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Abstract

In the attribute-based encryption (ABE) model, attributes (as op-
posed to identities) are used to encrypt messages, and all the receivers
with qualifying attributes can decrypt the ciphertext. However, com-
promised attribute keys may affect the communications of many users
who share the same access control policies. We present the notion of
forward-secure attribute-based encryption (fs-ABE) and give a con-
crete construction based on bilinear map and decisional bilinear Diffie-
Hellman assumption. Forward security means that a compromised
private key by an adversary at time t does not break the confiden-
tiality of the communication that took place prior to t. We describe
how to achieve both forward security and encryption with attributes,
and formally prove our security against the adaptive chosen-ciphertext
adversaries. Our scheme is non-trivial, and the key size only grows
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polynomially with logN (where N is the number of time periods).
We further generalize our scheme to support the individualized key-
updating schedule for each attribute, which provides a finer granularity
for key management. Our insights on the required properties that an
ABE scheme needs to possess in order to be forward-secure compatible
are useful beyond the specific fs-ABE construction given. We raise an
open question at the end of the paper on the escrow problem of the
master key in ABE schemes.
Keywords: Attribute-based encryption, forward security, key update

1 Introduction

The main feature of a forward-secure encryption scheme is that the compro-
mise of current decryption keys does not compromise past decryption keys;
therefore the confidentiality of past communications is preserved. Forward
security aims at mitigating the damages caused by stolen secret keys. This
concept was first coined by Günther [1] and later by Diffie et al. [2]. In for-
ward secure schemes, secret keys are updated at regular intervals throughout
the lifetime of the system; furthermore, exposure of a secret key correspond-
ing to a given interval does not enable an adversary to break the system for
any prior time period. To prevent the adversary from breaking the secu-
rity of the system for any subsequent time period, one needs to revoke the
compromised keys. Solutions for supporting the forward security have been
proposed in the context of symmetric-key encryption schemes [3], public-
key encryption schemes [4], identity-based encryption [5], digital signature
schemes [6, 7, 8], and recently in cloud-based content delivery [9].

In this paper, we point out that forward security is important for preserv-
ing the security of attribute-based encryption (ABE) schemes [10, 11, 12].
In ABE schemes, attributes (as opposed to identities) are used for encryp-
tion, and only users with qualified attributes (and corresponding private
keys) can decrypt. Attribute-based encryption enables the implicit encod-
ing of authorization policies in the private key of the user (e.g., key-policy
attribute-based encryption [10]) or in the ciphertext (e.g., ciphertext-policy
attribute-based encryption [13]). However, because the attribute-based se-
crets are shared among all qualifying users, compromised keys can affect
other users’ communication. This shared key feature in the key management
of ABE motivates our work on designing forward-secure attribute-based en-

cryption (fs-ABE). In a fs-ABE, any compromised attribute key at time t
does not affect the confidentiality of any of the prior communication en-
crypted with that attribute.
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Attribute-based encryption has practical applications in advanced access
control and data management, such as electronic medical records [14, 15].
In real world, ABE system can be naturally used to construct a targeted
broadcast system, which is first descibed in [10]. In this kind of system, the
needs of individual users is targeted at, while a broadcast channel still offer
the content with economies-of-scale. For such an application, the construc-
tion based on ABE scheme is more efficent than other broadcast encryption
schemes. As in broadcast encryption, forward security in this situation is
very important. Forward secure ABE schemes can improve the practicability
of the contruction.

Our contributions are summarized as follows.

• We give the model and definition for a general forward-secure attribute-
based encryption scheme that is secure against adaptive chosen-ciphertext
adversaries. We define the security in a game model allowing the ad-
versary to issue key-generation queries and decryption queries. The
users refresh their private keys autonomously, which is scalable. We
support dynamic join where users can join the fs-ABE system at any
time.

• We give a concrete instantiation of a forward-secure attribute-based
encryption scheme, where secrets corresponding to all the attributes
evolve and update based on the same schedule. Our construction
makes use of the operations in key-policy attribute-based encryption
scheme by Goyal, Pandey, Sahai, and Waters (GPSW-ABE) [10], and
inherits its bilinear map usage as well as the hardness assumption
of decisional bilinear Diffie Hellman (DBDH). We formally prove the
security of our scheme and analyze the complexities of the operations.

We also provide insights on the general properties that an ABE scheme
should posses in order to support forward security. We explain why
CP-ABE scheme cannot be converted into a non-trivial forward se-
cure one with the existing cryptographic tools and leave it as an open
problem.

• We further improve the flexibility of our basic fs-ABE scheme by sup-
porting the individualized key-updating schedule for each attribute,
and provide the sketch for its security. Individualized key update im-
proves the efficiency, usability, and security of the fs-ABE scheme.

Our work provides the insights and solutions to the problem of hardening
authorization-enabling encryption schemes namely attribute-based encryp-
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tion (ABE) against compromised secret keys. Although our specific con-
struction is based on key-policy ABE (KP-ABE), we summarize the prop-
erties that can be used determine whether an attribute-based encryption
scheme is forward-secure compatible or not. This contribution is significant
beyond the specific KP-ABE scheme studied.
Organization of the paper Related work is given in the next section.
We present our definitions and model of a forward-secure attribute-based
encryption scheme in Section 3. We give some trivial schemes and discuss
why they are not good in Section 4. We present requirements that an ABE
scheme needs to satisfy in order to become foward-secure compatible in
Section 5. A concrete construction based on bilinear maps is described in
Section 6. Our basic fs-ABE scheme is extended into a ifs-ABE scheme
in 7. Several extensions are presented to further improve the security of
our scheme in Section 8. Conclusions and an open problem are given in
Section 9. Our formal proof is given in Appendix B.

2 Related Work

The notion of non-interactive forward security was proposed by Ander-
son [16], which was formalized by Bellare and Miner [6]. Forward-secure
digital signature schemes were also proposed [6, 7, 8]. Bellare and Yee [3]
provided a comprehensive description of forward security in the context
of symmetric-key based cryptographic primitives. The first forward-secure
public-key encryption (fs-PKE) scheme was given by Canetti et al. [4], based
on the decisional bilinear Diffie-Hellman assumption [17].

The fs-PKE scheme in [4] constructs a binary tree, in which a tree node
corresponds to a time period and has a secret key. Children of a node w
are labeled w0 and w1, respectively. Given the secrets corresponding to a
prefix of a node representing time t, one can compute the secrets of time t.
In order to make future keys computable from the current key, the secrets
associated with a prefix of a future time are stored in the current key. After
the key for the next time period is generated, the current decryption key
is erased. The data structure was inspired by the identity hierarchy in the
Gentry-Silverberg HIBE scheme [18], and is also used by our work to encode
the time information in policies.

Authors in [5] investigated how to bring forward security to the hierar-
chical identity-based encryption (HIBE) scheme by providing private keys
that are both self-evolving for forward secrecy and delegatable for generating
identity-based keys. Due to the inherent key-escrow property, key exposure
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is a realistic threat over the lifetime of such a scheme, and the standard no-
tion of HIBE security crucially depends on secret keys remaining secret. The
forward-secure hierarchical identity-based encryption (fs-HIBE) scheme al-
lows each user in the hierarchy to refresh his or her private keys periodically
while keeping the public key the same.

Attribute based encryption schemes are related to the identity-based
encryption (IBE) schemes [19, 20, 21, 22, 23], as both cryptosystems are
novelty public-key encryption schemes with properties that can be leveraged
for authorization. Solutions have been proposed to utilize IBE schemes
for access control [5, 24], specifically encoding authorization policies in the
public keys. Researchers recently found that ABE schemes can provide
expressive and anonymous authorization mechanisms for the information
sharing in the cloud [25, 26, 27, 28]. A comprehensive survey on ABE
schemes can be found in [29].

3 Definitions and Models in Forward-secure Attribute-

Based Encryption

We define the syntax of forward-secure ABE (fs-ABE) scheme and security
model for such schemes in this section. Most of the recent ABE schemes
can be categorized as key-policy attribute-based encryption (KP-ABE) or
ciphertext-policy attribute-based encryption (CP-ABE). In KP-ABE schemes
(e.g., [10]), each private key is associated with an access structure that is
chosen by the authority, and each ciphertext is labeled with a set of at-
tributes. A private key can decrypt a ciphertext if and only if the attributes
in the ciphertext satisfy the access structure in the private key. A KP-ABE
scheme can be realized with a tree access structure which is composed of
threshold gates as interior nodes and the attributes as leaves. Ostrovsky et
al. [11] described a KP-ABE scheme where non-monotonic access structures
can be specified and enforced. Bethencourt et al. [13] gave the first concrete
CP-ABE scheme, where each private key is described by a set of attributes,
and each ciphertext is associated with an access structure that is determined
by the party encrypting the message. Our definitions and construction in
this paper follows the KP-ABE paradigm. We point out the challenges as-
sociated with providing non-trivial forward security for CP-ABE schemes in
Section 5.

In our foward-secure ABE scheme, the private key of a user is evolved
with time. At the time period 0 a user is issued an initial private key
associated with an access tree by the Private Key Generator (PKG). At
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Figure 1: The time period 〈5〉 = 101 in (a) and the tree T101 in (b) associated
with the time period 〈5〉 = 101, where the total number of time periods is
N = 2d = 23.

the end of each time period he updates his private key for the next time
period and erases the current key. During the time period i, a message is
encrypted using a set of attributes and the time period i. A user can decrypt
the encrypted message using his private key for the time period i, if and only
if the access tree in his private key can be satisfied by the set of attributes
in the ciphertext.

3.1 Notations

Time Period We assume for simplicity that the total number N of time
periods is a power of 2; that is N = 2d. Let 〈i〉 denote the d-bit represen-
tation of the time period i (where 0 ≤ i ≤ 2d − 1). Let w = w1w2 · · ·wl be
the l-bit prefix of the bit representation of some time period. In our fs-ABE
scheme, time periods are associated with the leaf nodes of a binary tree.
This representation of time follows that of fs-PKE [4]. Figure 1(a) shows
the time period 〈5〉 = 101, where d = 3. A simple tree T101 associated with
the time period 〈5〉 = 101 is shown in Figure 1(b).
Access Trees An access structure can be represented by a tree T . Each in-
terior node x of the tree represents a threshold gate with a positive threshold
value kx, which is not greater than the number nx of children of the node.
We denote a kx of nx threshold gate by (kx, nx)-gate. Each leaf node x of
the tree represents an attribute, and the threshold value kx associated with
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Figure 2: The tree Tw, where “1-w1”, “2-w2”, · · · , “l-wl” are components of
a prefix w = w1w2 · · ·wl (1 ≤ l ≤ d) of some time period. The time period
is d-bit long.

the leaf node is defined as 1. We define the function parent(x) as the parent
of the node x. If x is a leaf node, then we use att(x) to denote the attribute
associated with x. The children of every node are numbered from 1 in some
order. Such a number associated with a node x can be returned by the
function index(x).

We denote the subtree of T rooted at the node x by T |x. Thus T is the
same as T |r, where r is the root node of the tree T . If a set γ of attributes
satisfies the access tree T |x, we denote it as T |x(γ) = 1. If x is an interior
node, then T |x is satisfied by γ if and only if at least kx subtrees T |x′ of T |x
is satisfied, where x′ is a child of x. If x is a leaf node, then T |x(γ) = 1 if
and only if att(x) ∈ γ.

In the construction of fs-ABE scheme, we add a trivial (1, 1)-gate z above
the root node r of an access tree T to obtain the tree Tε, then add attributes
“1-w1”, “2-w2”, · · · , “l-wl” in turn to the tree Tε as children of the root node
z of Tε, where “1-w1”, “2-w2”, · · · , “l-wl” are the components of a prefix
w = w1w2 · · ·wl(1 ≤ l ≤ d) of some time period. We denote the new tree by
Tw. Notice that the root node z is converted from (1, 1)-gate to (l+1, l+1)-
gate. Let skT ,w denote the secret key associated with Tw. The tree Tw is
illustrated in Figure 2.
Keys We denote the private key associated with an access tree T and a
time period i by SKT ,i. The private key SKT ,i consists of some secret keys
associated with the tree T and some prefixes of the time period i:

SKT ,i =
(
skT ,〈i〉, {skT ,i0i1···ik−11}ik=0

)

where skT ,〈i〉 is the secret key used to decrypt a ciphertext, {skT ,i0i1···ik−11}ik=0

are the secret keys used by a user to update his private key for the next time
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period i+1. Notice that if i0i1 · · · ik−10 is a prefix of the time period i then
the secret key skT ,i0i1···ik−11 is included in SKT ,i, this setting ensures that a
user can compute his private key for the next time from the current private
key.

3.2 fs-ABE: Syntax

A fs-ABE scheme is specified by five algorithms: Setup, Encryption, Key
Generation, Update, Decryption:

Setup This algorithm takes as input an implicit security parameter and the
total number of time periods N , and outputs the public parameters PK and
the master key MK. The master key MK will be known only to the Private
Key Generator (PKG).
Encryption The sender takes as input a message m, a set γ of attributes,
the current time period i and the public parameters PK, and outputs a pair
〈i, C〉 as the ciphertext.
Key Generation A user requests to join the fs-ABE system at time i. The
PKG takes as input an access tree T , the master key MK and the public
parameters PK, and computes an initial secret key SKT ,0. If the joining
time i 6= 0, then the PKG evolves the initial secret key SKT ,0 to obtain
the secret key SKT ,i for time i and outputs SKT ,i, else the PKG directly
outputs the initial secret key SKT ,0.
Update At the end of time period i, the receiver uses the secret key SKT ,i

to compute his secret key SKT ,i+1 for the next time period i+1, then erases
the current secret key SKT ,i.
Decryption The receiver takes as input the ciphertext 〈i, C〉, the secret
key SKT ,i and the public parameters PK, and outputs the message m if
T (γ) = 1.

The standard correctness condition must be satisfied, namely for any
(PK,MK) generated by Setup, any SKT ,0 output by Key Generation, any
secret key SKT ,i generated by Update for the time period i and any message
m, we have

Decryption(〈i, C〉,SKT ,i,PK) = m, where 〈i, C〉 ←Encryption(m,γ, i,PK).

3.3 fs-ABE: Security Model

We use a game between a challenger and an adversary to model the security
of fs-ABE scheme. We say a fs-ABE scheme is semantically secure against
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adversaries who adaptively choose the ciphertext, attributes, and time pe-
riod, if all polynomial time adversaries have at most a negligible advantage
against the challenger in the following game.

Setup The challenger runs the Setup algorithm of fs-ABE and gives the
public parameters PK to the adversary. It keeps the master key to itself.
Phase 1 The adversary is allowed to issue the following two types of queries:

1. Private key query SKT ,j associated with an access tree T and a time
period j: the challenger runs the Key Generation algorithm to generate
the private key SKT ,0 corresponding to the tree T and the initial time
period 0, then recursively runs the Update algorithm to generate the
private key SKT ,j, and sends SKT ,j to the adversary.

2. Decryption query (T , 〈j, C〉): the challenger runs the Key Generation
algorithm to generate the private key SKT ,0 corresponding to the tree
T and the initial time period 0, recursively runs the Update algorithm
to generate the private key SKT ,j, then runs the Decryption algorithm
to decrypt 〈j, C〉 using SKT ,j , and sends the result to the adversary.

These queries may be issued adaptively. The adversary is allowed to query
for any access tree and any time period.
Challenge Once the adversary decides that Phase 1 is over, it submits two
equal length messages m0,m1, a set γ of attributes and a time period i on
which it wishes to be challenged. The constraint is that no private key query
has been issued for the access tree T such that T (γ) = 1 for any time j ≤ i.

The challenger flips a random coin b ∈ {0, 1}, and sets

〈i, C∗〉 = Encryption(mb, γ, i,PK).

It sends 〈i, C∗〉 as a challenge to the adversary.
Phase 2 The adversary issues more queries:

1. Private key query SKT ,j , where the access tree T and the time period j
are under the same restriction as in Challenge: the challenger responds
as in Phase 1.

2. Decryption query (T , 〈j, C〉) 6= (T ∗, 〈i, C∗〉), where T ∗ is the access
tree such that T ∗(γ) = 1: the challenger responds as in Phase 1.

Guess The adversary outputs a guess b′ of b.
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The adversary wins the game if b = b′. We define its advantage in this
game to be |Pr[b = b′]− 1

2 |. A weaker type of security model against selective
chosen plaintext, a set of attributes and time period attack differs from the
above model, in which the adversary declares the set of attributes and the
time period on that it wishes to be challenged before the Setup in the game,
and the adversary is not allowed to issue decryption queries in Phase 1 and
Phase 2.

For security proof, we reduce the security of fs-ABE to the security of
GPSW-ABE [10]. The security model for GPSW-ABE is similar to the
weaker type of model for fs-ABE except that there is no time involved in
the former one.

4 Some Trivial Forward-Secure Schemes

In this section, we take a quick look at three trivial forward-secure ABE
constructions, and explain why these schemes are not good.

Scheme I. Consider a scheme based on any KP-ABE or CP-ABE schme
(In fact, this construction can work for any other cryptosystem). A user is
given a different private key per time period. This scheme is forward-secure.
However, it has the following issues. First, a user cannot update the private
key autonomously, and the workload of the PKG is increased. Second, the
key size of the private key grows linearly with the number N of time periods,
it is not good.

Scheme II. Consider a scheme based on GPSW-ABE [10]. During a time
period i (where 0 ≤ i ≤ N − 1), the access tree in the private key of a user
is original-tree T AND (time period i OR time period i + 1 OR · · · OR
time period N − 1). In this scheme, a user can update the private key for
the next time period i+1 from the current private key. This scheme is also
forward-secure. However, the key size of the private key grows linearly with
N , that is the same as Scheme I.

Scheme III. Our final trivial scheme is still based on GPSW-ABE. The
initial private key of a user is composed ofN secret keys, which are associated
with N access trees: T AND time period 0, T AND time period 1, · · · , T
AND time period N−1. At the end of every time period, the corresponding
secret key is erased. During a time period i, the remaining secret keys are
all used to decrypt a ciphertext. Thus, the access tree in the private key for
the time period i is equivalent to the tree (T AND time period i) OR (T
AND time period i+1) OR · · · OR (T AND time period N − 1), that is, T
AND (time period i OR time period i+ 1 OR · · · OR time period N − 1).
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We see this scheme is equivalent to Scheme II, and it is not good due to the
key size.

All the above trivial schemes are not the fs-ABE we needed. For sim-
plicity, the constructions of fs-ABE mentioned later do not include these
trivial schemes. In our construction, a user can update the private key au-
tonomously, and the key size of the private key only grows polynomially
with logN . In addition, the secret keys composed of the private key are not
all used to decrypt. Actually, only one secret key is used to do this, and
the other secret keys are used to compute the private key for the next time
period.

5 Generalization on Forward-Secure Compatibil-

ity

In this section, we discuss what properties should an ABE scheme have in
order to support forward security, which we refer to as forward-secure com-

patibility or FS-compatibility. The two requirements are the ability to dele-

gate decryption keys and the extensibility of attributes, which are explained
next.

Delegation of private keys. In ABE schemes, the delegation of private
keys means that a user who has a private key for an access tree T (for KP-
ABE schemes) or a set S of attributes (for CP-ABE schemes) can compute
a new private key for a more restrictive access tree than T or a subset of
S. The ability of delegating the decryption capability to others (i.e., the
delegation of private keys) in ABE schemes is a must for FS-compatibility.
This requirement is because in a forward-secure scheme, a user needs to
update his private key at the end of each time period; he must generate
a new private key for the next time period using his current private key
by himself without contacting the PKG. The delegation property is used in
this process. In the construction (see Section 6) of our fs-ABE, the Update
algorithm calls the Compute Next algorithm to compute the secret keys
skT ,ww(l+1)

from skT ,w using the delegation property. Notice that the new
time attribute “(l+1)-w(l+1)” is added during this process. Most of the
key-policy ABE schemes based on GPSW-ABE [10] can do this.

Extensibility of attributes. However, the delegation property alone is
not a sufficient condition for FS-compatibility. For example, the CP-ABE
scheme in [13] has the property of delegation of private keys. However, it
cannot be converted to a non-trivial forward secure one in our construction.
The reason is that new time attribute cannot be added to the existing set
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of attributes, which are used to describe necessary secret keys. In [13], the
existing secret key associated with a set of attributes can only be used to
generate a secret key for a subset of attributes – however, new attribute
cannot be introduced. In constrast, for KP-ABE schemes the new time at-
tribute can be added to the access tree associated with the existing secret
keys – satisfying the attribute-extensibility requirement. This property al-
lows one to construct the required secret keys for future time periods. How
to support CP-ABE schemes with non-trivial forward security remains an
interesting challenge.

6 A Forward-secure ABE Construction

In this section, we first give some mathematical preliminaries, then present
the construction of a concrete forward-secure attribute-based encryption
scheme.

6.1 Preliminaries

The security of our fs-ABE scheme is based on the decisional bilinear Diffie-
Hellman (DBDH) assumption. We first introduce the concept of bilinear
pairings.
Bilinear Pairings Let G1 and G2 be two multiplicative cyclic groups of
prime order p. A bilinear pairing e : G1 × G1 → G2 is a map with the
following properties:

1. Bilinear: ∀u, v ∈ G1 and a, b ∈ Zp, e(u
a, vb) = e(u, v)ab.

2. Non-degeneracy: The map does not send all pairs in G1 × G1 to the
identity in G2.

3. Computable: ∀u, v ∈ G1, e(u, v) can be efficiently computed.

We call G1 a bilinear group if the group operation in G1 is efficiently com-
putable.
Decisional Bilinear Diffie-Hellman (DBDH) Assumption The DBDH
assumption is that all probabilistic polynomial time algorithms have at most
a negligible advantage to distinguish the tuple (ga, gb, gc, e(g, g)abc) from the
tuple (ga, gb, gc, e(g, g)z), where g is a generator of G1, e : G1×G1 → G2 is a
bilinear pairing, and a, b, c, z are chosen from Zp randomly. The advantage
of an algorithm A is defined as

∣∣Pr[A(ga, gb, gc, e(g, g)abc) = 1]− Pr[A(ga, gb, gc, e(g, g)z) = 1]
∣∣.
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6.2 fs-ABE: Construction

Let G1 be a bilinear group of prime order p with a generator g. Let e : G1×
G1 → G2 denote the bilinear pairing. The size of the groups is determined
by a security parameter κ. We define the Lagrange coefficient ∆i,S(x) =∏

j∈S,j 6=i
x−j
i−j

for i ∈ Zp and a set S of elements in Zp. This construction
uses all elements of Z∗

p as attributes, and it also allows us to apply a collision
resistant hash function H : {0, 1}∗ → Z

∗
p so that we can use arbitrary strings

as attributes. The message will be encrypted under a time period i and a
set γ of n elements of Z∗

p
1. The construction is shown below.

Setup (n, d) Let g1 = gy, where y is chosen randomly from Zp. Choose
random g2 ∈ G1, and choose t1, t2, · · · , tn+d+1 uniformly at random from
G1. We define a function

T (X) = gX
n+d

2

n+d+1∏

i=1

t
∆i,Q(X)
i ,

whereQ = {1, 2, · · · , n+d+1}. This algorithm outputs g1, g2, t1, t2, · · · , tn+d+1

as the public parameters PK and y as the master key MK. The master key
will be known only to the Private Key Generator (PKG).

Encryption (m,γ, i,PK) Let 〈i〉 = i1i2 · · · id. Choose random s ∈ Zp. For
a message m ∈ G2, this algorithm outputs 〈i, C〉 as the ciphertext, where

C =
(
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}, C

′ = me(g1, g2)
s,

C ′′ = gs, {Ck = T (k)s}k∈γ∪{“1-i1”,“2-i2”,··· ,“d-id”}
)
.

Key Generation (T ,MK,PK) The PKG computes an initial private key
associated with the access tree T for the user, so that a message encrypted
under a set γ of attributes and the time period 0 can be decrypted by the
user if and only if the access tree T can be satisfied by the set γ of attributes.

Choose a degree dx = kx − 1 of polynomial qx for each node x in the
tree T in a top down manner, where kx is the threshold value of the node
x. For the root node r, we completely define the polynomial qr by setting

1Strictly speaking, γ is a set of n elements of Z∗
p\{“1-0”,“1-1”,· · · ,“d-0”,“d-1”}, where

{“1-0”,“1-1”,· · · ,“d-0”,“d-1”} denote all possible components of the d-bit representation
of a time period. These components as attributes associated with time are also elements
of Z∗

p. For clarity, we use these symbols to denote the components instead of using the
numbers in Z

∗
p.
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qr(0) = y and dr other points of qr randomly. For any other node x, we
completely define qx by setting qx(0) = qparent(x)(index(x)) and dx other
points randomly. We add a new (1, 1) threshold gate z above the root node
r of the tree T , which becomes the parent of r. Define the polynomial
associated with z: qz(X) ≡ y such that qr(0) = qz(1) satisfied to the above
constraint, where 1 is the index of r as a child of z. We use Tε to denote the
new tree to which z is added.

After all the polynomials are decided, for each leaf node x of the tree Tε,
let

D(0)
x = g

qx(0)
2 · T (att(x))rx

R(0)
x = grx ,

where rx is chosen randomly from Zp. Let the secret key skT ,ε associated
with the tree Tε as

skT ,ε =
(
{D(0)

x , R(0)
x }x is a leaf node of T , ∅

)
.

Using (skT ,ε,Tε, ε), recursively apply algorithm Compute Next (defined
below) to obtain the private key

SKT ,0 =
(
skT ,〈0〉, {skT ,1, skT ,01, · · · , skT ,0d−11}

)
,

which is associated with the tree T and the time period 0. Output SKT ,0,
and erase all other information.

Notice that if the user joins the fs-ABE system at time i 6= 0, then
PKG recursively runs the Update (defined later) algorithm using SKT ,0

to obtain SKT ,i associated with time i, and gives SKT ,i to the user. For
simplicity, we assume that the user joins the system at time 0.

Compute Next (skT ,w,Tw, w) This algorithm takes a prefix w = w0w1 · · ·wl

of some time period, where w0 = ε, 0 ≤ l ≤ d−1, the access tree Tw and the
secret key skT ,w associated with Tw as input, and outputs the secret keys
associated with the trees Tw0 and Tw1. Recall that if w 6= ε then Tw denotes
the tree that is obtained by adding the attributes “1-w1”, “2-w2”, · · · , “l-wl”
in turn to the tree Tε in the Key Generation algorithm as children of the
root node z of Tε, where “1-w1”, “2-w2”, · · · , “l-wl” are the components of
w = w1w2 · · ·wl. Notice that the root node z of the tree Tw is a (l+1, l+1)
threshold gate. We add the attribute “(l+1)-w(l+1)” to the tree Tw to con-
vert the root node z from (l+1, l+1)-gate to (l+2, l+2)-gate, and obtain
the tree Tww(l+1)

, where w(l+1) represents a bit 0 or 1.
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Compared to Tw, the trees Tw0,Tw1, add one new time attribute respec-
tively. This method needs to compute the secret keys skT ,w0 and skT ,w1

for Tw0 and Tw1. Specifically, it needs to define the polynomial for the new
time attribute. In addition, the polynomials associated with the existing
attributes need to be refreshed. Then, it uses the constant terms of the
polynomials associated with all the attributes in the tree to define the com-
ponents of the secret key associated with the tree. Recall that in an access
tree an attribute is represented by a leaf node.

Let q
(l)
x (X) denote the polynomial associated with the node x in the

tree Tw, and let d
(l)
x denote the degree of q

(l)
x (X). Define q

(0)
x (X) = qx(X),

d
(0)
x = dx if x is in T or x = z.

1. We refresh the polynomials for all the existing nodes and define the
polynomial for the new node as follows.

(a) (refresh) Refresh the polynomial for z:

q(l+1)
z (X) = (−

1

l + 2
X + 1)q(l)z (X) + p(l+1)

z (X),

where p
(l+1)
z (X) is a random polynomial of degree d

(l+1)
z = d

(l)
z +

1 such that p
(l+1)
z (0) = 0. Thus, q

(l+1)
z (0) = q

(l)
z (0) = · · · =

q
(0)
z (0) = y, where y is the master key.

(b) (refresh) For each node x in the tree T , refresh the polynomial
for x:

q(l+1)
x (X) = (−

1

l + 2
· 1 + 1)q(l)x (X) + p(l+1)

x (X),

where p
(l+1)
x (X) is a random polynomial of degree d

(l+1)
x = dx

such that p
(l+1)
x (0) = p

(l+1)
parent(x)(index(x)). These polynomials are

chosen in a top-down manner.

(c) (refresh) If w = ε, then go to step 1d, else for each node “k-wk”
(1 ≤ k ≤ l), refresh the polynomial for “k-wk”:

q
(l+1)
“k-wk”

(X) = (−
1

l + 2
· (k + 1) + 1)q

(l)
“k-wk”

(X) + p
(l+1)
“k-wk”

(X),

where p
(l+1)
“k-wk”

(X) is a polynomial of degree 0 such that p
(l+1)
“k-wk”

(0) =

p
(l+1)
z (k + 1).
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(d) (define) For the new node “(l+1)-w(l+1)”, define the polynomial
for “(l+1)-w(l+1)”:

q
(l+1)
“(l+1)-w(l+1)”

(X) = 0 + p
(l+1)
“(l+1)-w(l+1)”

(X),

where p
(l+1)
“(l+1)-w(l+1)”

(X) is a polynomial of degree 0 such that

p
(l+1)
“(l+1)-w(l+1)”

(0) = p
(l+1)
z (l + 2).

All the above polynomials satisfy to the constraint in the Key Gener-
ation algorithm.

2. If w 6= ε, then let

skT ,w =
(
{D(l)

x , R(l)
x }x is a leaf node of T , {D

(l)
“k-wk”

, R
(l)
“k-wk”

}1≤k≤l

)
.

Let the secret key associated with the tree Tww(l+1)
as

skT ,ww(l+1)
=

(
{D(l+1)

x , R(l+1)
x }x is a leaf node of T , {D

(l+1)
“k-wk”

, R
(l+1)
“k-wk”

}1≤k≤l+1

)
.

Next, we use the constant terms of the polynomials associated with
all the leaf nodes in the tree Tww(l+1)

to define the components of the
secret key skT ,ww(l+1)

. We refresh the D,R values for all the existing
nodes and define the D,R values for the new node as follows.

(a) (refresh) For each leaf node x in the tree T , refresh D,R values
for x:

D(l+1)
x = (D(l)

x )−
1

l+2
·1+1 · g

p
(l+1)
x (0)

2 · T (att(x))r
(l+1)
x

R(l+1)
x = (R(l)

x )−
1

l+2
·1+1 · gr

(l+1)
x

where r
(l+1)
x ∈ Zp is chosen randomly.

(b) (refresh) If w = ε, then go to step 2c, else for each node “k-wk”
(1 ≤ k ≤ l), refresh D,R values for “k-wk”:

D
(l+1)
“k-wk”

= (D
(l)
“k-wk”

)−
1

l+2
·(k+1)+1 · g

p
(l+1)
“k-wk”(0)

2 · T (att(“k-wk”))
r
(l+1)
“k-wk”

R
(l+1)
“k-wk”

= (R
(l)
“k-wk”

)−
1

l+2
·(k+1)+1 · gr

(l+1)
“k-wk”

where r
(l+1)
“k-wk”

∈ Zp is chosen randomly.
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(c) (define) For the new node “(l+1)-w(l+1)”, define D,R values for
“(l+1)-w(l+1)”:

D
(l+1)
“(l+1)-w(l+1)”

= g
p
(l+1)
“(l+1)-w(l+1)”

(0)

2 · T (att(“(l+1)-w(l+1)”))
r
(l+1)
“(l+1)-w(l+1)”

R
(l+1)
“(l+1)-w(l+1)”

= g
r
(l+1)
“(l+1)-w(l+1)”

where r
(l+1)
“(l+1)-w(l+1)”

∈ Zp is chosen randomly.

All the above D,R values are in the same form as in the Key Gener-
ation algorithm.

The algorithm outputs the secret keys skT ,w0, skT ,w1 associated with the
trees Tw0,Tw1.

Update (SKT ,i, i+1)(where i < N − 1) Let 〈i〉 = i0i1 · · · id, where i0 = ε.
Let SKT ,i =

(
skT ,〈i〉, {skT ,i0i1···ik−11}ik=0

)
. Erase skT ,〈i〉. We distinguish

two cases. If id = 0, simply output the remaining keys as the key SKT ,i+1 for
the next period. Otherwise, let k̃ be the largest value such that i

k̃
= 0 (such

k̃ must exist since i < N − 1). Let i′ = i0i1 · · · ik̃−11. Notice that skT ,i′ is
included as part of SKT ,i. Using (skT ,i′ ,Ti′ , i

′), recursively apply algorithm
Compute Next to generate keys skT ,i′1, skT ,i′01, · · · , skT ,i′0d−k̃−11

, sk
T ,i′0d−k̃ .

Erase skT ,i′ and output the remaining keys as SKT ,i+1.

Decryption (〈i, C〉, SKT ,i) This algorithm outputsm if and only if T (γ) =
1. Let 〈i〉 = i0i1 · · · id, where i0 = ε. Let

SKT ,i =
(
skT ,〈i〉, {skT ,i0i1···ik−11}ik=0

)
,

skT ,〈i〉 =
(
{D(d)

x , R(d)
x }x is a leaf node of T , {D

(d)
“k-wk”

, R
(d)
“k-wk”

}1≤k≤d

)
.

We first define a recursive algorithm DecryptNode(C, skT ,〈i〉, x), where C =(
γ ∪{“1-i1”, “2-i2”, · · · , “d-id”}, C

′, C ′′, {Ck}k∈γ∪{“1-i1”,“2-i2”,· · · ,“d-id”}
)
, and

x is a node in the tree T〈i〉.

• If x is a leaf node, then

DecryptNode(C, skT ,〈i〉, x)

=





e(D
(d)
x ,C′′)

e(R
(d)
x ,Ck)

if k = att(x) ∈ γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}

⊥ otherwise
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• If x is an interior node, then DecryptNode(C, skT ,〈i〉, x) is defined as
follows: If x is not satisfied, then DecryptNode(C, skT ,〈i〉, x) returns
⊥. Otherwise, call DecryptNode(C, skT ,〈i〉, x

′) for all children x′ of x
and denote the output by Fx′ . Let Sx denote a set that consists of kx
nodes x′ such that Fx′ 6= ⊥. We define

DecryptNode(C, skT ,〈i〉, x) =
∏

x′∈Sx

F
∆j,S′

x
(0)

x′

where j = index(x′) and S′
x = {index(x′) : x′ ∈ Sx}.

The decryption algorithm calls the DecryptNode with (C, skT ,〈i〉, z), where
z is the root of the tree T〈i〉. If the output of the DecryptNode is not ⊥,
then we use it to divide into C ′ and output the result. The correctness is
shown in the appendix.

Proof of Security We reduce the security of fs-ABE to the security of
GPSW-ABE [10]. We prove that the fs-ABE scheme is secure in the selective
chosen plaintext, a set of attributes and time period model. In section 8, we
will describe that how a selective chosen plaintext secure fs-ABE scheme can
be transformed into one that is secure against adaptive chosen ciphertext
adversaries.

The security is proven in a game model. The adversary A who can
break the fs-ABE scheme can be used to construct an adversary B who
attacks the GPSW-ABE scheme with a non-negligible advantage. B is given
the public parameters of the GPSW-ABE scheme by its challenger, then it
simulates the fs-ABE environment for A. Although B does not have the
master key of fs-ABE, B needs to answer the private key queries and the
challenge ciphertext query from A. B’s responses have to be well-formed,
i.e., compliant with the specifications of the fs-ABE scheme.

Theorem 1 If an adversary has advantage ǫ to attack the fs-ABE scheme

in the selective chosen plaintext, a set of attributes and time period model,

then a simulator can be constructed to attack the GPSW-ABE scheme in the

selective chosen plaintext, a set of attributes model with the same advantage

ǫ.

The full proof is shown in the appendix. We summarize our proof strategy
here. The simulator B needs to answer the private key queries SKT ,j in two
cases: 1. T (γ) = 1 and j > i. 2. T (γ) = 0. To make B’s responses well-
formed, we define a procedure PolyUnsat, which sets up a polynomial for
each node of an unsatisfied access tree. For case 1, B runs PolyUnsat on the
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trees T〈j〉 and {Tj0j1···jk−11}jk=0, then constructs the secret keys associated
with these trees using the polynomials defined by PolyUnsat. B passes the
set of above secret keys to A as SKT ,j. For case 2, B runs PolyUnsat on
the tree T , and constructs the secret key associated with T , then uses this
key to obtain SK ′

T ,0 as in Key Generation of fs-ABE. Next, B runs Update
in fs-ABE with SK ′

T ,0 to generete SK ′
T ,j, and passes SK ′

T ,j to A as SKT ,j.
The private key SKT ,j in two cases both have identical distribution to that
of the fs-ABE scheme. We also manage to make the simulator B’s generation
of the public parameters and the challenge ciphertext identical to that of
the fs-ABE scheme. Thus, the Theorem 1 holds.

7 Individualized Forward-secure Attribute-Based

Encryption (ifs-ABE)

In fs-ABE described above, all attributes need to be updated according to
the same schedule. We further extend our fs-ABE scheme to support more
flexible and individualized key-update schedules, specifically each attribute
may enjoy its own forward-secure key-updating precision. Our main moti-
vation is to achieve more efficient operations. We refer to this new scheme
as individualized fs-ABE (ifs-ABE). The ifs-ABE scheme provides the same
security as fs-ABE in the fs-ABE security model. The security of the ifs-
ABE scheme can be proven using a similar method as in Theorem 1. We
outline our scheme next.

In an ifs-ABE scheme, each attribute has its own time precision. If the
standard time period is i, then for an attribute x with the time precision
dx (dx ≤ d) the local time period is i|dx , where i|dx is the integer converted
from the dx-bit prefix i1i2 · · · idx of 〈i〉 = i1i2 · · · id. In such a scheme, the
private key of a user is evolved with time. At the standard time period 0
a user is issued an initial private key associated with an access tree by the
Private Key Generator (PKG). At the end of each standard time period
he updates his private key for the next standard time period and erases the
current key. For an attribute x with the time precision dx, the corresponding
component of the private key is not always updated when the standard time
period changes. Specifically, if the next standard time period is multiple
of 2d−dx then it will be updated. As an example, let the standard time
precision d = 3 and the time precision dx associated with an attribute x be
2. When the standard time period changes from 〈4〉 = 100 to 〈5〉 = 101,
the component corresponding to x in the private key will not be updated
because for the attribute x the local time period does not change. When the
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standard time period changes from 〈5〉 = 101 to 〈6〉 = 110, the component
will be updated because the local time period changes from 〈5〉|2 = 10 to
〈6〉|2 = 11, i.e., from 2 to 3.

We provide the detailed description on such an ifs-ABE scheme in the
following. Let G1 be a bilinear group of prime order p with a generator g.
Let e : G1 ×G1 → G2 denote the bilinear pairing. The size of the groups is
determined by a security parameter κ. We define the Lagrange coefficient
∆i,S(x) =

∏
j∈S,j 6=i

x−j
i−j

for i ∈ Zp and a set S of elements in Zp as before.
This construction uses elements of Z∗

p as attributes. The message will be
encrypted under a standard time period i and a set γ of n elements of Z∗

p.
The construction is shown below.

Setup (n, d) This algorithm runs the Setup of fs-ABE with (n, nd). Let
(PK,MK) denote the output of that process. Output PK as the public
parameters and MK as the master key. The master key MK will be known
only to the Private Key Generator (PKG).

Encryption (m,γ, i,PK) Let γ = {γ1, γ2, · · · , γn} and 〈i〉 = i1i2 · · · id.
For a message m ∈ G2, this algorithm chooses random s ∈ Zp and outputs
〈i, C〉 as the ciphertext, where

C =
(
γ ∪ {“γ1-1-i1”, · · · , “γ1-dγ1-idγ1”, · · · , “γn-1-i1”, · · · , “γn-dγn -idγn ”},

C ′ = me(g1, g2)
s, C ′′ = gs,

{Ck = T (k)s}k∈γ∪{“γ1-1-i1”,··· ,“γ1-dγ1 -idγ1 ”,··· ,“γn-1-i1”,··· ,“γn-dγn -idγn ”}

)
.

Notice that “γj-1-i1”, · · · , “γj-dγj-idγj ” for j = 1 to n denote the components

of 〈i〉|dγj = i1i2 · · · idγj corresponding to the attribute γj .

Key Generation (T ,MK,PK) The PKG computes an initial private key
associated with the access tree T for the user, so that a message encrypted
under a set γ of attributes and the standard time period 0 can be decrypted
by the user if and only if the access tree T can be satisfied by the set γ of
attributes.

Choose a polynomial for each node in the tree T as in the Key Generation
of fs-ABE. For each leaf node x, add a new (1, 1) threshold gate z above
x, which becomes the parent of x replacing the former one y. Define the
polynomial associated with z: qz(X) ≡ qy(index(z)) such that qx(0) = qz(1)
satisfied to the constraint in the Key Generation of fs-ABE, where 1 is the
index of x as a child of z. There is no need to modify the polynomials
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associated with the ancestor nodes of y. After each leaf node is processed
above, we still use T to denote the new tree.

For each leaf node x of the tree T , let

D(0)
x = g

qx(0)
2 · T (att(x))rx

R(0)
x = grx ,

where rx is chosen randomly from Zp. Let (T |x)ε denote the the subtree
T |z of the tree T , where z is the (1,1) threshold gate added above x. Let
the secret key skT ,x,ε associated with the tree (T |x)ε as

skT ,x,ε =
(
{D(0)

x , R(0)
x }, ∅

)
.

Using (skT ,x,ε, (T |x)ε, ε), recursively apply algorithm Compute Next (de-
fined below) to obtain the private key

SKT ,0 = {SKT ,x,0|dx
}x is a leaf node of T ,

SKT ,x,0|dx
=

(
skT ,x,〈0〉|dx

, {skT ,x,1, skT ,x,01, · · · , skT ,x,0dx−11}
)
,

which is associated with the tree T and the standard time period 0. Output
SKT ,0 and erase all other information.

Compute Next (skT ,x,w, (T |x)w, w) This algorithm takes a prefix w =
w0w1 · · ·wl of some local time period, where w0 = ε, 0 ≤ l ≤ dx − 1, the
access tree (T |x)w and the secret key skT ,x,w associated with (T |x)w as input,
and outputs the secret keys associated with the trees (T |x)w0 and (T |x)w1.
Notice that if w 6= ε then (T |x)w denote the tree that is obtained by adding
the attributes “att(x)-1-w1”, “att(x)-2-w2”, · · · , “att(x)-l-wl” in turn to the
tree (T |x)ε in the Key Generation algorithm as children of the root node z
of (T |x)ε, where x is a leaf node of the tree T , and “att(x)-1-w1”, “att(x)-2-
w2”, · · · , “att(x)-l-wl” are the components of w = w1w2 · · ·wl corresponding
to x. The tree (T |x)w is shown in Figure 3.

If w 6= ε, then let

skT ,x,w =
(
{D(l)

x , R(l)
x }, {D

(l)
“att(x)-k-wk”

, R
(l)
“att(x)-k-wk”

}1≤k≤l

)
.

Run the Compute Next of fs-ABE with (skT ,x,w, (T |x)w, w) and obtain the
secret keys skT |x,w0 and skT |x,w1 associated with the trees (T |x)w0 and
(T |x)w1 respectively. This algorithm outputs skT |x,w0 and skT |x,w1 as the
secret keys skT ,x,w0 and skT ,x,w1.
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z

x “att(x)-1-w1”“att(x)-2-w2” · · ·

· · ·

“att(x)-l-wl”

y

· · ·

T

(T |x)w

Figure 3: In the Compute-Next operation of ifs-ABE, the tree (T |x)w, where
x is a leaf node of T , z is a node added above x to become the parent of x
replacing the former one y in the Key Generation algorithm, and “att(x)-1-
w1”, “att(x)-2-w2”, · · · , “att(x)-l-wl” are the components of w = w1w2 · · ·wl

corresponding to x.

Update (SKT ,i, i+1)(where i < N − 1) Let 〈i〉 = i0i1 · · · id, where i0 = ε.
Let

SKT ,i = {SKT ,x,i|dx
}x is a leaf node of T ,

SKT ,x,i|dx
= (skT ,x,〈i〉|dx

, {skT ,x,i0i1···ik−11}ik=0)

where 〈i〉|dx = i0i1 · · · idx , i|dx is the integer converted from the binary string
〈i〉|dx , and k ≤ dx. For each leaf node x of T , if i ≡ 1 mod 2d−dx and
0 < i < 2d − 1 then run the Update of fs-ABE with (SKT |x,i|dx

, i|dx + 1)
and obtain the output SKT |x,i|dx+1 of that process as SKT ,x,i|dx+1. This
algorithm outputs

{SKT ,x,i|dx+1}x is a leaf node of T

as the secret key SKT ,i+1 associated with the tree T and the standard time
period i+ 1.

Decryption (〈i, C〉, SKT ,i) This algorithm outputs the message m if and
only if the access tree T can be satisfied by the set γ of attributes in the
ciphertext. Let 〈i〉 = i0i1 · · · id, where i0 = ε. Let

SKT ,i = {SKT ,x,i|dx
}x is a leaf node of T ,

SKT ,x,i|dx
=

(
skT ,x,〈i〉|dx

, {skT ,x,i0i1···ik−11}ik=0

)
,
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where 〈i〉|dx = i0i1 · · · idx , i|dx is the integer converted from the binary string
〈i〉|dx , and k ≤ dx. This algorithm takes

{skT ,x,〈i〉|dx
}x is a leaf node of T

as the secret key skT ,〈i〉 associated with the tree T〈i〉 that is obtained by
adding the attributes “att(x)-1-i1”, “att(x)-2-i2”, · · · , “att(x)-dx-idx” to
the tree T in the Key Generation algorithm for each leaf node x of the
T . Call the function DecryptNode defined in the Decryption of fs-ABE
with (C, skT ,〈i〉, r), where r is the root of the tree T〈i〉. If the output of the
DecryptNode is not ⊥, then we use it to divide into C ′ (recall that C ′ is a
component of C) and obtain the message m.

We can verify that decryption of ifs-ABE is performed correctly as in
Appendix A. The process of verification is omited. The ifs-ABE scheme
can be proven secure in the security model defined in section 3.3 using a
similar method to that is used to proof the security of fs-ABE. We have the
following theorem.

Theorem 2 If an adversary can break the ifs-ABE scheme in the selective

chosen plaintext, a set of attributes and time period model, then a simu-

lator can be constructed to solve the DBDH problem with a non-negligible

advantage.

8 Discussion

Convert Selective CPA Secure fs-ABE to Adaptive CCA Secure One. We
describe that how to convert a fs-ABE scheme that is secure against selective
chosen plaintext attack (CPA) to one that is secure against adaptive chosen
ciphertext attack (CCA).

A strongly unforgeable one-time signature scheme will be used. We
denote the verification key and signing key of such a signature scheme by
vk and sk respectively. If a sender wants to use a set γ of attributes, the
current time period i and the public parameters PK to encrypt a message,
then he now uses γ ∪ {“vk”}, i and PK to encrypt it, where “vk” is an
attribute corresponding to the verification key vk. Next, the sender signs
the ciphertext 〈i, C〉 using sk and takes

(
vk, 〈i, C〉, σ

)
as the new ciphertext,

where σ is the signature. A receiver with the private key associated with
an access tree T and the current time period i first uses the verification key
vk in the ciphertext to check if the signature is valid. If not, he rejects the
ciphertext. Otherwise, the receiver adds the attribute “vk” to the tree T〈i〉
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as a child of the root z of T〈i〉. Notice that z is converted from (d+1, d+1)-
gate to (d+2, d+2)-gate. Then he computes the secret key associated with
the new tree using the same method in the Compute Next algorithm, and
uses it to decrypt 〈i, C〉. The receiver obtains the message if and only if the
access tree T is satisfied by the set γ of attributes.

According to the work by Canetti et al. [30], a selective CPA secure fs-
ABE scheme can be transformed into an adaptive CCA secure one by the
above construction.

Private Key With Expiration Time. In the fs-ABE scheme we can add
an expiration time to the private key of a user, so that during the time pe-
riod time i the user can decrypt the ciphertext if and only if, i is less than
the expiration time, and the access tree T in the private key is satisfied by
the set γ of attributes in the ciphertext. As an example, let the total num-
ber of time periods N = 2d = 24, the current time period be 〈12〉 = 1100
and the expiration time be 〈13〉 = 1101. As in [13] we construct a subtree
corresponding to the expiration time 〈13〉 = 1101 as shown in Figure 4, and
add it to the tree T as a child of the root r of T . The node r is converted
from (kr, nr)-gate to (kr + 1, nr + 1)-gate. Notice that there is a relation-
ship between the construction of the subtree and the bit representation of
the expiration time. The PKG generates the initial private key for the user
according to this new tree instead of the tree T . The user updates his pri-
vate key by himself when the time period changes. During the current time
period 〈12〉 = 1100 the subtree is satisfied by the components “1-1”, “2-1”,
“3-0”, “4-0” of 〈12〉 = 1100, and the private key does not expire. The user
can decrypt the ciphertext if and only if the access tree T is satisfied by the
set γ of attributes in the ciphertext. If the time period is 〈14〉 = 1110, then
the subtree is not satisfied by the components “1-1”, “2-1”, “3-1”, “4-0” of
〈14〉 = 1110, and the private key expires. The user can not decrypt the
ciphertext even if the access tree T is satisfied by the set γ of attributes.

Analysis of Complexities. We present the running time complexities and
key sizes of fs-ABE and ifs-ABE schemes in Table 1. For both fs-ABE
and ifs-ABE schemes, Key Generation and Update algorithms need to call
Compute Next algorithm of fs-ABE. The time complexity of Compute Next
depends on the number of all nodes in the input access tree. We show the
key-generation time and key-update time in Table 1. Notice that in the
ifs-ABE scheme we assume that each attribute has time precision d for the
worst. If the number of all nodes in the access tree T of a user is large, and
many attributes have time precision less than d, then the Key Generation
and Update algorithms of ifs-ABE are more efficient than those of fs-ABE.
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r

· · ·

(1, 3)

“1-0” “2-0” (2, 2)

“3-0” “4-0”

T

Figure 4: A subtree corresponding to the expiration time 〈13〉 = 1101 is
added to the access tree T as a child of the root r of T , where (1,3), (2,2)
are threshold gates.

As in GPSW-ABE [10], the decryption time of fs-ABE and ifs-ABE can be
improved by the similar method. We omit the improvement procedure and
show the optimized time in Table 1. The Key Update algorithm has the same
computation cost O((h+logN) logN) as the Key Generation algorithm, we
show that in Table 1. The Key Update algorithm cannot be replaced by the
Key Generation algorithm. A user needs to update his private key on his
own, without contacting the PKG.

Delegation. Our fs-ABE scheme has the property of delegation of private
keys. For a private key SKT ,i associated with an access tree T and a time
period i, we can make use of the same operations in [10] to convert every
secret key in SKT ,i to a secret key for an access tree T ′ which is more
restrictive than T . The set of these new secret keys is just the private key
SKT ′,i for the access tree T ′ and the time period i.

9 Conclusions and an Open Problem

In this paper, we provided in-depth and formal descriptions on how to define,
construct, and analyze a forward-secure attribute-based encryption scheme,
which is a public-key encryption scheme with evolving decryption keys. The
forward security protects the confidentiality of past communications against
stolen decryption keys. This property is important for the attribute-based
encryption paradigm. We gave several extensions to our fs-ABE scheme to
further improve its usability and security.
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Table 1: Time Complexities and Key Sizes

Parameters fs-ABE ifs-ABE

Key generation time O((h+ logN) logN) O(m log2 N)
Encryption time O(n+ logN) O(n logN)
Decryption time O(m+ logN) O(m logN)
Key update time O((h+ logN) logN) O(m log2 N)
Ciphertext length O(n+ logN) O(n logN)
Public key size O(n+ logN) O(n logN)
Secret key size O((m+ logN) logN) O(m log2 N)

Note 1: The running time complexities and key sizes of fs-ABE
and ifs-ABE, where N is the total number of time periods, n is
the maximum size of the set of attributes a sender can encrypt
under, m and h are respectively the number of leaf nodes and
all nodes in the access tree T of a user.
Note 2: In the ifs-ABE scheme we assume that each attribute
has time precision d for the worst, where d = logN . If the
number of all nodes in the access tree T of a user is large, and
many attributes have time precision less than d, then the Key
Generation and Update algorithms of ifs-ABE are more efficient
than those of fs-ABE.

Not all the existing ABE schemes may be converted into a non-trivial for-
ward secure one. We generalize the properties that an ABE scheme should
possess in order to support forward security. This analysis on forward-
secure compatibility of ABE schemes is general and useful beyond the con-
crete cryptographic construction that we presented. We pointed it out an
open problem on how to support non-trivial forward secrecy in the existing
ciphertext-policy ABE scheme.

An open problem. Both ABE and IBE schemes have the inherent key-
escrow property – the key generator can derive the description keys for
everyone in the system – thus creating a single point of failure. A compro-
mised master key would compromise all communications. In pairing-based
IBE constructions, the master key can enjoy forward security [5], which sig-
nificantly mitigates the key-escrow problem. However, in our construction
the master key (y) cannot evolve with time, and it is kept the same. It
remains an interesting open problem on how to construct a fs-ABE scheme
that preserves the confidentiality of past communications of all users even in
the face of a compromised master secret. In such a scheme, the current mas-
ter key cannot be used to derive decryption keys of previous time periods.
This attack is not included in our current security model.
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A Correctness of Decryption Algorithm

We verify that decryption of fs-ABE is performed correctly. Recall

C =
(
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}, C

′ = me(g1, g2)
s,

C ′′ = gs, {Ck = T (k)s}k∈γ∪{“1-i1”,“2-i2”,··· ,“d-id”}
)
.

When decrypting, for each leaf node x, if k = att(x) ∈ γ∪{“1-i1”, “2-i2”, · · · , “d-id”}
then

DecryptNode(C, skT ,〈i〉, x) =
e(D

(d)
x , C ′′)

e(R
(d)
x , Ck)

=
e(g

q
(d)
x (0)

2 · T (k)r̄
(d)
x , gs)

e(gr̄
(d)
x , T (k)s)

=
e(g

q
(d)
x (0)

2 , gs) · e(T (k)r̄
(d)
x , gs)

e(gr̄
(d)
x , T (k)s)

= e(g, g2)
s·q

(d)
x (0),

where r̄
(d)
x can be computed from the iterative expression of D

(d)
x . For each

interior node x, if x is satisfied then

DecryptNode(C, skT ,〈i〉, x) =
∏

x′∈Sx

F
∆j,S′

x
(0)

x′

=
∏

x′∈Sx

(e(g, g2)
s·q

(d)

x′
(0))

∆j,S′
x
(0)

=
∏

x′∈Sx

(e(g, g2)
s·q

(d)

parent(x′)
(index(x′))

)
∆j,S′

x
(0)

=
∏

x′∈Sx

e(g, g2)
s·q

(d)
x (j)·∆j,S′

x
(0)

= e(g, g2)
s·q

(d)
x (0).

We have DecryptNode(C, skT ,〈i〉, z) = e(g, g2)
s·y = e(g1, g2)

s if and only if
T〈i〉

(
γ∪{“1-i1”,“2-i2”, · · · , “d-id”}

)
= 1. Thus,

C ′

DecryptNode(C, skT ,〈i〉, z)
=

me(g1, g2)
s

e(g1, g2)s
= m

if and only if T (γ) = 1. Decryption succeeds.
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B Proof of fs-ABE Security

Suppose there exists a polynomial-time adversary A, that can attack the
fs-ABE scheme in the selective chosen plaintext, a set of attributes and time
period model with advantage ǫ. We construct a simulator B that can attack
the GPSW-ABE scheme in the selective chosen plaintext, a set of attributes
model with the same advantage ǫ. The simulation proceeds as follows:

We first let the challenger set the groups G1 and G2 with an efficient
bilinear map e and generator g. Then the challenger sets the parameters of
GPSW-ABE, and passes g1(= gy), g2, t̃1, t̃2, · · · , t̃n+d+1 to B. It keeps y as
the master key.

Init The simulator B runs A. A sends a set γ of attributes and a time
period i on which it wishes to be challenged to B. Then B sends the set
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”} of attributes as its challenge set to the chal-
lenger.

Setup B chooses a random n+ d degree polynomial f(X) and calculates
a n + d degree polynomial u(X) as follows: set u(X) = −Xn+d for all
X ∈ γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”} and u(X) 6= −Xn+d for other X. B

sets tj = g
u(j)
2 gf(j) for all j = 1 to n + d + 1. Because f(X) is a random

n+d degree polynomial, all tj will be chosen independently at random as in

the fs-ABE construction. Implicitly, B defines T (X) = g
Xn+d+u(X)
2 gf(X). B

passes {g1, g2, t1, t2, · · · , tn+d+1} to A as the public parameters of fs-ABE.

Phase 1 A issues queries for private keys SKT ,j associated with a tree T
and a time period j. No private key query for the access tree T such that
T (γ) = 1 for any time j ≤ i is allowed. B has to generate the private keys
for A.

We first define a procedure PolyUnsat(T ′|x, γ
′, gλx), where T ′|x is an

unsatisfied access tree with the root node x, γ′ is a set of attributes such
that T ′|x(γ

′) = 0, and λx ∈ Zp. The procedure sets up a polynomial for
each node of T ′|x.

PolyUnsat(T ′|x, γ
′, gλx) It first defines a polynomial qx of degree dx for the

root node x such that qx(0) = λx by setting gqx(0) = gλx . For each x′

of hx(≤ dx) satisfied children of x, the procedure defines qx′(0) = λx′ ,
where λx′ ∈ Zp is chosen randomly, and sets qx(index(x

′)) = λx′ . To
completely define qx it then sets dx − hx points of qx randomly. For
each subtree T ′|x′ of T ′|x, the algorithm proceeds as follows:
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• If T ′|x′ is satisfied, it sets dx′ other points of qx′ randomly to
completely define qx′ . For any other node y in T ′|x′ , it completely
defines qy by setting qy(0) = qparent(y)(index(y)) and dy other
points randomly.

• If T ′|x′ is not satisfied, it recursively calls PolyUnsat(T ′|x′ , γ′, gqx(index(x
′))).

Notice that only gqx(index(x
′)) can be got by interpolation.

Notice that all defined polynomials satisfy to the constraint in the Key
Generation algorithm of fs-ABE scheme.

For the query for SKT ,j from A, B distinguishes two cases:

• T (γ) = 1 and j > i. In the construction of fs-ABE,

SKT ,j =
(
skT ,〈j〉, {skT ,j0j1···jk−11}jk=0

)
.

B has to generate the secret keys associated with the trees T〈j〉 and
{Tj0j1···jk−11}jk=0. Since j > i, {j0j1 · · · jk−11}jk=0 are not prefixes of
i. Thus,

Tj0j1···jk−11

(
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}

)
= 0.

The simulator B runs PolyUnsat on the trees T〈j〉 and {Tj0j1···jk−11}jk=0

with
(
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}, g1

)
. This defines a polynomial

for each node of T〈j〉 and {Tj0j1···jk−11}jk=0. The constant terms in the
polynomials associated with the roots of the above trees are all y. B
first constructs the secret key skT ,〈j〉 associated with the tree T〈j〉 as
follows. For each leaf node x of T〈j〉,

– If att(x) ∈ γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}. B knows the polyno-
mial qx completely.

D(d)
x = g

qx(0)
2 T (att(x))r

(d)
x = g

Q
(d)
x (0)

2 T (att(x))r
(d)
x

R(d)
x = gr

(d)
x

where r
(d)
x ∈ Zp is chosen randomly, and we denote qx(0) by

Q
(d)
x (0) for consistency.
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– If k = att(x) /∈ γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}. B knows gqx(0).

D(d)
x = g

−qx(0)f(k)

kn+d+u(k) (g
kn+d+u(k)
2 gf(k))rx

= g
qx(0)
2 (g

kn+d+u(k)
2 gf(k))

−qx(0)

kn+d+u(k) (g
kn+d+u(k)
2 gf(k))rx

= g
qx(0)
2 (g

kn+d+u(k)
2 gf(k))

rx−
qx(0)

kn+d+u(k)

= g
qx(0)
2 T (k)r

(d)
x

= g
Q

(d)
x (0)

2 T (att(x))r
(d)
x

R(d)
x = g

−qx(0)

kn+d+u(k) grx = g
rx−

qx(0)

kn+d+u(k) = gr
(d)
x

where rx ∈ Zp is chosen randomly, r
(d)
x = rx −

qx(0)
kn+d+u(k)

, and we

denote qx(0) by Q
(d)
x (0) for consistency.

B takes the set of above secret pairs as skT ,〈j〉. In a similar man-
ner B can construct {skT ,j0j1···jk−11}jk=0 associated with the trees
{Tj0j1···jk−11}jk=0. The distribution of each one of these secret keys
is identical to that of the fs-ABE scheme. B passes these keys to A as
SKT ,j.

• T (γ) = 0. B runs PolyUnsat on the tree T with (T , γ, g1). This defines
a polynomial for each node of T . The constant term in the polynomial
associated with the root of T is y. Define the secret key associated
with the tree T as in above case. B uses this key to recursively apply
the Compute Next algorithm of fs-ABE, and obtains SK ′

T ,0. Then
B runs the Update of fs-ABE with SK ′

T ,0 to generate SK ′
T ,j. The

distribution of SK ′
T ,j is identical to SKT ,j in the fs-ABE scheme. B

passes this key to A as SKT ,j.

Challenge The adversary A submits two equal messagesm0 andm1 to the
simulator B. B submits m0 and m1 to the challenger. The challenger flips
a fair coin b ∈ {0, 1}, and returns an encryption of mb in the GPSW-ABE
scheme. The ciphertext is output as:

(
γ∪{“1-i1”, “2-i2”, · · · , “d-id”},mbe(g1, g2)

s, gs, {T̃ (k)s}k∈γ∪{“1-i1”,“2-i2”,··· ,“d-id”}
)

B modifies this ciphertext as follows:

〈
i,
(
γ∪{“1-i1”, “2-i2”, · · · , “d-id”},mbe(g1, g2)

s, gs, {(gs)f(k)}k∈γ∪{“1-i1”,“2-i2”,··· ,“d-id”}
)〉

30



Then B passes it to A as the challenge ciphertext, which is a valid random
encryption of message mb in the fs-ABE scheme since (gs)f(k) = (gf(k))s =
T (k)s by the construction of T (X).

Phase 2 The simulator B acts exactly as it did in Phase 1.

Guess The adversary A submits a guess b′ of b to B. B submits b′ to the
challenger as its guess of b.

As shown above the simulator’s generation of public parameters, private
keys and the challenge ciphertext is identical to that of the actual fs-ABE
scheme. The advantage of the simulator attacking GPSW-ABE scheme in
selective chosen plaintext, a set of attributes game is

∣∣Pr[B’s guess of b is correct]−
1

2

∣∣

=
∣∣Pr[A’s guess of b is correct]−

1

2

∣∣
= ǫ.

For reducing the security of fs-ABE to hardness of DBDH problem, we need
the following Theorem 3 from [10].

Theorem 3 If an adversary has advantage ǫ to attack the GPSW-ABE

scheme in the selective chosen plaintext, a set of attributes model, then a

simulator can be constructed to solve the DBDH problem with the advantage
1
2ǫ.

Combining Theorem 1 and Theorem 3, we obtain the following Theorem 4
for the fs-ABE scheme.

Theorem 4 If an adversary can break the fs-ABE scheme in the selective

chosen plaintext, a set of attributes and time period model, then a simu-

lator can be constructed to solve the DBDH problem with a non-negligible

advantage.
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