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Abstract

This paper presents an attack in the multi-user setting on various public-
key encryption schemes standardized in IEEE 1363a [20], SECG SEC 1 [27]
and ISO 18033-2 [21]. The multi-user setting is a security model proposed
by Bellare et al., which allows adversaries to simultaneously attack multiple
ciphertexts created by one or more users. An attack is considered successful
if the attacker learns information about any of the plaintexts. We show that
many standardized public-key encryption schemes are vulnerable in this model,
and give ways to prevent the attack. We also show that the key derivation
function and pseudorandom generator used to implement a hybrid encryption
scheme must be secure in the multi-user setting, in order for the overall primi-
tive to be secure in the multi-user setting. As an illustration of the former, we
show that using HKDF (as standardized in NIST SP 800-56C) as a key deriva-
tion function for certain standardized hybrid public-key encryption schemes is
insecure in the multi-user setting.

1 Introduction

The security of public-key encryption (PKE) schemes is most commonly analyzed
in a simplified model where an attacker must distinguish between the encryption of
two chosen messages. In reality, there will likely be multiple ciphertexts, potentially
created with multiple public keys, and an attacker may be simultaneously attacking
some or all of the ciphertexts. In terms of the security games used to define security,
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the difference equates to having one vs. many “challenge ciphertexts”, i.e., cipher-
texts given to the adversary. The adversary is successful if he learns any information
about the plaintext. In the most common security definitions (e.g., IND-CPA and
IND-CCA) there is a single challenge ciphertext.

Security in the second scenario has been studied under the name multi-user secu-
rity [6, 11], where the traditional, more limited scenario is named single-user security.
In [6], Bellare, Boldyreva and Micali prove that any PKE scheme secure in the single-
user setting is also secure in the multi-user setting. This is a generic result, in that
it works for any scheme. Unfortunately, the reduction loses a factor of N , where N
is the number of challenge ciphertexts. Since in practice N can be quite large, the
theorem does not ensure security with the parameter sizes in common use. For ex-
ample, a scheme designed to provide 80 bits of single-user security is only guaranteed
to provide 60 bits of multi-user security if N = 220.

Most practical examples of PKE use a special type of PKE scheme, called a hybrid
public-key encryption (HPKE) scheme. Practitioners use a two step-approach to
encrypt long messages, since a public-key encryption operation is orders of magnitude
more expensive than a symmetric-key operation. First, a symmetric key is encrypted
using an expensive public-key operation, then the symmetric key is used to efficiently
encrypt the (long) message. The first step is called a key encapsulation mechanism
(KEM) and the second step is called a data encapsulation mechanism (DEM).

Multi-user security of some common KEMs is also studied in [6], where it is shown
that two common KEMs (Elgamal and Cramer-Shoup) do provide good concrete
security in the multi-user setting. Boldyreva does a similar analysis of some RSA-
OAEP variants in [11], and does consider one hybrid scheme. However, the multi-
user security of common HPKE schemes has not been analyzed (i.e., the multi-
user security of the combined KEM/DEM operations). In particular, the multi-
user security of the standardized and deployed HPKE schemes is not supported by
published analysis. Previous work has also not considered whether the key derivation
functions and pseudorandom generators used in a multi-user HPKE scheme must also
be secure in the multi-user setting.

Contributions and Outline In this paper, we present an attack which reduces
multi-user security by a factor of N (where N is the number of ciphertexts created)
(§3). The attack recovers one of the N symmetric (DEM) keys (but the attacker
cannot control which one). The attack is successful against multiple schemes from
various standards, such as IEEE 1363a [20], SECG SEC 1 [27] and ISO 18033-2 [21].
The attack is a simple time-memory tradeoff (TMTO) attack on the DEM, a type of
attack that has been well-studied in the literature in the context of symmetric-key
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primitives (it is also sometimes called a key-collision attack). This is possible since
the DEM is deterministic – which isn’t a security issue in the single-user setting.
Preventing the attack is also rather simple, and is accomplished by randomizing the
DEM. We discuss a few options and make a recommendation for preventing this
attack.

Finally, we look at the other primitives used to implement HPKE in practice,
namely a key derivation function (KDF) and a pseudorandom generator (PRG) (§5).
We will see it is necessary that these building blocks must have multi-user security
in order for the overall HPKE primitive to provide multi-user security. For PRGs we
give an example of a toy PRG that provides single-user but not multi-user security,
and apply a TMTO attack to an HPKE scheme using this PRG (§5.2).

For KDFs, we consider using a class of recently standardized [14, 24] “extract-
then-expand” functions (including HKDF [23]) in the context of HPKE, and show
that a TMTO attack is possible for many of the allowed parameters (§5.1). This class
of KDF works by extracting a seed from the input, then expanding the seed to create
the output. For some of the standardized parameter choices, using an extract-then-
expand KDF with some of the standard HPKE schemes listed above will be insecure.
A multi-user setting TMTO attack, similar to the one described for HPKE, can
recover the seed, and expand it to recover the DEM key and decrypt the message.
Our recommendation is to choose parameters according to a new requirement, or to
employ a salt value to prevent the attack.

2 Hybrid Public-Key Encryption

In this section we review public-key encryption (PKE), then turn our attention to a
specific type of PKE, hybrid public-key encryption (HPKE). We give the standard
security definitions of PKE and define security in the multi-user setting, and then
discuss known results in the single-user and multi-user settings.

Throughout, κ will be a security parameter. The notation x← y means that x is

assigned the value y, and x
$← X means that x is assigned a value chosen uniformly

at random from a set X.

2.1 Public-Key Encryption

A public-key encryption scheme (PKE) is a four-tuple of probabilistic polynomial-
time (PPT) algorithms E = (P, K, E, D), with the following properties.

• Algorithm P is the parameter generation algorithm. It takes as input a secu-
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rity parameter κ, an integer indicating the desired security level, and outputs
the domain parameters as a string par, which is a description of the class of
public keys that should achieve the desired security level and interoperability.
For example, P will typically determine the bit lengths of the public key, and
perhaps other information such as an elliptic curve selection. We will write
par← P(κ).

• Algorithm K is the key generation algorithm. It takes as input domain pa-
rameters par and generates as output a key pair (sk, pk). The value sk is the
secret key and the value pk is the public key. Algorithm K will need to be
probabilistic in order to achieve security. We will write (sk, pk)← K(par).

• Algorithm E is the encryption algorithm. E will usually be probabilistic. It
takes as input a plaintext m in {0, 1}∗ and a public key pk. It generates as
output a ciphertext c in {0, 1}∗. We will write c← E(pk, m).

• Algorithm D is the decryption algorithm. It takes as input a ciphertext c in
{0, 1}∗ and the secret key sk. It generates as output a plaintext m in {0, 1}∗,
or error. For the schemes we consider, Algorithm D will be deterministic. We
will write m← D(sk, c).

• Scheme E must be self-consistent in the sense that for all κ and all m ∈ {0, 1}∗,
if

par← P(κ),

(sk, pk)← K(par),

c← E(pk, m),

m′ ← D(sk, c),

then m = m′ will be true.

2.2 Symmetric Key Encryption

A symmetric-key encryption (SKE) scheme has two algorithms, encrypt and decrypt,
denoted (E, D).1 Both are keyed with a key K from the keyspace {0, 1}κ. Input to E
is a key and an arbitrary length message. The output of E is a ciphertext. Input to
D is a key and a ciphertext produced by E. The usual soundness condition applies,

1We’ll use italics for symmetric-key primitives, i.e., (E,D), and a sans-serif typeface for public-
key primitives, i.e., (E,D).
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i.e., for any message m and K ∈ {0, 1}κ, D(K, E(K, m)) = m. Encryption may be
randomized with an initialization vector (IV) depending on the mode of operation.2

The same IV must be used for decryption.

2.3 Hybrid Public-Key Encryption

Hybrid encryption is a general notion that captures most practical uses of public-key
encryption (PKE). A public-key encryption operation is orders of magnitude more
expensive than a symmetric-key operation. Therefore, to encrypt long messages,
practitioners encrypt a symmetric key K using the expensive public-key operation,
c1 = E(pk, K), and then use K to encrypt a (possibly long) message, c2 = E(K, M).
The ciphertext is (c1, c2). Public-key encryption schemes constructed with a hybrid
approach are also referred to as KEM/DEM schemes, since c1 is produced by a key
encapsulation method (KEM) and c2 is produced by a data encapsulation method
(DEM). A formal treatment of the KEM/DEM paradigm can be found in [15].

A KEM has the same list of algorithms as a PKE scheme (KEM.P, KEM.K, KEM.E,
KEM.D), but algorithms KEM.E and KEM.D are a little different.

• Algorithm KEM.E takes as input a public key, and outputs a key K ∈ {0, 1}κ
(for a parameter κ), and a ciphertext component c1.

• Algorithm KEM.D takes a private key and ciphertext component c1 as input,
and outputs a key K ′ ∈ {0, 1}κ.

A DEM has two algorithms DEM.E and DEM.D, which are symmetric-key encryp-
tion and decryption algorithms. The algorithm DEM.E takes K (output by KEM.E)
and a plaintext M ∈ {0, 1}∗, and outputs a second ciphertext component c2. The
algorithm DEM.D takes K ′ (output by KEM.D) and c2, and outputs M . The param-
eter κ is chosen so that the output of KEM.E is suitable for use by DEM.E. Figure 1
shows the encryption and decryption operations in a generic hybrid PKE.

Note that c1 and c2 may have one or more components, depending on the scheme,
e.g., in DHIES [1] and PKCS #1 [26] c1 is a single value, while in the Cramer-Shoup
scheme CS1 [15] it is a 4-tuple, and likewise c2 may consist of a ciphertext, or a
ciphertext and an authentication tag.

2In the case of counter mode, the IV is sometimes called an initial counter value (IC or ICV).
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Figure 1: Hybrid encryption with a KEM/DEM construction. The left side shows
the encryption operation, and the right side shows the decryption operation.

2.4 Security in the Single-User Setting

First we review the common security notion: indistinguishability against chosen ci-
phertext attacks (IND-CCA) for a public-key encryption scheme E . Let A be an
adversary. Define

AdvCCA
E, A(κ) = 2 Pr


par← P(κ);
(sk, pk)← K(par);

AOsk (c∗) = b (m0, m1)← AOsk (pk);

b
$← {0, 1};

c∗ ← E(pk, mb)

− 1

where Osk is a decryption oracle, and there are two conditions: Osk will not decrypt
c∗, and |m0| = |m1|. We say E is IND-CCA secure if AdvCCA

E, A(κ) is negligible for
all stateful PPT adversaries A. Recall the term “left-or-right query” (LR query for
short), for the step at which A chooses (m0, m1) and receives c∗.

Chosen ciphertext security may also be defined for symmetric-key algorithms
in an analogous way, but in addition to a decryption oracle, we must provide an
encryption oracle which produces ciphertexts with the same key used to create the
challenge ciphertext.

Cramer and Shoup [15] define one-time symmetric-key encryption to be a re-
stricted type of symmetric-key encryption, where the key is used only to create a
single ciphertext, namely, the challenge ciphertext. We write E1 when the SKE E is
restricted to one-time use. One-time SKE is natural in the context of hybrid encryp-
tion, since for each encryption, the KEM encapsulates a different key, used only once
by the DEM. In practice a traditional (many-time) SKE scheme is often used as the
DEM in a hybrid construction, but the notion of one-time SKE is used in security
analyses because it is a strictly weaker requirement.
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The IND-CCA security game for one-time SKE is as follows. The adversary
chooses a pair of equal length plaintexts (m0, m1), and submits them to an encryption
oracle. The oracle chooses K and b, then outputs c∗ = E1(K, mb). The adversary
may query a decryption oracle any number of times with ciphertexts c 6= c∗, and the
oracle will output D(K, c). No encryption oracle is provided. Finally the adversary
outputs a guess b′. Define adversary A’s advantage AdvCCA

E1, A(κ) = 2 Pr [b = b′]− 1.

Security of Hybrid PKE (HPKE) Cramer and Shoup [15] proved a tight re-
duction of the IND-CCA security of an HPKE scheme to the IND-CCA security
of the KEM and one-time SKE (used to create the HPKE). Their result is in the
single-user setting. This reduces the task of constructing an IND-CCA secure PKE
to the construction of a KEM and DEM that are individually secure; Theorem 2.1
says that the composition is secure.

Theorem 2.1. [15, Theorem 5] Let HPKE be a hybrid encryption scheme constructed
from a key encapsulation method KEM and a one-time symmetric encryption scheme
SKE. If KEM and SKE are IND-CCA secure, then HPKE is also IND-CCA secure.

2.5 Security in the Multi-User Setting

In the single user setting there is one public key, one challenge ciphertext (denoted
c∗ above), and one decryption oracle. The attacker is successful if he distinguishes
ciphertexts in this limited world. In practice however, there are many users sending
multiple encrypted messages, which may be related. There are therefore multiple
public keys, and multiple challenge ciphertexts. The multi-user setting attempts to
model this aspect of real-world systems. In this section we aim to make precise the
notion of multi-user security for public-key encryption. To this end we present and
discuss the definition from [6].

The generalization of CCA security in the multi-user setting has n different public
keys, and the adversary can make multiple LR queries. These challenge ciphertexts
are created with the same (randomly chosen) selector bit b, i.e., all ciphertexts are
encryptions of the left input, or all ciphertexts are encryptions of the right input.
The adversary is successful if he guesses b. Security theorems in this model are stated
for a number of public keys n, and a number of LR queries qe per public key.

Using a single b value allows the plaintexts between two challenge ciphertexts
may be related. For example, the adversary could choose to have c∗i = E(pki, mb)
and c∗j = E(pkj, f(mb)) for any f , and any public keys pki and pkj (which might be
equal). This captures a class of attack on RSA, where the same message is encrypted
under different low-exponent RSA public keys. See [16] for details.
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IND-CCA security in the multi-user setting, denoted n-CCA, is formalized as the
following advantage:

Advn-CCA
E, A (κ) = 2 Pr



par← P(k); (pki, ski)← K(par);

b
$← {0, 1};

b′ = b For i = 1, . . . , N

(mi
0, m

i
1, pki)← AOsk1 ,...Oskn (pk1, . . . , pkn);

c∗i ← E(pki, mb)

b′ ← AOsk1 ,...Oskn (c∗i , . . . , c
∗
N)

− 1

where there are n key pairs created in the second step. As in [6], the key pairs are
generated with the same parameters. To some extent our attack relies on this, the
KEM may use different parameters but the DEM must have the same parameters.

Multi-user security for one-time SKE has not previously been formally defined.
As with n-CCA for PKE, the selector bit b is the same for all LR queries. There are
n keys and their associated LR and decryption oracles, but no general encryption
oracle is provided. For unrestricted SKE (i.e., without the one-time restriction on
the key) multi-user security and the possibility of TMTO attacks are well-known.
Two recent papers on this subject cite most of the relevant references [13, 19].

Multi-user HPKE For hybrid encryption, there has been limited analysis done
in the multi-user setting. TMTO attacks on PKE are briefly considered in [19], but
only the security of the KEM was considered, not the security of hybrid encryption
schemes. To our knowledge, [11] is the only paper to date which explicitly considers
n-CCA security of HPKE. In [11], Boldyreva studies the security of an RSA-OAEP [5]
variant, known as RSA-OAEP++, in the multi-user security model of [6]. Of interest
to the present work is one variant of RSA-OAEP++ to encrypt arbitrary-length
messages [11, §6]. By modifying the output length of one of the hash functions in the
RSA-OAEP++ construction, Boldyreva shows that we may encrypt arbitrary length
messages with the same security guarantee as for short, fixed length messages. This
result is relevant to the current work because the security proof is tight, and security
is considered in the multi-user setting, closing a gap between [6] (which studies only
KEM security) and the literature on hybrid encryption (which has largely ignored
the multi-user setting). 3

3Note that to securely instantiate the arbitrary length plaintext version of RSA-OAEP++, the
parameter k0 must be twice as long as the security parameter. For an attacker which makes no
decryption queries, the reduction [11, Th. 5.1] contains a term: qeqG/2k0 . If the attacker can
observe qe ≈ 2κ/2 ciphertexts, and perform qG ≈ 2κ/2 hash computations, then when k0 = κ, (i)
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In [6], Bellare et al. prove that any PKE scheme secure in the single-user setting
is also secure in the multi-user setting. This is a generic result, in that it works for
any scheme. A similar result for stateful PKE is presented in [8, Theorem A.1]. If
we apply this general reduction to Theorem 2.1, we lose a factor of N , where N is
the number of challenge ciphertexts (created with the n public keys). That is, for a
(possibly hybrid) PKE scheme PKE the only guarantee we have is that

Advn-cca
PKE ≤ N ·Advcca

PKE .

Put another way, in the worst case an adversary could be N times more successful
when attacking the n-CCA security of a scheme than the CCA security of the same
scheme.

Bellare et al. also show that their reduction is optimal in the general case, by
showing that there exists a PKE scheme with Advn-cca

E = NAdvcca
E . The scheme they

use to make this argument is contrived, but our attack shows that multi-user attacks
exist on practical and deployed schemes as well. We show that the standardized
schemes discussed in §A lose a factor of N in the multi-user setting.

2.6 Discussion

An interesting consequence of the one-time restriction on symmetric-key IND-CCA
security is that encryption no longer needs to be randomized, or have a changing
IV, since the key changes for each encryption operation. Intuitively, random or
non-repeating IVs are necessary for IND-CPA security, since if the attacker sees two
encryptions of the same message, he may distinguish them. To win the CPA game,
first request encryptions of an arbitrary message pair (m0, m1), store the ciphertexts,
then submit (m0, m1) to the LR oracle to get c∗. Compare c∗ to the stored ciphertexts
to learn b. This attack, which is prevented by randomizing encryption, is not possible
with one-time SKE, since it requires multiple encryptions to be created with the same
key.

Perhaps this was the reasoning that led to most hybrid encryption standards
allowing deterministic DEMs (details in Appendix A). If so, it is an example of a
provable security analysis leading to decreased practical security: avoiding the use of
a stronger assumption led to an attack in a slightly broader model. 4 Once we move
to the multi-user setting, a TMTO attack becomes possible against deterministic

no security is guaranteed by the theorem, and (ii) a TMTO attack along the same lines as the one
we discuss in §3 is possible. It is unclear why k0 = 128 is given as a “typical” choice in [11]. For
128-bit security we need k0 ≥ 256.

4A similar example is given by Koblitz and Menezes (see [22], Remark 1).
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one-time encryption, and succeeds even if (deterministic) authenticated encryption
is being used.

This may also be an example of the omission of a standard safety margin (i.e.,
randomizing encryption) because the provable security analysis did not require it.
See Section 5 of [22] for a discussion of this point.

In contrast, there was a submission to the IEEE P1363 working group, which
made clear that the DEM should be randomized, at least in the case of DHIES [2].

3 An Attack on Some Hybrid Encryption Schemes

The core of the attack is a time-memory trade-off (TMTO) attack on the symmetric-
key encryption used in the DEM. The attack is also called a key collision attack,
a term first coined by Biham [9] while applying Hellman’s time/memory trade-off
(TMTO) methodology [18] to block ciphers. TMTO attacks on symmetric-key en-
cryption and other primitives are also examined in detail in [10] and [19].

In this section we review a key collision attack on symmetric-key encryption, as
described by Biham. From this description, it will be easy to describe the attack in
the context of hybrid PKE.

We will consider the attack on block ciphers with κ-bit keys (where κ is also the
security level). The attack is generic in that it treats the encryption function as a
black box. Informally, the attack works by first seeing a large number of ciphertexts
that are the encryption of a partially known plaintext under different keys. Then
the attacker chooses random keys and encrypts the known plaintext until finding a
match. Essentially it is a birthday attack on the keyspace, and the complexity is
O(2κ/2) in time and space. The attack allows one of roughly O(2κ/2) ciphertexts
to be decrypted, but does not allow the attacker to choose which ciphertext will
be decrypted (or equivalently, which key will be compromised). This is why it is
effective in the multi-user setting, but not in the single-user setting. We first describe
the attack for a deterministic E (e.g., with a fixed initialization vector (IV)), then
discuss how it may be applied when E is randomized.

Basic Key Collision Attack. Let E : {0, 1}κ×{0, 1}∗ → {0, 1}∗ be a symmetric-
key encryption function denoted E(k,M), with the message given by the concate-
nation M = M0‖ . . . ‖M`. Let M0 be one or more fixed plaintext block(s) known to
the attacker.

1. Obtain a set L1 containing ciphertexts {C1, . . . , C`1} where each Ci is an en-
cryption of a plaintext of the form M0‖ . . ., meaning M0 followed by arbitrary
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plaintext blocks. The adversary obtains the ciphertexts by observing honest
parties. We assume here that the keys are chosen at random (without replace-
ment). In many practical applications M0 may be a standard protocol header,
and therefore be known. Let ki denote the (unknown) key used to create Ci.

2. Compute a set L2 as follows. For j = 1, . . . , `2 choose a distinct key kj ∈ {0, 1}κ
and compute C ′

j = E(kj, M0). Store (kj, C
′
j) in L2.

3. Compare the ciphertexts C ′
j ∈ L2 to the first parts of Ci ∈ L1. If C ′

j =
FirstPart(Ci), output kj as ki (the key used to encrypt Ci). For this step to
be efficient, L1 should be stored in a data structure providing constant-time
look-up, for example, in a hash table keyed by the first block of Ci.

5

4. Decrypt Ci, and optionally use kj for other attacks (depending on the applica-
tion).

Remark 3.1. It is not necessary to store the set L2, items in it may be computed,
compared against L1, then deleted.

Remark 3.2. If the length of M0 is less than the length of the key, then there may
be multiple keys found in Step 3 that are different from the true key. Since these
keys will incorrectly decrypt the remaining blocks of Ci in Step 4, the attack fails.
However, once M0 becomes larger than the key, the probability of this type of failure
decreases rapidly. See [13] for a precise analysis. When |M0| and the key length
are equal, the attack may still be conducted, provided there is some way to verify
whether the key is correct. For example, if a MAC of the ciphertext is included it
may be verified, or if the unknown plaintext satisfies some redundancy criteria that
may be efficiently verified (e.g., English text, or HTML file).

For AES, the block size is 128-bits and the key is 128, 192, or 256 bits. The
attack therefore needs at least one, and up to three known blocks to be effective.

Remark 3.3. The attack requires that block i in a ciphertext not depend on blocks
j, where j > i. Most (if not all) modes in use have this property.

Analysis Our analysis is informal. The more detailed analysis of [13], which con-
siders TMTO attacks on MAC schemes is easily adapted to our setting.

5This is oversimplified, since this storage system will likely be distributed among many nodes
when κ is large. However, distributed hash tables (DHTs) are practical, and a system optimized
for this application may give even better performance than a general-purpose DHT.
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log2(`1) log2(`2) p
62 62 0.060
63 63 0.221
64 64 0.632
65 65 0.982
66 66 0.999
10 118 0.632
20 108 0.632
48 80 0.632
56 70 0.221
51 75 0.221

Table 1: A table of values for κ = 128, with |L1| = |L2| in the upper half.

When `1 = `2 = κ/2 it is expected, by the birthday paradox, that we recover one
of the 2`1 keys. For varying `1 and `2, the probability of finding one of the 2`1 keys
is given by:

p = 1−
(

1− |L2|
2κ

)|L1|

≥ 1− e−|L1|·|L2|/2κ

.

Therefore, if `1 + `2 ≥ κ, we expect to recover one of the keys with nontrivial
probability. A table of values is given in [9] for various choices for `1 and `2 when
κ = 56 (corresponding to DES). Table 1 gives some possible values when κ = 128
(corresponding to AES-128).

As the name suggests, the attacker may trade off computation time (required to
create L2) for memory (required to store L1), since any `1 and `2 which sum to κ give
a successful attack. This flexibility may also allow the attack to proceed when the
adversary may observe only a limited amount of ciphertexts, for example, if κ = 128
and the honest parties produce only 220 ciphertexts, the attacker may perform 2108

work to mount the attack.
The flexibility may also be used to reduce online computation, which depends

on the honest parties. With this tradeoff, L2 is constructed first, at the attacker’s
leisure (offline), then the observed ciphertexts in L1 are compared to L2, as they
arrive (online). The online vs. offline aspects of TMTO attacks are discussed further
in [10, 13].

Extension to randomized E. Suppose the IV is not constant, is either public or
private, and is r bits long. The attack still works, by treating the IV and key as an
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r + κ bit key. The complexity increases to 2(r+κ)/2. First suppose that the IV has r
bits of entropy. To neutralize the attack, we need r = κ, however, for most modes
of operation (e.g., CTR, CBC, CFB, CCM, GCM), r is equal to the block length.
Therefore, with AES, r is at most 128, which provides security when κ = 128, but
is insufficient6 when κ > 128. When IV has r0 < r bits of entropy, the cost of the
attack drops to O(2(r0+κ)/2). The recent survey of IV generation practices in IETF
protocols by McGrew [25] gives some example protocols that use deterministic IVs
(and others that use low-entropy IVs).

Low entropy plaintext block vs. known plaintext block. In a similar manner
as IVs, if the first plaintext block is not known, but has only t0 bits of entropy, the
attack runs with complexity O(2(κ+t0)/2), which is better than brute force for t0 < κ.
The complexity O(2(κ+t0)/2) is obtained by treating the unknown first block as part
of the key. Instead of guessing a key in {0, 1}κ when forming L2 we are guessing
a value in {0, 1}κ ×M, for some set M of possible first plaintext blocks, having
size 2t0 .

Extension to non-first known plaintext blocks With some modes of opera-
tion, for example counter mode or ECB mode, the attack may be mounted by an
attacker who knows any fixed block(s). This is possible since in these modes all
blocks are independent.

3.1 Applying the Attack to HPKE Schemes

In the context of HPKE, we may mount the attack from Section 3 on the output of
the DEM, and ignore the KEM component of the ciphertext, whenever the DEM is
deterministic (or poorly randomized). As we will see, current PKE standards specify
a deterministic DEM. So the attack, like most TMTO attacks, is quite simple. Also
note that the attack is applicable regardless of the KEM, even if the KEM were
ideal, providing information-theoretic security in the multi-user setting. We give
two example HPKE schemes (figures 2 and 3) and discuss the practicality of the
attack. In Appendix A we discuss some HPKE standards, and the applicability of
this attack.

In Figure 2 we give an informal description of the ECIES hybrid encryption
scheme, to serve as a concrete example. We describe a simplified variant of the ECIES

6We are unaware of a block cipher mode of operation which allows an IV as long as the key, for
keys longer than the blocksize. This may make an interesting topic for future work.
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Let G be a generator of the elliptic curve group G having prime order n. The KEM step takes
as input the recipient’s public key A = aG, and a parameter keyLen, then proceeds as follows:

1. Choose a random integer r ∈ [1, . . . , n].

2. Compute c1 = rG and Z = rA = raG.

3. Compute K = KDF(Z), where KDF : G→ {0, 1}keyLen is a key derivation function

4. Output: c1 (public KEM component), K (private component, input to DEM)

The DEM step takes as input K and a message M to be encrypted.

1. Encrypt M as c2 = EK(M) where E is a symmetric encryption algorithm, such as
AES-CBC. A variety of possible choices for E are present in the standards listed at the
beginning of §3.1, and many are deterministic, for example, AES-CBC with an all-zero
IV, or AES-CTR with an all-zero initial counter value.

2. Output c2

The overall output of ECIES is (c1, c2). In practice, keyLen is the length of two symmetric
keys, an encryption key K1 and a MAC key K2, and the DEM outputs a third component
c3 = MACK2(c2) = MACK2(EK1(M)).

Figure 2: A KEM/DEM description of ECIES encryption.

scheme in the KEM/DEM framework. ECIES is standardized in IEEE 1363a [20],
SECG SEC 1 [27] and ISO 18033-2 [21].

Note that not all DEMs in SEC 1 and ISO 18033-2 are vulnerable to this attack.
In particular the XOR encryption scheme (see [27, §3.8] and [21, §6.5.3]) does not
appear to be vulnerable. Referring to Figure 2, the XOR encryption DEM uses
the KDF to derive, from Z, a key K with the same length as M . The output is
c2 = M ⊕ K. In Section 5.1, when we look at KDFs in the context of multi-user
HPKE, we will see an example of a standardized KDF which is insecure for use in
this DEM.

As a second example, Figure 3 gives an RSA-based HPKE scheme. Our de-
scription does not follow one particular standard but takes a general approach to
RSA-based hybrid encryption. For example, the KEM here is close to the KEM in
PKCS-1.5 [26], and ISO 18033-2 [21, §11.4].

Practicality of the Attack. While not a devastating attack, the attack is not
strictly theoretical either, for the following reasons.

1. Typically the first block of an encrypted message is a standard protocol header
that is either public or has low-entropy.
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Let (N, e) be an RSA public key. The integer N is a large composite number having two prime
factors p and q, i.e., N = pq. The encryption exponent e is a small integer (e.g., 3 or 216 − 1).
The input to the KEM is (N, e), and a parameter keyLen < blog2 Nc.

1. Choose K ∈R {0, 1}keyLen .

2. Encode K as an integer k in ZN and compute c1 = ke (mod N).

3. Output c1 (public KEM component) and K (private component, input to DEM).

The DEM step takes as input K and a message M to be encrypted.

1. Encrypt M as c2 = E(K, M), where E is a symmetric-key DEM (as in Figure 2).

2. Output c2.

As in ECIES (Fig. 2), the DEM may also output a MAC.

Figure 3: A KEM/DEM description of RSA encryption.

2. While most users would never produce 2κ/2 ciphertexts under different keys,
a group of 220 users might, and an attacker observing a large network could
observe sufficiently many ciphertexts to succeed.

3. The attack may still be performed with fewer than 2κ/2 ciphertexts at the
expense of additional computation.

4. For applications with strict security requirements, creating 2β ciphertexts re-
duces collective security by β bits, causing the application to fall short of its
stated security goal.

5. The storage needed in the attack does not need to be fast (e.g., it may be disk
(cheap) instead of more RAM (expensive)), and both storage and computation
may be efficiently parallelized.

Given these points, and since the attack may be prevented without a significant
increase in computation or bandwidth (as described in §4), standards should be
amended to prevent it.

4 Realizing n-CCA Secure HPKE

It is reasonable to assume that as a minimum, both the KEM and DEM must have
multi-user security for an HPKE construction to have multi-user security. The n-
CCA security of KEMs was studied in [6] and [11]. For DH-based schemes, a tight
proof of the n-CCA security of the ElGamal KEM is given in [6]. A proof is given
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for Cramer-Shoup KEM scheme is also given in [6] (but the reduction is less tight
than for ElGamal).

Here we list a few possible countermeasures to prevent the attack of §3, to improve
current standards. We leave proofs of multi-user security of standardized KEMs with
the DEMs suggested below to other work.

1. Choose a random IV. Choose an IV at random and include it with the
ciphertext. This has the drawback of increasing the size of the ciphertext, and
an IV must be generated during encryption.

2. Derive an IV from the KEM component output. Recall that the KEM
generally has two outputs: a private key and a public output that forms part
of the hybrid ciphertext. When the public KEM output contains sufficient
entropy, we may derive a high-entropy IV from it.

In ECIES (refer to the description in §3.1) the KEM component is a point of
the form rG for a random integer r, and point G. Simply using the low order
bits of the binary representation of rG as the IV should suffice. Alternatively,
the IV could be derived from rG using a hash function.

In the RSA example of §3.1, the encryption function applied to K is deter-
ministic. For this approach to be effective, K must be padded with random
bits.

3. Derive an IV from the shared secret. During the KEM step, while deriving
(or generating) the key K used for symmetric encryption in the DEM, also
derive (or generate) an IV. Since the intended recipient may recompute K
from the public output of the KEM, they may recompute the IV as well. In
ECIES the shared secret is rA, and a KDF is applied to it to generate a key
for the DEM. In the RSA example of §3.1 there is no key derivation step, but
the analog would be to choose an IV at the same time as K and encrypt it
along with K.

Our preference is for Option 3, since the changes are minimal, and the ciphertext
size and encoding do not change. Computationally, Option 3 is efficient; for typical
KDFs only one or two additional hash function evaluations will be required.

5 Multi-User Security of HPKE Building Blocks

So far, we have focused on the KEM and DEM components. In practice, hybrid
public-key encryption is realized with two other important components: a key deriva-
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tion function (KDF), and a pseudorandom generator (PRG). Do these primitives
need to provide security in the multi-user setting as well?

We describe some TMTO attacks on some KDFs and PRGs in the multi-user set-
ting, and show how they compromise HPKE security. Our example in the PRG case
is a toy example, but our key derivation example uses HKDF, a recently standard-
ized KDF. We conclude that the KDFs and PRGs used for HPKE in the multi-user
setting should also provide multi-user security. However, we do not formally define
security of these primitives in the multi-user setting here (this is a good topic for
future work).

5.1 Key Derivation

With a few exceptions, KDFs have not received a lot of (published) analysis by
cryptographers, and most applications use the following KDF. Let Z0 be some secret
key material, like the output of a key agreement protocol such as Diffie-Hellman
or MQV and let H be a cryptographic hash function. To derive a key of length `,
compute K0 = H(Z0‖1)‖H(Z0‖2)‖ . . . such that |K0| ≥ `. Output K, the truncation
of K0 to ` bits. Sometimes an auxiliary input parameter is included as input to the
hash function. This construction, and variants of it, are used in standards such as
ANSI X9.42 [4], IEEE 1363 [20], ANSI X9.63 [3], and ISO-18033-2 [21]. TLS 1.0
uses a variant which replaces H with HMAC keyed by Z0, applied to a counter along
with session-specific randomness.

In [23], Krawczyk argues that cryptographic applications should move to a single,
well-studied, rigorously analyzed family of KDFs. To this end, he formally defines
security for KDFs, presents a general construction that uses any keyed pseudoran-
dom function (PRF), and proves the security of his construction in the new model.
The approach espoused by the construction is called extract-then-expand. First, an
extractor is applied to Z0, to produce a fixed-length pseudorandom key. Second,
the extracted key is expanded into keying material of the desired length. Figure 4
describes the approach.

The HKDF scheme is a concrete instantiation of this general construction when
HMAC is used for both extraction and expansion. To use HMAC as an extractor,
the salt value is used as a key, and if no salt value is given, a constant value is used
instead.

Krawczyk’s security definition [23, Definition 7] for KDFs is a single-user defini-
tion, because there is only one Z0 value under attack. Taking key agreement as an
example, there may be in reality many instances of the protocol under observation
(or recorded) by the adversary, who should be considered successful if he can attack
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Let XTR be an extractor and PRF∗ be a variable-length pseudorandom function. Let L be the
desired length of the output K. There are two optional values: ContextInfo is some (possibly
public) context information, and salt is a random value (also possibly public). The value Z0

is the initial key material, from which a key will be derived.

1. Compute Z1 ← XTR(Z0, [salt ]).

2. Compute K ← PRF∗(Z1,ContextInfo, L)

A common way to construct a variable length PRF from a fixed-length PRF is as fol-
lows: PRF∗(Z1, input) = PRF(Z1, input‖0)‖PRF(Z1, input‖1) . . .. Krawczyk recommends a
“chained” variant, i.e., the input to form the i-th block of the output includes the (i − 1)-th
block.

Figure 4: A generic extract-then-expand KDF.

any single instance. KDF security should also be modelled in the multi-user setting.

Standardized Extract-then-Expand KDFs Fifteen months after the publi-
cation of [23] at CRYPTO 2010, NIST published SP 800-56C [14] standardizing
extract-then-expand KDFs. Even before publication of [23], the IETF published
RFC 5869 [24] specifying HKDF. The first public appearance of HKDF seems to
be around June of 2009, with the publication of the IETF Internet Draft which be-
came RFC 5869. RFC 5869 does not give guidance on parameter choices, but the
NIST document gives detailed recommendations. RFC 5869 gives a list of applica-
tions which might use HKDF, including “derivation of symmetric keys from a hybrid
public-key encryption scheme”[24, §4]. We now consider this use case in detail.

HKDF in HPKE Example Suppose we want to use HKDF as the KDF in an
HPKE scheme. For simplicity, we’ll focus on sources of key material used in ECC
at the 128-bit security level. Inputs to the KDF are therefore 256-bit or larger
values (refer to Step 3 in Figure 2). NIST approves the following MAC functions as
extractors (i.e., XTR in Figure 4) for 128-bit security, keyed with a public or private
salt value (or a constant if no salt is given).

• AES-CMAC (128-bit output)

• HMAC-SHA-1 (160-bit output)

• HMAC-SHA-224 and HMAC-SHA-512/224 (224-bit outputs)

• HMAC-SHA-256 and HMAC-SHA-512/256 (256-bit outputs)

• HMAC-SHA-384, HMAC-SHA-512 (384 and 512-bit outputs, respectively)

18



128 bits

AES-CMAC

PRF∗ PRF∗

Z1Z1

K

Z0Z0

K

HMAC-SHA-256

256 bits

≥ 256 bits ≥ 256 bits

≥ 256 bits≥ 256 bits

Figure 5: Extract-then-expand KDFs for ECC at the 128-bit security level. On the
left the extract function is AES-CMAC and on the right it is HMAC-SHA-256. The
choice of PRF∗ is not important for this our example.

At the 128-bit security level a TMTO attack in the multi-user setting is possible
when the output length of XTR is less than 256 bits. In this setting, the extract-
then-expand construction has an hourglass shape, as shown in Figure 5.

Now consider ECIES where the KEM is implemented with a 256-bit prime curve
(e.g., nistp256), and the DEM is the XOR DEM.7 For an `-bit plaintext, the XOR
DEM requires that the KEM output an `-bit key, which is XOR’ed with the plaintext
during encryption. Common KEMs use a KDF to generate this key. With an ideal
KDF, the attack from Section 3 fails against this DEM, since if we guess the first
part of the keystream (encrypting the known blocks), this doesn’t tell us anything
about the key material used to encrypt the unknown blocks.

Now suppose the keystream for the XOR DEM is generated with HKDF-HMAC-
SHA-1, so in the attack DEM.E(K, M) is HMAC-SHA-1∗(Z1) ⊕ M , where Z1 =
HMAC-SHA-1(Z0, salt) (the situation is similar to the left hand side of Figure 5,
but |Z1| = 160). The attack from Section 3 applies, since the attacker can make
guesses at Z1, the narrow part of the hourglass. Instead of finding a collision in the
encryption key space, he searches for a collision in the PRF key space (the output of
the extract function). In light of this, one can mount the same attack against ECIES

7The XOR DEM is specified in X9.63, IEEE 1363 and SECG SEC1 and ISO 18033-2. We discuss
the XOR DEM in the context of ECIES in Section 3.1.
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when the DEM is a randomized block cipher, provided the IV is generated from the
shared secret using the HKDF.

Therefore, after observing 2β ciphertexts, the scheme provides 160 − β bits of
security, so when β > 32, the overall scheme fails to meet the 128-bit security level.
The situation is even worse when HMAC-SHA-1 is replaced with AES-CMAC. Here
the security is 128−β bits, so security is below 128 bits after as few as two ciphertexts
are created. We note that this attack does not seem to apply when the KDF described
at the beginning of this section is used. In this example, replacing a commonly used
KDF in favor of a provably secure one causes a decrease in practical security.

The use of salt in HKDF is interesting. The salt value is used in the extract step,
since every deterministic extractor fails for some high entropy distributions (this is
discussed in [23]). But no salt is included as input to the expand step. In the multi-
user setting, there is always a TMTO attack on deterministic PRFs (see Hellman’s
original paper [18], and [13] for a recent example with deterministic MACs), and it
is easy to see that salting the PRF would also prevent the attack described above.

Recommendation SP 800-56C and RFC 5869 should be amended to either pre-
vent the use of parameters leading to hourglass-shaped extract-then-expand KDFs
(when the output of extract is less than twice the security parameter), or to require
that the expand step be salted in these cases. Salting the expand step can be done by
including a salt value in the ContextInfo field. For many applications this will hap-
pen “naturally”, since the context information will have sufficient entropy. Reusing
the same salt value for extraction and expansion is appealing from an implementa-
tion perspective, and seems to prevent the attack described here. However, further
analysis is needed, so we recommend using different salt values for both the extract
and expand steps.

5.2 Pseudorandom Generation

Let F : {0, 1}κ → {0, 1}κ × {0, 1}≥2κ. Consider the following common PRG opera-
tion.

s0 → F (s0) → s1 → F (s1) → s2 . . .
↓ ↓
r1 r2

Here the state si is κ bits and the outputs ri are at least 2κ bits.
If we set κ to the desired security level, a TMTO attack allows us to attack the

generator: observe a large number of outputs (from one or many users), then guess
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s′ and compare F (s′) to the observed outputs. If we have a match, the output is dis-
tinguishable from random, and we’ve recovered the state, allowing us to distinguish
subsequent outputs. As usual, the attacker does not get to target a specific output
to distinguish. Note the attack is missed by a more limited security definition, where
the attacker is only trying to distinguish a single ri from random. So while in a
single user security definition there may be one or multiple “target” ri values, in a
multi-user definition there will certainly be multiple target values.

We give an example in the context of HPKE, again using ECIES with a 256-bit
prime curve. Since we’re aiming for κ = 128-bit security, the PRG construction
above has a 128-bit seed and state values. Referring to the notation of Section 3.1,
the KEM generates ri, then computes c1 = riA. An attacker does not directly see
ri, but stores c1. He then guesses values s′, computes r′i||s′i ← F (s′) and c′1 = r′iA
and compares c′1 to the set of observed values. If there is a match, the attacker has
recovered the ephemeral secret and can recover the secret key material used to derive
keys for the DEM, and hence decrypt the ciphertext.

A second issue related to PRGs is the amount of entropy used for seeding. Sup-
pose now that the state is large enough to prevent TMTO attacks, but that the
entropy of the value used to initialize the PRG is still only κ bits. Further, assume
all users (e.g., a set of devices produced by the same manufacturer) use the first PRG
output during key generation. For an ECC key pair this is a 2κ-bit value. Let ei be
the initial value used by user i. Then the secret key of user i is ski = R(ei) where ei

has only κ bits of entropy, and R initializes the PRG and generates the first output.
A TMTO attack is possible here as well, if an attacker observes 2β public keys, he
may learn one of the secret keys with O(2κ−β) work and O(2β) storage.

Fortunately, the designers of practical PRGs are aware of these issues, and stan-
dardized PRGs ensure the state size is at least 2κ for κ-bit security, and that the
PRG is seeded with more than κ-bits of entropy. The examples we have given here
serve to illustrate the importance of using primitives that provide multi-user security
when building HPKE schemes.8

Acknowledgments I thank Dan Brown and Alfred Menezes for helpful discus-
sions, and gratefully acknowledge Dan Brown, Eoin Buckley, Matt Campagna, Nevine
Ebeid, Rob Lambert and Alfred Menezes for providing feedback on an earlier draft
of this paper.

8That said, there has been at least one proposed PRG which is vulnerable to the multi-user
attack described above (see the instantiations of Construction 2.4 in [7]).
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A Standards

The attack of Section 3 applies to the following standards with time and space O(2κ/2)
(or one of the allowable tradeoffs, as discussed in Section 3).

A.1 Vulnerable Standards

IEEE 1363 [20] 1363a (amendment specifying additional techniques) specifies var-
ious DHIES-like9 hybrid encryption schemes, and includes ECIES. Section 14.3 spec-
ifies the symmetric key algorithms that may be used as a DEM: 3DES-CBC-IV0 and
AES-CBC-IV0. Both specify a constant IV, and so the techniques in this standard
are vulnerable to the attack of §3.

9DHIES stands for Diffie-Hellman Integrated Encryption Scheme, see [1].
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ISO 18033-2 [21] specifies multiple hybrid PKE schemes, and specifies that the IV
used in the symmetric component should be a string of zero bytes (See the description
of SC1 in §6.5.3, and the commentary in §B.3.1). The XOR symmetric encryption
(SC2) mode is not vulnerable. The attack applies equally to any of the KEMs
specified in this standard, including the RSA-based methods.

NIST SP 800-56C , Recommendation for Key Derivation through Extraction-
then-Expansion specifies HKDF implemented with the SHA family of hash functions,
and variants allowing the use of AES-CMAC as an extractor and PRF. As detailed
in §5.1, the allowed parameters do not prevent a TMTO attack.

SECG SEC 1 specifies the Elliptic Curve Integrated Encryption Scheme (ECIES).
In SEC 1, §B.2.8 allows the IV or initial counter to be zero for ECIES, and in Sec-
tion 3.8 it recommends that all IVs should be zero. The XOR symmetric encryption
mode is not vulnerable to this attack.

A.2 Possibly Affected Standards

Many PKE standards specify a KEM only (sometimes called a key transport), and
leave applications to specify a DEM, if required. The following standards should use
a randomized DEM, to avoid being vulnerable to the attack of §3.

RFC 5091 [12] This standard describes how to use the BF (Boneh-Franklin) and
BB1 (Boneh-Boyen 1) IBE (identity-based encryption) schemes. The standard only
describes how to encrypt a session key (i.e., a KEM), but the attack is possible if a
deterministic DEM is used (e.g., if one of the DEMs from SEC 1, IEEE 1363a, or
ISO 18033-2 is used with the KEM described in RFC 5091).

PKCS#1 [26] Like RFC 5091, the PKCS#1 standard only specifies a KEM, based
on RSA. The standard states “For typical applications, the message to be encrypted
is short (e.g., a 128-bit symmetric key)”, confirming the intended use of KEM/DEM
constructions. There are two variants, RSAES-PKCS1-v1 5, and RSAES-OAEP. If
implementations use, e.g., RSAES-OAEP to encrypt a κ-bit symmetric key k, then
use k with a deterministic DEM, then the key collision attack requires O(2κ/2) work.

RFC 5869 specifies HKDF, an extract-then-expand KDF where HMAC is used in
both the extract and expand functions. Since RFC 5869 does not give recommen-
dations for choosing a suitable hash function at common security levels, use of RFC
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5869 may or may not be vulnerable. As detailed in § 5.1, some parameter choices
given in SP 800-56C (which are also applicable to RFC 5869) are unsuitable for use
in the HPKE setting.

A.3 Other hybrid encryption proposals

The KEM/DEM paradigm is very popular, and PKE schemes based on it abound.
These should be implemented with caution. A recent example: if the HOMQV [17]
scheme is implemented with a deterministic DEM, the attack from §3 applies.

S/MIME and CMS The S/MIME (secure multipart message encoding) and CMS
(RFC 5652, cryptographic message syntax) standards specify (highly flexible) ways
of encrypting content for one or multiple recipients. The CMS standards follow the
KEM/DEM paradigm, where the KEM is called “key encryption” and the DEM
is called “content encryption”. Use of deterministic DEMs may allow the attack
we describe. For example, using RSA-KEM (RFC 5990) with a deterministic DEM
(AES-CBC with a fixed IV), is vulnerable.

ANSI X9.63 The lone PKE standard we found which resists the attack completely
is ANSI X9.63. This standard only specifies a single DEM, namely the “XOR en-
cryption” DEM. The attack does not appear to apply in this case, because the key
is as long as the message, and is derived from a 2κ-bit Diffie-Hellman value using a
secure KDF.
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