Replacing Username/Password with
Software-Only Two-Factor Authentication

Michael Scott

Certivox Labs
mike.scott@certivox.com

Abstract. It is basically a solved problem for a server to authenticate
itself to a client using standard methods of Public Key cryptography.
The Public Key Infrastructure (PKI) supports the SSL protocol which
in turn enables this functionality. The single-point-of-failure in PKI, and
hence the focus of attacks, is the Certification Authority. However this
entity is commonly off-line, well defended, and not easily got at. For a
client to authenticate itself to the server is much more problematical.
The simplest and most common mechanism is Username/Password. Al-
though not at all satisfactory, the only onus on the client is to generate
and remember a password — and the reality is that we cannot expect a
client to be sufficiently sophisticated or well organised to protect larger
secrets. However Username/Password as a mechanism is breaking down.
So-called zero-day attacks on servers commonly recover files containing
information related to passwords, and unless the passwords are of suffi-
ciently high entropy they will be found. The commonly applied patch is
to insist that clients adopt long, complex, hard-to-remember passwords.
This is essentially a second line of defence imposed on the client to pro-
tect them in the (increasingly likely) event that the authentication server
will be successfully hacked. Note that in an ideal world a client should be
able to use a low entropy password, as a server can limit the number of
attempts the client can make to authenticate itself. The often proposed
alternative is the adoption of multifactor authentication. In the simplest
case the client must demonstrate possession of both a token and a pass-
word. The banks have been to the forefront of adopting such methods,
but the token is invariably a physical device of some kind. Cryptography’s
embarrassing secret is that to date no completely satisfactory means has
been discovered to implement two-factor authentication entirely in soft-
ware. In this paper we propose such a scheme.

1 Introduction

In 2003 a scheme was proposed by Kim et al. [13], which promised an “ID-
based password Authentication Scheme using Smart Cards and Fingerprints”.
Scott [20] showed how it could be comprehensively broken by an attacker who
passively eavesdropped a single transaction.

A much more recent 2012 paper by Martinez-Pelaez and Rico-Novella [15]
successfully cryptanalyses a scheme due to Sood, Sarje and Singh, described in

their paper “An Improvement of Liao at al’s Authentication Scheme using Smart
Cards” [23]. This scheme is essentially a two-factor authentication proposal. From
the abstract of [15] “.. we show that Sood at al.’s scheme is still vulnerable to ma-
licious user attacks, man-in-the-middle attack, stolen smart-card attack, off-line
ID guessing attack, impersonation attack and server spoofing attack..”. Chasing
down though the cited papers one finds a wasteland of similarly broken pro-
tocols. Many other schemes have fallen into the break-fix-break-fix cycle which
generates a lot of literature, but rather less confidence. The cryptographic es-
tablishment seems to have largely abandoned this area of research as a kind of
wild-west of cryptography, where no-one survives very long.

This problem was recognised by Hao and Clarke [12] who explain it by stating
that “The past thirty years of research in the area of authenticated key exchange
has proved that it is incredibly difficult to get even a single factor based KE
scheme right. Designing a multi-factor AKE protocol can only be harder.”

However the reaction of the casual reader might be this: How come at this
stage in the development of cryptographic protocols there appears to be no
satisfactory and widely accepted solution to the problem of easy-to-use and
secure two-factor authentication?

1.1 Password Authenticated Key Exchange

This is a well researched area, and many proven methods for PAKE have been
proposed [30]. However most require the maintainance of a “password file”; or
“password verifier file”, which is exactly what an attacker looks for in a hacked
server, and which allows them to completely unlock the server’s security. Most
commonly this file consists of tuples of (Username, Salt, H(Salt|Password))
where Salt is a random number, H(.) is a one way hash function and | indicates
concatenation. As is well appreciated, unless the password is chosen to have high
entropy, the attacker will succeed with an off-line dictionary attack in finding
the password by searching through a dictionary at computer speeds. Only pass-
words that are outside of the dictionary will survive this attack. This leads to
the tautology that a high entropy password must be agreed with the server in
advance. Recall that the whole purpose of a PAKE is to mutually authenticate
and agree a high entropy cryptographic key.

One alternative is to issue each client with a smart card, and to store password
related information here rather than on the server. This has the added benefit
of adding a second factor to the authentication process - the smart card itself.
However for this to work it seems that the smart card component must maintain
full smart card functionality. If its security if broken then the system fails. See
Yang et al. [31] for a successful implementation of this approach. However smart
cards are expensive. Also such schemes invariably require the server to maintain
a long term secret s. And again if the server is hacked s might be revealed,
unlocking the security of the entire system.

1.2 Multi-factor Authentication

Multi-factor authentication commonly consists of (a) something we have, (b)
something we know, and (c) something we are. The form in which it is most
familiar to us would be as the two-factor ATM bank card and a 4 digit PIN
number. Here most of our discussion will be in the context of two-factor authen-
tication, but with some consideration for support for the third factor.

The “something we have” factor can be a physical token storing static data,
perhaps in the form factor of data recorded on a magnetic strip, or in a QR
code, or the familiar USB stick. Or it can be a smart-card. Note that a smart-
card will have extra functionality in that it can have its own protected secrets
and computing ability, and it is unclonable. However a smart card is much more
expensive, and losing it requires expensive replacement.

The “something we know” factor is a password. However passwords come in
two distinct flavours. The high-entropy password that is now more commonly
demanded of us, for example the password which must have eight or more char-
acters and involve both upper and lower case letters, and at least one numeral.
Then there is the low entropy password, for example the 4-digit PIN. In the
sequel we will use the word password exclusively for high entropy passwords,
and the word PIN for the low entropy password. An alternative way to distin-
guish them is to observe that the latter is easily found by an off-line dictionary
attack, whereas the former, hopefully, is not. An off-line dictionary attack is
where an attacker can (at computer speeds) run through a dictionary of possible
passwords/PINs and easily detect when they have found the right one.

The “something we are” factor is captured as a biometric, perhaps a finger-
print or an iris scan. Biometrics can also be high or low entropy. However they
are commonly inexact, and a certain range of values for a biometric measurement
might be regarded as acceptable. High entropy biometrics tend to be expensive,
whereas low entropy fingerprint scanners for example can be quite cheap.

One reason for the multiplicity of proposed schemes is that there are many
different ways of instantiating these three factors. The entropy status of the
password (high or low) must be decided, but is sometimes not made clear [26].
Many schemes propose a smart-card as a token. However they often also consider
the case where the security of the smart-card is breached and its secrets revealed,
in which case it is no better than a passive token [29], [26]. We restrict ourselves
to the simplest, easiest and cheapest scenario (and hence the most practical).
We will assume

1. a static clonable token,
2. a low entropy 4-digit PIN number
3. (Optionally) a low entropy biometric.

Note that since our token is static, we are in a position to provide a software-
only solution. For the client our proposed scheme is in fact closely analagous to
the tried and trusted ATM card (with static data recorded on a magnetic strip),
and associated PIN number. But one that works over the much more hostile
domain that is the internet.

1.3 Desirable features

Many authors have composed helpful lists of desirable features of such proto-
cols. Tsai et al. [25] provide a list of 9 security requirements and 10 goals for
such schemes. However their review of schemes available at their time of writing
reveals that all are disappointing. Liao et al. [14] came up with a list of 10 prop-
erties, which Yang et al. [31] reduced to 5. Recently Wang [29] came up with a
list of 8 attacks that such a scheme should resist, and identified 3 categories of
potential attacker.

Motivated by this prior art, here we give our own list of desirable conditions
that our ideal scheme will meet.

1. The protocol should result in the client and the server being mutually au-
thenticated, and deriving a mutual cryptographic key.

2. No PIN related data is stored on the server. Nevertheless a server should be
able to assist a client in recovering their forgotten PIN.

3. The underlying Authenticated Key Exchange is immune to “Key Compro-
mise Impersonation”. That is the server cannot impersonate a client, and a
client cannot impersonate the server.

4. The client should be able to change their PIN locally without involving the
server.

5. An attacker who gains possession of the authentication server’s secrets should
only be able to (a) set up a false server, and (b) given a client token determine
their PIN. Note that this is basically the best that can be hoped for, for any
such scheme.

6. The server should be able to identify the extent of any small error € in
the client’s secret. This will facilitate the inclusion of an inprecise biometric
measurement as a factor.

7. The scheme should support the property of “forward secrecy”.

8. The scheme should be truly “multi-factor”. If there are n factors involved the
loss of n — 1 factors should not be sufficient to permit the final factor to be
found. Of course this must also be true for insider attacks: For example a
client equipped with a valid token and PIN and who captures the token of
another client, should be unable to determine their PIN number.

9. PIN guessing attacks can only be carried out on-line (and therefore can be
monitored and prevented by the server).

10. The overall system should not have a single-point-of-failure.

Our literature review would suggest that no such scheme currently exists.
Note that condition 3 is clearly impossible to meet for any scheme that allows
the server to manage client registration. We adopt in its entirety the adversarial
model of [31], which assumes that an adversary who can completely control
communications between the servers and its clients, and who may have possession
of any number of tokens and associated PINs of users other than the individual
under attack.

1.4 Existing proposals

Next we look a little closer at the proposals to date. Most are based in a setting
where there are just two parties involved, the clients and the server. The former
enter into some initial interaction with the server (a Registration phase) and
are issued with some credentials. Invariably this requires the server to have in
their possession some master secret which will be involved in the authentication
process. Such schemes we would suggest are unlikely to improve on the current
situation, as if (when) the server is hacked this secret may be discovered, and
the security of the whole scheme will unravel.

A close inspection of many of the simpler proposals reveals at their heart the
simple idea of using the one way hash of the clients identity concatenated to a
server master-secret, as the basis for client authentication and the establishment
of an authenticated secret key. So for client identity ID and server master secret s,
the protocol would be built on the high entropy mutual secret H(ID|s), using as
a hash function for example the standard SHA256 algorithm. This secret would
be stored by the client on their token (masked by a password), and generated
on the fly by the server as needed. Such schemes often also include a Diffie-
Hellman component to provide forward secrecy. Multiple combinations of these
simple ideas have been proposed [32], [14], [31], [26] but most have not survived
prolonged scrutiny. The ingenious idea of Yang et al. [31] is to in effect use
H(ID|s) as the password in a PAKE. But as already pointed out this requires
smart-card functionality for a token, and a long term server secret s and as they
state “the secrecy of s is of utmost important because the security of the entire
system essentially relies on the security of s”. But a hack of the server may reveal
s which would be even more lethal than stealing a password file.

A striking feature of most proposals is that often little effort is made to pro-
vide a proof of security. Which certainly helps to explain why so many schemes
are so quickly broken. However those proposals which do provide some kind of
proof of security tend to do poorly when measured against our 10 desirable prop-
erties. And of course a proof of security is only as good as its assumptions. For ex-
ample in 2010 Stebila et al. [24] proposed a multi-factor password-authenticated
Key exchange. However it does not meet our condition 2, and so a successful
hack of the server reveals all static non-high-entropy passwords. The proposal by
Yang et al. [31] does not meet condition 3. A recent proposal by Wang [29] does
not, consider the possibility of an insider attack (our condition 8) and therefore
not surprisingly falls to it. The scheme of Pointcheval and Zimmer [16] does
not satisfy our condition 2, and recently Hao and Clarke [12] have discovered
problems with it based on deficiencies of their formal model.

The lack of a satisfactory solution to date perhaps mirrors the situation
with respect to Identity-Based Encryption (IBE). Although this concept was
well known since first proposed by Shamir in 1984 [22], using standard PKI
constructs no satisfactory scheme for IBE was ever found that didn’t violate one
important condition or another. It was only in 2001 through the use of the then
novel construct of the cryptographic pairing that practical protocols became

possible [4]. So perhaps it is unsurprising that our proposed solution exploits
the properties of cryptographic pairings.

The possibility of a better solution based on pairings is hinted at by Yang
et al. [31] who identity the paper [19] as describing “a protocol which can be
extended to provide explicit mutual authentication and satisfy all the properties
given in [14]".

Our solution amounts to the first software-only method for two factor au-
thentication. It satisfies all 10 of the desirable properties that we have identified
above and in its simplest form requires only a software token and an easily
memorised PIN number.

2 Exploiting Standard Methods of PKI

We would ideally like a method not dissimilar to PKI, where both the clients
and the server are enrolled in the scheme by a largely off-line and well protected
third party trusted authority. By separating out the roles of the enrollment or
registration from the role of the server the loss of server secrets, while clearly
damaging, should hopefully not be as catastrophic.

Several proven methods have been reported for one-factor AKE using the
methods of PKI. The basic idea is to issue users with a digital signature of their
identity which they can then use in the key exchange.

Consider the provably secure Identity-Based Diffie-Hellman scheme of Fiore
and Gennaro [6]. Here a trusted authority choses a random group generator g,
and a random master secret and issues a public key y = ¢g*. Then it issues
a Schnorr signature [18] on a proffered identity as, (rip,sip) by choosing a
random k and calculating r;p = ¢* and s;p = k + xH(ID,rrp). The key
exchange proceeds as in Table 1.

Alice - identity 1D, Bob - identity 1D,
Generates random a < ¢ Generates random b < ¢
wa = g up = g°
IDg, A, us — < IDy,rB,uB
k= (uBrByH(IDb’Tw)HSA k= (uArAyH(ID“‘TA))HSB

Table 1. Identity-Based Diffie-Hellman — Fiore and Gennaro [6]

Both participants end up with the same key k = ¢2.

Now let us try to adapt this scheme to the client-server setting and to include
a PIN number as a second factor. We immediately face two problems. First
this protocol is intrinsically peer-to-peer rather than client-server. Therefore no
matter how we go about embedding a PIN number such a scheme must fall to an

insider off-line dictionary attack. Basically anyone who has possession of a token
and PIN can set themselves up as a “server”. Now if they steal another’s token
they can off-line perform key exchanges with their “server” until they find the PIN
that works. Furthermore even non-insiders can break the system. Basically steal
a token and try every possible PIN until the token value is revealed as a valid
signature. The validity of signatures can be easily verified as the certification
authority’s public key is available to all.

As the authors themselves say “The user can verify the correctness of its secret
key by using the public key y and checking the equation ¢*'? = r;p.y(IP:m10)7,
Although implied as a feature of the scheme, for us it represents the problem:
The existence of such an equation means that a PIN cannot safely be used in
conjunction with the secret signature, because this equation would allow an off-
line dictionary attack to recover it. In the scheme that we will suggest, no such
equation exists. The only way to verify the correctness of the secret key should
be to use it to complete a key agreement with a genuine server.

These problems with exploiting standard PKI methods for two-factor au-
thentication are also pointed out by Wang [29].

3 Pairings and PINs

With the advent of pairings new solutions became possible. A pairing works on
a special pairing-friendly elliptic curve [2], [7], with three groups of the same
prime order ¢, normally denoted G; x G — G

Here we assume the type-3 pairing [9] where G; and Gs are distinct, and
where C = ¢(A,B), A € Gy, B € Gg, and C € Gr. Note that elements from
these groups cannot be mixed. This is very important for us as we intend to
place clients in G; and servers in Go.

The main significant property of pairings is that of bilinearity

e(aA,bB) = e(bA,aB) = e(A, B)®

Assume the existence of an independent Trusted Authority (TA) with its
own master secret that is not required on-line — it is only responsible for off-line
enrollment /registration and issuing of client and server ID-based secrets. This
provides an extra layer of security and limits the damage caused by the loss of
client or server long-term secrets.

Assume ID, and ID; are Alice’s identity and the server’s identity respec-
tively. Hy(.) is a hash function that hashes to a point of order ¢ in the group
G1, Hz(.) is a hash function that hashes to a point of order ¢ in the group Go.
Then both the client Alice and the server are issued with secrets sA and sS
respectively, where A = Hy(ID,), S = Hy(ID;) and s is the TA’s master secret
for use with a particular server. Of course knowing A and sA does not reveal s,
as it is fully protected by a difficult discrete logarithm problem.

Consider now the simple SOK non-interactive key exchange algorithm [17], by
which Alice and the server can simultanously mutually authenticate and derive a
common key. Alice calculates it as k = e(sA, S), and the server calculates its as

k = e(A, sS), By bilinearity both are clearly the same. But now Alice extracts a
PIN « of her choosing from her secret, to divide it into the token part ((s —a) A,
and the PIN part aA. Clearly, when these are added together the full secret can
be reconstituted. This simple idea (originally suggested in [19]) forms the basis
for our proposed two-factor authentication scheme.

The XDH assumption was first informally implied in [19], and is now widely
used. The XDH assumption formally states that

1. The discrete logarithm problem (DLP), the computational Diffie-Hellman
problem (CDH), and the computational co-Diffie-Hellman problem are all
intractable in G; and Gs.

2. There exists an efficiently computable bilinear map (pairing) G X Gy — Gr.

3. The decisional Diffie-Hellman problem (DDH) is intractable in G;.

The intuition is that despite the fact of an efficiently computable type-3
pairing, G; acts as a “normal” Diffie-Hellman group. The DDH problem can be
described thus: Given a generator G, aGG, bG and c¢G determine if ¢ = ab.

Consider now an insider attacker Bob with identity I Dy who is issued with sB
where B = H;(ID;) and who gains possession of (s — «)A. If the hash function
has performed its job correctly A and B are independent generators of order ¢ in
the cyclic group G1, where B = wA for some unknown w. The only way to exploit
his inside information is to keep trying a guess g and adding gA to (s —a)A until
he can use his inside knowledge of sB to identify when (s — a)A + gA = sA.
Observe that on a type-1 pairing where G; = Gg this is easy as he could use
the fact that e(A, sB) = e((s — a)A + gA, B) when g = . However on a type-3
pairing this is not possible according to the XDH assumption, as it implies the
ability to solve the Decisional Diffie-Hellman (DDH) problem in G;.

Proof: Substitute A = wB and assume an Oracle which if given A, wA, zA
and swA can determine if x = s. Then such an Oracle can be used to solve the
DDH problem. Simply input G, aG, bG and ¢G and our Oracle will determine
if b=c/a or ¢ = ab.

So in practice Alice can extract a PIN « of her choosing from her secret, to
divide it into the token part ((s — o)A, and the PIN part aA. Clearly, when
these are added together the full secret can be reconstituted. A captured token
is compatible with any possible PIN, and therefore useless without it.

Howevever we must be very careful if we are to retain this vital property.
PIN extraction cannot be used with many pairing-based protocols, for example,
Boneh and Franklin’s IBE scheme [4], or the Chen and Kudla authenticated Key
exchange [5] (Protocol 1), or any scheme which requires as part of its public pa-
rameters a generator point P and Py, = sP in G2 (or any scheme implemented
on a type-1 pairing, for example the PSCADb scheme of [29]). In such a case if
Charlie were to capture Alice’s token containing (s —) A, Charlie could quickly
find her PIN by testing all g until

e((s—a)A+gA,P)=e(A,sP)

This is another example of the off-line dictionary attack, and it is quite
deadly.

If the server secret sS is ever leaked (that is revealing S and sS), or indeed
any multiple of a known point by s in G, then those values can be used to
determine the PIN associated with a stolen token. It is of course only common
sense that this should be possible. If the server secret is discovered, the discoverer
can set up their own false server, and try every possible PIN against a stolen
token, and thus discover the PIN.

Note that all clients who access any server validated by the same TA using
the same s, are at risk if just one of those servers in compromised. For this reason
each individual server should ideally be associated with a different master secret
s.

Interestingly we can deliberately create a circumstance where the server can
launch an off-line dictionary attack on the PIN, and exploit it as a useful feature.

A server offers a simple PIN-recovery service to the client (and so fully sat-
isfies our condition 2). The client A sends X = H(e((s — a)A + gA,S)) to the
server S via a secure channel, which requires only the token and their incorrect
guess of the PIN g. Then the client presumably goes to some lengths to prove
their identity (mother’s maiden name etc.). Once that is done to the server’s
satisfaction, the server goes off-line and calculates Y = H(e(A4, sS —4S)) for all
possible ¢ until he gets a match X =Y. Then ¢ = a — g. This difference between
the guess g and the correct PIN « can then be sent back to the client by email,
or some other method. Note that this does not reveal the PIN « to the server.

It may be observed that the Trusted Authority’s master secret represents
a single point of failure in the overall system. However this master secret can
easily be secret-shared across a number of independent authorities [4]. In the
simplest case a pair of TAs might each independently generate secrets s; and
82, and issue to a client s1A and ssA which can be added by the client to
create SA = s1A + s3A. Note that a Hardware Security Module (HSM) — as
commonly used to protect PKI private keys — could be used for one or both of
these calculations, to provide an extra level of security. Now the master secret
s is not known to any single entity. In this way we can formally satisfy our
condition 10.

4 A SOK-based protocol

It is important to observe that no Trusted Authority Public Key is required in
this protocol. Combined with the idea of putting clients exclusively in G, and
servers exclusively in Gs, we overcome both of the problems associated with the
attempted PKI-based solution of section 2.

Consider an attacker who steals a token and attempts to log on to the server
without knowing the PIN. They can derive the key from e((s —a)A, S), whereas
the server will derive it correctly from e(A, sS). If the server were then to send
something encrypted with the correct key to the attacker, the attacker can find
the PIN via an offline dictionary attack by trying to decrypt with every possible

key derived from e((s—a)A+gA, S) until they find the value g which provides a
valid decryption. To prevent this we force the client to first submit an authenti-
cator derived from their calculated key. Only when the server is convinced that
the client has derived the correct key (using the correct PIN) will the protocol
be continued.

We are now ready to present our simple SOK based solution. Assuming the
protocol succeeds, both sides proceed to use the key K. See Table 2.

Alice - identity 1D, Server - identity ID;
ID, — «— ID;
S = Hy(ID,), A= H.(ID,) A= Hi(ID.,), S = H2(ID,)
k=e((s—a)A+aA,S) k=-e(A,sS)
K = H(k) K = H(k)
M = H(ID,|ID,|K) N = H(ID,|ID,|K)
M — if M # N, drop the connection

Table 2. A Simple SOK-based Protocol

Next we test this simple protocol against our 10 properties. As already in-
dicated we have succeeded in fulfilling properties 2 and 10. We also satisfy
properties 1 and 9. Clearly a client can change their PIN locally, by simply
adding/subtracting a multiple of A to/from their token, so 4 is satisfied as well.
Condition 8 is more than satisfied — as pointed out by Boneh and Franklin [4]
the simple form of the client secret (as a multiple of their identity) means that
it can be securely split up in a variety of ways, using a secret-sharing scheme.

If the client’s reconstituted secret is off by a small amount, a mutual key can
still be calculated by the server, who can determine the extent of the error and
compensate for it. For example if the client uses sA + €A as their secret, the
server can compensate by using sS + €S as its secret. Furthermore the server
can afford to spend some time searching for the right e¢. Therefore this scheme
supports a key correction capability as required by our property 6 to support a
possible biometric factor. The same behavior can be exploited in other ways. If
the client were to enter the wrong PIN, the server can easily determine the extent
of the error § using this key correction capability. So for example if the client
entered 1224 instead of 1234, then the server could figure out that the PIN was
“out” by 10. This behaviour can also be exploited to intelligently respond to the
wrong PIN being entered — if it is out by a lot, do not allow another attempt,
if it is out by only one digit, then allow a further attempt, etc. A “coercion”
convention could be agreed, for example if the PIN was just out by 1 in the
last digit, the server might interpret this as a client entering a PIN while under
physical threat, and respond appropriately.

10

That leaves us with properties 3, 5 and 7 still unsatisfied. Clearly the server
can impersonate any client to log in, as they can derive the key for any client C
as e(C, s5), which violates 3 and 5. There are multiple other problems as well.
The same pair of client and server will always derive the same key k, so we are
open to replay attacks. An attacker who captures Alice’s token and eavesdrops
an encrypted conversation, can easily derive the associated PIN.

The challenge is to block these attacks and satisfy the remaining properties
while not losing the properties we have achieved already. The main idea is to
replace the SOK construction with another somewhat more elaborate construc-
tion.

5 Wang’s protocol.

A powerful property of any authenticated key exchange protocol is resistance
to a Key Compromise Impersonation (KCI) attack [3]. A Key Compromise Im-
personation attack is where an attacker Charlie who captures Alice’s credentials
(token plus PIN) is in a position not only to log in to a server pretending to be
Alice (which is only to be expected), but can also pretend to be the server to
the real Alice. Our SOK based protocol is wide open to this kind of attack as
while the server can calculate the key as e(A, s5), Charlie who has stolen Alice’s
credentials can calculate the same value as e(sA, S), without knowing sS. The
problem is the ability to exploit bilinearity to move the component involving
the master secret s from one side of the pairing to the other. The solution is to
“overload” each side of the pairing with other necessary calculations and hence
to block this possibility.

Observe that in the client-server setting (rather than the peer-to-peer setting
in which key exchange is usually described) KCI can be broken down into server-
to-client KCI, where the server can masquerade as a client, or client-to-server
KCT where the client can masquerade as a server, or mutual KCI where both
cases are possible. The point being that there could be a scenario where one or
other is possible, but not both. Here we prefer to block both possibilities.

In [28], Wang suggests an efficient Identity-Based Authenticated Key Agree-
ment protocol. It is described in a peer-to-peer setting, but we will adapt it to a
client-server protocol by simply implementing it on a type-3 pairing. The original
protocol has a proof of security based on the DBDH assumption. It provides us
with a drop-in replacement for the SOK protocol, while now providing support
for our properties 3 and 5. Wang’s protocol forms part of the P1363.3 proposed
IEEE standard [1].

We start with a much simplified version of Wang’s protocol — Table 3.

For both parties the agreed key k = e(A4, S)**Y. Wang’s protocol is not vul-
nerable to a KCI attack. However the Trusted Authority who has eavesdropped
on P, and P; can easily calculate the key as e(P,, Ps)®. This is as a direct re-
sult of the protocol not having the property (our number 7) of Perfect Forward
Secrecy (PFS).

11

Alice - identity ID,
Generates random z < ¢
1D, —

S = Hy(ID,), A= H1(ID,)

P, =xA
Py —
k=e(z.((s—a)A+ aA), Ps)
K = H(k)
M = H(ID,|ID4|P,|P|K)
M —

Server - identity D,
Generates random y < q
<~ ID;
A= Hi(ID,), S = H2(IDs)
P, =yS
+— P
k = e(Py,y.s5)
K = H(k)
N = H(IDo|ID4|P,|P:|K)
if M # N, drop the connection

Table 3. Simplified Protocol based on [28]

To include the property of PFS, Wang suggests this modification which in-
cludes an in-tandem Diffie-Hellman into the key exchange — Table 4. See also

[5].

Alice - identity 1D,

Generates random z < ¢

1D, —

S = Hy(ID,), A = Hy(ID,)
P, =x2A
P, —

k=e(x.((s —a)A + aA), Ps)

K = H(k|zPy)

M = H(ID,|IDs|P,|Ps| Py |K)

M —

Server - identity ID;
Generates random y, w < ¢
«— 1D,

A= H.\(ID,), S= H(ID,)
P, =yS, Py = wA

« P, P,
k = e(Pa,y.sS)
K = H(k|lwP,)

N = H(IDy|ID;s|P,|Ps| Py | K)
if M # N, drop the connection

Table 4. Simplified Protocol with Perfect Forward Secrecy

Both keys are the same K = H(e(A4, S)**|zwA). In Wang’s original paper
[28] it is suggested to use w = y. However this re-enables the Key Compromise
Impersonation attack, based on the observation that e(zsZ,yS) = e(zyZ, sS),
so if 55 is captured, Charlie can log in to S with any identity Z.

12

6 A Two-Factor Client-Server Protocol

As we have described it above Wang’s protocol has a problem. The identities
of A (and S) are not directly included in the key calculation. So Bob can claim
the identity Alice, but still log on using his own credentials. This is clearly not
satisfactory. Wang uses a rather complex method to fix this, as we will see.

Assume H,(.) is a hash function that hashes to a number in the range 1 to
q (although according to Wang its OK to reduce this range to a size half the
number of bits in ¢, with some performance gains). Our final scheme is given in
Table 5.

Alice - identity 1D, Server - identity ID;
Generates random z < ¢ Generates random y, w < ¢
1D, — <~ ID,
S = Hy(IDs), A= Hi(ID,) A= H(ID,), S = H2(IDs)
P,=2A — — P, =yS, P, =wA
Ta = Hy(Pa|Ps|Py), ms = Ho(Ps|Pa|Py) s = Hy(Ps|Pa|Py), ma = Ho(Pa|Ps|Py)
kE=e((z+m)((s — @)A+ aA), 7S + Ps) k=e(maA+ Pa,(y + 7s)sS)
K = H(k|zPy) K = H(k|wP,)
M = H(ID.|ID,|K) N = H(ID.|ID;|K)
M — if M # N, drop the connection

Table 5. Two-Factor Authentication Protocol

For both parties observe that k = e(A, §)*@+m)¥+m:) Observe that Alice’s
token and PIN are recombined locally before any value calculated from them is
transmitted. If the wrong PIN is entered, the server drops the connection (and
only allows a few more attempts before taking more drastic action with respect
to the purported “Alice”).

7 Implementation

There is a wide-spread concern that pairing-based protocols may be intrinsically
too slow for real world application. However recent progress in efficient imple-
mentation has clearly answered the doubters (for a review of recent progress see
[21]).

We implemented the protocol using a BN curve [2] at the standard AES-128
bit level of security, on a 64-bit Intel i5 520M processor, clocked at 2.4GHz, using
a mixture of C and some automatically generated assembly language.

13

As well as using optimal techniques for the pairing itself [21], we fully exploit
the Fuentes-Castafieda et al. method for fast hashing to Go [8], the well-known
GLV method for point multiplication in G; [11], and the Galbraith-Scott tech-
nique for fast point multiplication in Go [10].

Even without any precomputation [21] the above protocol is fully practical.
On our test hardware the server side of the calculation required 4.48 milliseconds
and the client side required 4.10 milliseconds.

8 Conclusions

Note that Wang’s protocol is not the only choice here. There is for example an
alternative protocol due to S. Wang et al. [27] which also supports a PIN and
key correction. It is rather more elegant than Wang’s, and claims to be faster.
Tt also has a nice and simple proof of security. Another alternative is Protocol 2
from Chen and Kudla [5].

Consider the implications of a successful hack on the server which reveals its
secret sS. Note that there are no client related secrets (token, PIN or biometric)
stored on the server. However this attack obviously allows a false server to be
set up, onto which clients might be convinced to log on. If the successful hacker
then captures a token, they can easily find the associated PIN. However they
cannot use the captured server secret to log onto the genuine server, and access
its data. They cannot enroll any other clients. So we fully achieve our property
5 and although loss of the server secret is serious, the effects are to a maximum
extent mitigated.

By removing the role of client registration from the server and entrusting it
instead to an independent third party, we have enabled a PKI/SSL-like solution
to the problem of two-factor authentication. We maintain that our proposed
scheme is a very suitable alternative for any Web-based application that cur-
rently uses Username/Password, being simultaneously more user-friendly and
more secure.

14

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

IEEE P1363 home page. http://grouper.ieee.org/groups/1363/.

. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.

In Selected Areas in Cryptology — SAC 2005, volume 3897 of Lecture Notes in
Computer Science, pages 319—-331. Springer-Verlag, 2006.

S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. Cryptography and Coding, 1355:30-U45, 1997.

D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. STAM
Journal of Computing, 32(3):586-615, 2003.

L. Chen and C. Kudla. Identity based key agreement protocols from pairings. In
Proc. of the 16-th IEEE Computer Security Foundations Workshop, pages 219-233.
IEEE Computer Society, 2003.

D. Fiore and R. Gennaro. Making the Diffie-Hellman protocol identity-based. In
Topics in Cryptology - CT-RSA 2010, volume 5985 of Lecture Notes in Computer
Science, pages 165-178. Springer, 2010.

D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing friendly elliptic curves.
Journal of Cryptography, 23:224-280, 2010.

L. Fuentes-Castaneda, E. Knapp, and R. Rodriguez-Henriquez. Faster hashing to
G2. In Selected Areas in Cryptography — SAC 2011, volume 7118 of Lecture Notes
in Computer Science, pages 412—-430. Springer-Verlag, 2011.

S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156:3113-3121, 2008.

S. Galbraith and M. Scott. Exponentiation in pairing-friendly groups using homo-
morphisms. In Pairing 2008, volume 5209 of Lecture Notes in Computer Science,
pages 211-224. Springer-Verlag, 2008.

R.P. Gallant, R.J. Lambert, and S.A. Vanstone. Faster point multiplication on
elliptic curves with efficient endomorphisms. In Advances in Cryptology — Crypto
2001, volume 2139 of Lecture Notes in Computer Science, pages 190-200. Springer-
Verlag, 2001.

F. Hao and D. Clarke. Security analysis of a multi-factor authenticated key
exchange protocol. Cryptology ePrint Archive, Report 2012/039, 2012. http:
//eprint.iacr.org/2012/039.

H. S. Kim, S. W. Lee, and K. Y. Yoo. ID-based password authentication scheme
using smart cards and fingerprints. ACM Operating Systems Review, 37(4):32-41,
2003.

I. Liao, C. Lee, and M. Hwang. A password authentication scheme over insecure
networks. Journal of Computer and System Sciences, 72:727-740, 2006.

R. Martinez-Pelaez and F. Rico-Novella. Cryptanalysis of Sood at al.’s authen-
tication scheme using smart cards. Cryptology ePrint Archive, Report 2012/386,
2012. http://eprint.iacr.org/2012/386.

D. Pointcheval and S. Zimmer. Multi-factor authenticated key exchange. In
ACNS’08 Proceedings of the 6th international conference on Applied cryptography
and network security, pages 277-295. Springer-Verlag, 2008.

R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. The 2000
Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.
C. P. Schnorr. Efficient identification and signatures for smart cards. In Crypto
’89: Advances in Cryptology, volume 435 of Lecture Notes in Computer Science,
pages 239-252, 1989.

15

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

M. Scott. Authenticated ID-based key exchange and remote log-in with simple
token and PIN number. Cryptology ePrint Archive, Report 2002/164, 2002. http:
//eprint.iacr.org/2002/164.

M. Scott. Cryptanalysis of an ID-based password authentication scheme using
smart cards and fingerprints. Cryptology ePrint Archive, Report 2004/017, 2004.
http://eprint.iacr.org/2004/017.

M. Scott. On the efficient implementation of pairing-based protocols. In Cryptog-
raphy and Coding 2011, volume 7089 of Lecture Notes in Computer Science, pages
296-308. Springer-Verlag, 2011.

A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology: Proceedings of CRYPTO 84, volume 196 of Lecture Notes in Computer
Science, pages 47-53, 1984.

S. Sood, A. Sarje, and K. Singh. An improvement of Liao at al’s authentica-
tion scheme using smart cards. International Journal of Computer Applications,
1(8):16-23, 2010.

D. Stebila, P. Poornaprajna, and S. Chang. Multi-factor password-authenticated
key exchange. In Australasian Information Security Conference, CPRIT volume
105, pages 56—66. Austalian Computer Society, 2010.

C. Tsai, C. Lee, and M. Hwang. Password authentication schemes: Current status
and key issues. International Journal of Network Security, 3(2):101-115, 2006.

D. Wang, C. Ma, and P. Wu. Secure password-based remote user authentication
scheme with non-tamper resistant smart cards. Cryptology ePrint Archive, Report
2012/227, 2012. http://eprint.iacr.org/2012/227.

Shengbao Wang, Zhenfu Cao, Zhaohui Cheng, and Kim-Kwang Raymond Choo.
Perfect forward secure identity-based authenticated key agreement protocol in the
escrow mode. Science in China Series F Information Sciences, 52(8):1358-1370,
2009.

Y. Wang. Efficient identity-based and authenticated key agreement protocol. Cryp-
tology ePrint Archive, Report 2005/108, 2005. http://eprint.iacr.org/2005/
108.

Y. Wang. Password protected smart card and memory stick authentication against
off-line dictionary attacks. Cryptology ePrint Archive, Report 2012/120, 2012.
http://eprint.iacr.org/2012/120.

T. Wu. The secure remote password protocol. In Proceedings of the 1998 Internet
Society Network and Distributed System Security Symposium, pages 97-111, 1998.
Guomin Yang, Duncan S. Wong, Huaxiong Wang, and Xiaotie Deng. Formal analy-
sis and systematic construction of two-factor authentication scheme. In Proceedings
of the 8th international conference on Information and Communications Security,
ICICS’06, pages 82-91. Springer-Verlag, 2006.

E. Yoon and K. Yoo. New authentication scheme based on a one-way hash function
and Diffie-Hellman key exchange. In CANS’05 Proceedings of the 4th international
conference on Cryptology and Network Security, volume 3810 of Lecture Notes in
Computer Science, pages 147-160. Springer-Verlag, 2005.

16

