
Provably Secure Online/Off-line Identity-Based Signature Scheme
for Wireless Sensor Network

Jayaprakash Kar

Department of Information Systems
Faculty of Computing & Information Technology

King Abdulaziz University, Kingdom of Saudi Arabia
{jayaprakashkar, jpkar.crypto }@yahoo.com

Abstract. This paper describes an efficient and secure online and off-line signature scheme for wire-
less sensor network (WSN). Security of the proposed scheme is based on difficulty of breaking Bi-
linear Diffie-Hellman problem (BDHP). WSN systems are usually deployed in hostile environments
where they encounter a wide variety of malicious attacks. Information that is the cooked data col-
lected within the sensor network, is valuable and should be kept confidential. In order to protect this
transmitted information or messages between any two adjacent sensor nodes, a mutual authentication
and key establishment protocol is required for wireless sensor networks. Because some inherent re-
strictions of sensor nodes which include low power, less storage space, low computation ability and
short communication range most existing protocols attempt to establish a pairwise key between any
two adjacent sensor nodes by adopting a key pre-distribution approach. In order to further reduce
the computational cost of signature generation, online/off-line is suitable for WSN. In on-line/off-
line signature scheme, the signing process can be broken into two phases. The first phase, performed
off-line, is independent of the particular message to be signed; while the second phase is performed
on-line, once the message is presented.

Keywords: Bilinear Pairing,BDHP, multi-signature, online/off-line.

1 Introduction

Wireless sensor networks consist of small nodes also called motes that monitor physical or environmental
conditions around them such as temperature, sound, vibration etc. It process data, and communicate
through wireless links [4]. A wireless sensor network (WSN) generally consists of a base station, which
holds the ability to communicate with a number of wireless sensors present nearby by use of a radio
link. Once the data is collected by some intermediate node, it is then compressed, and transmitted to the
gateway directly or, if not directly connected then uses other wireless sensor nodes to forward data to
the gateway. Once this data reaches at the base-station then it is presented to the system by the gateway
connection [5]. Wireless Sensor Networks are widely used these days and are very popular in research for
use of embedded systems in our daily life. WSNs are used in applications involving monitoring, tracking,
or controlling such as habitat monitoring, robotic toys, battlefield monitoring, packet insertion [6], traffic
monitoring, object tracking and nuclear reactor control.

2 Preliminaries

2.1 Notation

Definition 1. Bilinearity Let G1 and G2 be two cyclic groups of same prime order q. G1 is an additive
group and G2 is a multiplicative group. Let e be a computable bilinear map e : G1XG1 → G2 , which
satisfies the following properties:

– Bilinear: e(aP, bQ) = e(P,Q)ab, where P,Q ∈ G1 and a, b ∈ Z∗q and for P,Q,R ∈ G1, e(P + Q,R) =
e(P,R)e(Q,R).

– Non-degenerate: If P is a generator of G1, then e(P, P) is generator of G2. There exists P,Q ∈ G
such that e(P,Q) , 1G2

– Computability: There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.

We call such a bilinear map e is an admissible bilinear pairing.

2.2 Mathematical Assumption

Definition 2. Bilinear Parameter Generator : A bilinear parameter generatorG is a probabilistic poly-
nomial time algorithm that takes a security parameter k as input and outputs a 5-tuple (q,G1,G2, e, P) as
the bilinear parameters, including a prime number q with |q| = k, two cyclic groups G1,G2 of the same
order q, an admissible bilinear map e : G1XG1 → G2 and a generator P of G1

Definition 3. Bilinear Diffie-Hellman Problem: Let (q,G1,G2, e, P) be a 5-tuple generated by G(k),
and let a, b, c ∈ Z∗q. The BDHP in G is as follows: Given (P, aP, bP, cP) with a, b, c ∈ Z∗q, compute
e(P, P)abc ∈ GT . The (t, ϵ) -BDH assumption holds in G if there is no algorithmA running in time at most
t such that

AdvBDH
G (A) = Pr[A(P, aP, bP, cP) = e(P, P)abc] ≥ ϵ

where the probability is taken over all possible choices of (a, b, c). Here the probability is measured over
random choices of a, b, c ∈ Z∗q and the internal random operation of A. More formally, for any PPT
algorithmA consider the following experiment:
Let G be an algorithm which on input 1k outputs a (description of a) group G of prime order q (with |q| =
k) along with a generator P ∈ G. The computational Diffie-Hellman (CDH) problem is the following:

ExpCDH
G(k)

1. (G, q, P)← G(1k)
2. a, b, c← Z∗q
3. U1 = aP,U2 = bP,U3 = cP
4. if W = e(P, P)abc return 1 else return 0

We assume that BDHP is a hard computational problem: letting q have the magnitude 2k where k is
a security parameter, there is no polynomial time (in k) algorithm which has a non-negligible advantage
(again, in terms of k) in solving the BDHP for all sufficiently large k.

Definition 4. Decisional Diffie-Hellman Problem : Let (q,G,GT , e, P) be a 5-tuple generated by G(k),
and let a, b, c, r ∈ Z∗q. The DBDHP inG is as follows: Given Given (P, aP, bP, cP, r) with some a, b, c ∈ Z∗q,
Output is yes if r = e(P, P)abc and no otherwise. The (t, ϵ)-HDDH assumption holds in G if there is no
algorithmA running in time at most t such that

AdvDBDH
G (A) = |Pr[A(P, aP, bP, cP, e(P, P)abc)) = 1] − Pr[A(P, aP, bP, cP, r) = 1]| ≥ ϵ

where the probability is taken over all possible choices of (a, b, c, h).

Definition 5. Hash Decisional Diffie-Hellman Problem :Let (q,G,GT , e, g) be a 5-tuple generated by
G(k),H : {0, 1}∗ → {0, 1}l be a secure cryptographic hash function, whether l is a security parameter, and
let x, y ∈ Z∗q, h ∈ {0, 1}l, the HDDH problem in G is as follows: Given (P, aP, bP, cP, h), decide whether it
is a hash Diffie-Hellman tuple ((P, aP, bP, cPH(e(P, P)abc)). If it is right, outputs 1; and 0 otherwise. The
(t, ϵ)-HDDH assumption holds in G if there is no algorithmA running in time at most t such that

AdvHDDH
G (A) = |Pr[A(P, aP, bP, cPH(e(P, P)abc)) = 1] − Pr[A(P, aP, bP, cP, h) = 1]| ≥ ϵ

where the probability is taken over all possible choices of (a, b, h).

3 Online/Off-line ID based Signature Scheme

Online/Off-line signature schemes [1] divide the process of message signing into two phases, the Off-line
phase and the Online phase. The Off-line phase, which consists of complex computations are performed
before the message to be signed becomes available. Once the message is known, the Online phase starts.
This phase retrieves the partial signature calculated during the Off-line phase and performs some minor
quick computations to obtain the final signature. The Online phase is assumed to be very fast, consisting
of small computations. The Off-line phase can be performed by a resourceful device. Online/Off-line
allows a resource constrained sensor node to sign a message quickly, once it has some critical event to
report.

4 Framework of ID-based online/Off-line Signature Scheme(IBS)

An ID-based online/off-line signature(IBS) scheme comprises the following five probabilistic polynomial
time (PPT) algorithms:

– Setup: (param,msk) ← Set(1k) takes a security parameter k ∈ N and generates param, the global
public parameters and msk, the master secret key of the KGC.

– Extract: DID ← Ext(1k, param,msk, ID) takes a security parameter k, the global parameters param,
a master secret key msk and an identity ID to generate a secret key DID corresponding to this identity.

– Off-lineSign: σo f f ← S gno f f (1k, param) takes a security parameter k and the global parameters
param to generate an off-line signature σo f f .

– OnlineSign: σon ← S gnon(1k, param,m, σo f f , ID) takes a security parameter k, the global parame-
ters param, a message m, an off-line signature σo f f , an identity ID to generate a signature σ.

– Verify: (“accept”, “Re ject”) ← Ver(1k, param, σo f f ,DID) takes a security parameter k, the global
parameters param, a signature σ, a secret key of the receiver DID to generate the outputs “accept” if
σ is valid and outputs “re ject” otherwise.

5 Previous Work

In modern cryptography, the notion of digital signature is one of the most fundamental and useful goal.
Since the public key cryptography was introduced, various signature schemes have been proposed to meet
various requirements in practical circumstances. In order to reduce the computational cost of signature
generation, the notion of on-line/off-line signatures was first introduced by Even, Goldreich and Micali
[1] in 1989. It is used in a particular scenario where the signer must respond quickly once the message
to be signed is presented. The idea is to perform the signature generating procedure in two phases. The
first phase is performed off-line (without knowing the signed message) and the second phase is performed
online (after knowing the signed message). The on-line phase should be very fast and require only very
light computation, such as integer multiplication or hashing. Other heavier computation such as exponen-
tiation should be avoided in the online phase. This is the basic characteristic of online/off-line signature
schemes. In this way, online/off-line signature schemes are particularly useful for low-power devices such
as smart card, wireless sensor network (WSN) application.

Shi et al. proposed an efficient identity based signature scheme [11] with batch verification. Though
the scheme in [11] achieves efficiency in computation with just two pairing operations and linear expo-
nentiation operations, it is required to pass all the signatures separately and hence increases the commu-
nication complexity. Also a universal forgery of the signature of any singer is possible in this scheme as
shown in [3].

Wang et al designed an identity based aggregate signature [14] and it is claimed to be the most
efficient scheme. It uses constant pairing operation for signature verification. But the aggregate signature

in this scheme [14] is not secure since universal forgery of signature of any user is possible in this scheme.
Also, the scheme achieves only partial aggregation. The attack in Wang et al. scheme [14] is shown in
[3]. Xiangguo et al. gave a aggregate signature scheme [12] which uses the BLSR scheme [7] as the
base signature scheme. In this scheme all the signers have to broadcast their own random values used for
singing to all the co-signers so that everyone agrees upon a common randomness before the generation of
aggregate signature. This results in quadratic communication complexity which is a big overhead. Mutual
interaction between all the signers is not a desirable step in aggregate signatures. Hyo et al. gave a number
of batch verification techniques [10]. During verification it requires linear number of pairings which also
increases the computation complexity considerably. Yiling et al. proposed an efficient aggregate signature
scheme with full aggregation and constant pairing operations in [8].

Javier Herranz came up with an identity based signature scheme [20] with partial aggregation. But his
scheme produces deterministic signature where the signature component on a message will always be the
same. This is a major draw back in real world scenarios. It also uses linear number of pairing operations
leading to inefficiency in computation.

Xu et al. in [9] proposed an identity based aggregate signature scheme. This scheme uses Sakai et al.
signature construct as the base signature scheme. This achieves only partial aggregation and also requires
linear number of pairings during signature verification. Gentry and Ramzan proposed an efficient identity
based aggregate signature scheme [22]. This scheme achieves both full aggregation and also constant
number of pairing operations during signature verification. But the scheme in [22] has certain weaknesses
which makes it unsuitable for real life scenarios. The weaknesses of the scheme are briefly reported in the
appendix. Boldyreva et al. proposed an identity based sequential signature scheme [13]. Hwang et al. in
[15] proposed an attack on [13] and claimed that the only existing efficient aggregate signature scheme is
of Gentry and Ramzan [22] which involves interaction between all the signers whose signatures are to be
aggregated. The design of an efficient identity based aggregate signature scheme without any interaction
between the signers was left open by Hwang et al. [15].

6 Security Model

The attacks against signature schemes are of without message attack and chosen-message attack. The
strong one is an adaptive chosen-message attack. In this scenarios the attacker can ask the signer to sign
any message that he/she chooses. He also knows the public key of the signer. Then he can customize his
queries according to the previous message .

Definition 6. An identity-based online/off-line signature is defined by the four tuples
IBS = (S etup, Extract,O f f lineS ign,OnlineS ign) is said to be existentially unforgeable under chosen-
message attacks if no probabilistic polynomial time adversary has a non-negligible advantage in the
following game played between a challenger C and an adversaryA.

– Setup The challenger C runs this algorithm to generate the system parameters and sends to the ad-
versaryA.

– The adversaryA performs the following queries adaptively:
1. Key Extraction Oracle: when A requests the private key on an identity ID, C runs the Extract

algorithm to obtain the DID and returns to the adversaryA.
2. Off-line Signing Oracle: when A requests the off-line signature on an identity ID, C runs the

Off-Sign algorithm to obtain the σo f f and returns to the adversaryA.
3. Online Signing Oracle: when A requests the online signature on the message m for an identity

ID, C runs the On-Sign algorithm to obtain the σon and returns to the adversaryA.
– After a polynomial number of queries,A outputs a signature (ID∗,m∗, σ∗o f f , σ

∗
on) such that

1. ID∗ has been requested as one of the key extraction queries.

2. (ID∗,m∗) has not been requested as one of the off-line signing queries and online signing queries.
3. (ID∗,m∗, σ∗o f f , σ

∗
on) is a valid ID-based online/off-line signature.

The success probability of an adversaryA wins the above game is defined by

S ussEF−IBS−CMA
A (k) ≤ 1

2 + ϵ.

ϵ is called advantage for the adversary in the above game.

Definition 7. Awin the game ifσ∗ is a valid signature of m∗. An adversary is said to be an (ϵ, t, qe, qs, qh)-
forger if it has advantage at least ϵ in the above game, run in time at most t, and make at most qe, qs and
qh extract, signing and random oracle queries, respectively.

An identity based online/off-line signature scheme (ϵ, t, qe, qs, qh) is secure if no (ϵ, t, qe, qs, qh)-forger
exists.

7 Liu et al.’s Online/Off-line ID based Signature for WSN

The scheme consists of the following 5 phases.

– Setup: Let G be a multiplicative group of prime order q. The PKG selects a random generator
g ∈ G and randomly chooses x ∈ Z∗q at random. It sets X = gx. Let H : {0, 1} → Z∗q be a
cryptographic hash function. The public parameters param and master secret key msk are given
by param = (G, q, g, X,H), msk = x.

– Extract: To generate a secret key for identity ID, the PKG randomly selects r ∈ Z∗q at random,
computes R ← gr s ← r + H(R, ID)x mod q. The user secret key is (R, s). Note that a correctly
generated secret key should fulfill the following equality:

gs = RXH(R, ID) (1)

– Off-line Sign: At the off-line stage the signer computes: Ŷi ← g2i∀i = 0, 1 . . . |q| − 1.
– Online Sign: At the online stage, the signer randomly selects y ∈ Z∗q. Let y[i] be the ith bit of y.

Define Y ⊂ {1, 2 . . . |q|} to be the set of indices such that y[i] = 1. Computes Y ← ∏i∈Y Ŷi−1, h ←
H(Y,R,m), z← y + hs mod q. The signature is (Y,R, z).

– Verification The signature is valid only if the following equation holds

gz = YRhX(R,ID) (2)

7.1 Vulnerability in the Scheme

At the off-line stage the signer computes: Ŷi ← g2i∀i = 0, 1 . . . |q| − 1 and at the online stage, the signer
randomly selects y ∈ Z∗q. Let y[i] be the ith bit of y. Define Y ⊂ {1, 2 . . . |q|} to be the set of indices such
that y[i] = 1. Computes Y ←∏i∈Y Ŷi−1, h← H(Y,R,m), z← y + hs mod q. For computation of Y , let us
consider the following three cases.

– Claim-1: The position of 1 in the string is in odd or even place i.e alternately 1s. Consider the random
number y ∈ Z∗ of length 6 in binary 101010. Here the setY = {1, 3, 5} which is in a proper sequence,
we can compute Y = Ŷ0Ŷ2Ŷ4. So it is easy for an attacker to compute Y which is the partial signature
(Y,R, z). Therefore it can be forged.

– Claim-2:The string contains all 1s. Consider y of length 6 in binary 111111. Set Y = {0, 1, 2, 3, 4, 5}.
Also the attacker can compute directly as Y = Ŷ0Ŷ1Ŷ2Ŷ3Ŷ4Ŷ5.

– Claim-3:If the string contains all 0s, then it is not possible to computes Y which is understood for an
attacker that Y consists of all 0’s is having 0s only.

The proposed scheme has not suggested for all these above cases.

8 Proposed Online/Off-line ID based Signature on Bilinear Pairings

We have considered all the above cases and suggested a provably secure scheme on random oracles. The
scheme comprises the following five PPT algorithms.

– Setup Given security parameters k, thePKG chooses groupsG1 andG2 of prime order q. A generator
P of G1, a bilinear map ê : G1XG1 → G2 and collision resistant hash function H0 : {0, 1}∗ → G1,
H1 : {0, 1}∗ → Z∗q. It chooses a master-key s ∈ Z∗q and computes Ppub = sP. the system public
parameters are given by

P = (G1,G2, q, ê, P, Ppub,H0,H1)

– Extract This algorithms follows of the following steps
• Given an identity ID ∈ {0, 1}∗ the secret key is dID = s · QID, where QID = H0(ID).

– Off-line Sign: During this phase, the signer computes the followings
• α̂i = ê(P, Ppub)2i

, ∀i = 0, 1 . . . |q|−1. During this off-line phase we neither require the knowledge
of the message nor the secret key.

– Online Sign: During this phase the signer follows the following steps
• Select randomly β ∈ Z∗q. Let β[i] be the ith bit of β.
• DefineD ⊂ {1, 2 . . . |q|} be the set of indices such that β[i] = 1 and C ⊂ {1, 2 . . . |q|} be the set of

indices such that β[i] = 0.
• Computes ψ1 =

∏
i∈D α̂i−1 and ψ2 =

∏
i∈C α̂i−1.

• Computes α = ψ1ψ2
• Selects γ ∈ Z∗q, computes U = γ · P, r = H1(ID,U∥m)
• V = (γ + β) · Ppub + rdID.

The signature is σ = (α,U,V)
– Verify : To verify the signature (α,U,V) for the message m and the identity ID, the verifier follows

the following steps.
• Computes r = H1(ID,U∥m)
• Checks whether the following equation holds

ê(V, P) ?
= αê(QID, Ppub)rê(U, Ppub) (3)

9 Proof of Correctness

First computes r = H1(ID,U∥m) and verify the following equation

ê(V, P) ?
= αê(QID, Ppub)rê(U, Ppub)

Also check

α = ê(P, Ppub)β

α = α̂0α̂1 . . .

= ê(P, Ppub)20
ê(P, Ppub)21

. . .

= ê(P, (20 + 21 + . . .)Ppub)

= ê(P, βPpub) = ê(P, Ppub)β

ê(V, P) = ê((γ + β)Ppub + rdID)

= ê((t + β)Ppub, P)ê(rdID, P)

= ê(Ppub, (t + β)P)ê(rdID, P)

= ê(Ppub, tP)ê(Ppub, βP)ê(rdID, P)

= ê(Ppub,U)ê(Ppub, P)βê(rdID, P)

= αê(Ppub,U)ê(rdID, P)

= αê(Ppub,U)ê(rsQID, P)

= αê(Ppub,U)ê(rQID, sP)

= αê(Ppub,U)ê(rQID, Ppub)

= αê(Ppub,U)ê(QID, Ppub)r

10 Security and Performance Analysis

The computational cost if this proposed scheme is as follows:

– The sender needs to compute a point multiplication, a pairing evaluation, an encryption, as well as a
hash evaluation. In addition, the most expensive computation is to be perform is the use of a public-
key digital signature algorithm.

– Since the receiver and the sender stand in the symmetric position, so the receiver shares the same
computation costs. The communication cost of the proposed protocol is that the sender and the re-
ceiver carry out two rounds for communications in order for the receiver to obtain a message from
the sender.

For practical implementation, we can use some existing tools for these computations including point
multiplication, bilinear pairing evaluation, and hash function evaluation over elliptic curves. The protocol
is based on the elliptic curve cryptography (ECC) and thus it has high security complexity with short key
size.

10.1 Security Analysis

Theorem 1 In random oracle model, Let G1 and G2 be (ϵ∗, t∗)-BDH two cyclic group of same prime
order q. P be a generator of G1 . G1 is an additive group and G2 is a multiplicative group. Let e be a
computable bilinear map e : G1XG1 → G2 . The proposed scheme is (ϵ, t, qe, qs, qh)-secure with respect
to EF-IBS-CMA, where for any t and ϵ satisfying

ϵ ≥ e(qe + 1)ϵ∗, t ≤ t∗ − tm(2qH0 + qe + 4qs)

where e is the base of the natural logarithm, and T is the time of computing a scalar multiplication
in G1 and an inversion in Z∗q. and qe, qs, qH0 are the number of extraction, signing and hashing queries
respectively the adversary is allowed to make and tm is the time for computing scalar multiplication.

Proof: Suppose that A is a forger who breaks the scheme IBS. A CDH instance (P, xP, yP) is given for
x, y ∈ Z∗q. By using the forgery algorithm A, we will construct an algorithm B which outputs the CDH
solution xyP in G1. This performs the following simulation by interacting with the forgerA.

– Setup: Algorithm B sets Ppub = xP and starts by giving A the system parameters param including
(P, Ppub). At any time,A can make query on the random oraclesH0H1 and Extract and Sign queries.
To answer these queries, B does the following:

– Queries on OracleH0 : To respondH0-queries, B maintains a list of tuples (ID, ω, b, c) denoted by
L0. WhenA queries the oracleH0 at a point ID ∈ {0, 1}∗, B responds as follows:
1. If the query ID already appears on the L0-list in a tuple (ID, ω, b, c) then B responds with
H0(ID) = ω ∈ G1.

2. Otherwise, B picks a random coin c ∈ {0, 1} with Pr[c = 0] = 1
(qe+1) .

• If c = 0 then B computes ω = b(yP) for a random b ∈ Z∗q.
• If c = 1 then B computes ω = bP for a random b ∈ Zq.
B adds the tuple (ID, ω, b, c) to the L0-list and responds toA withH0(ID) = ω.

– Queries on Oracle H1 To respond to H1-queries, B maintains a list of tuples (ID,U,m, r) denoted
by L1. WhenA queries the oracleH1 at (ID,U,m), B responds as follows:
1. If the query (U,m) already appears on the L1-list in a tuple (ID,m,U, r) then B responds with
H1(ID,U∥m) = r ∈ Z∗q.

2. Otherwise, B picks a random r ∈ Z∗q and adds the tuple (ID,m,U, r) to the L1-list and responds
toA withH1(ID,U∥m) = r.

– Extract Queries: WhenA queries the private key corresponding to ID, B first finds the correspond-
ing tuple (ID, ω, b, c) from the L0-list:
1. If c = 0 then B fails and halts.
2. Otherwise, B computes dID = b ·Ppub = b(xP) by using the tuple (ID, ω, b, c) in theH0-list and

responds toA with dID.
– Off-line & Online Signing Query: Suppose A makes queries qs a off-line and online signing al-

gorithms on message m with the signer’s identity ID , B finds the corresponding tuple (ID, ω, b, c)
from the H0-list and chooses a random r, γ, β ∈ Z∗q and computes U = γrP − βP − rω . If the tuple
(ID,m,U, r) already appears on the L1-list, B chooses another r, γ, β ∈ Z∗q and tries again. Other-
wise, B computes V = r · γPpub and stores (ID,m,U, r) in the H1-list. Then, B responds to A with
σ = (α,U,V). All responses to Sign queries are valid; indeed, the output (α,U,V) of Sign query is a
valid signature on m for ID, to see this,
αê(QID, Ppub)r ê(U, Ppub)
= ê(P, Ppub)βê(QID, Ppub)rê(U, Ppub)
= ê(βP + rQID + U, Ppub

= ê(βP + rω + U, Ppub) = ê(γrP, Ppub)
= ê(γrPpub, P) = e(V, P).

– Output If B does not abort as a result of A’s Extract query then A’s view is identical to its view in
the real attack. By Forking Lemma (Pointcheval and Stern, 2000), after replaying A with the same
random tape, B obtains two valid signatures σ = (ID∗,m, r, α,U,V) and σ

′
= (ID∗,m, r

′
, α,U,V

′
)

within a polynomial time, where V = (γ + β) · Ppub + rdID∗ and V
′
= (γ + β) · Ppub + rdID∗ . Then

B finds the corresponding tuple (ID,R) from the list L0, if c = 1 then B fails and halts. Otherwise,
B computes V − V ′ = (r − r′)dID∗ . Finally, B outputs xyP as a solution to the CDH instance by
computing (r − r

′
)(r − r

′
)−1sQID∗ = xyP.

– Probability Analysis: B solves the given instance of the CDH problem with probability at least ϵ∗.
We analyze three independent events needed for B to succeed:
• E1 : B does not abort as a result of anyA’s Extract query.
• E2 :A generates a valid and non-trivial signature forgery σ = (α,U,V) on m for ID.
• E3 : Event E2 occurs and c = 0 for tuples containing ID on the L0-list.

B succeeds if all these events happen. The probability is Pr[E1 ∧ E2 ∧ E3]

Pr[E1 ∧ E2 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | [E1 ∧ E2]

• Claim 1 The probability that A does not abort as a result of A’s Extract query is at least (1 −
1

qe+1)qe .
• Claim 2 IfA does not abort as a result ofA’s Extract query thanA’s view is identical to its view

in the real attack. Hence, Pr[E2 | E1] ≥ ϵ .
• Claim 3 The probability that B does not abort after A outputs a valid and nontrivial forgery is

at least (1
(qe+1) . Algorithm B will abort only if A generates a forgery such that c = 1. Hence

Pr[E3 | E1 ∧ E2] ≥ 1
(qe+1)

So Pr[E1] · Pr[E2 | E1] · Pr[E3 | [E1 ∧ E2] ≥ (1 − 1
qe+1)qe · ϵ · 1

(qe+1) ≥
1
e ·

ϵ
(qe+1) ≥ ϵ∗.

Algorithm B’s running time is equal to the sum of the running time of s A’s and the time it takes
to respond to qH0 hash oracle H0 queries, qe key extract queries, and qs online/off-line signature
queries. Each H0 query requires one scalar multiplications in G1. Each key extract query needs one
scalar multiplication in G1. Each online/off-line signature requires 4 scalar multiplications in G1. If
we assume one scalar multiplications in G1 takes time tm, the total running time is at most t+ (2qH0 +

qe + 4qs)tm. Therefore we can write

t + (2qH0 + qe + 4qs)tm ≤ t∗

10.2 Performance Evaluation

We can estimate the computational cost and memory requirements i.e the bit size required in this scheme.
Consider the following notation.

– TM : The time for point scalar multiplication on EC.
– TPO : Time for pairing execution.
– TH : Time taken for execution of hash function.

Total time for Key extraction, signature generation and verification is given by

T = 4TM + 3TPO + 2TH

11 Extension for Aggregation

D. Boneh et.al,[18] proposed the aggregate signature scheme.

Definition 8. Let there are n distinct users U = {u1, u2 . . . un} having signing public key-private key
(pki, ski)1≤i≤n pair. To aggregate signatures on subsets of users U, each user generates a signature σi, for
all i = 1, 2 . . . n on any message mi. These signatures are aggregated by an aggregating party in to a
single signature σagg, which is the same length of the signature (σi)1≤i≤n.

The main goal in the design of such protocols is that the length of σagg be constant, independent of the
number of messages and signers. To check correctness of an aggregate signature, the verifier will also need
the messages mi and the public keys pki, but this is not taken into account when considering the length
of σagg. In the identity-based framework, the only proposal which achieves constant length aggregation
is that of [22] however, this scheme only works in a more restrictive scenario where some interaction
or sequentiality is needed among the signers of the messages, which later will be aggregated (in the

same direction as[19] for the PKI-based scenario). With respect to non-interactive aggregate signatures in
the identity-based setting, the most efficient proposal is from [20]that does not achieve constant-length
aggregation: the length of the aggregate signature does not depend on the number of signed messages,
but on the number of different signers. Using the approach of this work, we can achieve exactly the same
level of partial aggregation for identity-based signatures. In effect,let us consider our generic construction,
and let us assume that the employed PKI-based signature scheme S allows constant-length aggregation.
The the input of the aggregation algorithm would be {(idi, sigmsk(idi∥pki), pki,mi, sigi}1≤i≤n, where sigi

and sigski (mi) are signatures resulting from scheme S , and can therefore be aggregated into a PKI-based
aggregate signature σagg, of constant length. Then the final identity-based aggregate signature would
be σIB

agg = (σagg, pki)1≤i≤n. This aggregate signature, along with the n messages and the n identities, is
sufficient to verify the correctness of the n signatures. Therefore the length of the identity-based aggregate
signature σIB

agg is linear with respect to the number of different signers.
It would be useful if a (single) sensor node can sign multiple messages, say n messages, but the size of

resulting signature is significantly smaller than n times the size of a single signature. Such an aggregated
(shortened) signature is of great importance in WSNs as reducing communication overheads in WSNs
is crucial for resource-constrained sensor nodes. As an extension to our online/off-line IBS scheme, we
propose the following aggregation technique when a single user (node) wants to sign multiple messages.

11.1 Framework of Aggregate Signatures

An ID-based online/off-line signature(IBS) scheme consists of the following five probabilistic polynomial
time (PPT) algorithms:

– Setup: (param,msk)← Set (1k) . The private key generator PKG provides the security parameter as
the input to this algorithm, generates the system parameters params and the master private key msk.
PKG publishes params and keeps msk secret.

– Extract: DIDi ← Ext(1k, param,msk, IDi). The user Ui provides his identity IDi to PKG. The PKG
runs this algorithm with identity IDi, params and msk as the input and obtains the private key DIDi .
The private key DIDi is sent to user Ui through a secure channel.

– Off-lineSign: σo f f ← S gno f f (1k, param) takes a security parameter k and the global parameters
param to generate an off-line signature σo f f .

– OnlineSign: (σon)i= 1ton ← S gnon(1k, param,m, σo f f , IDi). The algorithm takes a security parameter
k, the global parameters param, a message m, an off-line signature σo f f , an identity IDi to generate
a online signature σoni , for all i = 1, 2 . . . n. so the Signature generated by all users Ui individually is
the pair σi = (σo f f , σoni), for all i = 1, 2 . . . n.

– Verify: (“accept”, “Re ject”)← Ver(1k, param, σ,DID). This algorithm takes a security parameter k,
the global parameters param, a signature σ, a secret key DID to generate the outputs “accept” if σ is
valid and outputs “re ject” otherwise.

– Aggregate : σagg ← Agg(σi). For aggregation, the algorithm receive the various signatures (σi)1≤i≤n

from different users (Ui)1≤i≤n, any third party or one of the signers can run this algorithm and generate
the aggregate signature σagg for the pairs (mi, IDi)1≤i≤n.

– Aggregate Verify: (“Valid”, “Invalid”) ← AggVer(σi,mi, IDi, param) This algorithm takes on in-
put of an aggregate signature σagg for pair (mi, IDi)1≤i≤n and the param checks whether σagg is a
valid aggregate signature on mi by IDi for all i = 1, 2 . . . n. If true, it outputs “Valid”, else outputs
“Invalid”.

11.2 Security Model

Unforgeability Gentry et al. in [22] proposed a formal model for aggregate signature scheme. Their
scheme used a common randomness. We follow the security model proposed by Gentry et al. with slight
variations since we do not have a common random value.

Definition 9. An IBS scheme is secure against existential forgery under adaptive-chosen-identity and
adaptive-chosen-message attack if no probabilistic polynomial time algorithm A has non-negligible ad-
vantage in the following game.

– Setup phase : The challenger C runs the setup algorithm and generates the params and msk. Chal-
lenger C gives params to adversaryA.

– Training phase : After the setup,A starts interacting with C by querying the various oracles provided
by C in the following way:

– KeyGen oracle : WhenAmakes a query with IDi, C outputs Di, the private key of IDi toA, provided
C knows the private key for the queried identity. Else it aborts.

– Signing oracle : When A makes a signing query with IDi, message mi, C outputs a valid signature
σi on mi by IDi.

– Forgery phase : The adversaryA generates output an aggregate signature σagg for signatures i = 1
to n from the users (IDi)1≤i≤n on messages (mi)1≤i≤n where there exists at least one target identity
IDT ∈ {IDi}1≤i≤n, for which private key has not been queried for. The adversary A wins the game if
σagg is a valid aggregate signature and A has not queried for the signature from the signing oracle
for (IDT ,mT) pair on which it has generated the forgery.

AdvUF−IBS
A = {Pr[A(Veri f y(σagg))] = valid}

11.3 Aggregate Signature Scheme

– Setup Given security parameters k, the PKG chooses groups G1 and G2 of prime order q. A genera-
tor P of G1, a bilinear map ê : G1XG1 → G2 and collision resistant hash functionH0 : {0, 1}∗ → G1,
H1 : {0, 1}∗ → Z∗q. It chooses a master-key s ∈ F∗q and computes Ppub = sP. the system public
parameters are given by

P = (G1,G2, q, ê, P, Ppub,H0,H1)

– Extract This algorithms follows of the following steps
• Given an identity ID ∈ {0, 1}∗ the secret key is dID = s · QID, where QID = H0(ID).

– Off-line Sign: During this phase, the signer computes the followings
• α̂i = ê(P, Ppub)2i

, ∀i = 0, 1 . . . |q| − 1.
– Online Sign: During this phase the signer follows the following steps
• Select randomly βl ∈ Z∗q. Let βl[i] be the ith bit of βl.
• Define Dl ⊂ {1, 2 . . . |q|} be the set of indices such that βl[i] = 1 and C ⊂ {1, 2 . . . |q|} be the set

of indices such that βl[i] = 0.
• Computes ψ1 =

∏
i∈D α̂i−1 and ψ2 =

∏
i∈C α̂i−1.

• Computes α = ψ1ψ2.
• Selects γl ∈ Z∗q, computes Ul = γl · P, rl = H1(IDl,Ul∥ml), ∀l = 1, 2 . . . n
• Computes

V =
∑n

l= 1 Vl, Vl = (γl + βl) · Ppub + rldID. ∀l = 1, 2 . . . n
The aggregate signature σ = (αl,Ul,V) for l = 1, 2 . . . n.

– Verify : To verify the signature (αl,Ul,V) for the message ml and the identity IDl, l = 1, 2 . . . n, the
verifier follows the following steps.
• Computes rl = H1(IDl,U∥ml), ∀l = 1, 2 . . . n
• Checks whether the following equation holds

ê(V, P) ?
=

n∏
l=1

αl ê(Ul, Ppub)
n∏

l=1

αl

n∏
l=1

ê(QID, Ppub)rl (4)

11.4 Proof of Correctness

First computes rl = H1(IDl,Ul∥ml)∀l = 1, 2 . . . n and verify the following equation

ê(V, P) ?
=

n∏
l=1

ê(Ul, Ppub)
n∏

l=1

αl

n∏
l=1

ê(QID, Ppub)rl (5)

Also check α = ê(P, Ppub)β

α = α̂0α̂1 . . .
= ê(P, Ppub)20

ê(P, Ppub)21
. . .

= ê(P, (20 + 21 + . . .)Ppub)
= ê(P, βPpub) = ê(P, Ppub)β

V =
∑n

l= 1 Vl, Vl = (γl + βl) · Ppub + rldID. ∀l = 1, 2 . . . n ê(V, P) = ê(
∑n

l= 1 Vl, P)

= ê(
∑n

l= n(γl + βl) · Ppub + rldID, P)

= ê(
∑n

l= n(γl + βl) · Ppub, P)
∏n

l= 1 ê(rldID, P)

= ê(Ppub,
∑n

l= n(γl + βl) · P)
∏n

l= 1 ê(rldID, P)

= ê(Ppub, γlP)ê(Ppub,
∑n

l= n(βl) · P
∏n

l= 1 ê(rldID, P)

= ê(Ppub, γP)ê(Ppub, P)
∑n

l= n(βl)
∏n

l= 1 ê(rldID, P)

=
∏n

l= 1 ê(Ppub,Ul)
∏n

l= 1 αl
∏n

l= 1 ê(rls · QID, P)

=
∏n

l= 1 ê(Ppub,Ul)
∏n

l= 1 αl
∏n

l= 1 ê(rlQID, s · P)

=
∏n

l= 1 ê(Ppub,Ul)
∏n

l= 1 αl
∏n

l= 1 ê(rlQID, Ppub)

=
∏n

l= 1 ê(Ppub,Ul)
∏n

l= 1 αl
∏n

l= 1 ê(QID, Ppub)rl

12 Security Analysis

Theorem 2 In random oracle model, Let G1 and G2 be (ϵ∗, t∗)-BDH two cyclic group of same prime
order q. P be a generator of G1 . G1 is an additive group and G2 is a multiplicative group. Let e be a
computable bilinear map e : G1XG1 → G2 . The proposed scheme is (ϵ, t, qe, qs, qh, ξ)-secure with respect
to EF-IBS-CMA, where for any t and ϵ satisfying

ϵ ≥ e(qe + ξ)ϵ∗, t ≤ t∗ − tm(2qH0 + qe + 4qs + 2ξ + 2)

where e is the base of the natural logarithm, and T is the time of computing a scalar multiplication in
G1 and an inversion in Z∗q. and qe, qs, qH0 are the number of extraction, signing and hashing queries
respectively the adversary is allowed to make and tm is the time for computing scalar multiplication.

Proof: Suppose that A is a forger who breaks the scheme IBS. A CDH instance (P, xP, yP) is given for
x, y ∈ Z∗q. By using the forgery algorithm A, we will construct an algorithm B which outputs the CDH
solution xyP in G1. Algorithm B performs the following simulation by interacting with the forgerA.

– Setup: Algorithm B sets Ppub = xP and starts by giving A the system parameters param including
(P, Ppub). At any time,A can query the random oraclesH0 andH1 and Extract and Sign queries. To
answer these queries, B does the following:

– Queries on OracleH0 : To respondH0-queries,Bmaintains a list of tuples (ID, ω, b, c) as explained
below. We refer to this list as the L0-list. When A queries the oracle H0 at a point ID ∈ {0, 1}∗, B
responds as follows:
1. If the query ID already appears on the L0-list in a tuple (ID, ω, b, c) then B responds with
H0(ID) = ω ∈ G1.

2. Otherwise, B picks a random coin c ∈ {0, 1} with Pr[c = 0] = 1
(qe+1) .

• If c = 0 then B computes ω = b(yP) for a random b ∈ Z∗q.
• If c = 1 then B computes ω = bP for a random b ∈ Zq.
B adds the tuple (ID, ω, b, c) to the L0-list and responds toA withH0(ID) = ω.

– Queries on Oracle H1 and Sign Queries When A makes H1-queries and sign queries. To respond
to H1-queries, B maintains a list of tuples (IDi,Ui,mi, ri) for i = 1, 2 . . . n as explained below. We
refer to this list as the L1-list. WhenA queries the oracleH1 at (IDi,Ui,mi), B responds as follows:
1. If the query (Ui,mi) already appears on the L1-list in a tuple (IDi,mi,Ui, ri) then B responds with
H1(IDi,Ui∥mi) = ri ∈ Z∗q, for i = 1, 2 . . . n.

2. Otherwise,B picks a random ri ∈ Z∗q and adds the tuple (IDi,mi,Ui, ri) to the L1-list and responds
toA withH1(IDi,Ui∥mi) = ri.

– OutputA returns an aggregate signature σ = (α,Ui,V) for ID1, ID2 . . . IDn , where γ ∈ Z∗q, Ui =

γi · P, ri = H1(IDi,Ui∥mi), ∀i = 1, 2 . . . n

V =
∑n

i= 1 Vi, Vi = (γi + βi) · Ppub + ridID. ∀i = 1, 2 . . . n

. B finds the n-tuples (IDi, ωi, ai, bi, ci) for = 1, 2 . . . n from H0 list and proceeds only ck = 0 and
c j = 1, 2, . . . n, j , k. Here (IDk,mk) has never requested to the sign oracle. Otherwise B fails and
halts. whenHk = ωk = bk(y · P) andH0(ID j) = ω j = b j · P for j = 1, 2 . . . n, j , k. The aggregate
signature σ satisfies the following aggregate verification.

ê(V, P) =
∏n

i=1 ê(Ui, Ppub)
∏n

i=1 αi
∏n

i=1 ê(ωi, Ppub)ri

B finds the corresponding tuples (IDi,mi,U, ri) from L1-list. Let Vi = bi · Ppub. Computes ê(Vi, P) =
ê(QIDi , Ppub) for 1 ≤ i ≤ n, i , k. Finally B constructs V ′ as V −∑n

i= 1,i,k Vi and V
′
= dk+

∑n
i= 1 ri ·γi ·

Ppub, for U
′
= (r∗k)−1∑n

i= 1 ri · Ui. Then B execute the hash value H1(IDk,mk∥U
′
) and return r∗k , i.e

H1(IDk,mk∥U
′
) = r∗k . If the tuples exist in L1-list then tries another r∗k . Continue until such collision

does not occur. Therefore σ
′
= (U′,V

′
, α) is a valid signature on mk for IDk. Its verification equation

ê(U
′
, Ppub)αê(ωi, Ppub)r∗ = ê((r∗k)−1∑n

i= 1 ri · Ui, Ppub)
= ê(dk +

∑n
i= 1 ri · γi · Ppub, P) = ê(V

′
, P) .Finally, B returns σ′ as a forgery of the scheme.

12.1 Probability Analysis

B solves the given instance of the CDH problem with probability at least ϵ∗. We analyze three inde-
pendent events needed for B to succeed:
• E1 : B does not abort as a result of anyA’s Extract query.
• E2 : A generates a valid and non-trivial signature forgery σ = (α,Ui,V) on mi for IDi, i =

1, 2 . . . n.
• E3 : Event E2 occurs and ck = 0, ci = 1 for 1 ≤ i ≤ n, i , k, where for each i, ci is the

c-component of the tuples containing IDi on the L0-list.
B wins if all these events happen. The probability is Pr[E1 ∧ E2 ∧ E3]

Pr[E1 ∧ E2 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | [E1 ∧ E2]

• Claim 1 The probability that A does not abort as a result of A’s Extract query is at least (1 −
1

qe+ξ
)qe .

• Claim 2 IfA does not abort as a result ofA’s Extract query thanA’s view is identical to its view
in the real attack. Hence, Pr[E2 | E1] ≥ ϵ .

• Claim 3 The probability that B does not abort after A outputs a valid and nontrivial forgery is
at least (1

(qe+ξ)ξ−1 . Algorithm B will abort only if A generates a forgery such that c = 1. Hence
Pr[E3 | E1 ∧ E2] ≥ 1

(qe+1)

So Pr[E1] · Pr[E2 | E1] · Pr[E3 | [E1 ∧ E2] ≥ (1 − 1
qe+1)qe · ϵ · 1

(qe+1) ≥
1
e ·

ϵ
(qe+1) ≥ ϵ∗.

Algorithm B will abort unlessA generates a forgery such that ck = 0 and ci = 1 for 1 ≤ i ≤ n, i , k.
Therefore Pr[ck = 0] = 1

(qe+ξ)
and the probability that ci = 1, for 1 ≤ i ≤ n, i , k, is given by

Pr[ci = 1,∀1 ≤ i ≤ n, i , k] ≥ (1 − 1
qe+ξ

)ξ−1

⇒ Pr[E3 | [E1 ∧ E2] ≥ (1 − 1
qe+ξ

)ξ−1 · (1
qe+ξ

).

Thus Pr[E1] · Pr[E2 | E1] · Pr[E3 | [E1 ∧ E2] ≥ (1 − 1
qe+ξ

)qe+ξ−1 · ϵ · 1
(qe+ξ)

≥ 1
e ·

ϵ
(qe+ξ)

≥ ϵ∗.

Algorithm B’s running time is equal to the sum of the running time of A’s and the time it takes
to respond to qH0 hash oracle H0 queries, qe key extract queries, and qs online/off-line signature
queries. Each H0 query requires one scalar multiplications in G1. Each key extract query needs one
scalar multiplication in G1. Each online/off-line signature requires 4 scalar multiplications in G1. The
outpu phases requires 2ξ and one inversion operation. If we assume one scalar multiplications in G1
takes time tm, the total running time is at most t+ (2qH0 +qe+4qs+2ξ+2)tm. Therefore we can write

t + (2qH0 + qe + 4qs + 2ξ + 2)tm ≤ t∗

13 Implementation on WSN

The signatures generated by the sensor nodes can be verified mutually by sensor nodes and by the base
station. In WSN application off-line phase can be executed at the base station, while the online phase is to
be executed in the WSN node. Like the case for general WSNs, we assume that the base station is powerful
a sufficient amount to perform computationally intensive cryptographic operations, and the sensor nodes,
on the other hand, have limited resources in terms of computation, memory and battery power. The sensor
nodes may be one of the above described. To implement the proposed signature scheme on WSN, we can
follow the similar method [2]. Let us consider the system parameters param is generated by the base
station and is embedded in each sensor node when they are deployed. The Signatures generated by the
sensor nodes can be verified either by the sensor nodes or by the base station.

Let us consider n no of sensor nodes as S N1, S N2 . . . S Nn with identity ID1, ID2 . . . IDn. The sys-
tem parameters (G1,G2, q, ê, P, Ppub,H0,H1) is generated by the base station and all parameters will be
embedded on each sensor node. Then signature (α,U,V) will be generated by the nodes .

14 Conclusion

This paper proposes a secure and efficient online/off-line signature scheme for WSN. The scheme is
secure against existential forgery on chosen message attack in random oracle model under the assumption
of Computational Diffie-Hellman Problem (CDH) is hard. Here we have shown the vulnerability of Liu
et al’s scheme and proposed a provably secure scheme.

References

1. S. Even, O. Goldreich, and S. Micali On-Line/Off-Line digital signatures, in Proc. Advances in Cryptology
CRYPTO 89, ser. LNCS, vol. 435. Springer Berlin, 1990, pp. 263275.

2. Joseph K. Liu, Joonsang Baek, Jianying Zhou, Yanjiang Yang and Jun Wen Wong Efficient Online/Offline
Identity-Based Signature for Wireless Sensor Network, in IACR Arcieve ePrint-2010/03.

3. S.Sharmila Deva Selvi, S.Sree Vivek, J.Shriram, S.Kalaivani, and C.Pandu Rangan. Security analysis of ag-
gregate signature and batch verification signature schemes. Cryptology ePrint Archive, Report 2009/290, 2009.
http://eprint.iacr.org.

4. F. Amin, A.H Jahangir, and H. Rasi fard Analysis of Public-Key Cryptography for Wireless Sensor Networks
Security. World Academy of Science, Engineering and Technology, 2008.

5. Chris Townsend, Steven Arms Wireless Sensor Networks: Principles and Applications: microstrain.com.
6. Jing Deng, Richard Han, Shivakant Mishra Enhancing Base Station Security in Wireless Sensor Networks:

University of Colorado, Department of Computer Science. Technical Report CU-US-951-03.
7. Dan Boneh Bls short digital signatures. In Henk C. A. van Tilborg, editor, Encyclopedia of Cryptography and

Security. Springer, 2005.
8. Yiling Wen and Jianfeng Ma An aggregate signature scheme with constant pairing operations. In CSSE (3),

pages 830833. IEEE Computer Society, 2008.
9. Jing Xu, Zhenfeng Zhang, and Dengguo Feng Id-based aggregate signatures from bilinear pairings. In Yvo

Desmedt, Huaxiong Wang, Yi Mu, and Yongqing Li, editors, CANS, volume 3810 of Lecture Notes in Computer
Science, pages 110119. Springer, 2005.

10. HyoJin Yoon, Jung Hee Cheon, and Yongdae Kim Batch verifications with id-based signatures. In Choonsik
Park and Seongtaek Chee, editors, ICISC, volume 3506 of Lecture Notes in Computer Science, pages 233248.
Springer, 2004.

11. Shi Cui, Pu Duan, and Choong Wah Chan An efficient identity-based signature scheme with batch verifications.
In Xiaohua Jia, editor, Infoscale, volume 152 of ACM International Conference Proceeding Series, page 22.
ACM, 2006

12. Xiangguo Cheng, Jingmei Liu, and Xinmei Wang Identity-based aggregate and verifiable encrypted signatures
from bilinear pairing. In Osvaldo Gervasi, Marina L. Gavrilova, Vipin Kumar, Antonio Lagan‘a, Heow Pueh
Lee, Youngsong Mun, David Taniar, and Chih Jeng Kenneth Tan, editors, ICCSA (4), volume 3483 of Lecture
Notes in Computer Science, pages 10461054. Springer, 2005.

13. Alexandra Boldyreva, Craig Gentry, Adam ONeill, and Dae Hyun Yum Ordered multisignatures and identity-
based sequential aggregate signatures, with applications to secure routing. In Peng Ning, Sabrina De Capitani di
Vimercati, and Paul F. Syverson, editors, ACM Conference on Computer and Communications Security, pages
276285. ACM, 2007.

14. Zhu Wang, Huiyan Chen, Ding feng Ye, and Qian Wu. Practical identity-based aggregate signature scheme
from bilinear maps. volume 13(6), pages 684687. Shangai Jiao Tong University Press, 2008.

15. Jung Yeon Hwang, Dong Hoon Lee, and Moti Yung Universal forgery of the identity-based sequential aggre-
gate signature scheme. In Wanqing Li, Willy Susilo, Udaya Kiran Tupakula, Reihaneh Safavi-Naini, and Vijay
Varadharajan, editors, ASIACCS, pages 157160. ACM, 2009.

16. Craig Gentry and Zulfikar Ramzan Identity-based aggregate signatures. In Moti Yung, Yevgeniy Dodis, Aggelos
Kiayias, and Tal Malkin, editors, Public Key Cryptography, volume 3958 of Lecture Notes in Computer Science,
pages 257273. Springer, 2006.

17. Javier Herranz Deterministic identity-based signatures for partial aggregation. Comput. J., 49(3):322330, 2006
18. D. Boneh, C. Gentry, B. Lynn and H. Shacham Aggregate and verifiably encrypted signatures from bilinear

maps. EUROCRYPT 2003, volume 2656 of LNCS, pages 416432, 2003.
19. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham and B. Waters Sequential aggregate signatures and multi-signatures

without random oracles. EUROCRYPT06, 2006.
20. J. Herranz Deterministic identity-based signatures for partial aggregation. The Computer Journal, 49 (3):322330,

2006.
21. M.Bellare and P.Rogaway ”The exact security of digital signatures-How to sign with RSA and Rabin” Proceed-

ings of Eurocrypt 96, LNCS Vol 1070, pp-399-416, Springer-Verlag, 1996
22. Craig Gentry and Zulfikar Ramzan Identity-based aggregate signatures. In Moti Yung, Yevgeniy Dodis, Aggelos

Kiayias, and Tal Malkin, editors, Public Key Cryptography, volume 3958 of Lecture Notes in Computer Science,
pages 257273. Springer, 2006.

