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Abstract. A new multivariate public-key cryptosystem (MPKC) with the security
based on the difficulty of the prime factoring is proposed. Unlike conventional cryp-
tosystems such as RSA, most MPKCs are expected secure against quantum computers,
and their operation of encryption and decryption is expected quick, because they do
not need exponential operation. However, their security against quantum computers is
very difficult to prove mathematically. We propose a new MPKC based on sequential
solution method, assuming the security against von Neumann computers, whose attack
seems as difficult as prime factoring. This cryptosystem is applicable to both encryption
and signature.
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1 Introduction

Multivariate Public-Key Cryptosystems (MPKC) has its origin in the ones structured by a univari-
ate polynomial on an extended field, the first of which was proposed by Matsumoto and Imai [15]
in 1983, and the ones of sequential solution method, proposed by Tsujii[24] in 1985. The proposed
MPKCs are faster than RSA or elliptic curve cryptosystem in encryption and decryption, because
MPKC does not include any exponentiation. Moreover, typically the degree of the MPKC public
keys is as low as two. As a lightweight cryptosystem, they were initially expected to be used for
RFIDs or IC cards. After that, the variants of MPKCs were actively proposed worldwide around
the beginning of 1990s. Nonetheless, in spite of the numerous proposals published in papers, a
provably secure, efficient systems has not been proposed yet.

Original purpose of the development of MPKC in the 1980s in Japan was to develop a public key
cryptosystem faster than RSA. But in 1994, when it was shown that the problems of number theory
such as prime factorization and discrete logarithm could be computed in polynomial time if quantum
computers are put into practical use [22], MPKCs were focused as one of the likely candidates of the
‘Post-Quantum Cryptosystem.’ If these problems of number theory were to be computed efficiently,
most of the existing public-key cryptosystems including RSA and ElGamal would be threatened.
Since solving the system of algebraic equations is proved to be NP-complete and there has not
been an efficient algorithm for quantum computers to solve them is not discovered yet, MPKCs
has been expected to remain secure even in the post-quantum society. Consequently MPKCs
has been actively developed worldwide. Currently MPKC is regarded as a likely candidate of
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post-quantum cryptosystems and therefore the textbook of post-quantum cryptosystem [2] spends
considerable length of chapters on them. A dedicated textbook illustrating the existing MPKCs
and cryptanalysis was published in 2006[4]

Hence currently MPKCs are expected to be a lightweight public key with quick encryption and
decryption, and a post-quantum cryptosystem, which is secure against the attacks by quantum
computers.

However, we assume that the practical use of the quantum computer is not realized in the near
future and consequently lifted the constraint that the MPKCs should be ‘secure against quantum
computers.’ Instead, the proposed system makes the best of the advantage that it is far faster
in encrypting and decrypting data. Additionally, the system is applicable to both encryption and
signature.

Based on this prospect, we propose an MPKC provably secure as long as the prime factorization
is difficult. The concept of the ‘security as long as the prime factorization is difficult’ means that
finding the roots a, b, p, q of the following equation:

ap+ bq = c mod N (N = pq, a, b ∈ ZN )

where only N , c, and the relation between the variables N = pq are given, is equally as difficult as
factoring the large integer N .

2 History of MPKC and the Position of this Paper

The history of the progress of MPKC is shown in the Figure 1 and the Table 1.

MPKC
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Figure 1: Classification of MPKC [27]

An MPKC was designed by making skillful use of the expression of univariate polynomials
on extended fields, by Matsumoto and Imai [14]. This cryptosystem, which is currently called
Matsumoto-Imai (MI) Cryptosystem, was presented in EUROCRYPT in 1988. MI Cryptosystem
was successfully cryptanalyzed by Patarin [17] in 1995. After that, Patarin invented a new MPKC
by expanding the concept of MI, which was named Hidden Field Equation (HFE) Cryptosystem
[18]. Although cryptosystems of MI-HFE type have been developed and improved for a long time,
there is not any efficient cryptosystem with provable security [5][8].

In 1985, Tsujii[24] proposed Sequential Solution Method [4][24][23], which was compiled in a
paper[23] in 1986. However, it was cryptanalyzed by Kaneko et al.[9]. Tsujii et al. improved the
Sequential Solution Method and its reinforced version was proposed in 1989[25]. This method,
rational map, was cryptanalyzed by Ding et al., [7] about 10 years after its emergence. Adi Shamir
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Table 1: Progress of MPKC

type 1980s 1990s 2000s

MI-HFE MI Cryptosystem (1983) HFE Cryptosystem (1996) SFLASHv3 signature (2003)
(Matsumoto-Imai， (encryption/signature) (encryption/signature) by Courtois et al. [16]
Patarin) by Matsumoto, Imai by Patarin [18] QUARTZ signature (2001)

et al. [14, 15] by Patarin et al. [20]

TSK Sequential Solution Birational Permutation Random (Singular)
(Tsujii, Shamir, Method (1985) Signature Scheme (1993) Simultaneous Equations
Kasahara-Sakai) (encryption) by Shamir [21] (2004) (encryption/signature)

by Tsujii [24] by Kasahara-Sakai [10, 11]

OV-UOV signature OV signature (1997) Rainbow signature (2005)
(Patarin et al.) by Patarin [19] by Ding et al. [6]

UOV signature (1999)
by Kipnis et al. [12]

Algebraic Surface Algebraic Surface
Cryptosystem Cryptosystem (2009)
(Akiyama et al.) by Akiyama et al. [1]

also proposed the Sequential Solution Method for signature (birational permutation)[21], indepen-
dently of Tsujii. His system was cryptanalyzed by Coppersmith, et al [3].

After the year 2000, Kasahara et al. presented some generalized structures of sequential solution
method [10][11]. The systems based on sequential solution method is called Tsujii-Shamir-Kasahara
(TSK) cryptosystem in this paper.

Although TSK systems have been further studied since they were proposed, an efficient and
secure cryptosystem is not established yet.

There are two kinds of MPKCs, MI-HFE and TSK, which are utilized for both encryption and
signature. There are also some other systems, as shown in the Table 1.

As for the cryptosystems used exclusively for signature, there is the Oil and Vinegar type,
which was proposed by Patarin [19]. After it was cryptanalyzed by Kipnis et al. [13], Patarin et al.
proposed Unbalanced Oil and Vinegar (UOV), an improved version of Oil and Vinegar. Although
UOV signature is currently surviving without being attacked, its security is not proved yet.

There are following kinds of attacks to MPKCs:

(i) Gröbner Bases Attack (including XL Attack)

(ii) Rank Attacks

(iii) Others

Gröbner Bases attack is a general way of an attack, which does not depend on some specific structure
of the trapdoors. Rank attack focuses on the difference of the rank between the polynomials of the
central map. Majority of the MPKCs have been successfully attacked by either Gröbner Bases or
Rank attack.
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3 Problem of Polynomial Algebra, with the equivalent difficulty
as the Prime Factoring

A basic problem of polynomial algebra with the equivalent difficulty as the prime
factorization is proposed in this section.

3.1 Preparation

Two large prime numbers p, q are selected. MT means the transposed matrix of a matrix M .
Two prime numbers p, q are selected. N := pq
The plain text vector x is an m-dimentional vector, with each element defined on the residue

class ring ZN .
x = (x1, x2, . . . , xm)T , xi ∈ ZN , i = 1, 2, . . . ,m

Two m-dimentional random polynomial vector A(x),B(x) are generated:

A(x) = (a1(x), a2(x), . . . , am(x))

B(x) = (b1(x), b2(x), . . . , bm(x))

Subsequently, an m-dimensional quadratic polynomial vector C(x) on the residue class ring ZN is
defined using p, q,A(x),B(x)

C(x) := (c1(x), c2(x), . . . , cm(x))T = A(x)p+B(x)q (1)

With the above assumption, the problem of finding the prime numbers p, q from the value of C(x)
for a given value of x, with A(x) and B(x) confidential, is discussed. This problem is called “prime
factorization problem with additional information.” Then the following theorem is true:

Theorem 3.1. The following two conditions are equivalent.

(i) Prime factorization is difficult.

(ii) Prime factorization with additional information is difficult.

The proof of theorem 3.1 is provided in the subsection 3.2.

3.2 Proof of the Theorem 3.1

n is a security parameter. And for all positive integer l, Zl is a set {0, 1, 2, . . . , l − 1}. First of
all, the following experiment about the probablistic algorithm A and the security parameter n is
discussed:

The factoring experiment FactorA(n):
1. Choose a pair (p, q) of two distinct n/2-bits primes uniformly.
2. Set N := pq.
3. A is given N , and outputs p′, q′ > 1.
4. The output of the experiment is defined to be 1 if p′q′ = N , and 0 otherwise.
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Definition 3.2. The remark that “A prime factoring problem is difficult,” means that fol-
lowing proposition is true:

For all probabilistic algorithm A and security parameter d, exists a certain positive integer n0

such that the following inequation is true for any n > n0,

Pr[FactorA(n) = 1] ≤ 1

nd

Let ` be a certain univariate polynomial with all its coefficients are positive integers. the
following experiment is discussed about a given probabilistic polynomial time algorithm A and a
security parameter n:

The factoring experiment with additional information Factor-AddInfoA(n):
1. Choose a pair (p, q) of two distinct n/2-bits primes uniformly.
2. Set N := pq.
3. Set m := `(n).
4. Choose a ∈ ZN [x1, . . . , xm]m of total degree two uniformly.
5. Choose b ∈ ZN [x1, . . . , xm]m of total degree two uniformly.
6. Set c := pa+ qb.
7. A is given N, c, and outputs p′, q′ > 1.
8. The output of the experiment is defined to be 1 if p′q′ = N , and 0 otherwise.

Definition 3.3. The remark that “A prime factoring problem with additional information
is difficult” means that the following proposition is true:
For all probabilistic polynomial time algorithm A and all positive integer d, exists a positive integer
n0 such that following inequation is true.

Pr[Factor-AddInfoA′(n) = 1] ≤ 1

nd

With the above preparation, the following theorem is proved.

Theorem 3.4. The following two conditions are equivalent.

(i) Prime factorization is difficult.

(ii) Prime factorization with additional information is difficult.

The preposition that (ii)=⇒(i) is proved first.

The proof of (ii)=⇒(i) in the Theorem 3.4
Let A be a probabilistic polynomial-time algorithm into which positive integer n0 is input.

Based on A, a probabilistic polynomial-time algorithm A′ is structured:

A′ has input parameters of positive integers and polynomial vectors. But A′ ignores the poly-
nomial vectors and starts A with only positive integers as its input. Then following inequality is
true for any n > n0.

Pr[FactorA(n) = 1] = Pr[Factor-AddInfoA′(n) = 1] (2)

5



Now it is assumed that prime factorization problems with additional information are difficult. Then
n0 for any positive integer d, exists a positive integer n0 such that following inequality is true:

Pr[Factor-AddInfoA′(n) = 1] ≤ 1

nd

Since A can be arbitrary, it is conculded from the formula (2) that prime factorization is difficult.
Next (ii)=⇒(i) is proved. Beforehands following Lemma needs to be proved. Here #S means

the number of the elements of a given finite set S.

Lemma 3.5. Let p and q be two prime numbers. Let N = pq. Mapping F : ZN × ZN → ZN is
defined as follows:

F (x, y) = (px+ qy) mod N

Then we have following equality for all z ∈ ZN .

#F−1({z}) = N (3)

[Proof] Since both p and q are prime, there exist integers x0, y0 such that px0 + qy0 = 1.
Subsequently, a subset Sz of ZN × ZN is defined as:

Sz := {((x0z + qα) mod N, (y0z + pβ) mod N) | α ∈ Zp, β ∈ Zq}

It should be noted that for all z ∈ ZN , we have the equality:

F (Sz) = z

Therefore for any different elements z, z′ ∈ ZN , we have the equality:

Sz ∩ Sz′ = ∅

On the other hand, since #Zp = p and #Zq = q, for all z ∈ ZN , we have the following relation:

#Sz = pq = N

(end of the proof)

Based on the Lemma 3.5, (i)=⇒(ii) in the Theorem 3.4 is proved as follows:

The proof of (i)=⇒(ii) in the Theorem 3.4
Here following experiment about a given probabilistic polynomial time algorithm A and a

security parameter n:
The factoring experiment with dummy information Factor-DmmyInfoA(n):
1. Choose a pair (p, q) of two distinct n/2-bits primes uniformly.
2. Set N := pq.
3. Set m := `(n).
4. Choose c ∈ ZN [x1, . . . , xm]m of total degree two uniformly.
5. A is given N, c, and outputs p′, q′ > 1.
6. The output of the experiment is defined to be 1 if p′q′ = N , and 0 otherwise.
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Based on the Lemma 3.5, the polynomial vector c generated by the step 4-6 of the Factor-
AddInfoA(n) is homogeneously generated from a set of quadratic polynomial vectors in ZN [x1, . . . , xm]m.
Consequently for a given probabilistic polynomial time algorithm A and a security parameter n,
we have the following equality:

Pr[Factor-AddInfoA(n) = 1] = Pr[Factor-DmmyInfoA(n) = 1]

Here let A be a given probabilistic polynomial-time algorithm, which has positive integers and poly-
nomial vectors as its inputs. Based on the algorithm A, a probabilistic polynomial-time algorithm
A′ is structured as follows:

A′ has the positive integer N as its input. A′ generates a quadratic polynomial vector c
homogeneously. After that, it invokes the algorithm A inputing N and c. Then we have the
following equality for a given security parameter n:

Pr[Factor-DmmyInfoA(n) = 1] = Pr[FactorA′(n) = 1] (4)

Here it is assumed that the prime factorization is difficult. Then for all positive integer d, there
exists a positive integer n0 such that for all n > n0,

Pr[FactorA′(n) = 1] ≤ 1

nd
(5)

Since A can be any algorithm, it is led from the equation (4) and (5) that a prime factorization
problem with additional information is difficult.

4 Structure of the Proposed System and the Trapdoor

Considering both the progress of the quantum computer technology and the progress of the de-
velopment of MPKCs as the post-quantum cryptosystem, the constraint that ‘MPKCs should be
secure against quantum computers,’ is lifted in this section. Here the advantage of quick ‘encryp-
tion/decryption’ or ‘signature/verification’ is pursued. We are going to formulate an MPKC whose
security relies on the difficulty of prime factoring. In general, MPKCs are structured as shown in
Figure 2 and 3.
The key point lies in the trapdoor structure included in the central map G(z).

x ∈ Fq
n

Plaintext

-u = S(x)
� u ∈ Fq

n -w = G(u)
Central Map

� w ∈ Fq
m -y = T (w)

affine
transformation

affine
transformation

�

?

E(x) = T ◦G ◦ S(x): Public Key

y ∈ Fq
m

Ciphertext

Figure 2: Formulation of MPKC Encryption System
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x ∈ Fq
n

Signature

-u = S(x)
� u ∈ Fq

n -w = G(u)
Central Map

� w ∈ Fq
m -y = T (w)

affine
transformation

affine
transformation

�

?

E(x) = T ◦G ◦ S(x): Public Key

y ∈ Fq
m

Message

Figure 3: Formulation of MPKC Signature System

As shown in the Figure 4, the central map of the proposed system has the structure of:

Prime Random Quadratic Prime Random Quadratic
Number Polynomial Vector Number Polynomial Vector

p × A(u) + q × B(u)

The cryptosystem is structured as follows:

4.1 Preparation of Public Key and Private Key

(i) Two prime numbers p, q are selected. N := pq

(ii) The plain text vector x is an m-dimentional vector, with each element defined on the residue
class ring ZN

x = (x1, x2, . . . , xm)T , xi ∈ ZN , i = 1, 2, . . . ,m

(iii) m-dimensional affine transformation is expressed as S.

(iv) The variable x is transformed to the intermediate variable u by the affine transformation S:
u := S(x)

(v) The central map is G(u). The intermediate variable vector w is expressed as w := G(u).

(vi) Let T be an m-dimensional affine transformation.

(vii) m-dimensional polynomial vector (public key) is expressed asE(x) = (e1(x), e2(x), . . . , em(x))

(viii) Two m-dimensional random polynomial vectors A(x), B(x) are expressed as:

A(x) = (a1(x), a2(x), . . . , am(x))T , B(x) = (b1(x), b2(x), . . . , bm(x))T

(ix) The quadratic polynomial vector G(u) is defined as the function of p, q, A(u), B(u)

G(u) = (g1(u), g2(u), . . . , gm(u))T = pA(u) + qB(u) (6)

The central map is structured by Sequential Solution Method, which is explained in Figure 4
and equation (7).
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With the above assumption, Keys are defined as follows:
Secret Key: p, q, A(u), B(u), S, T
Public Key: N, E(x) = (e1(x), e2(x), . . . , em(x))T

Encryption: Plaintext values are assigned to the variables of the public key E(x) to generate the
ciphertext vector y := (y1, y2, . . . , ym)T .

Decryption:

(i) The affine transformation T is inverted to the ciphertext to find the intermediate variable
vector.

w := (w1, w2, . . . , wm)T = T−1(y)

(ii) The intermediate vector u = (u1, u2, . . . , um)T is computed from w using Chinese Remainder
Theorem and Sequential Solution Method.

(iii) The affine transformation S is inverted to u to recover the plaintext.

The Sequential Solution Method has the structure, as shown in the formula (7), that the number of
variables decreases one by one, as the sequence number of the polynomial increases. Each element
is a random polynomial of the given variables. Affine transformations are applied from the both
sides to make the central map secret.

w1 = h1(u1, u2, . . . , um−1, um)
w2 = h2(u1, u2, . . . , um−1)
...

wm−1 = hm−1(u1, u2)
wm = hm(u1)

(7)

In the decryption process, the univariate polynomial, wm of the equation system of the central
map is solved to find u1. Subsequently the root of hm(u1) − wm = 0 is assigned to hm−1(u1, u2)
to make it a univariate quadratic equation. In this way intermediate variables are computed in
sequence. These two polynomial vectors, A(x) and B(x), both of which has the structure of
Sequential Solution Method, are combined symmetrically, with A(x) multiplied with p and B(x)
with q to complement each other. The complementary structure of the central map is illustrated
in Figure 4. The original Sequential Solution Method has the weakness that the element wm(u1)
is univariate. However, all elements include all variables by combining two Sequential Solution
Method Structures in the proposed system.

This MPKC system is expected to have security against typical attacks such as Gröbner Bases
and Rank Attacks.

It should be noted that this system is virtually bijection. Any given vector y ∈ Zm
N has a single

pre-image of the map E with very high probability. Therefore this system is also applicable to
signatures. Moreover, this signature system can be determined. Compared with the UOV, whose
signature is more than three times as long as the message, this signature system is quite efficient
compared with the existing MPKCs such as UOV. Although UOV is believed to be the most secure
among all MPKC signature trapdoors. In the UOV system, signature is at least 3 times as long as
the message. Additionally, although UOV system has not cryptanalyzed since its presentation in
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Figure 4: Structure of Central Map

1999, its security is not proved yet. The proposed TSK system is assured of its security equivalent
for prime factorization.

The brief concept of this cryptosystem was presented in Japanese [26].

5 Evaluation of Security

5.1 Security against Prime Factorization

Based on Theorem 1, considering the randomness of A(u) and B(u), and the two affine transfor-
mations S and T , the proposed system is secure against prime factorization.

5.2 Security against Gröbner Bases Attack

About each polynomial, as shown in the theorem 3.1, the security is assured by the difficulty of
prime factorization. Since all coefficients of A(u) and B(u) are independent of each other, there
is no dependency among polynomials. Hence all of the polynomials are independent of each other.
Therefore theorem 3.1 is applicable. Consequently, it is impossible to find the plaintext of this
system by computing the Gröbner Bases, as long as p and q are sufficiently large.Tranditionally the
majority of the MPKC are defined on small fields such as F 2 and the number of variables is larger
than 100.

Usually the first thing to do in evaluating the security of MPKCs is solving the equation system
E(x) = y. The typical way of solvng the system is computing the Gröbner Bases of the ideal
〈E(x) = y〉. When the polynomials are defined on a finite field GF (q), all variables satisfy xqi = xi.
Therefore the set of field equations (xq1−x1, . . . , x

q
m−xm) is appended to the generators in computing

the Gröbner Bases. Thus computed Gröbner Bases include m or slightly fewer linear polynomials,
as long as the public key E(x) is determined. Without the field equations computation of Gröbner
Bases becomes too memory-consuming to proceed normally. But if the polynomials are defined
on a residue class ring with large characteristics, field equations do exist, but it is difficult to find
an integer d such that xdi = xi. Additionally, even when the computation terminates normally,
resulting Gröbner Bases include no or only few linear elements. Therefore it would be impossible
to attack the system by computing Gröbner Bases.
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We briefly tested Gröbner Bases attack for small parameters p = 5; q = 7;m = 10 with and
without field equations. Computation time was compared with that for random polynomials. The
time was approximately the same as for random polynomials. In some cases it took longer than
attacking random polynomials. When field equations are not used, there was not so much difference
between the public key and random polynomials. The resulting Gröbner bases contain only few
linear elements. Therefore it is expected that the structure of the public key E(x) is expected to be
as secure against Gröbner Bases attack as random polynomials. The security against Gröbner Bases
attack would have to be studied further in the future with experiments and theoretical discussion.

5.3 Security against Rank Attack

All polynomials of the central map has the rank m, with all variables included. Therefore, although
this system is a variant of TSK type MPKC, rank attack does not work. The proposed system is
secure against rank attacks.

6 Conclusion

The structure of an MPKC, with the security assured by the difficulty of prime factoring, is de-
scribed. The system proposed here is an example and there are several combinations of existing
cryptosystems for A(x) and B(x). The cryptosystems considered in this paper are the sequencial
solution methods. But it is possible to choose other cryptosystems such as MI or HFE. The possi-
bility of likely combinations of the cryptosystems and their usage should be studied further in the
future. Additionally, the encryption and decryption are expected to be made faster compared with
RSA or Elliptic Curve. We are going to discuss the matter further.
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