Improvements of Algebraic Attacks Based on
Structured Gaussian Elimination

Satrajit Ghosh
Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India
satrajit,abhij@cse.iitkgp.ernet.in

Abstract. Algebraic attacks are studied as a potential cryptanalytic
procedure for various types of ciphers. The XL_SGE algorithm has been
recently proposed to improve the complexity of the XL attack. XL_SGE
uses structured Gaussian elimination (SGE) during the expansion phase
of XL. In this paper, we establish that XL_SGE suffers from some serious
drawbacks that impair the effectiveness of SGE-based reduction at all
multiplication stages except the first. In order to avoid this problem, we
propose several improvements of XL_SGE. Our modifications are based
upon partial monomial multiplication and handling of columns of weight
two. Our modified algorithms have been experimentally verified to be
substantially superior to XL_SGE.

Keywords: Multivariate polynomial equation, algebraic attack, lineariza-
tion, XL, sparse linear system, structured Gaussian elimination

1 Introduction

Algebraic attacks pertain to cryptanalyzing some types of cipher that can be
rephrased in terms of multivariate quadratic equations in the bits of the plain-
text, the ciphertext and the key. In general, solving such systems over finite fields
is an NP-Complete problem. However, when the multivariate system is overde-
fined, some algorithms faster than exponential-time are known. These algorithms
can be broadly classified into three categories.

— Algorithms based on Grobner basis computations: These include Fj and Fj
algorithms [1, 2].

— Algorithms based on linearization: Kipnis and Shamir’s relinearization [3],
Courtois et al.’s eXtended Linearization (XL) [4], Courtois and Pieprzyk’s
eXtended Sparse Linearization [5] and Ding et al.’s MutantXL [6].

— Algorithms based on SAT solvers: Bard et al.’s algorithm [7]

Although superficially different, these approaches are occasionally proved to be
computationally equivalent. For example, see [8].

Some cryptosystems have been successfully cryptanalyzed by algebraic at-
tacks [3,9-12]. However, these attacks are usually not practical for most ciphers.

For example, Courtois and Pieprzyk [5] estimate an effort of nearly 2230 bit
operations to cryptanalyze 128-bit AES [13] using XSL. Consequently, it is of
important research concern to propose practical improvements of known algo-
rithms on algebraic attacks.

Our recent proposal XL_SGE [14] uses a heuristic to improve the performance
of the XL method by reducing the size of the final linearized system. It uses
structured Gaussian elimination (SGE) [15] to reduce the growth of the number
of variables during the expansion stage of XL. It also helps by decreasing the
number of linearly dependent equations. There is an apparent resemblance of this
proposal with WXL or its parallel version PWXL discussed in [16], but we argue
that this resemblance is only superficial. Sparse system solvers are used in [16]
as a faster alternative to Gaussian elimination, and may be used in conjunction
with SGE as indicated in the conclusion of that paper. On the contrary, XL_SGE
uses SGE at every stage of monomial multiplication in order to curb the growth
of the linearized system by setting aside some equations and preventing them to
take further role in the expansion process. At each level, we can use, as WXL
does, any sparse system solver to identify the solvability of the system.

XL_SGE, however, suffers from a design flaw, and it is this flaw that we
address in this paper. In many cases, the reduction in the system size obtained by
XL_SGE is not significant, as is evident from the experimental results presented
in [14]. We identify some sources of ineffectiveness of XL_SGE, and propose
improvements to overcome these shortcomings of XL_SGE. These improvements
make use of two novel techniques. First, random monomial multiplications are
used during the multiplication stage of XL_SGE. Second, variables with column
weight two are considered in the SGE stage of the algorithm. Experiments carried
out on small systems and toy ciphers indicate that our new heuristic ideas bring
down the complexity of XL_SGE substantially. Indeed, the new proposals exploit
more prudently the fact that an overdetermined system is expected to have the
same solution space even if we throw away a sizeable fraction of the equations.
This constrains the growth in the multiplication phase further (compared to
XL_SGE), hopefully without having significant detrimental effects on the rank
profile.

Like XL_SGE, these new proposals, although heuristically stronger and ex-
perimentally validated on random systems and toy ciphers, lack ironclad theo-
retical guarantees of effectiveness. Nevertheless, we believe that these proposals
merit attention of the algebraic cryptanalysis community.

The rest of this paper is organized as follows. Section 2 describes the back-
ground material needed for understanding our modifications. In particular, the
algorithms for XL, SGE and XL_SGE are reproduced in the form presented
n [14]. In Section 3, we identify the weaknesses of XL_SGE. In Section 4, we
propose two different ways of repairing these drawbacks of XL_SGE. Our ex-
perimental results and associated remarks follow in Section 5. The concluding
Section 6 highlights some scopes for further research in this direction.

2 A Description of XL _SGE

In what follows, we assume that we are given a system A over GF'(2) of multivari-
ate equations, some of which are quadratic and the rest of which are linear. Such
systems are available from block ciphers like AES. We assume that the initial
system is sparse and has (at least) one solution. We concentrate upon lineariz-
ing the system followed by solving the generated linear system using well-known
linear-algebra tools.

2.1 eXtended Linearization (XL)

The XL algorithm [4] is presented below as Algorithm 1. In addition to the initial
system A, a degree bound D is also supplied as an input to XL.

Algorithm 1: Extended Linearization (XL) of multivariate systems

1. Multiply: Generate the new system A’:

A = U XFA,
OSkSD_dmaa:

where X* stands for the set of all monomials of degree k, and dynqz is the
maximum degree of the initial system of equations.

2. Linearize: Consider each monomial in the variables x; of degree < D as
a new variable, and perform Gaussian elimination on the system A’. The
ordering of the monomials must be such that all the terms containing single
variables (like x1) are eliminated last.

3. Solve: Assume that Step 2 yields at least one univariate polynomial equation
in some variable x1. Solve this equation over the underlying finite field using
a standard root-finding algorithm.

4. Repeat: Simplify the equations, and repeat the process to find the values
of the other variables.

2.2 Structured Gaussian Elimination

Structured Gaussian Elimination (SGE) [15] is an algorithm that can substan-
tially reduce the sizes of sparse linear systems. Its working is based upon clas-
sifying columns as heavy-weight and light-weight. Algorithm 2 describes one
iteration of SGE.

Algorithm 2: Structured Gaussian Elimination (SGE)

1. Delete columns of weight 0 and 1.

2. Delete rows of weight 0 and 1.

3. Delete rows of weight 1 in the light part. After Step 2 and Step 3, update
column weights.

4. Delete redundant rows.

2.3 eXtended Linearization with Structured Gaussian Elimination
(XL_SGE)

Step 1 of XL multiplies the initial system by all available monomials in one
shot so that the degrees of the freshly generated equations is no larger than D.
XL_SGE replaces this by D — 2 stages of multiplications by the initial set of
variables. After every multiplication stage, the system is reduced by applying
SGE. This reduction controls the growth of the system in the linearization pro-
cess by eliminating some rows and columns and also by reducing the number
of equations generated in each subsequent multiplication stage. XL_SGE uses
only the first three steps of SGE. Algorithm 3 describes the stages of XL_SGE.
The degree bound D is so adjusted that the final linearized system is of full (or
nearly full) rank.

Algorithm 3: Extended Linearization with Structured Gaussian Elimination
(XL_SGE)

1. Expand the initial system of equations A up to degree d = 2 using XL to
obtain a linearized system A'.

2. Apply structured Gaussian elimination (SGE) on A’ to obtain a reduced
system of equations A" of degree d.

3. Multiply the reduced system A” with monomials of degree 1, append the
generated equations to A”, and rename this appended system as A’. A’ now
contains equations of degrees up to d + 1.

4. If the degree of the system of equations A’ is D, end the process. Otherwise,
go to Step 2.

XL_SGE [14] controls excessive reduction of intermediate systems due to
avalanche effects by using a heuristic parameter K during the application of
SGE. More specifically, the i-th row and the j-th column are eliminated if and
only if the following three conditions are satisfied.

— The j-th column has weight 1.
— The (i, j)-th entry is non-zero (1, to be precise).
— The weight of the i-th row is at least K.

In this paper, we use the parameter K exactly in the same way.

3 Analysis of XL_SGE

XL_SGE is designed to reduce the size of the final solvable system in comparison
with XL. However, there are many instances where this size reduction is not
substantial. There are even situations where an application of SGE increases
(though only slightly) the number of equations compared to XL. Thus, the basic
goal of arriving at reduced systems is often not achieved by XL_SGE.

XL_SGE adopts a layer-wise multiplication strategy. At the d-th layer, we
have a system A’ of maximum (algebraic) degree d. First, SGE is applied on

A’ to get a reduced system A” of the same degree d. Then, A" is multiplied
by monomials of degree 1 (variables) to get a system (renamed again as A’) of
degree d + 1. This is repeated until the degree of the equations in A’ reaches a
predetermined bound D.

Our experiments reveal that SGE on A’ for d = 2 yields sizable reduction in
the system size. Subsequently, for d > 3, SGE progressively loses effectiveness in
bringing down the system size. From the column-weight distribution, we observe
that for d = 2, A’ contains many columns of weight 1. For d > 3, such columns
are rare in A, so Step 1 in Algorithm 2 is executed for only a few number of
times.

These experimental observations can be justified intuitively. After the initial
expansion for d = 2 using XL, A’ is expected to contain many variables with
column weight one. After SGE reduces this system, all columns that remain are of
weights at least two. The subsequent monomial-multiplication stage generates
new variables each expected to be of column weight at least two. Consider a
variable = in the system of equations after the last application of SGE. The
column weight of x is at least two at this point, that is, appears in at least
two equations. Let y be a monomial of degree 1. If the system of equations is
multiplied by the monomial y, then x is multiplied by y at least twice, so the
column weight of the new variable xy will be at least two. There may, however,
be some cancellation of terms (after algebraic simplification using a? = a for any
initial variable a¢ and z + z = 0 for any linearized variable z). If there are many
initial variables, this phenomenon does not occur frequently.

While applying SGE for d > 3, only Step 3 of Algorithm 2 can create new
columns of weight 1 (or 0) by deleting certain rows. Since monomial multiplica-
tion increases the size of the system, some previously heavy columns may turn
light after monomial multiplication, potentially creating new avenues for row
deletion in Step 3. Step 2 of Algorithm 2 is quite ineffective, since the previous
round of SGE leaves no rows of weight 0 or 1, and monomial multiplication does
not reduce row weights except in rather infrequent situations (like multiplication
of z1x9 + x2 by x1 in an equation).

As an example, let a, b, c,d be GF(2)-valued variables. Suppose that an in-
termediate application of SGE leaves us with the following linearized system of
equations of algebraic degree three. The linearized variables in the system are a,
b, d, abc, be, and ad each with column weight at least two.

abc + be +a =0 (1)
abc + be +b+d =1 (2)
abc +ad +b =1 (3)

ad+a +d =0 (4)

To generate a system for the next degree four, XL_SGE multiplies the system
with the variables a, b, ¢, d. This yields the following system with 15 equations

and 14 variables. Eqn (8) is generated twice (Eqn (4) x a and Eqn(7) x a), but
is shown only once.

a =0 (5

ab +ad +a =0 (6)

abe +ab +ad +a =0 (7

abe + ab + be =0 (8

abe + bc + bd =0 (9

abe + abd =0 (10)

abd +ab +bd =0 (11)

abe +ac + be =0 (12)

abe +cd +c =0 (13)

abe + acd + be +c =0 (14)

acd + ac +cd =0 (15)

abed + bed +ad =0 (16)
abed + bed + bd =0 (17)
abed +ad + bd +d =0 (18)
d=0 (19

The monomial abc appears thrice in the system (4)—(7). Multiplication of
these equations by d generates three occurrences of abed in the expanded system
(8)—(22). The monomial bd appears in the expanded system four times, twice
from multiplying the term b in Equs (5) and (6) by d, and twice from multiplying
the term d in Eqns (5) and (7) by b. There is also a case of cancellation arising
out of algebraic simplification. For example, ad appears twice in the system (4)—
(7). Multiplying Eqn (6) by d leaves the term ad, but multiplying Eqn (7) by
d removes this term. Unfortunately, however, the term ad appears from other
sources too. For example, Eqn (4) x d and Eqn (5) x a give Eqns (19) and (9)
respectively, each containing the non-zero term ad.

To sum up, all the monomials appearing in the expanded system (8)—(22)
happen to have column weights two or more. When SGE is applied to this
expanded system, no variable and equation can be removed by Step 1 of SGE
(Algorithm 2).

4 Improvements of XL_SGE

To ensure reduction of system sizes by SGE for all degrees of A’, two possibilities
can be explored. First, we investigate how variables of column weight one may
reappear in the system. Second, we look into modifying SGE to work even when
all variables have column weights two or more.

— Partial monomial multiplication: Suppose that a variable x appears in
two or more equations. When both these equations are multiplied by the
same monomial y of degree one, the common variable zy appears in both

the new equations. If one of these multiplications is skipped, the number of
occurrences of zy (that is, its column weight) reduces by one. For example,
consider the expansion of the system (4)—(7) to generate the system (8)—(22).
The term abd appears in both Eqns (13) and (14) upon multiplication of ad
in Eqns (6) and (7) by b. If we skip the second multiplication, we no longer
generate Eqn (14), so abd occurs with column weight one. Similarly, if we
avoid the multiplication of Eqn (7) by ¢ (so that Eqn (18) is not generated),
we reduce the column weights of both ac and cd. Note that ac occurs in
Eqn (15) and (18) from the common term a in Eqns (4) and (7), whereas
cd occurs in Eqns (16) and (18) from the common term d in Eqns (5) and
(7). Therefore, skipping a single multiplication leaves both ac and ed with
column weight one. Finally, the variable ad occurs in four equations of the
expanded system, so skipping only one of the four multiplications yielding
this variable cannot bring down the column weight of ad to one.

The above discussion highlights that carefully skipping certain monomial
multiplications has some benefits. First, fewer equations are generated, and
second, SGE may again discover variables of column weight one. On the
darker side, generation of fewer equations may adversely affect the rank pro-
file of the expanded system. If, however, too many monomial multiplications
are not skipped, we hope not to encounter a big trouble with the rank pro-
file. Therefore, two important issues are of relevance in this context: which
monomial multiplications would be skipped, and how many.

— Deletion of variables with weight more than one: Suppose that a
variable z appears in ¢ > 2 equations in an expanded system. If we add one
of these equations to the remaining ¢ — 1 equations, the column weight of
z reduces to one, so SGE (Algorithm 2) can remove this variable in Step 1.
This, however, increases the weight of these ¢ — 1 equations. This increase
in row weights may increase weights of certain columns. That is, an effort
to forcibly eliminate z may stand in the way of the elimination of other
variables. However, if ¢ = 2, this processing of z followed by the removal
of the only equation containing z does not increase the total weight of the
system. Still, the density (average weight per row or column) of the system
increases (since one equation and one variable are now removed), but the
expanded systems, particularly if large, are expected to absorb this problem
without sufficient degradation of the performance of XL_SGE.

Our modifications of XL_SGE following these two ideas are now elaborated.

4.1 XL_SGE with Random Monomial Multiplication (XL_SGE-2)

For the time being, we skip monomial multiplications randomly, and the amount
of skipping is governed by a probability p € (0, 1]. More precisely, each equation
is multiplied by each monomial of degree one with probability p (and skipped
with probability 1 — p). If p = 1, we have the original XL_SGE algorithm. For
p < 1, we expect more size reduction compared to XL_SGE. Several choices of p
are experimentally studied.

The modified algorithm XL_SGE-2 accepts as input the initial system of
equations (both linear and quadratic) A (which has at least one solution), a de-
gree bound D € N, the avalanche-control parameter K € N, and a multiplication
probability p € (0,1]. The steps of XL_SGE-2 follow.

Algorithm 4: XL_SGE with Random Monomial Multiplication (XL_SGE-2)

1. Expand the initial system A up to degree d = 2 using XL to obtain a
linearized system A’.

2. Apply structured Gaussian elimination (SGE) on A’ to obtain a reduced
system of equations A” of degree d. Here, K is used to control the avalanche
effect in SGE (see Section 2.3).

3. Multiply each equation in A” by each monomial of degree 1 with probability
p (that is, with probability 1 — p, a multiplication is skipped). Append the
generated equations to A”, and rename this appended system as A’ which
now contains equations of degrees up to d + 1.

4. If the degree of the system of equations A’ is D, end the process. Otherwise,
go to Step 2.

If we get a full-rank system (or a close-to-full-rank system) for a particular
D, we solve that system. Otherwise, we increase the degree bound D, and run
XL_SGE-2 again to obtain a system with smaller rank deficit. This process is
repeated until the rank deficit becomes zero or goes below a tolerable limit.

The multiplication probability p has been heuristically chosen in our experi-
ments. We have worked with several fixed values of p in different layers (degrees
d of A’). From our experimental experiences, we recommend values of p > 0.5. A
slight modification in the above algorithm for XL_SGE-2 is also studied. In this
variant, monomial multiplications are randomly skipped even in Step 1 (that is,
since the very beginning of the expansion process).

Another possibility is to use different probabilities in different layers of multi-
plication. We study two models for varying p with the degree d of A’. In the first
model, we take p; = 1— ﬁ, that is, the probability of monomial multiplication
gradually increases with the degree d of the expanded system. The motivation
behind this choice is that we initially restrict the expansion of the system. If
this initial restriction allows us to arrive at a solvable system quickly, we are
done. If, on the other hand, the initial restriction leads to large rank deficits, we
progressively remove the restriction on the growth of the system. Note that this
model can be applied even to Step 1 of XL_SGE-2 (that is, for d = 1).

In the second model, we take the gradually decreasing sequence of probabili-
ties po = D’%}il. Initially, the system size is small, so we can afford the system to
grow at this stage. As d increases, A’ becomes increasingly large, and restricting
the growth of the system gradually controls the eventual growth of the system.
Note also that higher-degree monomials appear in the linearized system from a
larger number of sources. For example, the lower-degree monomial y,yoy3 may
appear by multiplying y»y3 with y; or by multiplying y;ys with ys or by multi-
plying y1y2 with y3. On the contrary, a higher-degree monomial like y1ys2 - - - Y10

may appear in the system in ten different ways: by multiplying y1ys2 - - - y10/¥:
by y; for : =1,2,...,10. So y1y2 - - - y10 having column weight one requires more
restriction at the expansion stage for d = 9 than y,y.ys3 requires at d = 2.

XL_SGE fails to exploit Step 4 of the SGE algorithm. Our partial monomial
strategy is a possible way to address this issue in the sense that deleting some
rows is in effect equivalent to not generating the rows at all.

4.2 Column-weight Two Reduction

As discussed earlier, the original SGE procedure (Algorithm 2) can be modified
S0 as to remove columns of weights two or more. In order that the rank profile
of the expanded system does not deteriorate too much, we have experimented
with deletion of columns of weight two only. The modified SGE algorithm is
described below. The algorithm repeats Steps 1-4 until no further reduction
is possible. Notice that this strategy is independent of the partial monomial
multiplication strategy described above, and is applicable equally well to both
XL_SGE and XL_SGE-2. Moreover, this can be viewed as another approach to
effectively exploit Step 4 of the SGE algorithm.

Algorithm 5: Structured Gaussian Elimination with Column-weight Two Re-
duction (SGE')

1. Delete columns of weight 0 and 1.

2. Delete columns of weight 2: If a column has weight 2, delete one equation cor-
responding to that variable. Substitute that equation in the other equation.
Delete the corresponding column.

3. Delete rows of weight 0 and 1.

4. Delete rows of weight 1 in the light part. After Steps 2-4, update column
weights.

Although this heuristic modification of SGE seems to be effective, in the cur-
rent form it does not work very well. One must not use Algorithm 5 to reduce the
initial quadratic system (available after Step 1 of XL_SGE or XL_SGE-2), since
random systems at this stage exhibit the tendency of losing all quadratic vari-
ables. Using the modified SGE for all d > 3 sometimes show good performance.
But the general observation is that the system suffers from drastic reduction in
size (a form of avalanche effect) resulting in degraded rank profile and demand-
ing a large number of iterations (that is, large values of D). It appears that
the modified SGE procedure of Algorithm 5 should be skipped for certain small
values of d (in addition to d = 2). However, the exact range of applicability of
Algorithm 5 (that is, the minimum d from which it is safe to use this algorithm)
has not yet been experimentally or theoretically determined. Such a study would
require initial systems larger than what we have experimented with.

Table 1. Performance of XL_SGE-2
(Random monomial multiplication done in Step 1 of Algorithm 4)

Initial XL XL SGE-2~* XL_SGE-27
system size|D System Size §|D K p System Size §|D K System Size ¢
12x7 |4 317x98 0|3 3075 39x35 0/3 3 35x36 2
13x8 |3 275x92 0|3 4 0.67 158x91 0/3 5 132x92 0
13x9 |3 273x129 0/3 4 0.67 183 x122 0|3 5 142x 124 3
15x10 |3 388 x175 0|3 3 0.67 210x 169 0[3 6 182x 173 3
16 x 10 |3 309 x 175 0/3 6 0.67 222x174 0|3 7 177x171 6
16 x 10 |4 1229 x 385 0{4 3 0.67 686 x362 0{4 7 619 x385 1
16 x 11 |5 4450 x 1023 0|5 6 0.80 3763 x 869 0|5 7 2963 x 1018 2
16 x 12 |5 5232 x 1585 0{5 7 0.67 4163 x 1584 0|5 8 2693 x 1557 4
17 x12 |3 548 x298 0|3 8 0.67 394 x 297 0|3 8 273 x289 26
17 x 12 |4 1758 x 793 0{4 8 0.67 1217 x 788 1|4 7 941 x 781 12
17x 12 |4 1984 x 792 0|4 7 0.67 1517 x 785 0|4 8 1028 x 788 12
17 x 12 |4 2074 x 793 0{4 7 0.75 1506 x 758 0|4 8 1086 x 786 7
17 x 13 |5 8889 x 2379 0|5 6 0.67 7543 x 2378 0|5 7 5383 x 2379 0
18 x 12 |3 628 x298 0|3 5 0.75 481 x296 0|3 7 309 x295 2
18 x 13 |4 2796 x 1092 0{4 6 0.67 1954 x 1091 0|4 8 1521 x 1092 1
18 x 14 |4 3333 x 1470 0|4 8 0.67 2489 x 1470 0|4 8 1750 x 1469 6
19 x 14 |4 4154 x 1470 0|4 4 0.80 3520 x 1457 0|4 8 2267 x 1466 2
19 x 14 |4 4473 x 1470 0{4 5 0.67 3375 x 1470 0|4 8 2183 x 1468 2
19 x 14 |4 4500 x 1470 0{4 4 0.75 3707 x 1460 0|4 4 2484 x 1467 2
19 x 15 |3 1247 x 575 1|3 4 0.67 841 x 574 1|3 8 583 x572 3
20 x 14 |4 3212 x 1470 0|4 7 0.67 2255 x 1470 0|4 8 1562 x 1460 7
20 x 15 |4 4640 x 1940 0/4 8 0.67 3437 x 1938 0|4 8 2463 x 1928 16
20 x 16 |4 7092 x 2516 0|4 7 0.67 4909 x 2514 0|4 8 3526 x 2511 0

* Smallest systems obtained among the choices p = 0.67,0.75,
 Fixed probability p = 0.50 is used.

0.80 are reported.

5 Experimental Results and Discussion

We have experimented with XL_SGE-2, the modified version of XL_SGE, on
small random sparse multivariate quadratic systems, and have found that the
heuristic substantially improves the performance of the XL algorithm in terms of
the size of the final linearized system. Indeed, XL_SGE-2 performs consistently
much better than XL_SGE too. Even in those cases where XL_SGE fails to
improve upon XL, our modified algorithm XL_SGE-2 produces positive results.
In fact, XL_SGE-2 has been found to significantly improve XL in almost all
the experiments we have conducted. However, the column-weight two reduction
strategy works well only in a limited set of experiments. In general, this strategy
results in massive reductions in the system size, leading to failure in generating
the final solvable system.

The results obtained for some small random systems with XL_SGE-2 are
shown in Table 1. Here, random monomial multiplication is used since Step 1
of Algorithm 4. Each row in the central columns of the table shows the small-

10

est system size obtained, where the minimum is taken over the three choices
0.67,0.75 and 0.80 of the monomial-multiplication probability p. In the table, §
represents the rank deficit of the final system. In most of the cases, we get the
smallest system for p = 0.67. However, the dependence of the final output on p
or on the structure of the initial system is not yet fully understood.

The results obtained for p = 0.50 are shown in the last four columns of
Table 1. In the case of p = 0.50, we usually get much smaller final systems than
produced by larger probabilities (like 0.67). But at the same time, p = 0.50
yields final systems with some positive (albeit small) rank deficits, whereas the
larger values of p leave no rank deficits in identical settings (like same values
of D). These experiments demonstrate the expected tradeoff between system
reduction and rank profile. If we use partial monomial multiplication since Step 1
of Algorithm 4, p = 0.67 appears to be the experimentally recommended choice.

The size of the final system also depends on the random seed chosen during
the execution of the algorithm. Different seeds correspond to different (random)
choices of monomial multiplication. It has been observed that for the same initial
system and the same p, different final systems can be obtained using different
seeds. The variations of the final system size on different seeds are shown in
Table 2 . Both the parts in the table correspond to the same initial system of
size 16 x 10. For this system, XL gives a final solvable system of size 1229 x
385 for D = 4. Table 2(a) shows the results obtained by XL_SGE-2 for p =
0.67, and Table 2(b) shows the results obtained by XL_SGE-2 for p = 0.50.
For p = 0.67, the variation in the number of equations in the final system is
observed to be within 50% of one another, whereas for p = 0.50, this variation is
within 20% of one another. In all cases, however, we obtain noticeably smaller
systems compared to XL. The rank deficit exhibits the same essential behavior
as in Table 1, but the choice of monomial multiplications has some effect on
this rank deficit for p = 0.50. It, however, appears assuring that the variation
of the performance of XL_SGE-2 on the seed is not annoyingly large, that is,
our strategy of random monomial multiplication is experimentally validated to
exhibit good performance in general.

Table 3 shows the results obtained by using random monomial multiplication
only in Step 2 of Algorithm 4. In Step 1, all the multiplications are carried out.
Here, we have experimented with four different values 0.50,0.67,0.75 and 0.80 of
p. The Table shows the smallest system size obtained among these four choices
of p. XL_SGE-2 works very well in most (more than 90%) of the cases. Even in
cases where XL works better than XL_SGE, the modified XL_SGE-2 outperforms
XL. In a few (less than 10%) experiments, however, XL_SGE-2 exhibits poorer
behavior than XL in terms of the rank profile of the expanded systems.

The performance of XL_SGE-2 is compared with the performance of XL and
XL_SGE in Table 4. In the columns under XL_SGE-2 in this table, we have re-
ported the best results obtained by XL_SGE-2. Here, the best is obtained among
several choices of p, including the fixed values 0.50, 0.67, 0.75 and 0.80, and also
including the variable probability sequences p;1 = 1 — ﬁ and ps = D’%;il. If
partial monomial multiplication is used after the d = 1 layer (that is, all multi-

11

Table 2. Variation of the final system size in XL_SGE-2 for some seed values

Final system size D K Seed ¢ Final system size D K Seed ¢
674 x 355 4 0 11056 0 518 x 373 4 6 8252 4
747 x 361 4 0 535 O 518 x 378 4 6 8637 9
964 x 383 4 5 9065 0 536 x 375 4 7 11395 5
966 x 385 4 6 8517 0 543 x 383 4 6 7581 3
968 x 385 4 5 3438 0 583 x 384 4 7 4067 3
983 x 384 4 6 5120 0 619 x 385 4 7 259 1

(a) p=0.67 (b) p=10.50

Table 3. Performance of XL_SGE-2
(Random monomial multiplication not done in Step 1 of Algorithm 4)

Initial system size XL XL_SGE-2

D System Size §|D K p System Size §
12x 7 4 317x98 0[3 3050 29x29 1
13 x 8 3 275x92 0{3 0050 205%x92 0
13x9 3 273x129 0|3 4 050 178 x 124 0
14 x 10 3 322x175 1/3 6 0.67 266 x 172 1
15 x 10 3 388 x 175 0{3 0 0.50 270 x 175 0
16 x 10 3 309 x 175 0|3 5 0.67 238x173 0
16 x 10 4 1229 x 385 0|4 0 0.67 674 x355 0
16 x 11 5 4450 x 1023 0|5 6 0.67 3324 x 870 0
16 x 12 5 5232 x 1585 0[5 7 0.67 4221 x 1584 0
17 x 12 3 548 x 298 0|3 7 0.67 466 x 298 0
17 x 12 4 1758 x 793 0|4 7 0.67 1391 x 792 0
17 x 12 4 1984 x 792 0|4 7 0.67 1573 x 790 0
17 x 12 4 2074 x 793 0[{4 8 0.50 1410 x 791 O
17 x 13 5 8889 x 2379 0|5 6 0.50 6069 x 2378 0
18 x 12 3 628 x298 0{3 0 0.50 452x295 0
18 x 13 4 2796 x 1092 0{4 6 0.50 1714 x 1092 0
18 x 14 4 3333 x 1470 0|4 8 0.50 2074 x 1467 0
19 x 13 4 2280 x 1090 0|4 8 0.67 1816 x 1086 0
19 x 14 4 4154 x 1470 0(4 7 0.50 2775 x 1469 0
19 x 14 4 4473 x 1470 0|4 5 0.50 3099 x 1469 0
19 x 14 4 4500 x 1470 0|4 5 0.50 3155 x 1464 0
19 x 15 3 1247 x 575 1|3 0 0.67 1068 x 575 1
20 x 14 4 3212 x 1470 0[4 8 0.50 1845 x 1470 0
20 x 15 4 4640 x 1940 0|4 8 0.50 3006 x 1936 0
20 x 16 4 7092 x 2516 0/ 4 0 0.50 5002 x 2514 0
21 x 16 4 5513 x 2516 0[|4 8 0.80 5224 x 2509 11
21 x 17 3 1737 x 833 0{3 0 0.50 1274 x 833 0

12

Table 4. Comparison of performances of XL, XL_SGE and XL_SGE-2

System size XL XL_SGE XL_SGE-2

D System Size §|D K System Size §|D K p System Size 0
12 x 7 4 317 x 98 03 0 44 x 38 1{3 3 0.504>2 29 x 29 1
13x8 |3 275x92 0[3 0 295x%x92 03 5 pm 115 x 88 0
13x9 |3 273 x129 0[3 4 264 x 129 0[3 4 0.504>2 178 x 124 0
14x10 |3 322x 175 113 5 338x173 1{3 6 0.674>2 266 x 172 1
15x10 |3 388 x 175 03 0 378x175 03 4 po 187 x 171 0
16 x 10 |3 309 x 175 0/3 3 276 x 173 0[3 5 0.674>2 238 x 173 0
16 x 10 |4 1229 x 385 0/4 5 1207 x 385 0/4 3 0.67 686 x 362 0
16 x 11 |5 4450 x 1023 0|5 6 4127 x 866 0l5 7 P2 2960 x 867 1
16 x 12 |5 5232 x 1585 0[5 6 4565 x 1583 2|5 7 p2 3947 x 1581 0
17x 12 |3 548 x 298 0[3 4 548 x 298 03 8 p2 394 x297 0
17x12 |4 1758 x 793 0[4 7 1703 x 793 04 7 po 1160 x 792 0
17x12 |4 1984792 0[4 7 2262x792 0[4 7 (p2)as> 1474 x 786 0
17x12 |4 2074 x 793 0[4 0 2596 x 793 04 7 0.75 1506 x 758 0
17 x 13 |5 8889 x 2379 0|5 4 12152 x 2342 4|5 7 0.50 5383 x2379 0
18 x 12 |3 628 x 298 0|3 0 614 x 296 0|3 7 p1 330 x 291 1
18 x 13 |4 2796 x 1092 0{4 5 2429 x 1092 114 8 0.50 1521 x1092 1
18 x 14 |4 3333 x 1470 0{4 0 3310 x 1470 0{4 8 0.504>2 2074 x 1467 0O
19 x 13 |4 2280 x 1090 0|4 7 2277 x 1089 0|4 7 m 1630 x 1075 1
19 x 14 |4 4154 x 1470 0(4 4 4202 x 1470 0{4 7 0.504>2 2775 x 1469 0
19 x 14 |4 4473 x 1470 0{4 0 4149 x 1470 0{4 0 (p1)a>2 2765 x 1469 0
19 x 14 |4 4500 x 1470 0{4 0 4750 x 1470 0[4 5 0.504>2 3155 x 1464 0O
19 x 15 |3 1247 x 575 1|3 0 1247 x 575 1/3 0 (p1)az2 717 x 575 1
20 x 14 |4 3212 x 1470 0|4 5 2781 x 1470 0|4 8 0.50g4>2 1845 x 1470 0
20 x 15 |4 4640 x 1940 0[4 8 4779 x 1940 0|4 8 0.504>2 3006 x 1936 0
20 x 16 |4 7092 x 2516 0|4 0 7085 x 2516 0|4 8 0.50 3526 x 2511 0O
21 x 17 |3 1737 x833 0[3 0 1730 x 833 0/3 0 p2 875 x 828 0

Table 5. Performance of XL_SGE’ (XL_SGE with column-weight 2 reduction)

Initial system size XL XL_SGE with col-wt 2 reduction

D System Size 6|D K System Size é
15 x 10 4 947x385 0/4 5 854 x 369 0
15 x 11 5 3906 x 1022 0|4 6 1572 x 502 0
15 x 11 4 1155 x 559 2|4 6 1073 x 491 4
17 x 12 5 5549 x 1505 0|5 7 6851 x 1577 0
17 x 13 6 19349 x 4095 8|5 5 9630 x 2278 1
18 x 14 4 4088 x 1470 0|4 5 3948 x 1470 0
21 x 17 5 29702 x 9401 0|5 7 44234 x 9380 4
22 x 17 4 7388 x 3213 0|4 6 6878 x 3213 0

13

plications are done in Step 1 of Algorithm 4), a suffix d > 2 is written against
the probability. The general observation is that XL_SGE performs slightly better
than XL in most cases, whereas XL_SGE-2 performs considerably better than
the other two algorithms consistently in almost all cases.

Some positive results obtained by XL_SGE with column-weight two reduc-
tion (henceforth referred to as XL_SGE’) are shown in Table 5. In some cases,
XL_SGE' works very well. In Row 2 of Table 5, XL_SGE’ shows 60% reduction
in the number of equations and 51% reduction in the number of variables, in
comparison with XL. For the same initial system, XL produces the final solvable
system for D = 5, whereas XL_SGE' gives the solvable system for D = 4. In
Row 5 of Table 5, XL_SGE’ shows 50% reduction in the number of equations and
44% reduction in the number of variables, in comparison with XL. More inter-
estingly, XL produces a system for D = 6 with rank deficit 8, whereas XL_SGE’
produces the final system for D = 5 with rank deficit 1 only. However, there are
many instances (not shown in Table 5) where XL_SGE’ does not work better
than XL. In fact, in some of these cases, XL_SGE’ is even poorer than XL_SGE.

We have not studied XL_SGE-2 with column-weight two reduction (XL_SGE-
2’). Tt is perhaps not the case that XL_SGE-2 is incompatible with the column-
weight two reduction strategy. However, the effectiveness of column-weight two
reduction is expected to show up for relatively large values of d. On the contrary,
XL_SGE-2 demonstrates superior performance compared to XL and XL_SGE
even for small values of d. Since our experiments are typically restricted to the
upper bound D < 5 of the degree of A’, our experiments miss the opportunity
to study XL_SGE-2’ in a proper setting.

Table 6. Performances of XL and variants of XL_SGE for four-round baby-Rijndael
(D = 3). The initial system size is 890 x 208.

Algorithm K p Final System Size Rank Deficit
XL 0 1 2594060 x 1498713 96936
XLSGE 3 1 2571848 x 1476481 93172
XL_SGE-2 0 0.754>2 2276971 x 1442363 89387
XL_SGE’' 0 1 2556116 x 1449153 81576

As an example of more cryptographic flavor than random systems, we have
experimented with several versions of XL_SGE on the initial system obtained
from four-round baby-Rijndael [17]. We have found that XL_SGE-2 significantly
improves the performance of XL and XL_SGE, both in terms of the size and
the rank deficit of the final system. The results obtained for four-round baby-
Rijndael are shown in Table 6. In the table, XL_SGE’ stands for XL_SGE with
column-weight two reduction strategy. XL_SGE’ too has been found to show
better performance than XL and XL_SGE.

14

6 Conclusion

Controlling the sizes of the linearized systems in the XL algorithm has been
studied by various researchers. The chief technical contribution of this paper
is our efforts to improve upon the XL family of algebraic attacks. More pre-
cisely, we suggest variants of a recent proposal called XL_SGE. Our experiments
establish the effectiveness of using our modifications in tandem with XL_SGE.
Like all other variants of the XL family, our proposals too are not feasible in
cryptanalyzing most practical ciphers (like AES). We, however, believe that the
improvements we have already achieved are worth reporting to the research com-
munity.

While our proposals address some of the open problems associated with
XL_SGE, some other issues continue to remain unattended. Moreover, our study
opens up some new avenues for research, some of which are stated below.

— The domains of applicability of XL_SGE’ need to be experimentally and/or
theoretically determined. Modifications of XL_SGE’ may also be called for
to make the column-weight two reduction strategy useful in a variety of
situations.

— We have demonstrated how partial monomial multiplication may improve
the performance of XL and XL_SGE. So far, XL_SGE-2 uses only random
monomial multiplication. A more intelligent partial-multiplication strategy
may exploit the structures of the intermediate linearized systems better than
a random strategy can. Moreover, the dependence of the system size and
rank profile on the seed (multiplication decisions)—a property inevitably
associated with a randomized algorithm like XL_SGE-2—should better be
minimized, if not eliminated altogether.

— An optimal choice for p (fixed or varying with degree d) requires more ex-
perimentation and theoretical analysis.

References

1. Faugere, J.C.: A new efficient algorithm for computing Grébner basis (F4) (2000)

2. Faugere, J.C.: A new efficient algorithm for computing Grébner basis without
reduction to zero (F5). ISSAC 02 (2002) 75-83

3. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: CRYPTO. (1999) 19-30

4. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solv-
ing overdefined systems of multivariate polynomial equations. In: EUROCRYPT.
(2000) 392-407

5. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: ASTACRYPT. (2002) 267287

6. Ding, J., Buchmann, J., Mohamed, M., Mohamed, W., Weinmann, R.: MutantXL.
In: SCC. (2008) 16-22

7. Bard, G., Courtois, N., Jefferson, C.: Solution of sparse polynomial systems over
GF(2) via sat-solvers. In: ECRYPT workshop Tools for Cryptanalysis. (2007)

15

10.

11.

12.

13.

14.

15.

16.

17.

Ars, G., Faugere, J.C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between
XL and Grobner basis algorithms. In: ASTACRYPT. (2004) 338-353

. Courtois, N., Bard, G.V.: Algebraic cryptanalysis of the Data Encryption Stan-

dard. In: IMA Int. Conf. (2007) 152-169

Courtois, N., Bard, G.V., Wagner, D.: Algebraic and slide attacks on Keeloq. In:
FSE. (2008) 97-115

Courtois, N., O’Neil, S., Quisquater, J.J.: Practical algebraic attacks on the Hitag2
stream cipher. In: ISC. (2009) 167-176

Courtois, N.T.: Algebraic complexity reduction and cryptanalysis of GOST. Cryp-
tology ePrint Archive, Report 2011/626 (2011) http://eprint.iacr.org/.
Daemen, J., Rijmen, V.: Rijndael for AES. In: AES Candidate Conference. (2000)
343-348

Ghosh, S., Das, A.: An improvement of linearization-based algebraic attacks. In:
InfoSecHiComNet. (2011) 157-167

LaMacchia, B., Odlyzko, A.: Solving large sparse linear systems over finite fields.
In: CRYPTO. (1991) 109-133

Mohamed, W.S.A., Ding, J., Kleinjung, T., Bulygin, S., Buchmann, J.: PWXL:
A parallel Wiedemann-XL algorithm for solving polynomial equations over GF(2).
In: SCC. (2010) 89-100

Kleiman, E.: The XL and XSL attacks on Baby Rijndael. Master’s thesis, Iowa
State University, Department of Mathematics (2005)

16

