
Attacking Scrambled Burrows-Wheeler Transform

Martin Stanek

Department of Computer Science, Comenius University
Mlynská dolina, 842 48 Bratislava, Slovak Republic

stanek@dcs.fmph.uniba.sk

Abstract

Scrambled Burrows-Wheeler transform [6] is an attempt to com-
bine privacy (encryption) and data compression. We show that the
proposed approach is insecure. We present chosen plaintext and known
plaintext attacks and estimate their complexity in various scenarios.

1 Introduction

The Burrows-Wheeler transform (BWT) [2] is a commonly used transform
in lossless compression algorithms. The BWT does not compress the data
itself, instead it is usually the first step in a sequence of algorithms trans-
forming an input data into compressed data. The most prominent example
of BWT-based compression is bzip2 program [8], which uses basically the
following sequence of algorithms: the BWT, the move-to-front transform
(MTF), and Huffman coding.

In practice, there are many situations with the simultaneous require-
ments of data compression and privacy (encryption). A common approach
is compress-then-encrypt paradigm with independent algorithms used for
compression and encryption. While widely preferred, the algorithms should
be properly combined in order to avoid possible attacks [1, 5]. Another
approach is to unify compression and encryption. However, designing a se-
cure, “encrypting” variant of compression method is not an easy task. Many
attempts were broken successfully [3, 7, 9].

Recently, Oğuzhan Külekci [6] proposed a novel approach – scrambled
BWT – to combine data compression with privacy requirement. The scram-
bled BWT uses a secret lexicographic order of underlying alphabet as a
secret key. In order to thwart some weaknesses, the author proposed to
accompany the scrambled BWT with modified MTF that uses the secret
lexicographic order as well.

1



Our contribution We show that the proposed scrambled BWT with
MTF is completely insecure and can be attacked easily (in the sense of cho-
sen plaintext as well as known plaintext attacks). In case of known plaintext
attacks we estimate experimentally the bit security of the scrambled BWT
with MTF in various scenarios.

We briefly introduce the “standard” BWT, the MTF, and the scrambled
BWT in Section 2. Section 3 contains our analysis of the proposal, and shows
chosen-plaintext and known-plaintext attacks on the scrambled BWT with
MTF.

2 Preliminaries

Let A be an alphabet with size L = |A|. Let N denotes a block length.
A cyclic rotation of string/block x = x0x1 . . . xN−1 ∈ AN with offset k
is string/block x(k) = xkxk+1 . . . xk+N where all the indices are computed

modulo N . The w-th symbol of x(k) is denoted as x
(k)
w , for 0 ≤ w < N .

For real-world scenarios one can expect L = 256 (using bytes as an
alphabet) and the block size N several hundreds kilobytes (e.g. bzip2 uses
default block size 900kB).

2.1 “Standard” BWT

Let x = x0x1 . . . xN−1 ∈ AN be an input block. The BWT sorts all cyclic
rotations x(0), x(1), . . . , x(N−1) of input block x in lexicographic order. Let
j0, j1, . . . , jN−1 be a permutation of {0, 1, . . . , N − 1} such that

x(j0) < x(j1) < . . . < x(jN−1).

Then the result of the BWT is a string consisting of the last symbols from
each of the sorted cyclic rotations:

x
(j0)
N−1, x

(j1)
N−1, . . . , x

(jN−1)
N−1 .

In order to facilitate the inversion transformation, an additional pointer is
used to remember the position of the original string x = x(0), i.e. t such
that jt = 0. Since the inversion transformation is not important for our
exposition, we will not describe it here.

Example 1. Let A = {a, b, c, d} and N = 10. Let x = cdababcdaa be an
input block. Applying BWT yields ddbaaabacc, and t = 7.

The paper [6] uses a variant of the BWT with special symbol denoting
the end of block. In that case, there is no need to remember the position
of the original block among sorted cyclic rotations. The analysis done in
Section 3 is valid for this variant as well.

2



2.2 MTF

The MTF transforms an input string x = x0x1 . . . xN−1 ∈ AN into se-
quence of N numbers {pi}N−1i=0 , where pi ∈ {0, 1, . . . , L− 1}. The algorithm
maintains a table T [0, . . . , L − 1] of all symbols from A, initially sorted in
lexicographic order. For each i = 0, 1, . . . , N − 1 the symbol xi is processed
as follows:

1. pi is the position of xi in table T ;

2. T is modified: xi is moved to the front/top of the table.

It is easy to see that the MTF is invertible. The main idea of MTF is that
the recently used symbols are encoded as small integers. This makes its
output a suitable data for subsequent compression by simple entropy coders
such as Huffman or arithmetic coding.

Example 2. Let x = ddbaaabacc be an input string. The output of MTF
is 3022001130.

2.3 Scrambled BWT with MTF

Oğuzhan Külekci [6] proposed scrambled BWT, where a secret (encryption)
key is a secret lexicographic order of symbols in A. One of the claimed
advantages is a large key space, for L = 256 it is 256! keys. The author
observed, that using scrambled BWT is not secure enough, and can be at-
tacked by exploiting known statistical relationships among plaintext symbols
(e.g. digram frequencies). Therefore he accompanied the scrambled BWT
(sBWT) with MTF, where the secret lexicographic order is applied as well
(i.e. the initialization of T depends on this order):

“. . . Thus, initializing the alphabet ordering in MTF with the
secret lexicographic order used in sBWT provides protection
against that statistical attack.”

Example 3. Let x = cdababcdaa be an input block. We show the result
of sBWT and MTF with various lexicographic orders:

key k sBWT with k MTF with k
c < a < d < b −→ baadbdccaa (t = 1) −→ 3203213030
d < c < b < a −→ ccabaaabdd (t = 2) −→ 1033100130
a < c < b < d −→ dadbbaaacc (t = 5) −→ 3113020030

3



3 Security analysis

Let us denote the secret lexicographic order as k and the corresponding
scrambled BWT as sBWTk. Similarly, the MTF with secret lexicographic
order is denoted as MTFk. Let x be an input block. The author proposes [6]
the same secret key (secret lexicographic order) for both transformations:
MTFk(sBWTk(x)).

Let us note that attacks described in this sections will work even for sit-
uation with two independent secret keys: MTFk2(sBWTk1(x)). The attack
will “undo” the MTF (revealing the value of sBWTk1(x)), and the sBWT
part can be attacked by exploiting the statistical properties of plaintext as
suggested in [6].

Remark 1. We can ignore other pre- and post-processing steps in the com-
pression algorithm, since they do not depend on the key.

We base our analysis on the following observations:

1. The scrambled BWT, with secret lexicographic order as a key, keeps
the frequencies of symbols intact, i.e. when symbol ‘a’ appears l times
in an input block, then ‘a’ will appear exactly l times in the out-
put block. One can view sBWTk as a key-dependent and plaintext-
dependent permutation cipher.

2. For any string z and any two lexicographic orders k1, k2, performing
y = MTF−1k2

(MTFk1(z)) can be viewed as a monoalphabetic substitu-
tion, i.e. it change the symbols but it does not change the frequencies.
For example, ‘a’ can become ‘w’, ‘b’ can become ‘f’ . . . but in such
case the number of a’s in z is the same as the number of w’s in y, the
number of b’s in z is the same as the number of f’s in y etc.

For the rest of the section we denote an input block x and the resulting
block y = MTFk(sBWTk(x)). Our analysis is done primarily with single
data block (it is sufficient for most scenarios). However, it can be extended
to multiple blocks in a straightforward manner, see Section 3.3.

3.1 Chosen plaintext attack

The goal of the attack is to identify a secret key (lexicographic order):

1. Construct input block x, where symbols from A have unique frequen-
cies.

2. Compute z∗ = MTF−1k′ (y) for an arbitrary lexicographic order k′.

3. Pair symbols in x and z∗ according their frequencies, and recover the
correct “middle” value z = sBWTk(x) = MTF−1k (y).

4



4. Reconstruct the key from z and y.

Let A = {a1, . . . , aL}. The chosen input block can be, for example,
a1a2a2a3a3a3 . . . finishing with L symbols aL. Then we can reconstruct the
key from this single block as long as the block size is at least

(
L+1
2

)
(for

L = 256 it is 32 896). The complexity of the attack is Θ(L2) (counting all
its steps).

Example 4. Let us illustrate the attack with the following toy example. Let
A = {a, b, c, d} and N = 10. We choose the input block x = abbcccdddd,
and observe the output y = 3133001022. We apply inverse MTF with
natural lexicographic order (a < b < c < d): z∗ = dacbbbccab. Pairing
symbols with equal frequencies yields z = abcdddccbd. Knowing “middle”
value z and the result of MTFk(z), i.e. y, we can easily reconstruct the
secret lexicographic order: b < d < c < a.

3.2 Known plaintext attack (single block)

Known plaintext attack extends the previous attack assuming that the at-
tacker cannot control the frequencies of particular symbols in the input
data. However, considering the block sizes used in practice (e.g. default
900kB block size in bzip2), the probability of equal frequencies of symbols
is rather low. Moreover, longer blocks usually lead to better compression.

Remark 2. For short blocks, one can assume that the attacker will know
the input data for multiple blocks. Therefore he can combine results from
these blocks and significantly reduce the complexity of the attack further,
see Section 3.3.

Let us denote by #v(x) the number of symbols v ∈ A in the string x.
Let C(x) = {#v(x) | v ∈ A} be the set of all distinct values of #v(x). For
each value r ∈ C(x) we define size(x, r) to be the number of symbols having
exactly r occurrences in x, i.e. size(x, r) = |{v ∈ A | #v(x) = r}|.

The attacker proceeds similarly to the chosen plaintext attack, comput-
ing z∗ = MTF−1k′ (y) for an arbitrary lexicographic order k′. Then he tries
to pair symbols in x and z∗ according their frequencies to recover the cor-
rect “middle” value z = sBWTk(x) = MTF−1k (y). However, this time there
in no guarantee of unique frequencies, therefore the attacker can perform
an exhaustive search for all assignments of symbols in groups with equal
frequencies. For each assignment, the attacker computes a corresponding
lexicographic order and performs an inverse BWT with this order. Compar-
ing the result with the original plaintext gives a confirmation/rejection of
particular assignment. The size of the search space is

SS(x) =
∏

r∈C(x)

size(x, r)!

5



We measure the complexity of our known plaintext attack as bit security
of the cipher, i.e. binary logarithm of the corresponding search space size:
log2 SS(x). In order to estimate the bit security, we performed the following
experiments:

RandBytes We generate the input block as a stream of randomly and in-
dependently generated bytes (i.e. L = 256) with uniform distribution.
Since in real-world one can expect much more “compressible” input
block (with greater variation of symbols frequencies), our model sim-
ulates the worst situation for the attacker. Therefore, the estimations
obtained in this experiment can be viewed as upper bounds for bit
security of the cipher.

RandReduced This is a similar experiment as the previous one, but this
time we restrict possible symbols to the set of L = 100 symbols (gen-
erated with uniform distribution). The rest of the symbols are not
generated.

RandText This and the last experiment (RandKernel) are probably the
most realistic of our experiments. In RandText we model the input
block as a stream of independently generated bytes, where the proba-
bilities of individual symbols correspond to the probabilities of symbols
in a novel Crime and Punishment [4].

RandKernel Similar experiment to RandText. However, this time the
probabilities of individual symbols (bytes) correspond to the probabil-
ities of symbols in kernel32.dll file in Windows 7.

We gradually increased N in each experiment and computed the aver-
age bit security of the cipher. The average value was computed from 1000
samples. It is interesting to see the level of bit security degradation from
the theoretical level: log2(256!) ∼ 1684 bits. The values for RandReduced,
RandText and RandKernel experiments show that the scrambled BWT with
MTF offers practically no security. The results are shown in Table 1.

N RandBytes RandReduced RandText RandKernel

50 000 378.7 28.6 10.1 65.3
100 000 304.2 20.9 8.4 49.0
150 000 263.7 17.2 8.8 41.4
200 000 236.4 15.2 9.2 36.5

Table 1: Bit security for single block KPA (with block size N)

6



3.3 Known plaintext attack (multiple blocks)

The known plaintext attack from previous section can be easily extended for
multiple blocks, with improved performance. The majority of “ties” (groups
of symbols with equal frequencies) in one block can be broken by consid-
ering the frequencies in other blocks. In order to illustrate this effect, we
performed experiments similar to those in the previous section (RandBytes,
RandReduced, RandText, and RandKernel). However, this time we used
two blocks of known plaintext and 10 times smaller block sizes. The results
are shown in Table 2 (again, 1000 samples were used to estimate individual
values). Even with such artificially small block sizes one can observe further
decrease in the bit security of the scrambled BWT with MTF.

N RandBytes RandReduced RandText RandKernel

5 000 113.3 4.0 8.4 44.6
10 000 61.0 1.9 5.0 21.4
15 000 41.8 1.3 3.6 13.9
20 000 31.6 1.0 3.2 10.4

Table 2: Bit security for two blocks KPA (with block size N)

4 Conclusion

Usually, providing privacy (encryption) by modifying the data compression
techniques is not a good idea in practice. We demonstrated the security
problems of the scrambled BWT with MTF. Moreover, it seems that these
problems cannot be easily fixed. Further extensions of our attacks can be
aimed at known plaintext attack with only partial block knowledge, or even
ciphertext only attacks. However, the already identified weaknesses of the
cipher allow us to conclude that the cipher is insecure.

Acknowledgment This work was supported by P12/1.

References

[1] Eli Biham and Paul C. Kocher. A Known Plaintext Attack on the PKZIP
Stream Cipher. Fast Software Encryption, FSE’94, Lecture Notes in
Computer Science vol. 1008, Springer, pp. 144–153, 1995.

[2] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, 1994.

7



[3] John G. Cleary, Sean A. Irvine and Ingrid Rinsma-Melchert. On the
insecurity of arithmetic coding. Computers & Security, 14(2):167–180,
1995.

[4] Fyodor M. Dostoevsky. Crime and Punishment. Project Guttenberg, vol.
2556, English translation by C. Garnett, 2006. http://www.gutenberg.
org/ebooks/2554

[5] Tadayoshi Kohno. Attacking and repairing the winZip encryption
scheme, ACM Conference on Computer and Communications Security,
CCS’04, pp. 72–81, 2004.

[6] M. Oğuzhan Külekci. On scrambling the Burrows-Wheeler transform to
provide privacy in lossless compression, Computers & Security, 31(1):26–
32, 2012.

[7] Jen Lim, Colin Boyd and Ed Dawson. Cryptanalysis of Adaptive Arith-
metic Coding Encryption Schemes. Information Security and Privacy,
Second Australasian Conference, ACISP’97, Lecture Notes in Computer
Science vol. 1270, Springer, pp. 216–227, 1997.

[8] J. Seward. bzip2, http://www.bzip.org, 1996-2012.

[9] Jiantao Zhou, Oscar C. Au and Peter Hon-Wah Wong. Adaptive chosen-
ciphertext attack on secure arithmetic coding. IEEE Transactions on
Signal Processing, 57(5):1825–1838, 2009.

8


