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Abstract. Since the invention of the Rubik’s cube by Ernö Rubik in
1974, similar puzzles have been produced, with various number of faces
or stickers. We can use these toys to define several problems in computer
science, such as go from one state of the puzzle to another one. In this
paper, we will classify some of these problems based on the classic Rubik’s
cube or on generalized Rubik’s Cube. And we will see how we can use
them in Zero Knowledge Authentication with a public key in order to
achieve a given complexity against the best known attacks (for example
280 computations). The efficiency of these schemes, and their possible
connection with NP-complete problems will also be discussed.
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1 Introduction

The puzzles based on the Rubik’s cube meet a great success. Generally
speaking, Rubik’s cube’s owners try to solve the following problem: how
to rearrange the cube when all the colors have been mixed up. At first
sight, this problem seems very difficult, but there exist efficient algo-
rithms to solve it. Nevertheless, several other problems with the cube
and its neighboring puzzles seem to be really difficult from a computing
point of view, as we will see later in this article. For example, if we impose
that the number of moves is equal to a fixed value d that makes unique
or almost unique the moves that must be done to recover the cube.
Consequently, we can try to build some public key Zero Knowledge au-
thentication or signature protocols with a proven security linked to these
difficult problems (and also on a hash function used for the commit-
ments). It is well known that there exist cryptographic algorithms trans-
forming every NP problem into a Zero Knowledge authentication proto-
col (cf [3]). The theoretical way to do this is polynomial but nevertheless
generally not efficient at all. This is why we will present and study some
specific algorithms in this article, which can be used for practical cryp-
tography and with a proven security based on some difficult well-known
problems of the Rubik’s cube.



2 Mathematical background

All the following notations can be found in the famous book [6], which
is a funny way to learn algebra with toys such as the Rubik’s cube and
the Merlin’s machine.
For a finite set X, SX is the symmetric group of X. In the particular case
X = {1; 2; . . . ;n} where n ∈ N∗, we call this group Sn. For (σ, σ′) ∈ SX2,
we use the classic notation σσ′ to design the composition σ′ ◦ σ.
When G is a group, and (g1, g2, . . . , gα) ∈ Gα, < g1, g2, . . . , gα > is the
subgroup generated by g1, g2, . . . gα

Definition 1 If G is a group with a neutral element e, and X a set, we
say G acts on X (on the right) if there exists φ:G→ SX such that:
1. φ(e) = IdX where IdX is the neutral element of SX
2. ∀(σ, σ′) ∈ G2, φ(σσ′) = φ(σ′) ◦ φ(σ)

For x ∈ X and σ ∈ G, we can write φ(σ)(x) = σ ∗x. Moreover, the orbit
of x under G is G ∗ x = {g ∗ x|g ∈ G}

Example 1: When G ⊂ Sn, G acts on Sn in the following natural way:

∀σ ∈ G,∀σ′ ∈ Sn, σ ∗ σ′ = σ′σ

We will call this action natural right action.

3 Difficult Problems with Fairy Rubik

For all the following problems, we have a finite permutation group G,
a finite set X, that represents the different states of the puzzle, and a
right action of G on X. Let F be a subset of G, containing all authorized
permutations.
The cardinal of F is α ≥ 2, we have F = {f1; f2; . . . ; fα}.
id ∈ X is the initial state.

Problem 1: Solving the puzzle.
Given x0 ∈ X, find d ∈ N and (i1, i2, . . . , id) ∈ {1; 2; . . . ;α}d such that

fi1fi2 . . . fid ∗ x0 = id

Problem 2: Go from one state to another one.
Given (x0, x1) ∈ X2, find d ∈ N and (i1, i2, . . . , id) ∈ {1; 2; . . . ;α}d such
that

fi1fi2 . . . fid ∗ x0 = x1

Problem 3: Solving the puzzle in a given number of moves.
Given d ∈ N∗, x0 ∈ X, find (i1, i2, . . . , id) ∈ {1; 2; . . . ;α}d such that

fi1fi2 . . . fid ∗ x0 = id

Problem 4: Go from one state to another with a given number of
moves.



Given d ∈ N∗, (x0, xd) ∈ X2, find (i1, i2, . . . , id) ∈ {1; 2; . . . ;α}d such
that

fi1fi2 . . . fid ∗ x0 = xd

Proposition 1 For the natural right action, problems 1 and 2 are equiv-
alent, and so are problems 3 and 4.

Proof. It is obvious that problems 1 and 3 are particular cases of prob-
lems 2 and 4 respectively.
Now, we suppose given (x0, x1) ∈ X2 and we want to go from x0 to x1

with functions in F . Let x′0 = x−1
1 x0. If we find (i1, . . . , id) such that:

x′0fi1fi2 . . . fid = fi1fi2 . . . fid ∗ x
′
0 = id

then
x0fi1fi2 . . . fid = fi1fi2 . . . fid ∗ x0 = x1

Proposition 2 We can find a solution of problem 4 with 2αd/2 compu-
tations if d is even.

Proof. This is an attack in the middle. We notice that fi1fi2 . . . fid ∗x0 =
xd is equivalent to fi1 . . . fid/2 ∗ x0 = (fid)−1 . . . (fid/2+1)−1 ∗ xd.
So, for each (i1, i2, . . . , id/2) ∈ {1, . . . , α}d/2 we compute

Yi1i2...id/2 = fi1fi2 . . . fid/2 ∗ x0

and Zi1i2...id/2 = (fi1)−1(fi2)−1 . . . (fid/2)−1 ∗ xd

Then we look for a collision between Y and Z.

Remark We give here (α, d) when the complexity of the attack is equal
to 280

α 2 3 4 5 6 8 10 12

d 158 99 79 68 61 52 47 44

See fig. 1 for greater values of α.
In this paper we will study how to transform these difficult problems
into a Zero-Knowledge Authentication Protocol. In other words: we will
study how to prove that we have a solution of one of these problems
without revealing anything of the solution.
Remark: The possible connection between NP complete, NP Space and
these Rubik problems will be discussed in Appendix A.

4 Other notations

When X is a finite set, x ∈R X means that we take a random element
in X with an uniform probability.
A commitment is a function used to give somebody a hidden informa-
tion, with the possibility of revealing it later. It’s like putting something
into a box and lock it, with the possibility of giving the key later. We
use the notation Com(x) to design a commitment of x. One easy way to
construct such functions is the use of a hash function (see [5]).



Fig. 1. (α, d) for α ≥ 6 and a complexity equal to 280 computations.

Definition 2 For σ ∈ SN , the support of σ is supp(σ) = {i |σ(i) 6= i}.

Conjugation: Let G be a group, the conjugation on G defined by

∀(σ, τ) ∈ G2, φ(τ)(σ) = τ−1στ = στ

is an action of G onto itself. Moreover we have:

∀(σ, σ′, τ, τ ′) ∈ G4, (στ )τ
′

= σττ
′
, στσ′τ = (σσ′)τ

We can also write σG = {σg|g ∈ G} .

5 With Rubik’s cube 3 × 3 × 3

5.1 Introduction

We will first describe a zero-knowledge authentication scheme based on
Rubik’s classical cube 3 × 3 × 3. We do this in order to introduce the
main ideas with this relatively simple example. However with Rubik’s
cube 3× 3× 3 the complexity of problem 4 is much smaller than 280 and
therefore we cannot use it for cryptographic security (for cryptographic
applications we will use the Cube 5× 5× 5 as we will see below).
We have indeed about 43.2 × 1018 different positions for this Rubik’s
cube, so about 261 or 625. Tomas Rokicki (see http://tomas.rokicki.com/)
pretends that we need less than 29 quarter turns to solve any position
of the cube. If we consider that half a turn count as one move, we know
that the God’s number is 20 (see http://cube20.org/). But in our case we
do not authorize un-clockwise quarter turns and half turns. So it seems
reasonable to choose for problem 4 the value d = 24, and the security
will be about 612 ≈ 230 computations.



5.2 Mathematical representation of the Rubik’s cube

For the Rubik’s cube, we can write a number on each facets except the
centers:

Fig. 2. Rubik’s cube after moves R and U
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then we define 6 permutations of S48 which are the basic clockwise quar-
ter turns of the faces:

F = (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)
B = (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)
L = (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)
R = (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)
U = (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
D = (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)

after the move σ, the facet i ∈ {1, 2, . . . , 48} is at the σ(i) position.
The Rubik’s cube group is < F,B,L,R,U,D >⊂ S48. If you want simu-
late the Rubik’s cube, an easy way to do this is using SAGE [9].
For the Rubik’s Cube, we will choose the natural right action, with G =
X = S48 and F = {F,B,L,R, U,D}. So α = |F| = 6. If x0 ∈ X is the



initial position of the cube, you can visualize the cube by drawing the
facet i at the position x0(i) for all i ∈ {1; . . . ; 48}. The Rubik’s cube is
solved when xd = id.

5.3 Hiding the secret

First we have to hide the permutation we make to go from state to
another, without hiding that we make one authorized permutation, i.e.
one element of F . An easy way to do this with the cube 3 × 3 × 3 is to
roll the cube like a dice (we always consider that the centers of the faces
don’t move or don’t exist). We will formalize this notion later, and call
it the repositioning.
Let H be the group of the orientation-preserving symmetry of the cube.
We have H =< h1, h2 > where h1 is the cube rolling on its back (see
fig 3), and h2 the cube laying on the table but turning as a whole one
clockwise quarter of a turn. To be more precise we have:

h1 = RL−1(2, 39, 42, 18)(7, 34, 47, 23)

h2 = UD−1(13, 37, 29, 21)(12, 36, 28, 20)

It’s easy to check that |H| = 24, because for each face up, we have 4
choices for the face in front.
Now let x0 ∈ X be one position of the cube. If f ∈R F and τ ∈R H, we
can check that fτ is a random variable with an uniform law on F , and
the following diagram is commutative:

x0
f−−−−→ x1

τ

???y τ

???y
τ ∗ x0

fτ−−−−→ τ ∗ x1

Fig. 3. Repositioning “h1”
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Secondly, we want to hide any intermediate position of the cube, when we
solve the problem. Physically, it is possible by removing all the stickers



of the cube (again, except the centers) and replacing them in a random
way on the cube. We will actually do something close to that action at
each step of the resolution.

5.4 ZK protocol

The prover’s secret is (i1, i2, . . . , id) ∈ {1, 2, . . . , α}d such that from the
public x0 ∈ X, we obtain xd ∈ X in exactly d rounds (d is also public)
with the functions of the public set F = {f1, f2, . . . , fα}:

fi1fi2 . . . fid ∗ x0 = xd

We define for all k ∈ {1; . . . ; d−1}, xk = fik ∗xk−1. The prover take τ ∈R
H and (σ0, σ1, . . . , σd) ∈R G′d+1 where G′ is the subgroup generated by
F and H (we can imagine that the permutations σi are the removing-
replacing stickers actions). Then he computes for all k ∈ {1; . . . ; d} g′k =
σk−1

−1(fik
τ )σk. If we define for all i ∈ {0; . . . ; d}, x′i = τσi ∗xi, we have

the following commutative diagram:

x0

fi1−−−−→ x1

fi2−−−−→ . . . xd−1

fid−−−−→ xd

τ

???y τ

???y τ

???y τ

???y
τ ∗ x0

fi1
τ

−−−−→ τ ∗ x1

fi2
τ

−−−−→ . . . τ ∗ xd−1

fid
τ

−−−−→ τ ∗ xd

σ0

???y σ1

???y σd−1

???y σd

???y
x′0

g′1−−−−→ x′1
g′2−−−−→ . . . x′d−1

g′d−−−−→ x′d

The prover sends to the verifier c0 = Com(τ), g′k for all k ∈ {1; 2; . . . ; d}
and for all i ∈ {0; . . . ; d}, si = Com(σi).
Then the verifier sends to the prover r ∈ {0; 1; . . . ; d}.

If prover reveals Then the verifier checks

r = 0 τ, σ0, σd

τσ0g
′
1g
′
2 . . . g

′
dσd
−1τ−1 ∗ x0 = xd

τ ∈ H
Commitments c0, s0, sd

1 ≤ r ≤ d σr−1, σr
σr−1g

′
rσr
−1 ∈ F

Commitments sr−1, sr.

5.5 Proof of ZK protocol

Completeness Obviously, a legitimate prover will be always accepted.

Soundness If a prover can answer correctly in all cases, then he reveals
τ ∈ H, and σi for all i ∈ {0; 1; . . . ; d}.
So if we suppose that we have not found a collision in the hash function



used for commitment (see [5]), then we have:

xd = τσ0g
′
1 . . . g

′
dσd
−1τ−1 ∗ x0

= τ(σ0g
′
1σ1
−1)(σ1g

′
2σ2
−1) . . . (σd−1g

′
dσd
−1)τ−1 ∗ x0

= τfi′1fi′2 . . . fi′dτ
−1 ∗ x0

= fi′1
τ−1

fi′2
τ−1

. . . fi′
d

τ−1
∗ x0

So we have a solution of the initial problem.

Black Box Zero-Knowledge Firstly we show that for a legitimate
prover, each answer has an uniform probability over the corresponding
set.
• r = 0.

The prover gives (τ, σ0, σd, g
′
1, . . . g

′
d−1) ∈ H×G′d+1. We have for all

k ∈ {1; . . . d− 1}, g′k = σk−1
−1fik

τσk with σk ∈R G′. So we have an
uniform probability over H ×G′d+1.

• 1 ≤ r ≤ d.
The prover gives (σr−1, σr, fir

τ , g′1, . . . , g
′
r−1, g

′
r+1, . . . , g

′
d) ∈ G′2 ×

F × G′d−1. We have for all k ∈ {1; . . . r − 1}, g′k = σk−1
−1fik

τσk
with σk−1 ∈R G′ and for all k ∈ {r + 1; . . . d}, g′k = σk−1

−1fik
τσk

with σk ∈R G′. Moreover, since τ ∈R H, fir
τ is uniformly chosen in

F (see below proposition 3). So we have again an uniform probability
over G′2 × F ×G′d−1.

Secondly, we construct a black-box simulator which take x0 without
knowing the secret, and interacts with a cheating verifier CV. We show
that the simulator can impersonate the honest prover with probability

1
d+1

. The simulator randomly chooses a value r∗ ∈R {0; 1; . . . ; d}, this is
a prediction what value CV will not choose. We consider two cases:

• r∗ = 0
We choose τ ∈R H, (f ′1, . . . , f

′
d) ∈R F d and (σ0, . . . , σd) ∈R G′d+1.

Then we compute for all k ∈ {1; . . . ; d} g′k = σk−1
−1f ′kσk.

• 1 ≤ r∗ ≤ d
We choose (i1, i2, . . . , ir∗−1, ir∗+1, . . . id) ∈R {1; 2; . . . ;α}d−1. Then

we choose τ ∈R H and (σ0, . . . σd) ∈R G′
d+1

. We define for all
k ∈ {1; . . . ; r∗ − 1}, xk = fik ∗ xk−1, and for all k ∈ {r∗; . . . ; d− 1},
xk = fik+1

−1 ∗ xk+1. We choose f ∈ G such that f ∗ xr∗−1 = xr∗

(this is easy when G = Sn and F ⊂ Sn). Then we compute for all
k ∈ {1; . . . ; d}\{r∗} g′k = σk−1

−1fik
τσk and g′r∗ = σk−1

−1gσk where
g = fτ . We define also for all i ∈ {0; . . . ; d}, x′i = τσi ∗ xi. We have
the following commutative diagram:

x0
f ′1−−−−→ x1 . . . xr∗−1

f−−−−→ xr∗ . . . xd−1

f ′d−−−−→ xd

τ

???y τ

???y τ

???y τ

???y τ

???y τ

???y
τ ∗ x0

f ′1
τ

−−−−→ τ ∗ x1 τ ∗ xr∗−1
g−−−−→ τ ∗ xr∗ τ ∗ xd−1

f ′d
τ

−−−−→ τ ∗ xd

σ0

???y σ1

???y σr∗−1

???y σr∗

???y σd−1

???y σd

???y
x′0

g′1−−−−→ x′1 . . . x′r∗−1

g′r∗−−−−→ x′r∗ . . . x′d−1

g′d−−−−→ x′d



It is easy to check that each time every request of CV will have a satis-
fying answer, except for r = r∗. So the probability that it fails is 1

d+1

5.6 Number of rounds

Here we will discuss of the number of times (r) the prover will do the
protocol (one protocol is considered as one round), in order to prove with
a good probability that she knows the secret. If we set this probability

to 1− 2−m, we must have
“

d
d+1

”r
≤ 2−m, so it gives r ≈ md ln(2). For

example, with m = 30 and d = 24, only 500 rounds are necessary, and it
will take less than 1 second for a computer to compute everything.

6 Rubik’s cube 5 × 5 × 5

6.1 Introduction

Why choose this particular Rubik’s cube ? For practical authentication
we need a puzzle with at least 2160 different states. This cube has about
2247 different positions (see Wikipedia: Professor’s cube). As for the Ru-
bik’s cube 4× 4× 4, he has (only) about 2152 positions !

6.2 Mathematical representation

We can again write numbers on each facet, except the centers. But, on the
contrary of the Rubik’s cube 3×3×3, two facets can be undistinguishable.
So, when we observe this Rubik’s Cube, we don’t know exactly where
the facets will go, and there may exist different ways to solve it. We can
write this new problem in this way:

Problem 5: Solving the puzzle in a given number of moves with several
initial states.
Given d ∈ N∗, X0 ⊂ X, find (i1, i2, . . . , id) ∈ {1; 2; . . . ;α}d, x0 ∈ X0 such
that

fi1fi2 . . . fid ∗ x0 = id

For the manipulation of the cube, we consider only 12 basic permutations.
We will choose here the 6 clockwise quarter turns of the upper crown of
each face (U,D, F,B,R,L), and the 6 clockwise quarter turns of the
first intermediary crown of each face (U1, D1, F1, B1, R1, L1). But other
choices are possible. We have:

G = X =< U,D, . . . , L, U1, D1, . . . , L1 >⊂ S144

6.3 Hiding the secret

Just rolling the cube is not enough to hide an authorized move. This will
only shuffle independently (U,D, F,B,R,L) and (U1, D1, F1, B1, R1, L1).
We need a new idea. An elegant way to do this is to duplicate the cube.
We have now 144 new facets, from 145 to 288. We will call U+ the



action of U on the second cube, an easy way to compute U+ is to add
144 to each cycle of U . We will call also E the exchange of the two
cubes: E = (1,145)(2,146) . . . (144,188). Then, each time we use U on
the first cube, we will use U+

1 on the second cube (i.e. U1 + 144), and
so on. Let’s call G̃ the subgroup of S288 generated by UU+

1 , DD+
1 , . . . ,

L1L
+. The size of G̃ is about the same as G. A computation with Sage

gives |G| ≈ 2300 and
˛̨̨
G̃
˛̨̨
≈ 2364. We will hide the move by rolling in

the same way the two cubes, and exchanging or no the two cubes. So we
set H =< h1h

+
1 , h2h

+
2 , E >. This time our repositioning group H has 48

elements.

Fig. 4. Twin cubes, move R̃1 = R1R
+

By the way, we have changed the problem to a new one:

Problem 6: Solving the puzzle in a given number of moves with several
initial states and several final states.
Given d ∈ N∗, (X0, Xd) ⊂ X2, find (i1, i2, . . . , id) ∈ {1; 2; . . . ;α}d, x0 ∈
X0, xd ∈ Xd such that

fi1fi2 . . . fid ∗ x0 = xd

In this caseX0 the subset of all possible initial states with the given facets
of the first cube (and all permutations for the second cube) and Xd the
subset of all permutations with a support included in {145, . . . 288}. It
is quite obvious that in this particular case, the second cube gives no
information at all for the solution, so the problem has exactly the same
difficulty than the initial problem. The only drawback is the size of the
new objects, but we have seen that the size of G̃ is not so different as
the size of G.

6.4 ZK Protocol

We can take the same scheme than in the previous section, with G̃ instead
of G, and using problem 6. See annexe C for an overview of the protocol.



7 Generalisation with Sn

In this section, we will define precisely the repositioning group for a set
of permutations F . The existence of this group is the key of our schemes,
as explained in the following proposition.

Definition 3 Let F = {f1, . . . , fα} ⊂ Sn. If there exists a subgroup
H ⊂ Sn such that f1

H = F then H is called a repositioning group of
F .

Proposition 3 We suppose F has a repositioning group H. Let S1 be
the H-stabilizer of f1 i.e. S1 = {τ ∈ H | f1τ = f1}, we have |H| =
|F| × |S1|. So, if we choose τ ∈R H, P (fi

τ = fj) = 1
α

for all (i, j).

As we have seen in the previous section, it’s not easy to find a repo-
sitioning group in the general case. When the functions in F are not
conjugated, it is even impossible. But we can use a roundabout way,
with an extension set to find a solution. We will give here the general
algorithm to build H. But we can notice that we can often find better so-
lutions. For example, in the previous section, the orientation preserving
group of the cube enables us to work on S288 instead of S1728.
General method: Let G = Sn, In = {1; 2; . . . n}, α ∈ N (α ≥ 2),

F = {f1, . . . , fα}. For all k ∈ {0, . . . α − 1}, we define I
(k)
n = {1 +

kn; . . . ; (k + 1)n}, and we consider that f
(i)
k is the same permutation

than fk but on I
(i)
n instead of In. We define for all k ∈ {1; 2; . . . ;α}:

f̃k = f
(0)
k f

(1)
k+1 . . . f

(α−k)
α f

(α−k+1)
1 . . . f

(α−1)
k−1

condidered as permutations of Iαn. Let G̃ = Sαn and σ ∈ G̃ defined by:

∀i ∈ {1; . . . ;αn}, σ(i) =


i+ n if i ≤ (α− 1)n
i− (α− 1)n if i > (α− 1)n

Then H =< σ > is a repositioning group of F̃ = {f̃1; . . . ; f̃α}.

8 Practical examples

In this section, we try to give a simple and efficient way to make a
authentication protocol based on permutation. We do not start with the
puzzle, but on the contrary, we construct our own puzzle directly with
its repositioning group. The result is much more compact and can be
used in practice.
We begin to set G = S41 because |G| ≈ 2165. A concrete way to represent
one element of this group is for example a playlist with only 41 different
songs.
We take two random elements in G: f and h. We define H =< h > and
F = fH . With SAGE, we made a simulation with 1000 iterations (see



annexe B). 98 times over 100, we have |< F >| ≥ |G|
2

. The mean value
for α = |F| is 468 with a standard deviance equal to 825. So there is no
difficulty to find α ≥ 100.
When H, F and α are so defined, we set d = 24 (see fig 1), and r = 500.
So we have a security equal to 280 and a authentication scheme with an
error less than 2−30.

9 Conclusion

In this paper we have seen how we can build authentication schemes with
public key, based on various problems with the Rubik’s cube and several
other generalized cubes. We also show how to construct a random puzzle
over a small set that is suitable for the general scheme and can be used
for a security in 280. It is also possible to transform these authentication
schemes into signature schemes with the standard transformation used
in the ”Fiat-Shamir” protocol with a hash function (see [1]).
Our constructions are much more efficient than those obtained with gen-
eral process (cf [3]). Other puzzles, not mentioned here, can be used in
the same way for authentication, but there exist puzzles too dissymmet-
ric or based on some PSpace complete problems that would be worth
having specific analysis.
We have also classified several problems linked to the generalized Rubik’s
cube and show that some NP complete problems have a neighboring
description.
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A Possible connections between NP Complete,
NP Space and Rubik Problems

In section 3 we have seen several problems based on the Rubik’s cube
or on generalized Rubik’s cubes. When one of the parameter of these
puzzles (for example the size n of the cube) becomes large, we wonder
how will grow the complexity, asymptotically speaking. We notice that
we don’t know yet if some of these problems are NP-complete (cf [7]
p. 27). Moreover, it is plausible that they are not NP-complete because
they have a power of description too limited to describe all the problems
of the NP class.
Nevertheless, as we will explain further, some of NP-complete problems
have a real simililarity with the Rubik’s cubes puzzles. So we can con-
sider that these problems, used in this article for authentication, are part
of a neighboring class, or a larger class, which is proved NP-complete or
NP-space. This is not a proof of the difficulty of Rubik’s cube related
problems, but it is an indirect argument suggesting it could be true.
Example 1 From [2] p. 280 and [8] we know that the problem “Finite
Function Generation” is P-space complete.
Finite Function Generation
INSTANCE: Finite set A, a collection F of functions f :A → A and a
specified function h:A→ A.
QUESTION: Can h be generated from the functions in F by composi-
tion ?
Remark We can notice that here the number of composition functions to
be found is not considered, unlike for the Rubik’s cube problems where
this value d seems to be critical for the complexity.
Example 2 From [2] p. 213, we know that the problem “Longest path”
is NP complete.
LONGEST PATH
INSTANCE: Graphe G = (V,E), length l(e) ∈ Z+ for each e ∈ E, posi-
tive integer K, specified vertices s, t ∈ V
QUESTION: Is there a simple path in G from s to t of length K or more,
i.e. whose edge lengths sum to at least K ?
Remark This problem remains NP complete if l(e) = 1 for all e ∈ E.
Therefore this problem has some similarities with our Rubik problems
for going from one position to another. However, as noticed in [2] p. 79
this problem becomes polynomial when we change “of length K or more”
by “of length K or less”. Nevertheless if me model our graph G such that
each vertice is a position of a Rubik’s cube n × n × n, the number of
vertices (i.e. possible Cubes) will grow exponentially in n.



B Practical simulation

sage: set_random_seed(2)

sage: G=SymmetricGroup(41)

sage: gg=G.order()

sage: print "Group order:",gg,"->",int(ln(gg)/ln(2)+1),"bits"

sage: x=[]

sage: xx=[]

sage: nb_try=1000

sage: for j in range(nb_try):

... f=G.random_element()

... h=G.random_element()

... n=h.order()

... c=[h**i*f*h**(-i) for i in range(n)]

... sc = set(c)

... H=PermutationGroup(c)

... hh=H.order()

... x.append(hh)

... if hh >= gg/2 :

... xx.append(len(sc))

...

sage: sxx = Set(xx)

sage: sx = Set(x)

sage: print "y=P(card(<f_1,f-2,...,f_alpha>)/card S_n = x)"

sage: y = [(j/gg,100*x.count(j)/nb_try) for j in sx]

sage: show(points(y))

sage: print "alpha when <f_1,f_2...f_alpha>=S_n or A_n"

sage: y2 = [(j,xx.count(j)) for j in sxx]

sage: show(points(y2))

sage: print "mean value of alpha",float(mean(xx))

sage: print "standard deviance of alpha",\

float(sqrt(variance(xx)))

sage: print "mode of alpha",mode(xx)

Group order: 33452526613163807...2000000000 -> 165 bits

y=P(card(<f_1,f-2,...,f_alpha>)/card S_n = x)



alpha when <f_1,f_2...f_alpha>=S_n or A_n

mean value of alpha 468.853783231

standard deviance of alpha 825.082851267

mode of alpha [36]

sage: print "<F>=S_n :",\

100*float(x.count(gg)/nb_try),"%"

sage: print "<F>=A_n :",\

100*float(x.count(gg/2)/nb_try),"%"

<F>=S_n : 46.1 %

<F>=A_n : 51.7 %



C ZK general protocol

Public:
– A group G with a right action on a set X
– A subset F = {f1, . . . , fα} ⊂ G
– A repositioning group H ⊂ G such that fH1 = F .
– d ∈ N, d ≥ 3
– (X0, Xd) ⊂ X2.
– G′ subgroup of G generated by F and H. G′ =< F , H >.

Secret:
(i1, i2, . . . , id) ∈ {1, 2, . . . , α}d such that there exist x0 ∈ X0 and xd ∈ Xd
with:

fi1fi2 . . . fid ∗ x0 = xd

Scheme (one round):
Prover Verifier
τ ∈R H
σ0, σ1, . . . , σd ∈R G′
∀k ∈ {1, . . . , d}, g′k = σ−1

k−1f
τ
ik
σk

c0 = Com(τ)
∀i ∈ {0, . . . d}, si = Com(σi)

g′1, . . . , g
′
d

c0, s0, . . . , sd
−→

r ∈R {0, . . . d}
r
←−

τ , σ0, σd
If r = 0 −→ Checks

∃x0, xd ∈ X0 ×Xd,
τσ0g

′
1, g
′
2 . . . , g

′
dσ
−1
d τ−1 ∗ x0 ∈ Xd

τ ∈ H
Com(τ) = c0,
Com(σ0) = s0, Com(σd) = sd
If all tests ok return “accepted”
else return “rejected”

σr−1, σr
If r 6= 0 −→ Checks

σr−1g
′
rσr
−1 ∈ F

sr−1 = Com(σr−1), sr = Com(σr)
If all tests ok return “accepted”
else return “rejected”


