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Abstract For a class of generalized Feistel block ciphers, an explicit recurrent formula for the minimum

numbers of linearly active S-boxes of any round r is presented.
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1 Introduction

Linear cryptanalysis and differential cryptanalysis, the two most significant analyses meth-
ods applicable to block ciphers, were introduced by Matsui [1] and Biham, Shamir [2], respec-
tively. Whether a block cipher can resist the two analyses is one of basic problems of the security
of block ciphers. However, in the design of block ciphers, such ability is usually measured by
minimum numbers of linearly or differentially active S-boxes. For AES, the branching number
method is used to determine lower bounds for minimum numbers of linearly or differentially
active S-boxes.

The formal definition of generalized Feistel Structure(GFS) was given by Zheng et al.[3].
Several cryptographic properties of these structures were analyzed in [4][5]. In 1992, Nyberg and
Knudsen [6] first proposed the conception of a provable security against differential cryptanalysis
and gave a provable security for a Feistel structure. In [7], Lee et al. discussed the provable
security of the standard Type-II GFS with the partitioning number d against differential and
linear attacks, and then Shirai and Araki discussed its practical security against differential
and linear attacks in [8]. They showed the lower bounds on the numbers of active S-boxes
for three types of generalized Feistel Structure: Type-I, Type-II and Nyberg’s constructions
[3][9]. Kanda [10] presented the minimum number of active S-boxs of Feistel ciphers with
SPN round function. Using the minimum number of active S-boxes, Nyberg and Knudsen
[11] gave the upper bounds of the maximum linear spread value and maximum differential
spread value of Feistel system. Recently, Suzaki and Minematsu introduced a GFS with the
optimal round permutation with respect to full diffusion property, which is a property that all
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outputs are affected by all inputs [12]. Their paper showed that the improved GFS can be more
secure against impossible differential and saturation attacks than the standard GFS. However,
they expect that the minimum numbers of active S-boxes remains about the same. Thus their
structures still require at least same number of rounds as the standard GFS to be secure against
differential and linear attacks.

In the references [13] and [14], the authors discussed the linear cryptanalysis and differential
cryptanalysis of the generalized Feistel ciphers respectively, and they gave the maximum linear
spread value and differential spread value for 5–32 rounds through enumeration. Precisely,
the structure discussed in [13] is as follows: The block length is 128 bits, the confusion part
for the round function F is S-boxes with 8 bits input and 8 bits output, and the invertible
transformation P for the diffusion part is:

P (X) = X ⊕ (X <<< 6)⊕ (X <<< 14)

⊕(X <<< 22)⊕ (X <<< 24),

where X ∈ F32 and <<< denotes the left cyclic shift. Graphically, this can be presented as:

Figure 1: Feistel Structure Figure 2: Round Function

The Feistel structure can be mathematically described as:

Xr+1 := (Xr+1,1, Xr+1,2, Xr+1,3, Xr+1,4)

:= (Xr,4, Xr,1, Xr,2, Xr,3 ⊕ F (Xr,4 ⊕Kr)), (1)

where Xt,l,Kt ∈ F32, t ≥ 0, l = 1, 2, 3, 4, and if Yr := (Yr,1, Yr,2, Yr,3, Yr,4), then

F (Yr) = (S(Yr,1), S(Yr,2), S(Yr,3), S(Yr,4))A, (2)

where Yr ∈ F32;Yr,i ∈ F8, i = 1, 2, 3, 4, and A is the invertible matrix corresponding to the
invertible linear transformation P. Clearly, (2) is a layer of SP structure, and (1) moving one
time is called one round. Assume that X0,1, X0,2, X0,3, X0,4,Kt ∈ F32, t = 0, 1, 2, . . . , N−1, are
independent and identically distributed random variables. Then, in [13], through enumeration
the authors give the minimum numbers of linearly active S-boxes for the first 32 rounds as in
the following table.
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r 5 6 7 8 9 10 11
mr 1 1 2 6 6 7 7
r 12 13 14 15 16 17 18
mr 8 9 13 14 16 17 17
r 19 20 21 22 23 24 25
mr 18 18 19 19 20 24 24
r 26 27 28 29 30 31 32
mr 25 25 26 27 31 32 34

In this table, r and mr denote the round number and the minimum active number respectively.
In this paper, we give a further discussion on this structure. Firstly, we reduce the problem

to one about matrices of state transition probabilities. Then, we ”spones” matrices (”spones”
means replacing all nonzero elements in a matrix by 1. See section 4 for details. ) so that we get
transition character matrices and their recursive relations. Finally, by further ”spones”, we get
a sequence of active numbers, from which the minimum active number could be obtained. Fol-
lowing this idea, we present a general formula for calculating LLESAr, the minimum numbers
of linearly active S-boxes for arbitrary r rounds (see Definition 2.6. Note that the minimum
number here means a low bound that can be achieved.). More precisely, we proved that if the
round number r ≥ 5, then

LLESAr = LLESA5+((r−5) mod16) + 18[
r − 5

16
],

where the symbol [ ] denotes the integral part of an integer.
In sum, we have solved the problem of describing the ability and the effectiveness for block

ciphers, whose key embeddings are based only on the operator ⊕, to resist linear analyses and
differential analyses.

We should mention that the first version of this paper, in which the key ideas of the present
paper are included, was completed in 2006.

2 Description of linear spread values

Let F : Fe2 → Fe2 be a transformation. For any w, v ∈ Fe2, if X ∈ Fe2 is an identically
distributed random variable, we define the mathematical expectation:

E((−1)wX⊕vF (X)) =
1

2e

∑
X∈Fe

2

(−1)wX⊕vF (X).

Obviously,

E((−1)wX⊕vF (X)) ==

{
1 if w = v = 0,
0 if only one of w, v is zero.

Definition 2.1 For any w0,1, w0,2, w0,3, w0,4, v0, v1, · · · , vr−1, wr,1, wr,2, wr,3, wr,4 ∈ F32
2 , let

ιr := (w0,1, w0,2, w0,3, w0,4, v0, v1, · · · , vr−1, wr,1, wr,2, wr,3, wr,4),

and define

ϕr := ϕr(w0,1, w0,2, w0,3, w0,4, v0, v1, · · · , vr−1, wr,1, wr,2, wr,3, wr,4)

=

4∑
i=1

w0,iX0,i ⊕
r−1∑
i=0

viKi ⊕
4∑
i=1

wr,iXr,i,
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where X0,i,Ki, Xr,i ∈ F32
2 . The vector ιr is called the r-round linear spread locus, the math-

ematical expectation E(ϕr) := E((−1)
ϕr ) the r-round linear spread value of ιr and LCP :=

max{|E(ϕr)| < 1} the r-round maximum linear spread value, where

E((−1)
ϕr ) =

1

232(r+4)

∑
X0,1,...,X0,4;K0,...,Kr−1∈F32

2

(−1)

4∑
i=1

w0,iX0,i⊕
r−1∑
i=0

viKi⊕
4∑

i=1

wr,iXr,i

.

Lemma 2.2: Let Yt = Xt,4 ⊕Kt, t ≥ 0. Then

ϕ1 = (w0,1 ⊕ w1,2)X0,1 ⊕ (w0,2 ⊕ w1,3)X0,2 ⊕ (w0,3 ⊕ w1,4)X0,3

⊕(w0,4 ⊕ w1,1 ⊕ v0)X0,4 ⊕ v0Y0 ⊕ w1,4F (Y0);

ϕr+1 = ϕr(w0,1, w0,2, w0,3, w0,4, v0, v1, · · · , vr−1, wr+1,2, wr+1,3, wr+1,4, wr+1,1⊕vr)

⊕vrYr ⊕ wr+1,4F (Yr).

Proof: We have

ϕ1 =

4∑
l=1

w0,lX0,l ⊕
1−1∑
t=0

vtKt ⊕
4∑
l=1

w1,lX1,l

=

4∑
l=1

w0,lX0,l ⊕ v0K0 ⊕ w1,1X0,4 ⊕ w1,2X0,1

⊕w1,3X0,2 ⊕ w1,4(X0,3 ⊕ F (X0,4 ⊕K0))

= (w0,1 ⊕ w1,2)X0,1 ⊕ (w0,2 ⊕ w1,3)X0,2 ⊕ (w0,3 ⊕ w1,4)X0,3

⊕(w04, ⊕ w1,1)X0,4 ⊕ v0(X0,4 ⊕K0)⊕ v0X0,4 ⊕ w1,4F (X0,4 ⊕K0)

= (w0,1 ⊕ w1,2)X0,1 ⊕ (w0,2 ⊕ w1,3)X0,2

⊕(w0,3 ⊕ w1,4)X0,3 ⊕ (w0,4 ⊕ w1,1 ⊕ v0)X0,4 ⊕ v0Y0 ⊕ w1,4F (Y0).

ϕr+1 =

4∑
l=1

w0,lX0,l ⊕
r∑
t=0

vtKt ⊕
4∑
l=1

wr+1,lXr+1,l

=

4∑
l=1

w0,lX0,l ⊕
r∑
t=0

vtKt ⊕ wr+1,1Xr,4 ⊕ wr+1,2Xr,1

⊕wr+1,3Xr,2 ⊕ wr+1,4(Xr,3 ⊕ F (Xr,4 ⊕Kr))

=

4∑
l=1

w0,lX0,l ⊕
r−1∑
t=0

vtKt ⊕ wr+1,2Xr,1 ⊕ wr+1,3Xr,2

⊕wr+1,4Xr,3 ⊕ (wr+1,1 ⊕ vr)Xr,4 ⊕ vrYr ⊕ wr+1,4F (Yr)

= ϕr(w0,1, w0,2, w0,3, w0,4, v0, v1, · · · , vr−1, wr+1,2, wr+1,3, wr+1,4, wr+1,1

⊕vr)⊕ vrYr ⊕ wr+1,4F (Yr).

Lemma 2.3: We have

ϕr(w0,1, w0,2, w0,3, w0,4, v0, v1, · · · , vr−1, wr,1, wr,2, wr,3, wr,4)
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= (w0,1 ⊕ wr,rmod4+1 ⊕
[ r4 ]∑
j=1

v4(j−1)+3)X0,1

⊕(w0,2 ⊕ wr,(r+1)mod4+1 ⊕
[ r+1

4 ]∑
j=1

v4(j−1)+2)X0,2

⊕(w0,3 ⊕ wr,(r+2)mod4+1 ⊕
[ r+2

4 ]∑
j=1

v4(j−1)+1)X0,3

⊕(w0,4 ⊕ wr,(r+3)mod4+1 ⊕
[ r+3

4 ]∑
j=1

v4(j−1))X0,4

⊕
r−1∑
j=0

(vjYj ⊕ ujF (Yj)),

where

uj = wr,((r−j)+2)mod4+1 ⊕
[ r+2−j

4 ]∑
l=1

v4(l−1)+(j+1),

and the terms are independent of each other.
Proof: This lemma follows from Lemma 2.2 and induction.
Let

vj := (vj1, vj2, vj3, vj4) ∈ F32
2 , vjk ∈ F8

2, k = 1, 2, 3, 4,

uj := (uj1, uj2, uj3, uj4) ∈ F32
2 , ujk ∈ F8

2, k = 1, 2, 3, 4,

and let
λj := (λj1, λj2, λj3, λj4) = ujA

T ,

where A is the matrix mentioned in the introduction of this paper. Then, we have the following
lemmas.

Lemma 2.4:

vjYj ⊕ ujF (Yj) =

4∑
k=1

(vjkYjk ⊕ λjkS(Yjk)).

Proof: We have

vjYj ⊕ ujF (Yj) = vjYj ⊕ uj · (S(Yj1), S(Yj2), S(Yj3), S(Yj4))A

= vjYj ⊕ (S(Yj1), S(Yj2), S(Yj3), S(Yj4))A


u′j1
u′j2
u′j3
u′j4


= vjYj⊕(S(Yj1), S(Yj2), S(Yj3), S(Yj4)((uj1, uj2, uj3, uj4)AT )T

= vjYj⊕(S(Yj1), S(Yj2), S(Yj3), S(Yj4))(λj1, λj2, λj3, λj4))

=

4∑
k=1

(vjkYjk ⊕ λjkS(Yjk)).
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Lemma 2.5: Assume that E(ϕr) 6= 0.
i) We have

w0,1 = wr,rmod4+1 ⊕
[ r4 ]∑
j=1

v4(j−1)+3,

w0,2 = wr,(r+1)mod4+1 ⊕
[ r+1

4 ]∑
j=1

v4(j−1)+2,

w0,3 = wr,(r+2)mod4+1 ⊕
[ r+2

4 ]∑
j=1

v4(j−1)+1,

w0,4 = wr,(r+3)mod4+1 ⊕
[ r+3

4 ]∑
j=1

v4(j−1),

ii) For j = 0, 1, · · · , r − 1, we have vj = 0 if and only if uj = 0, where uj is as defined in
Lemma 2.3.

Proof: It follows from Definition 2.1 and Lemma 2.3.
From Lemma 2.5, we know that if E(ϕr) reaches its maximum value, then the conditions

i) and ii) in Lemma 2.5 hold. By the condition i) in Lemma 2.5, we have ϕr =
∑r−1
j=0(vjYj ⊕

ujF (Yj)), so we have

|E(ϕr)| = |E((−1)

∑r−1

j=0
(vjYj⊕ujF (Yj)))| = |E((−1)

∑r−1

j=0

∑k=4

k=1
(vjkYjk⊕λjkS(Yjk)))|

From the following Definition 2.6, it is easy to see that when the minimum number of linearly
active S-boxes of the r-round linear spread locus reaches its minimum value, the value |E(ϕr)|
reaches its maximum value.

For the convenience of analyzing numbers of linearly active S-boxes, we introduce the con-
ception of character as follows.

For any vector η = (η1, η2, η3, η4) ∈ F32
2 , with η1, η2, η3, η4 ∈ F8

2, the characters χ of η and
of ηl(l = 1, 2, 3, 4) are defined respectively by the functions:

χ(η) =

{
1 η 6= 0,
0 η = 0.

and

χ(ηl) =

{
1 ηl 6= 0,
0 ηl = 0,

where l = 1, 2, 3, 4.
We call the vector (χ(η1), χ(η2), χ(η3), χ(η4)) the subcharacter of η.
Definition 2.6: Let w0,1, w0,2, w0,3, w0,4, v0, v1, · · · , vr−1, wr,1, wr,2, wr,3, wr,4 ∈ F32

2 , and

ιr = (w0,1, w0,2, w0,3, w0,4, v0, v1, · · · , vr−1, wr,1, wr,2, wr,3, wr,4).

Assume that

i) w0,1, w0,2, w0,3, w0,4are not all zero;

ii) v0, v1, · · · , vr−1 are not all zero;
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iii) wr,1, wr,2, wr,3, wr,4 are not all zero;

iv) vjl = 0 if and only if λjl = 0, where

vj := (vj1, vj2, vj3, vj4) ∈ F32
2 , vjk ∈ F8

2, k = 1, 2, 3, 4,

λj := (λj1, λj2, λj3, λj4) :=

wr,((r−j)+2)mod4+1 ⊕
[ r+2−j

4 ]∑
l=1

v4(l−1)+(j+1)

AT .

Then, the value LESAr(ιr) =
r−1∑
j=0

4∑
l=1

χ(vjl)χ(λjl) is defined to be the number of linearly active

S-boxes of the r-round linear spread locus, and the value LLESAr = minιr (LESAr(ιr) > 0) is
defined to be the minimum number of linearly active S-boxes of the r-round linear spread locus.

Clearly, the word minimum here means the minimum number, that is, a low bound that
can be achieved.

3 The minimum number of linearly active S-boxes

For any aj , bj ∈ F32
2 , j = 0, 1, · · · , r−1, we have the set of equations (E) about v0, v1, · · · , vr−1,

wr,1, wr,2, wr,3, wr,4 under the condition that E(ϕr) 6= 0 as follows.

(E)


vj = aj ,

wr,(r+2−j)mod4+1 ⊕
[ r+2−j

4 ]∑
t=1

v4(t−1)+j+1 = bj ,

where j = 0, 1, · · · , r − 1.
Now, let

aj := (aj1, aj2, aj3, aj4) ∈ F32
2 , ajk ∈ F8

2, k = 1, 2, 3, 4,

bj := (bj1, bj2, bj3, bj4) ∈ F32
2 , bjk ∈ F8

2, k = 1, 2, 3, 4,

cj = (cj1, cj2, cj3, cj4) = bjA
T.

Then we have:
Lemma 3.1: The equations (E) is solvable if and only if

cj ⊕ aj+1A
T = cj+4, j = 0, 1, · · · , r − 4.

Proof: We have the following computation:

bj = wr,((r−j)+2)mod4+1 ⊕
[ r+2−j

4 ]∑
l=1

a4(l−1)+(j+1),

bj+4 = wr,((r−j−4)+2)mod4+1 ⊕
[ r+2−j−4

4 ]∑
l=1

a4(l−1)+(j+4+1)

= wr,((r−j)+2)mod4+1 ⊕
[ r+2−j

4 −1]∑
l=1

a4l+(j+1)
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= wr,((r−j)+2)mod4+1 ⊕
[ r+2−j

4 ]∑
l=2

a4(l−1)+(j+1)

= wr,((r−j)+2)mod4+1 ⊕
[ r+2−j

4 −1]∑
l=1

a4(l−1)+(j+1))⊕ aj+1

= bj ⊕ aj+1 = cj(A
T )−1 ⊕ aj+1, .

So we have
cj+4 = bj+4A

T = cj ⊕ aj+1A
T.

Hence, the number of linearly active S-boxes of the r-round linear spread locus ιr can be
written as:

LESAr(ιr) =

r−1∑
j=0

4∑
l=1

χ(ajl)χ(cjl),

where aj , cj satisfies cj⊕aj+1A
T = cj+4.

Obviously, χ(ajl)χ(cjl) = 0 when χ(ajl) 6= χ(cjl). So, to obtain LESAr(ιr), it suffices to

calculate
r−1∑
j=0

4∑
l=1

χ(vjl)χ(λjl) under the conditions: cj ⊕ aj+1A
T = cj+4 and χ(ajl) = χ(cjl).

For a vector X = (x1, x2, ..., xe) ∈ Fe2, the number of nonzero xi(i = 1, 2, ..., e) is called the
weight of X, denoted by WH(X). For any vector η = (η1, η2, η3, η4) ∈ F32

2 , with η1, η2, η3, η4 ∈
F8

2, we write
w(η) := WH(χ(η1), χ(η2), χ(η3), χ(η4)).

Clearly, w(η) can be regarded as an element of F5.
Lemma 3.2: Let aj = (aj1, aj2, aj3, aj4), ajk ∈ F8

2, j = 0, 1, 2, ..., r − 4; k = 1, 2, 3, 4. If
χ(ajl) = χ(cjl) and cj ⊕ aj+1A

T = cj+4, j = 0, 1, · · · , r − 4, then

LESAr(ιr) =

r−1∑
j=0

4∑
l=1

χ(ajl) =

r−1∑
j=0

w(aj).

Proof: Clear.

From Lemma 3.2, to obtain LESAr(ιr), it suffices to calculate
r−1∑
j=0

w(aj) under the conditions

χ(ajl) = χ(cjl) and cj⊕aj+1A
T = cj+4, j = 0, 1, · · · , r−4. At first, let us analysis the case of the

fifth round. In this case, we need to know that in the sequence w(a0), w(a1), w(a2), w(a3), w(a4),
how the number w(a4) is depended on w(a0) and w(a1). This is given in the following two
lemmas.

Lemma 3.3: (1) If w(aj) = 0, then w(ajA
T) = 0.

(2) If w(aj) = 1, then w(ajA
T) = 4.

(3) If w(aj) = 2, then w(ajA
T) = 3 or 4.

(4) If w(aj) = 3, then w(ajA
T) = 2, 3 or 4.

(5) If w(aj) = 4, then w(ajA
T) = 1, 2, 3 or 4.

Proof: It can be checked by computer.
In the case of the fifth round, we have the sequence w(a0), w(a1), w(a2), w(a3), w(a4).
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Lemma 3.4: The relations between w(a0), w(a1) and w(a4) are shown in the following
table.

w(a0) w(a1) w(a4) w(a0) w(a1) w(a4)
0 0 0 2 3 0,1,2,3 or 4
0 1 4 2 4 0,1,2,3 or 4
0 2 3 or 4 3 0 3
0 3 2,3 or 4 3 1 1,2,3 or 4
0 4 1,2,3 or 4 3 2 0,1,2,3 or 4
1 0 1 3 3 0,1,2,3 or 4
1 1 3 or 4 3 4 0,1,2,3 or 4
1 2 2,3 or 4 4 0 4
1 3 1,2,3 or 4 4 1 0,1,2,3 or 4
1 4 0,1,2,3 or 4 4 2 0,1,2,3 or 4
2 0 2 4 3 0,1,2,3 or 4
2 1 2,3 or 4 4 4 0,1,2,3 or 4
2 2 1,2,3 or 4

Proof: It can be checked by computer.
Since w(aj) ∈ F5, there are 624×624 cases of state transitions from w(a0), w(a1), w(a2), w(a3)

to w(a0), w(a1), w(a2), w(a3), w(a4). By Lemma 3.4, these state transitions can be expressed by
five 624× 624 matrices.

4 The recurrent formula for the minimum numbers of linearly active
S-boxes

Let a0, a1, · · · , al−1 be a sequence satisfying the condition

χ(ajl) = χ(cjl), cj ⊕ aj+1A
T = cj+4.

Then we have the corresponding sequence w(a0), w(a1), . . . , w(al−1). For convenience, we let
τk := w(ak), k = 0, 1, ..., l − 1. So, we have a sequence:

τ0, τ1, . . . , τl−1. (∗)

Define the following two functions:

w(τ0, τ1, . . . , τl−1) := τ0 + τ1 + . . .+ τl−1,

%(τl−4, τl−3, τl−2, τl−1) := τl−4 · 53 + τl−3 · 52 + τl−2 · 5 + τl−1.

If %(τl−4, τl−3, τl−2, τl−1) = j, we call τl−4, τl−3, τl−2, τl−1 the final state of the sequence (∗),
briefly, we call j the final state of (∗).

For any integers i, j satisfying 1 ≤ i, j ≤ 624, if i = τl−5τl−4τl−3τl−2, j = τl−4τl−3τl−2τl−1
as 5-adic numbers and if τl−5τl−4 and τl−1 satisfy the relations in Lemma 3.4, then we say that
there is a state transition relation T from τl−5τl−4τl−3τl−2 to τl−4τl−3τl−2τl−1, or, we say that
there is a state transition relation T from i to j.

In order to express the sum of weight w(τ0, τ1, . . . , τl−1) of the sequence (*), we construct a
(0, 1)-matrix of 624× 624 order as follows.

Hl := (Hlj [i]),
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where i and j are the subscripts of rows and columns respectively, and in which for any 1 ≤
i, j ≤ 624,

Hlj [i] = 1 ⇐⇒ there exists a sequence (*) with final state j such that w(τ0, τ1, . . . , τl−1) = i.

Clearly, this implies that for any Hlj [i] with 1 ≤ i, j ≤ 624, we have

w(τ0, τ1, . . . , τl−1) = i, %(τl−4, τl−3, τl−2, τl−1) = j.

Obviously, the row subscript of the first nonzero row of Hl is just LLESAr.
Now, we turn to see what happens for numbers of linearly active S-box when τ0, τ1, . . . , τl−1

is transferred to τ0, τ1, . . . , τl−1, τl.
At first, we construct five (0, 1)-matrix of order 624 C0, C1, C2, C3 and C4 as follows. Let

Ck := (Ck(i, j)), k = 0, 1, 2, 3, 4,

in which for any 1 ≤ i, j ≤ 624,

Ck(i, j) = 1 ⇐⇒ j ≡ k(mod 5) and i, j have state transition relation T.

See Appendix for the generating algorithm of the matrices C0, C1, C2, C3 and C4. (This program
is realized by the matlab language.)

Obviously, the columns of Ck are all zero except the column k ≡ j(mod 5).
Since the matrix Hl can be obtained from H4 by recurrent method, we now turn to the

generation of H4.
I. Generation of H4

(1) Take H4 to be the 624× 624 zero matrix.
(2) For any 10-adic integer j (1 ≤ j ≤ 624), write j as a 5-adic integer with 4-digits, that

is, j = τ0τ1τ2τ3.
(3) Calculate the value w(τ0, τ1, τ2, τ3), say, w(τ0, τ1, τ2, τ3) = i.
(4) Put the number 1 on the position (i, j) of H4.
II. Generating H5 from H4

For a matrix A = (aij), we use the symbol spones(A) to denote the matrix (a′ij), where

a′ij =

{
1 if aij 6= 0,
0 if aij = 0,

that is, replace all nonzero elements of A by the number 1.
We will use the symbol Hl[i] to denote the i-th row vector of the matrix Hl.
Lemma 4.1. For any integer i, j (1 ≤ i, j ≤ 624), let j = τ1τ2τ3τ4 as a 5-adic integer.

Suppose that

spones(H4[i− k]Ck) = (hi−k,1, hi−k,2, ..., hi−k,624), i− k ≥ 1, k = 0, 1, 2, 3, 4.

Then, we have
(1) if j 6= k(mod5), then hi−k,j = 0;
(2) if j ≡ k(mod5), i.e., τ4 = k, then hi−k,j = 1 if and only if there exists t = %(τ0, τ1, τ2, τ3)
such that there exists a state transition relation T from t to j and w(τ0, τ1, τ2, τ3, τ4) = i.
Proof: For k = 0, 1, 2, 3, 4, we have

H4[i− k]Ck = (H4,1[i− k], H4,2[i− k], ...,H4,624[i− k])Ck
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= (

624∑
t=1

H4,t[i− k]Ck(t, 1),

624∑
t=1

H4,t[i− k]Ck(t, 2), ...,

624∑
t=1

H4,t[i− k]Ck(t, 624)).

(1) Trivial.
(2) When j ≡ k(mod 5), we have

spones(

624∑
t=1

H4,t[i− k]Ck(t, j)) = 1⇐⇒ there exists a t such that H4,t[i− k]Ck(t, j) = 1,

while we have

Ck(t, j) = 1⇐⇒ there exists a state transition relation T from t to j,

H4,t[i− k] = 1⇐⇒ w(τ0, τ1, τ2, τ3) = i− k ⇐⇒ w(τ0, τ1, τ2, τ3, τ4) = i.

Hence, we have

spones(

624∑
t=1

H4,t[i− k]Ck(t, j)) = 1

if and only if there exists t = %(τ0, τ1, τ2, τ3) such that there exists a state transition relation T
from t to j and w(τ0, τ1, τ2, τ3, τ4) = i.

Lemma 4.2. We have

H5[i] = spones(H4[i]C0 +H4[i− 1]C1 +H4[i− 2]C2 +H4[i− 3]C3 +H4[i− 4]C4).

For k = 1, 2, 3, 4, if i− k ≤ 0, we assume that H4[i− k] = 0 is a row of zeros.
Proof We have H5[i] = (H5,1[i], H5,2[i], ...,H5,624[i]). Write

spones(H4[i− k]Ck) = (hi−k,1, hi−k,2, ..., hi−k,624)

as in Lemma 4.1.
Form Lemma 4.1, if jmod5 6= k, then hi−k,j = 0; if jmod5 = k(τ4 = k), from the definition

we know

H5j [i] = 1 ⇐⇒ there exist τ0, τ1, τ2, τ3, τ4 with final state j such that w(τ0, τ1, τ2, τ3, τ4) = i

⇐⇒ there exist τ0, τ1, τ2, τ3, τ4 such that %(τ0, τ1, τ2, τ3) = t with a state

transition relation T from t to j and w(τ0, τ1, τ2, τ3, τ4) = i

⇐⇒ hi−k,j = 1,

which means that if jmod5 = k(τ4 = k), we have H5j [i] = hi−k,j .
So, we obtain
(1) H5[i] and spones(H4[i]C0) have same elements on the columns 0 (mod 5), and the other

elements of spones(H4[i]C0) are all zero.
(2) H5[i] and spones(H4[i − 1]C1) have same elements on the columns 1 (mod 5), and the

other elements of spones(H4[i− 1]C1) are all zero.
(3) H5[i] and spones(H4[i − 2]C2) have same elements on the columns 2 (mod 5), and the

other elements of spones(H4[i− 2]C2) are all zero.
(4) H5[i] and spones(H4[i − 3]C3) have same elements on the columns 3 (mod 5), and the

other elements of spones(H4[i− 3]C3) are all zero.
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(5) H5[i] and spones(H4[i − 4]C4) have same elements on the columns 4 (mod 5), and the
other elements of spones(H4[i− 4]C4) are all zero.

Hence, we have

H5[i] = spones(H4[i]C0) + spones(H4[i− 1]C1) + spones(H4[i− 2]C2) + spones(H4[i− 3]C3)

+spones(H4[i− 4]C4)

= spones(H4[i]C0 +H4[i− 1]C1 +H4[i− 2]C2 +H4[i− 3]C3 +H4[i− 4]C4).

Now, from H4 and Lemma 4.2, we get H5.
Similarly, we have
Lemma 4.3. We have

Hl+1[i] = spones(Hl[i]C0 +Hl[i− 1]C1 +Hl[i− 2]C2 +Hl[i− 3]C3 +Hl[i− 4]C4).

For k = 1, 2, 3, 4, if i− k ≤ 0, we assume that Hl[i− k] = 0 is a row of zeros.
From Lemma 4.3 and H4, we can get Hr, then find out the row subscript mr corresponding

the first nonzero row in Hr, and hence obtain the minimum active number mr of S-boxes.
Lemma 4.4: The minimum numbers of linearly active S-boxes of the first 52 rounds linear

spread locus are as follows.

r 5 6 7 8 9 10 11 12 13 14 15 16
mr 1 1 2 6 6 7 7 8 9 13 14 16
r 17 18 19 20 21 22 23 24 25 26 27 28
mr 17 17 18 18 19 19 20 24 24 25 25 26
r 29 30 31 32 33 34 35 36 37 38 39 40
mr 27 31 32 34 35 35 36 36 37 37 38 42
r 41 42 43 44 45 46 47 48 49 50 51 52
mr 42 43 43 44 45 49 50 52 53 53 54 54

where r and mr denote the round number and the minimum active number respectively.
Proof: By computer.
From the table in Lemma 4.4, we know that for every 16 rounds, the minimum numbers of

linearly active S-boxes increase by 18. Iterating 15 times the formula

Hl+1[i] = spones(Hl[i]C0 +Hl[i− 1]C1 +Hl[i− 2]C2 +Hl[i− 3]C3 +Hl[i− 4]C4),

we get
Hl+16[i] = spones(Hl[i]A0 +Hl[i− 1]A1 + · · · +Hl[i− 64]A64),

where A0, A1, · · · , A64 are all 0, 1 matrix of order 624 (The matrices A0, A1, · · · , A64 can be
obtained by computer). Calculating by computer, we know that A0, A1, · · · , A15 are all zero
matrix. Hence, we have:

Lemma 4.5: If i− k ≤ 0, let Hl[i− k] = 0(zero row). Then

Hl+16[i] = spones(Hl[i− 16]A16 +Hl[i− 17]A17

+ · · ·+Hl[i− 64]A64).

Lemma 4.6: Let ml denote the row subscript of the first nonzero row of Hl. Then
(1) the first ml + 15 rows of Hl+16 are all zero.
(2) Hl+16[ml + 16] = spones(Hl[ml]A16).
(3) Hl+16[ml + 17] = spones(Hl[ml + 1]A16 +Hl[ml]A17).
(4) Hl+16[ml + 18] = spones(Hl[ml + 2]A16 +Hl[ml + 1]A17 +Hl[ml]A18).
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Proof: (1) When 1 ≤k ≤ 15, (ml + k)− 16 < ml, so

Hl[(ml + k)− 16] = Hl[(ml + k)− 17] = · · ·

= Hl[(ml + k)− 64] = 0.

Hence, form Lemma 4.5, we have Hl+16[ml + k] = 0, that is, the first ml + 15 rows of Hl+16

are all zero.
(2) We have

Hl+16[ml + 16] = spones(Hl[ml]A16 +Hl[ml − 1]A17+

· · ·+Hl[ml − 48]A64).

SinceHl[ml−1] = Hl[ml−2] = · · · = Hl[ml−48] = 0, we getHl+16[ml+16] = spones(Hl[ml]A16).
Similarly for (3)(4).
When l > 20, write l = u + 16k, u = 5, 6, · · · , 20. If the first nonzero row of Hu+16k is the

m
(k)
u -th row, then the equalities in Lemma 4.6 can be written as:

Hu+16(k+1)[m
(k)
u + 16] = spones(Hu+16k[m(k)

u ]A16),

Hu+16(k+1)[m
(k)
u + 17] = spones(Hu+16k[m(k)

u + 1]A16

+Hu+16k[m(k)
u ]A17),

Hu+16(k+1)[m
(k)
u + 18] = spones(Hu+16k[m(k)

u + 2]A16

+Hu+16k[m(k)
u + 1]A17 +Hu+16k[m(k)

u ]A18).

Lemma 4.7: The matrices Ai obtained above satisfy
(1) A16A16 = A16A17 = A17A16 = A16A18 = A16A19 = 0.
(2) A18A16 = A19A16 = A20A16 = A17A17 = A16.
(3) spones(A3

18) = spones(A2
18).

(4) spones(A17A18A17) = spones(A16 + A16P ), where A16P is the matrix obtained by ex-
changing the 25-th column and the 500-th column of A16.

(5) spones(A18A18A17) = spones(A18A17).
Proof: By computer.

Lemma 4.8: For u = 5, 6, · · · , 20, if m
(t)
u = m

(t−1)
u + 18, then

(1) Hu+16(t−1)[m
(t−1)
u ]A16 = 0.

(2) Hu+16(t−1)[m
(t−1)
u + 1]A16 = 0, Hu+16(t−1)[m

(t−1)
u ]A17 = 0.

(3) spones(Hu+16t[m
(t)
u ]A18A17) = spones(Hu+16(t−1)[m

(t−1)
u ]A18A17).

Proof: (1) Since

Hu+16t[m
(t−1)
u + 16] = spones(Hu+16(t−1)[m

(t−1)
u ]A16)

and m
(t)
u = m

(t−1)
u + 18, we have Hu+16t[m

(t−1)
u + 16] = 0, that is Hu+16(t−1)[m

(t−1)
u ]A16 = 0.

(2) Since
Hu+16t[m

(t−1)
u + 17] = spones(Hu+16(t−1)[m

(t−1)
u + 1]A16

+Hu+16(t−1)[m
(t−1)
u ]A17)

and m
(t)
u = m

(t−1)
u + 18, we have Hu+16t[m

(t−1)
u + 17] = 0, so

Hu+16(t−1)[m
(t−1)
u + 1]A16 = 0,
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Hu+16(t−1)[m
(t−1)
u ]A17 = 0.

(3) We have

spones(Hu+16t[m
(t)
u ]A18A17) = spones(Hu+16t[m

(t−1)
u + 18]A18A17)

= spones(spones(Hu+16(t−1)[m
(t−1)
u + 2]A16

+Hu+16(t−1)[m
(t−1)
u + 1]A17

+Hu+16(t−1)[m
(t−1)
u ]A18)A18A17)

= spones(Hu+16(t−1)[m
(t−1)
u + 1]A17A18A17

+Hu+16(t−1)[m
(t−1)
u ]A18A18A17)

= spones(Hu+16(t−1)[m
(t−1)
u + 1]A16(I + P )

+Hu+16(t−1)[m
(t−1)
u ]A18A18A17)

= spones(Hu+16(t−1)[m
(t−1)
u ]A18A18A17)

= spones(Hu+16(t−1)[m
(t−1)
u ]A18A17).

Lemma 4.9: For u = 5, 6, · · · , 20, if

m(t)
u = m(t−1)

u + 18, m(t−1)
u = m(t−2)

u + 18,

then
(1) spones(Hu+16t[m

(t)
u ]A16) = 0.

(2) spones(Hu+16t[m
(t)
u + 1]A16) = 0.

(3) spones(Hu+16t[m
(t)
u ]A17) = spones(Hu+16(t−1)[m

(t−1)
u ]A18A17).

Proof: (1) spones(Hu+16t[m
(t)
u ]A16) = spones(Hu+16t[m

(t−1)
u + 18]A16)

= spones(spones(Hu+16(t−1)[m
(t−1)
u + 2]A16

+Hu+16(t−1)[m
(t−1)
u + 1]A17 +Hu+16(t−1)[m

(t−1)
u ]A18)A16)

= spones(Hu+16(t−1)[m
(t−1)
u + 2]A16A16

+Hu+16(t−1)[m
(t−1)
u + 1]A17A16 +Hu+16(t−1)[m

(t−1)
u ]A18A16).

= spones(Hu+16(t−1)[m
(t−1)
u ]A16) = 0

(2) spones(Hu+16t[m
(t)
u + 1]A16) = spones(Hu+16t[m

(t−1)
u + 19]A16)

= spones(spones(Hu+16(t−1)[m
(t−1)
u + 3]A16

+Hu+16(t−1)[m
(t−1)
u + 2]A17 +Hu+16(t−1)[m

(t−1)
u + 1]A18

+Hu+16(t−1)[m
(t−1)
u ]A19)A16)

= spones(Hu+16(t−1)[m
(t−1)
u + 1]A18A16

+Hu+16(t−1)[m
(t−1)
u ]A19A16)

= spones(Hu+16(t−1)[m
(t−1)
u + 1]A16 +Hu+16(t−1)[m

(t−1)
u ]A16) = 0.
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(3) spones(Hu+16t[m
(t)
u ]A17) = spones(Hu+16t[m

(t−1)
u + 18]A17)

= spones(spones(Hu+16(t−1)[m
(t−1)
u + 2]A16

+Hu+16(t−1)[m
(t−1)
u + 1]A17 +Hu+16(t−1)[m

(t−1)
u ]A18)A17)

= spones(Hu+16(t−1)[m
(t−1)
u + 2]A16A17

+Hu+16(t−1)[m
(t−1)
u +1]A17A17+Hu+16(t−1)[m

(t−1)
u ]A18A17)

= spones(Hu+16(t−1)[m
(t−1)
u + 1]A16

+Hu+16(t−1)[m
(t−1)
u ]A18A17)

= spones(Hu+16(t−1)[m
(t−1)
u ]A18A17).

Make all the first non zero rows of Hu(u = 5, 6, · · · , 20) into the matrix E, all the second
nonzero rows into F , and all the third nonzero rows into G.

Write Ek, Fk, Gk for the matrices formed of the first nonzero rows, the second nonzero rows,
and the third nonzero rows of Hu+16k, u = 5, 6, · · · , 20, respectively.

Lemma 4.10: (1) EA18A17 = 0.
(2) The nonzero elements of F2A17A18A18 are only at the positions with the subscripts:

(12, 25), (14, 25) and (16, 25).
(3) All rows except the 12-th row of E2A18A18 are nonzero. The subscripts of the nonzero

elements of E2A18A18 are only as follows.

(1,5),(1,25)
(2,25)
(3,25)
(4,21),(4,25),(4,26),(4,105),(4,129),(4,130),(4,526)
(5,105),(5,130)
(6,26),(6,105),(6,130),(6,526)
(7,130)
(8,26),(8,130)
(9,26)
(10,25),(10,26),(10,46),(10,130),(10,134),(10,155),(10,258),(10,382),(10,506)
(11,25),(11,26),(11,46),(11,155)
(13,5),(13,25),(13,125)
(14,25)
(15,5),(15,25),(15,125)
(16,25)

Proof: It can be checked by computer (by the matlab language).

Theorem 4.11: Let u = 5, 6, · · · , 20. Then for any integer t, we have m
(t)
u = m

(t−1)
u + 18.

Proof: It is true when t = 1, 2. Now, assume that when t = 1, 2, · · · , k, we have

m(k)
u = m(k−1)

u + 18,m(k−1)
u = m(k−2)

u + 18.

From Lemma 4.9, we have

Hu+16(k+1)[m
(k)
u + 16] = spones(Hu+16k[m(k)

u ]A16) = 0.

So Hu+16t[m
(t−1)
u + 16] = 0.

Now, we have

Hu+16(k+1)[m
(k)
u + 17] = spones(Hu+16k[m(k)

u + 1]A16 +Hu+16k[m(k)
u ]A17)
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= spones(Hu+16k[m(k)
u ]A17)

= spones(Hu+16k[m(k−1)
u + 18]A17)

= spones(spones(Hu+16(k−1)[m
(k−1)
u + 2]A16

+Hu+16(k−1)[m
(k−1)
u + 1]A17 +Hu+16(k−1)[m

(k−1)
u ]A18)A17)

= spones(Hu+16(k−1)[m
(k−1)
u + 2]A16A17

+Hu+16(k−1)[m
(k−1)
u + 1]A17A17 +Hu+16(k−1)[m

(k−1)
u ]A18A17)

= spones(Hu+16(k−1)[m
(k−1)
u + 1]A16

+Hu+16(k−1)[m
(k−1)
u ]A18A17)

= spones(Hu+16(k−1)[m
(k−1)
u ]A18A17)

= spones(Hu+16(k−1)[m
(k−2)
u + 18]A18A17)

= spones((Hu+16(k−2)[m
(k−2)
u + 2]A16

+Hu+16(k−2)[m
(k−2)
u + 1]A17 +Hu+16(k−2)[m

(k−2)
u ]A18)A18A17)

= spones(Hu+16(k−2)[m
(k−2)
u + 1]A16(I + P )

+Hu+16(k−2)[m
(k−2)
u ]A18A18A17)

= spones(Hu+16(k−2)[m
(k−2)
u ]A18A17)

. . . . . .

= spones(Hu[m(0)
u ]A18A17).

Since EA18A17 = 0 from Lemma 4.10, we have Hu[m
(0)
u ]A18A17 = 0. Hence

Hu+16t[m
(t−1)
u + 17] = 0.

Now, let Mk+1 = spones(GkA16 + FkA17 + EkA18). From the equality

Hu+16(k+1)[m
(k)
u +18] = spones(Hu+16k[m(k)

u +2]A16+Hu+16k[m(k)
u +1]A17+Hu+16k[m(k)

u ]A18),

we have:

Mk+1 = spones(GkA16 + FkA17 + EkA18)

= spones(GkA16 + FkA17 + spones(Gk−1A16 + Fk−1A17 + Ek−1A18)A18)

= spones(GkA16 + FkA17 + Fk−1A17A18 + spones(Ek−1A18A18)).

Since
spones(Ek−1A18A18) = spones((Gk−2A16 + Fk−2A17 + Ek−2A18)A18A18)

= spones(Fk−2A17A18A18 + Ek−2A18A18A18)

= spones(Fk−2A17A18A18 + Ek−2A18A18),

recurrently, we have

spones(Ek−1A18A18) = spones(Fk−2A17A18A18 + Fk−3A17A18A18 + Ek−3A18A18)
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= . . . = spones(Fk−2A17A18A18 +Fk−3A17A18A18 + . . .+F2A17A18A18 +E2A18A18).

Hence,

Mk+1 = spones(GkA16 + FkA17 + Fk−1A17A18 + Fk−2A17A18A18 + Fk−3A17A18A18+

. . .+ F2A17A18A18 + E2A18A18).

Form Lemma 4.10, we know that all rows of the matrix F2A17A18A18+E2A18A18 and hence

Mk+1 are nonzero. So, we have proved that Hu+16(k+1)[m
(k)
u + 18] 6= 0 for u = 5, 6, . . . , 20,

therefore Hu+16t[m
(t−1)
u + 18] 6= 0, which implies m

(t)
u = m

(t−1)
u + 18, as required.

Theorem 4.12: For any round r, we have

LLESAr = LLESA5+((r−5) mod16) + 18[
r − 5

16
].

Proof: For an integer r ≥ 5, let u = (r − 5) mod 16 + 5 and t = [ r−516 ]. Then it is easy to see
that r = 16t+ u. Hence

LLESAr = m(t)
u .

When 5 ≤ r ≤ 20, t = 0 and u = r = ((r − 5) mod 16) + 5, so we have

LLESAr = m(0)
u = LLESA5+((r−5) mod 16).

When r > 20, from Theorem 4.11, we have

LLESAr = m(t)
u = m(t−1)

u + 18 = m(t−2)
u + 36 = . . .

= m(0)
u + 18t = LLESA5+((r−5) mod 16) + 18[

r − 5

16
].

Remarks Although the discussion in this paper focuses on generalized Feistel structures,
the our method is suitable to a broad picture. In fact, applying this method to those block
ciphers whose key embeddings are based only the operator ⊕, such as DES, 3DES, AES, CAST,
SMS4, etc., we can give the following results:

(1) We can obtain the explicit formulas for the minimum numbers of both linearly and
differentially active S-boxes of arbitrary round.

(2) For different block ciphers and for arbitrary round, using the above explicit formula
we can give the comparison of their abilities and effectiveness on resiting linear analysis and
differential analysis.

(3) It follows from the similar formula on SMS4 (we will give in another paper) that CAST
and SMS4 have the same abilities and effectiveness on resisting linear analyses and differential
analyses in any round.

These results will be given in our sequel works.

5 Conclusion

For a class of generalized Feistel block ciphers, we present an explicit recurrent formula for
the minimum numbers of linearly active S-boxes of arbitrary rounds, from which we conclude
that for every 16 rounds, the minimum numbers of linearly active S-boxes increase by 18.
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6 Appendix

function ZYJZ
C0=zeros(624);C1=C0;C2=C0;C3=C0;C4=C0;
for k=1:624

e=dec2base(k,5);
d=length(e);
for r=1:d

m(r)=str2num(e(r));
end
if d<4

m=[zeros(1,4-d),m];
end
a=m(1);b=m(2);
switch a
case 0

switch b

case 0
c=0;

case 1
c=4;

case 2
c=[3,4];

case 3
c=[2,3,4];

otherwise
c=[1:4];

end
case a==1

switch b

case 0
c=1;

case 1
c=[3,4];

case 2
c=[2,3,4];

case 3
c=[1,2,3,4];

otherwise
c=[0:4];

end

case 2
switch b
case 0

c=2;
case 1

c=[2:4];
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case 2
c=[1:4];

otherwise

c=[0:4];
end

case 3
switch b
case 0

c=3;
case 1

c=[1:4];
otherwise

c=[0:4];
end

otherwise
switch b
case 0

c=4;
otherwise

c=[0:4];
end

end

d1=length(c);
f=zeros(d1,4);
f1=zeros(d1,1);
for i=1:d1

f(i,1:4)=[m(2),m(3),m(4),c(i)];
f1(i)=c(i)+m(4)*5+m(3)*5∧2+m(2)*5∧3;

end
switch d1

case 2
C3(k,f1(1))=1;C4(k,f1(2))=1;

case 3
C2(k,f1(1))=1;C3(k,f1(2))=1;C4(k,f1(3))=1;

case 4
C1(k,f1(1))=1;C2(k,f1(2))=1;
C3(k,f1(3))=1;C4(k,f1(4))=1;

case 5
C0(k,f1(1))=1;C1(k,f1(2))=1;C2(k,f1(3))=1;
C3(k,f1(4))=1;C4(k,f1(5))=1;

otherwise
if a==0&b==0

C0(k,f1)=1;
end
if a==0&b==1

C4(k,f1)=1;
end
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if a==1&b==0
C1(k,f1)=1;

end

if a==2&b==0
C2(k,f1)=1;

end

if a==3&b==0
C3(k,f1)=1;

end
if a==4&b==0

C4(k,f1)=1;
end

end
end
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