolation on Android. In: ACM CCS Workshop on
Security and Privacy in Mobile Devices (SPSM). ACM Press (2011)

11. Bugiel, S., Dmitrienko, A., Kostiainen, K., Sadeghi, A.R., Winandy, M.: TruWal-
letM: Secure web authentication on mobile platforms. In: The Second International
Conference on Trusted Systems (INTRUST) (2010)

12. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange protocols and their use for
building secure channels. In: Advances in Cryptology (EUROCRYPT). LNCS, vol.
2045, pp. 453–474. Springer Berlin/Heidelberg, Berlin, Heidelberg (2001)

13. Chen, W., Hancke, G.P., Mayes, K.E., Lien, Y., Chiu, J.H.: NFC mobile transac-
tions and authentication based on GSM network. In: International Workshop on
Near Field Communication (NFC). pp. 83–89. IEEE Computer Society, Washing-
ton, DC, USA (2010)

14. Clark, S.: NXP launches NFC car key, http://www.nfcworld.com/2011/06/22/
38196/nxp-launches-nfc-car-key/

15. Clark, S.: VingCard launches NFC room key system
for hotels, http://www.nfcworld.com/2011/06/28/38366/
vingcard-launches-nfc-room-key-system-for-hotels/

16. Costan, V., Sarmenta, L., van Dijk, M., Devadas, S.: The trusted execution mod-
ule: Commodity general-purpose trusted computing. In: Smart Card Research and
Advanced Application Conference (2008)

18

http://www.hotel-online.com/News/PR2011_3rd/Aug11_VingCardHOT.html
http://www.hotel-online.com/News/PR2011_3rd/Aug11_VingCardHOT.html
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://www.nfcworld.com/2011/06/08/37869/nfc-room-keys-find-favour-with-hotel-guests/
http://www.nfcworld.com/2011/06/08/37869/nfc-room-keys-find-favour-with-hotel-guests/
http://www.nfcworld.com/2011/06/22/38196/nxp-launches-nfc-car-key/
http://www.nfcworld.com/2011/06/22/38196/nxp-launches-nfc-car-key/
http://www.nfcworld.com/2011/06/28/38366/vingcard-launches-nfc-room-key-system-for-hotels/
http://www.nfcworld.com/2011/06/28/38366/vingcard-launches-nfc-room-key-system-for-hotels/

17. Davi, L., Dmitrienko, A., Kowalski, C., Winandy, M.: Trusted virtual domains on
OKL4: Secure information sharing on smartphones. In: ACMWorkshop on Scalable
Trusted Computing (ACM STC). ACM Press (2011)

18. Gartner Inc.: http://www.gartner.com/it/page.jsp?id=1689814 (2011)
19. Gauthier, V.D., Wouters, K.M., Karahan, H., Preneel, B.: Offline NFC payments

with electronic vouchers. In: ACM Workshop on Networking, Systems, and Appli-
cations for Mobile Handhelds (MobiHeld). pp. 25–30. ACM, New York, NY, USA
(2009)

20. Ghìron, S.L., Sposato, S., Medaglia, C.M., Moroni, A.: NFC ticketing: A prototype
and usability test of an NFC-based virtual ticketing application. In: International
Workshop on Near Field Communication (NFC). pp. 45–50. IEEE Computer Soci-
ety, Washington, DC, USA (2009)

21. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28, 270–299 (1984)

22. Trusted Computing Group: TPM Main Specification, Version 1.2 rev. 103 (2007),
https://www.trustedcomputinggroup.org

23. Heiser, G., Leslie, B.: The OKL4 microvisor: Convergence point of microkernels
and hypervisors. In: ACM Asia-pacific Workshop on Systems (APSys). pp. 19–24.
ACM, New York, NY, USA (2010)

24. Hutter, M., Toegl, R.: A trusted platform module for near field communication.
In: International Conference on Systems and Networks Communications (ICSNC).
pp. 136–141. IEEE Computer Society, Washington, DC, USA (2010)

25. Kadambi, K.S., Li, J., Karp, A.H.: Near-field communication-based secure mobile
payment service. In: International Conference on Electronic Commerce (ICEC). pp.
142–151. ACM, New York, NY, USA (2009)

26. Kalman, G., Noll, J., UniK, K.: SIM as secure key storage in communication
networks. In: International Conference on Wireless and Mobile Communications
(ICWMC) (2007)

27. Kostiainen, K., Asokan, N., Afanasyeva, A.: Towards User-Friendly Credential
Transfer on Open Credential Platforms Applied Cryptography and Network Se-
curity. Lecture Notes in Computer Science, vol. 6715, chap. 23, pp. 395–412.
Springer Berlin / Heidelberg, Berlin, Heidelberg (2011), http://dx.doi.org/10.
1007/978-3-642-21554-4_23

28. Kostiainen, K., Ekberg, J.E., Asokan, N., Rantala, A.: On-board credentials with
open provisioning. In: ACM Symposium on Information, Computer, and Commu-
nications Security (ASIACCS). pp. 104–115. ACM (2009)

29. Mantoro, T., Milisic, A.: Smart card authentication for Internet applications using
NFC enabled phone. In: International Conference on Information and Communi-
cation Technology for the Muslim World (ICT4M) (2010)

30. Massachusetts Institute of Technology: Kerberos: The network authentication pro-
tocol. http://web.mit.edu/kerberos/

31. McAfee Labs: McAfee threats report: Second quarter 2011. http://www.mcafee.
com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf (2011)

32. McAfee Labs: McAfee threats report: Third quarter 2011. http://www.mcafee.
com/us/resources/reports/rp-quarterly-threat-q3-2011.pdf (2011)

33. Noll, J., Lopez Calvet, J.C., Myksvoll, K.: Admittance services through mobile
phone short messages. In: International Multi-Conference on Computing in the
Global Information Technology. pp. 77–82. IEEE Computer Society, Washington,
DC, USA (2006)

19

http://www.gartner.com/it/page.jsp?id=1689814
https://www.trustedcomputinggroup.org
http://dx.doi.org/10.1007/978-3-642-21554-4_23
http://dx.doi.org/10.1007/978-3-642-21554-4_23
http://web.mit.edu/kerberos/
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2011.pdf

34. Reveilhac, M., Pasquet, M.: Promising secure element alternatives for NFC technol-
ogy. In: International Workshop on Near Field Communication (NFC). pp. 75–80.
IEEE Computer Society, Washington, DC, USA (2009)

35. Robertson, T.: Eight industries that will benefit from
NFC technology, https://www.x.com/devzone/articles/
eight-industries-will-benefit-nfc-technology

36. Rushby, J.M.: Design and verification of secure systems. In: ACM Symposium on
Operating Systems Principles (SOPS) (1981)

37. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004), http://eprint.iacr.org/
2004/332

38. Soghoian, C., Aad, I.: Merx: Secure and privacy preserving delegated payments.
In: Chen, L., Mitchell, C., Martin, A. (eds.) Trusted Computing, Lecture Notes in
Computer Science, vol. 5471, chap. 14, pp. 217–239. Springer Berlin / Heidelberg,
Berlin, Heidelberg (2009)

39. Tamrakar, S., Ekberg, J.E., Asokan, N.: Identity verification schemes for public
transport ticketing with NFC phones. In: ACM workshop on Scalable Trusted
Computing (STC). pp. 37–48. ACM, New York, NY, USA (2011)

40. Telecom Innovation Laboratories: Mobile Wallet turns cell phones into digi-
tal car keys (2011), http://www.laboratories.telekom.com/public/English/
Newsroom/news/Pages/digitaler_Autoschluessel_Mobile_Wallet.aspx

41. Toegl, R., Hutter, M.: An approach to introducing locality in remote attestation
using near field communications. J. Supercomput. 55(2), 207–227 (2011)

42. Zhang, X., Acıiçmez, O., Seifert, J.P.: A trusted mobile phone reference architecture
via secure kernel. In: ACM workshop on Scalable Trusted Computing (ACM STC).
pp. 7–14. ACM, New York, NY, USA (2007)

20

https://www.x.com/devzone/articles/eight-industries-will-benefit-nfc-technology
https://www.x.com/devzone/articles/eight-industries-will-benefit-nfc-technology
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
http://www.laboratories.telekom.com/public/English/Newsroom/news/Pages/digitaler_Autoschluessel_Mobile_Wallet.aspx
http://www.laboratories.telekom.com/public/English/Newsroom/news/Pages/digitaler_Autoschluessel_Mobile_Wallet.aspx

A Proof of Theorem 1

In this section, we prove Theorem 1, which states that the authentication scheme
in Section 3.3 achieves token authentication (Definition 1) in the random oracle
model under the assumption that the underlying encryption schemes are CPA-
secure (Section 3.2).

Proof. Assume by contradiction that A is an adversary s.t. Pr
[
ExpAuth

A (q) = 1
]

is non-negligible in q. We show that A can be used to construct an adversary
B that violates the definition of the underlying random oracle RO or the CPA-
security of the underlying encryption schemes (Section 3.2).

More detailed, B simulates all protocols in Section 3.3 according to their
specification except that B sets creg := Enc(pkUP ;Rreg), TU := Enc(KREnc;Riss,1),
ciss := Enc(KUEnc;Riss,2), TD := Enc(KUDel;Rdel,1) and cdel := Enc(pkDP ;Rdel,2),
where Rreg, Riss,1, Riss,2, Rdel,1 and Rdel,2 are random plaintexts with the same
length as their original counterparts specified in Section 3.3. Further, B maintains
a list ΓA of all queries by A to random oracle RO and responses of RO. A is
allowed to arbitrarily interact with RO and the simulation by B, where the total
number of queries of A is limited by q. Eventually, in some protocol session π, A
responds to message (IDR, N) generated by B either with outA,Uπ = (σA,TA,U)
or outA,Dπ = (σA,TA,D,TA,U). Note that, in the following we consider only case
outA,Dπ since the proof of case outA,Uπ is similar. Depending on the output of A,
B distinguishes three cases:

Case 1: A reuses outA,Dπ = (σA,TA,D,TA,U) from a previous authentication pro-
tocol instance π′ as response to (IDR, N

′). In this case, B decrypts
(sn, IDU ,K

U,R
Auth,K

U
Del, σI) ← Dec(KREnc;TA,U) and (sn, IDD,K

D
Auth, σU) ←

Dec(KUDel;TA,D), and returns
[(
(KDAuth, IDD, IDR, N), σA

)
,(

(KDAuth, IDD, IDR, N
′), σA

)]
as a collision of RO.

Case 2: A creates (forges) a new token TA,D that has never been used in any
previous protocol instance. In this case B decrypts (sn, IDD,K

D
Auth, σA,U) ←

Dec(KUDel;TA,D) and, when σA,U is not in ΓA, B returns σA,U as a prediction of
RO(KU,RAuth, sn, IDD,K

D
Auth).

Case 3: A creates (forges) a new token TA,U that has never been used in any pre-
vious protocol instance. In this case, B decrypts (sn, IDU ,K

U,R
Auth,K

U
Del, σA,I)←

Dec(KUDel;TA,U) and, when σA,I is not in ΓA, B returns σA,I as a prediction of
RO(KRAuth, sn, IDU ,K

U,R
Auth,K

U
Del).

Now we show that in any case B violates the definition of RO (Section 3.2)
with non-negligible probability. We start by showing that the simulation by B is
indistinguishable from the protocols in Section 3.3 and has a negligible effect on
the success probability p(0)A (q) := Pr

[
ExpAuth

A (q)
]
of A. Following the approach

by Shoup [37], we define six games, G0 to G5, where G0 corresponds to the
protocol specification and G5 to the simulation by B:

– In G0 A interacts with the authentication scheme specified in Section 3.3

21

– G1 is as G0 except that creg = Enc(pkUP ;Rreg) is used
– G2 is as G1 except that TU = Enc(KREnc;Riss,1) is used
– G3 is as G2 except that ciss = Enc(KUEnc;Riss,2) is used
– G4 is as G3 except that TD = Enc(KUDel;Rdel,1) is used
– G5 is as G4 except that cdel = Enc(pkDP ;Rdel,2) is used

With p
(j)
A (q) we denote the probability that A succeeds in game Gj . Next, we

show that |p(0)A (q)−p(5)A (q)| is negligible in q by showing that |p(i)A (q)−p(i+1)
A (q)| is

negligible for 0 ≤ i ≤ 4. We start with i = 1: Assume by contradiction and w.l.o.g.
that p(0)A (q) is non-negligible and p(1)A (q) is negligible. This allows constructing an
adversary B1 that wins against CPA-challenger CCPA

skU
P

(Section 3.2): B1 simulates
the protocols in Section 3.3 according to their specifications but sets creg to the
output of CCPA

pkU
P

on input of m0 = (KU,IAuth,K
U
Enc, NI , σreg) created according to

the protocol specification, and a random plaintext m1 = Rreg. In case A wins
ExpAuth

A , B1 returns b′ = 0 as a guess for the random choice b of CCPA
skU

P
. Note

that, depending on b, A either obtains the encryption of m0, which corresponds
to G0, or the encryption of m1, which corresponds to G1. Since by assumption
p
(0)
A (q) is non-negligible, B1 can distinguish between the encryption of m0 and
m1 with non-negligible probability, which contradicts CPA-security (Section 3.2)
of the underlying encryption scheme. In turn, this means that CPA-security
ensures that |p(0)A (q)−p(1)A (q)| is negligible. The proofs of negligibility of |p(i)A (q)−
p
(i+1)
A (q)| for 1 ≤ i ≤ 4 are similar to case i = 0 and omitted due to space

restrictions. Consequently, it follows that in case p(0)A (q) is non-negligible, then
p
(5)
A (q) must be non-negligible.

Now we show that if p(5)A (q) is non-negligible, then B can violate the properties
of RO with non-negligible probability in each of the three cases considered above.
Note that in case 1 by assumption A computes σA = RO(KDAuth, IDD, IDR, N)

with non-negligible probability p
(5)
A (q). Moreover, Pr[N = N ′] = 2−µ since

N,N ′ ∈R {0, 1}µ. Thus, B returns a collision of RO with non-negligible prob-
ability (1 − 2−µ) · p(5)A (q), which contradicts the definition of RO (Section 3.2).
Further, in case 2 by assumption A computes a new TA,D such that σA,U =

RO(KU,RAuth, sn, IDU ,K
D
Auth). Note that, when σA,U is in ΓA, this implies that A

knows KU,RAuth. However, K
U,R
Auth has never been used by B except in queries to RO,

which means that all messages observed by A are independent of KU,RAuth. More-
over, KU,RAuth ∈R {0, 1}α. Hence, σA,U is in ΓA with negligible probability 2−α.
In turn this means that σA,U is a prediction of RO(KRAuth, sn, IDU ,K

U,R
Auth,K

U
Del)

with non-negligible probability (1−2−α)·p(5)A (q), which contradicts the definition
of RO (Section 3.2). The proof of case 3 is similar to case 2 and omitted due to
space restrictions. In case 3 σA,I is a prediction of RO(KRAuth, sn, IDU ,K

U,R
Auth,K

U
Del)

with non-negligible probability (1 − 2−α) · p(5)A (q), which again contradicts the
definition of RO (Section 3.2).

22

Summing up, random oracle RO and the CPA-security of the underlying
encryption schemes ensure that there is no p.p.t. A such that Pr

[
ExpAuth

A (q)
]

is negligible in q, which concludes the proof. ut

23

	SmartTokens: Delegable Access Control with NFC-enabled Smartphones(Full Version)
	1 Introduction
	Contribution and Outline.
	Multi-level platform security architecture.
	Delegatable SmartToken system.
	Reference implementation.

	2 Multi-level Security Architecture
	2.1 Model and Requirement Analysis
	System Model.
	Security Objectives and Requirements.
	Trust and Adversary Model.

	2.2 Generic Security Architecture
	Fulfillment of the Security Requirements.

	2.3 Architecture Instantiation
	Instantiation for Android doevices.

	3 Smart Token System
	3.1 Overview
	Objectives.
	Protocols.
	Trust Model and Assumptions.
	Adversary Model.

	3.2 Notation and Preliminaries
	Encryption Schemes.
	Random Oracles.

	3.3 Protocol Specification
	System Initialization.
	User Registration.
	Token Issuing.
	Authentication of Registered Users.
	Token Delegation.
	Authentication of Delegated Users.
	Token and User Revocation.

	4 Security Analysis
	5 SmartTokens Reference Implementation
	5.1 Instantiation of the Multi-level Platform Security Architecture
	Implementation Details.
	NFC communication mode.
	Primitives and parameter sizes.

	Performance Analysis.

	6 Related Work
	Key storage and management.
	NFC-based payment systems.
	NFC-based ticketing systems.
	NFC-enabled remote attestation.

	7 Conclusion and Future Work
	A Proof of Theorem 1
	Case 1:
	Case 2:
	Case 3:

