
Functional Encryption for Inner Product Predicates
from Learning with Errors

Shweta Agrawal∗

University of California, Los Angeles
shweta@cs.ucla.edu

David Mandell Freeman†

Stanford University
dfreeman@cs.stanford.edu

Vinod Vaikuntanathan‡

University of Toronto
vinodv@cs.toronto.edu

August 16, 2011

Abstract

We propose a lattice-based functional encryption scheme for inner product predicates whose security
follows from the difficulty of the learning with errors (LWE) problem. This construction allows us to
achieve applications such as range and subset queries, polynomial evaluation, and CNF/DNF formulas on
encrypted data. Our scheme supports inner products over small fields, in contrast to earlier works based
on bilinear maps.

Our construction is the first functional encryption scheme based on lattice techniques that goes beyond
basic identity-based encryption. The main technique in our scheme is a novel twist to the identity-based
encryption scheme of Agrawal, Boneh and Boyen (Eurocrypt 2010).

Keywords. Functional encryption, predicate encryption, lattices, learning with errors.

∗Part of this work done while at Microsoft Research Redmond. Research supported in part from a DARPA/ONR PROCEED
award, and NSF grants 1118096, 1065276, 0916574 and 0830803.
†Research supported by NSF and DARPA.
‡Part of this work done while at Microsoft Research Redmond. Supported by an NSERC Discovery grant and by DARPA under

Agreement number FA8750-11-2-0225. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA or
the U.S. Government.

1 Introduction

Traditional public key encryption is “coarse,” in the sense that any user in the system can decrypt only
messages encrypted with that user’s public key. In a line of research beginning with the work of Sahai and
Waters [37], a number of researchers have asked how to make encryption more fine-grained. The result is
the notion of functional encryption [15], in which secret keys allow users to learn functions of encrypted
data. Two important examples of functional encryption are attribute-based encryption (ABE) [37, 27] and
predicate encryption (PE) [16, 28]. In (key-policy) ABE and PE systems, each ciphertext c is associated with
an attribute a and each secret key s is associated with a predicate f . A user holding the key s can decrypt c
if and only if f(a) = 1. The difference between the two types of systems is in the amount of information
revealed: an ABE system reveals the attribute associated with each ciphertext, while a PE system keeps the
attribute hidden. (Formal definitions of these properties appear in Section 2.)

This hiding requirement has made predicate encryption systems much more difficult to construct than
attribute-based encryption systems: while there exist ABE schemes that allow any access formula over
attributes [34, 44], the most expressive PE scheme is that of Katz, Sahai, and Waters [28], who construct a
PE scheme for inner product predicates. In such a scheme, attributes a and predicates f are expressed as
vectors ~va and ~wf respectively, and we say f(a) = 1 if and only if 〈~va, ~wf 〉 = 0. Despite this apparently
restrictive structure, inner product predicates can support conjunction, subset and range queries on encrypted
data [16] as well as disjunctions, polynomial evaluation, and CNF and DNF formulas [28].

All known constructions of attribute-based encryption [37, 27, 9, 20, 34, 26, 44, 7, 29, 33, 8] and predicate
encryption [13, 1, 39, 16, 28, 40, 38, 32, 10, 29] make use of bilinear groups, and the security of these schemes
is based on many different, and often complex, assumptions. For example, in one assumption used by Katz,
Sahai, and Waters [28, Assumption 1], the challenge consists of ten elements chosen in a specified way from
a group whose order is the product of three large primes p, q, r, and the problem is to determine whether one
of these elements has an order-q component. While assumptions such as this one can often be shown to hold
in a suitable generic group model (e.g., [28, Appendix A]), to obtain more confidence in security we would
like to build ABE and PE schemes based on computational problems whose complexity is better understood.

Our contribution. In this work we construct a lattice-based predicate encryption scheme for inner product
predicates whose security follows from the difficulty of the learning with errors (LWE) problem. The LWE
problem, in turn, is at least as hard as approximating the standard lattice problems GapSVP and SIVP in the
worst case [36, 35] and is also conjectured to be difficult even for quantum adversaries. Our construction
is the first functional encryption scheme based on lattice techniques that goes beyond basic identity-based
encryption (which can be viewed as predicate encryption that tests equality on strings). Our construction is
capable of instantiating all of the applications of predicate encryption proposed by Boneh and Waters [16]
and Katz, Sahai, and Waters [28]. While our construction does not satisfy the strong notion of privacy defined
by Katz, Sahai, and Waters [28], it does satisfy the slightly weaker notion considered by Okamoto and
Takashima [32] and Lewko et al. [29].

1.1 Overview of the Construction

Our approach. Just as functional encryption in bilinear groups builds on the ideas and techniques
introduced in constructions of identity-based encryption (IBE) in bilinear groups [14, 25, 11, 12, 42, 22],
our construction builds on the ideas and techniques used to achieve identity-based encryption from the LWE
assumption [24, 4, 19, 2, 3]. However, there is a key difference between lattice IBE constructions (without

1

random oracles) and bilinear group constructions that makes this kind of generalization more difficult in the
lattice setting. Namely, in the bilinear group IBE constructions the groups remain fixed, while the ciphertexts
and keys are manipulated so that group elements “cancel out” when a ciphertext matches a key. In the lattice
IBE constructions, each key and ciphertext is constructed using a different lattice, and decryption only works
when the key lattice and ciphertext lattice match. This structure does not easily generalize to the functional
encryption setting, where each key may match many ciphertexts and each ciphertext may match many keys.

We solve this “lattice matching” problem using a new algebraic technique that builds on the IBE scheme
of Agrawal, Boneh, and Boyen [2]. In our construction, we generate keys using a lattice Λf that depends
only on the predicate f , and we generate ciphertexts c using a lattice Λa that depends only on the attribute a.
Given a ciphertext c generated in this way and predicate f , we apply a suitable linear transformation that
moves c into the lattice Λf if and only if f(a) = 1. Once this transformation is applied, we can decrypt using
a key associated with Λf .

The details of our scheme and security proof are in Section 4. To prove security, we use a simulation
technique that draws on ideas introduced in [2]. In particular, we construct our simulation using a “punctured”
trapdoor that allows the simulator to answer secret key queries whenever f(a) = 0. In the simulation, we can
use an LWE challenge to construct a ciphertext that either decrypts correctly or decrypts to a random message.
While this technique suffices to prove that the system hides the message contents (“payload hiding”), it only
allows us to prove a weak form of anonymity (“attribute hiding”). Specifically, given a ciphertext c and
a number of keys that do not decrypt c, the user cannot determine the attribute associated with c. In the
strong form of attribute hiding, the user cannot determine the attribute associated with c even when given
keys that do decrypt c. (Formal definitions of these concepts appear in Section 2.) The weakened form of
attribute hiding we do achieve is nonetheless more than is required for ABE and should be sufficient for many
applications of PE.

Key technical ideas. Our encryption scheme is at its core based on the LWE scheme of Gentry, Peikert,
and Vaikuntanathan [24, §7], which is itself a “dual” of the original Regev LWE scheme [36, §5]. From a
geometric perspective, the public key in the GPV scheme describes a lattice Λ and a vector x, and the secret
key is a short vector s in the coset of the dual lattice Λ⊥ defined by x. A ciphertext contains a vector y that is
“close” to a random vector r ∈ Λ, so taking the inner product of y with s and reducing mod Z gives a value
that is “close” to 〈x, r〉 mod Z. The term 〈x, r〉 mod Z can thus be used (with some additional “noise”) as a
one-time pad to encrypt a message bit.

Existing constructions of lattice-based IBE in the standard model [4, 19, 2, 3] use the GPV encryption
scheme but replace the fixed lattice Λ with a lattice Λid that depends on the user’s identity id. Decryption
only works when the ciphertext lattice Λid and secret key lattice Λid′ are duals of each other, and there are
several methods of ensuring that this is the case if and only if id = id′. In trying to adapt these constructions
to the predicate encryption setting, we run into the problem that each ciphertext can be decrypted by many
secret keys and each secret key can decrypt many ciphertexts. Thus we cannot require that key lattice match
ciphertext lattices in the same way as above.

Before explaining our solution to this problem, let us recall the IBE scheme of Agrawal, Boneh, and
Boyen [2]. In the ABB IBE scheme, the encryption lattice is constructed as

Λid = Λq(A0 ‖A1 +H(id)B),

where A0,A1,B are n×m matrices over Zq and H(id) is a “full-rank difference” hash function. One can
generate secret keys for Λ⊥id using a short basis of Λ⊥q (A0) and the basis extension technique of [4, 19]. In the

2

security proof, the LWE challenge is embedded as the matrix A0, and the matrix A1 +H(id)B is equipped
with a “punctured” trapdoor that allows the simulator to respond to secret key queries for all identities id not
equal to the challenge identity id∗.

The algebraic structure of the ABB IBE scheme gives the tools we need to solve the “lattice matching”
problem described above. Specifically, in our predicate encryption scheme we encode an attribute vector
~w = (w1, . . . , w`) ∈ Z`q as the n× `m matrix

B~w := (w1B‖ · · · ‖w`B).

where B ∈ Zn×mq is a uniformly random matrix chosen by the encryptor. We generate the ciphertext as a
GPV encryption relative to the matrix

Λ~w := Λq(A0‖A1 + w1B‖ · · · ‖A` + w`B)

where the Ai are all n × m matrices. We view the ciphertext component that is close to Λ~w as a tuple
(c0, . . . , c`) ∈ (Zmq)`+1.

Since the recipient of a ciphertext does not know a priori which lattice was used to encrypt (indeed, this
is exactly the anonymity property of predicate encryption), we cannot expect the recipient to possess a secret
key derived from the dual of the ciphertext lattice as in the IBE case. Instead, we derive the key for a predicate
vector ~v from the dual of a certain lattice Λ~v and apply a linear transformation T~v that moves the ciphertext
into Λ~v exactly when 〈~v, ~w〉 = 0. If this linear transformation is “short” (in the sense of not increasing the
length of vectors too much), then a GPV secret key derived from Λ~v

⊥ can decrypt the ciphertext T~v(c).
Concretely, this transformation works as follows. For a predicate vector ~v = (v1, . . . , v`) ∈ Z`q, we define

the linear transformation T~v : (Zmq)`+1 → Z2m
q by

T~v(c0, . . . , c`) = (c0,
∑`

i=1 vici).

Some algebraic manipulation (detailed in Section 4) shows that applying this transformation to a ciphertext
encrypted using Λ~w is equivalent to computing a GPV ciphertext using the lattice

Λ~v,~w := Λq

(
A0

∥∥ ∑̀
i=1

viAi + 〈~v, ~w〉B
)
,

Letting the secret key for ~v be the GPV secret key associated to Λ⊥q (A0 ‖
∑`

i=1 viAi) allows the holder of a
key for predicate ~v to decrypt a ciphertext associated with attribute ~w exactly when 〈~v, ~w〉 = 0.

The reader may have observed that in the above formulation, the requirement that the linear transformation
T~v be “short” implies that we cannot use all vectors ~v ∈ Z`q as predicates, but only ones whose entries have
small absolute value (when viewed as integers in (−q/2, q/2]). In Section 4 we will see how to get around this
obstacle, enabling our construction to use arbitrary vectors in Z`q. We do this by using the r-ary decomposition
of the vector ~v for suitably small r (e.g., r = 2), at the expense of expanding the ciphertext by a factor
of logr q.

2 Predicate Encryption

We use the definition of predicate encryption proposed by Katz, Sahai, and Waters [28], which is based on
the definition of searchable encryption proposed by Boneh and Waters [16]. We will let n denote the security
parameter throughout this paper.

3

Definition 2.1 ([28, Definition 2.1]). A (key-policy) predicate encryption scheme for the class of predicates
F over the set of attributes Σ consists of four ppt algorithms Setup, KeyGen, Enc, Dec such that:

• Setup takes as input a security parameter n and outputs a set of public parameters PP and a master
secret key MK.

• KeyGen takes as input the master secret key MK and a (description of a) predicate f ∈ F . It outputs a
key skf .

• Enc takes as input the public parameters PP, an attribute I ∈ Σ, and a message M in some associated
message spaceM. It returns a ciphertext C.

• Dec takes as input a secret key skf and a ciphertext C. It outputs either a message M or the
distinguished symbol ⊥.

For correctness, we require that for all n, all (PP,MK) generated by Setup(1n), all f ∈ F , any key
skf ← KeyGen(sk, f), all I ∈ Σ, and any ciphertext C ← Enc(PP, I,M):

• If f(I) = 1, then Dec(skf , C) = M .

• If f(I) = 0, then Dec(skf , C) = ⊥ with all but negligible probability.

In a ciphertext-policy scheme keys are associated with attributes and ciphertexts are associated with predicates;
the syntax is otherwise the same.

Our construction in Section 4 satisfies a different correctness condition: If f(I) = 1 and C =
Enc(PP, I,M), then Dec(skf , c) = M , but if f(I) = 0 then Dec(skf , C) is computationally indistin-
guishable from a uniformly random element in the message spaceM. However, ifM is exponentially large
then we can easily transform our system into one satisfying Definition 2.1 by restricting the message space to
some subsetM′ ⊂M with |M′|/|M| = negl(n).

2.1 Security

There are several notions of security for predicate encryption schemes. The most basic is payload hiding,
which guarantees that no efficient adversary can obtain any information about the encrypted message, but
allows information about attributes to be revealed. A stronger notion is attribute hiding, which guarantees in
addition that no efficient adversary can obtain any information about the attribute associated with a ciphertext.
We also define an intermediate notion, weak attribute hiding, which makes the same guarantee only in the
case that the adversary cannot decrypt the ciphertext. Our definition of security is “selective,” in the sense
that the adversary must commit to its challenge attributes before seeing any secret keys.

Definition 2.2 ([28, Definition 2.2]). A predicate encryption scheme with respect to F and Σ is attribute
hiding if for all probabilistic polynomial-time adversaries A, the advantage of A in the following experiment
is negligible in the security parameter n:

1. A(1n) outputs I0, I1 ∈ Σ.

2. Setup(1n) is run to generate PP and MK, and the adversary is given PP.

4

3. A may adaptively request keys for any predicates f1, . . . , f` ∈ F subject to the restriction that
fi(I0) = fi(I1) for all i. In response, A is given the corresponding keys skfi ← KeyGen(MK, fi).

4. A outputs two equal-length messages M0,M1. If there is an i for which fi(I0) = fi(I1) = 1, then it is
required thatM0 = M1. A random bit b is chosen, andA is given the ciphertext C ← Enc(PP, Ib,Mb).

5. The adversary may continue to request keys for additional predicates, subject to the same restrictions
as before.

6. A outputs a bit b′, and succeeds if b′ = b. The advantage of A is the absolute value of the difference
between its success probability and 1/2.

We say the scheme is weakly attribute hiding if the same condition holds for adversaries A that are only
allowed to request keys for predicates fi with fi(I0) = fi(I1) = 0. We say the scheme is payload hiding if
we require I0 = I1.

We observe that any scheme that is attribute hiding is weakly attribute hiding, and any scheme that
is weakly attribute hiding is payload hiding. (In the payload hiding game no adversary can achieve non-
negligible advantage when requesting a key for a predicate f with f(I0) = f(I1) = 1, so we may assume
without loss of generality that the adversary does not request such a key.)

Remark 2.3. In our construction the spaces F of predicates and Σ of attributes depend on the public
parameters PP output by Setup. We thus modify the security game so as to give the adversary descriptions
of F and Σ before Step (1) and run the remainder of the game (including any remaining steps in the Setup
algorithm) as described.

3 Lattice Preliminaries

In this section we collect the results from the literature that we will need for our construction and the proof of
security. Results from probability that we need appear in Appendix A.

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and we represent Zq as
integers in (−q/2, q/2]. We let Zn×mq denote the set of n×m matrices with entries in Zq. We let Idm denote
the m×m identity matrix. We use bold capital letters (e.g. A) to denote matrices, bold lowercase letters
(e.g. x) to denote vectors that are components of our encryption scheme, and arrows (e.g. ~v) to denote vectors
that represent attributes or predicates. The notation AT denotes the transpose of the matrix A. When we say
a matrix defined over Zq has full rank, we mean that it has full rank modulo each prime factor of q.

If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′) matrix
formed by concatenating A1 and A2. If x1 is a length m vector and x2 is a length m′ vector, then we
let [x1|x2] denote the length (m+m′) vector formed by concatenating x1 and x2. However, when doing
matrix-vector multiplication we always view vectors as column vectors.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a
negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n) to
denote a polynomial function of n. We say an event occurs with overwhelming probability if its probability is
1− negl(n). The function lg x is the base 2 logarithm of x. The notation bxe denotes the nearest integer to x,
rounding towards 0 for half-integers.

5

3.1 Lattices

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is a linearly independent set
of vectors whose span is Λ. We will usually be concerned with integer lattices, i.e., those whose points have
coordinates in Zm. Among these lattices are the “q-ary” lattices defined as follows: for any integer q ≥ 2 and
any A ∈ Zn×mq , we define

Λ⊥q (A) :=
{
e ∈ Zm : A · e = 0 mod q

}
Λu
q (A) :=

{
e ∈ Zm : A · e = u mod q

}
.

Λq(A) :=
{
e ∈ Zm : ∃ s ∈ Zmq with At · s = e mod q

}
.

The lattice Λu
q (A) is a coset of Λ⊥q (A); namely, Λu

q (A) = Λ⊥q (()A)+t for any t such that A ·t = u mod q.

The Gram-Schmidt norm of a basis. Let S = {s1, . . . , sk} be a set of vectors in Rm. We use the
following standard notation:

• ‖S‖ denotes the length of the longest vector in S, i.e., max1≤i≤k ‖si‖.

• S̃ := {s̃1, . . . , s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk.

We refer to ‖S̃‖ as the Gram-Schmidt norm of S.
Ajtai [5] and later Alwen and Peikert [6] showed how to sample an essentially uniform matrix A ∈ Zn×mq

along with a basis S of Λ⊥q ((A)) with low Gram-Schmidt norm.

Theorem 3.1 ([6, Theorem 3.2] with δ = 1/3). Let q, n,m be positive integers with q ≥ 2 and m ≥ 6n lg q.
There is a probabilistic polynomial-time algorithm TrapGen(q, n,m) that outputs a pair (A ∈ Zn×mq , S ∈
Zm×m) such that A is statistically close to uniform in Zn×mq and S is a basis for Λ⊥q ((A)), satisfying

‖S̃‖ ≤ O(
√
n log q) and ‖S‖ ≤ O(n log q)

with overwhelming probability in n.

Gaussian distributions. Let L be a discrete subset of Zn. For any vector c ∈ Rn and any positive
parameter σ ∈ R>0, let ρσ,c(x) := exp

(
−π‖x− c‖2/σ2

)
be the Gaussian function on Rn with center c

and parameter σ. Let ρσ,c(L) :=
∑

x∈L ρσ,c(x) be the discrete integral of ρσ,c over L, and let DL,σ,c be
the discrete Gaussian distribution over L with center c and parameter σ. Specifically, for all y ∈ L, we
have DL,σ,c(y) =

ρσ,c(y)
ρσ,c(L) . For notational convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ,

respectively.
The following lemma gives a bound on the length of vectors sampled from a discrete Gaussian. The

result follows from [31, Lemma 4.4], using [24, Lemma 5.3] to bound the smoothing parameter.

Lemma 3.2. Let Λ be an n-dimensional lattice, let T be a basis for Λ, and suppose σ ≥ ‖T̃‖ · ω(
√

log n).
Then for any c ∈ Rn we have

Pr
[
‖x− c‖ > σ

√
n : x

R← DΛ,σ,c

]
≤ negl(n)

6

3.2 Sampling algorithms

We will also need the following algorithms to sample short vectors from specific lattices. Looking ahead, the
algorithm SampleLeft [2, 19] will be used to sample keys in the real system, while the algorithm SampleRight
[2] will be used to sample keys in the simulation.

Algorithm SampleLeft(A,B,TA,u, σ)

Inputs: a full rank matrix A in Zn×mq and a “short” basis TA of Λ⊥q (A),
a matrix B in Zn×m1

q ,
a vector u ∈ Znq , and a Gaussian parameter σ.

(3.1)

Output: Let F := (A ‖ B). The algorithm outputs a vector e ∈ Zm+m1 in the coset Λu
q (F).

Theorem 3.3 ([2, Theorem 17], [19, Lemma 3.2]). Let q > 2, m > n and σ > ‖T̃A‖ · ω(
√

log(m+m1)).
Then SampleLeft(A,B,TA,u, σ) taking inputs as in (3.1), outputs a vector e ∈ Zm+m1 distributed
statistically close to DΛu

q (F),σ where F := (A ‖ B).

Algorithm SampleRight(A,B,R,TB,u, σ)

Inputs: matrices A in Zn×kq and R ∈ Zk×m,

a full rank matrix B in Zn×mq and a “short” basis TB of Λ⊥q (B),
a vector u ∈ Znq , and a Gaussian parameter σ.

(3.2)

Output: Let F := (A ‖AR + B). The algorithm outputs a vector e ∈ Zm+k in the coset Λu
q (F).

Often the matrix R given to the algorithm as input will be a random matrix in {1,−1}m×m. Let Sm be the
m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR := ‖R‖ = supx∈Sm−1‖R · x‖.

Theorem 3.4 ([2, Theorem 19]). Let q > 2,m > n and σ > ‖T̃B‖ · sR · ω(
√

logm). Then
SampleRight(A,B,R,TB,u, σ) taking inputs as in (3.2) outputs a vector e ∈ Zm+k distributed statistically
close to DΛu

q (F),σ where F := (A ‖AR + B).

3.3 The LWE Problem

The Learning with Errors problem, or LWE, is the problem of determining a secret vector over Fq given
a polynomial number of “noisy” inner products. The decision variant is to distinguish such samples from
random. More formally, we define the (average-case) problem as follows:

Definition 3.5 ([36]). Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability distribution on Zq. For
r ∈ Znq , let Ar,χ be the probability distribution on Znq × Zq obtained by choosing a vector a ∈ Znq uniformly
at random, choosing e ∈ Zq according to χ, and outputting (a, 〈a, r〉+ e).

(a) The search-LWEq,n,χ problem is: for uniformly random r ∈ Znq , given a poly(n) number of samples
from Ar,χ, output r.

7

(b) The decision-LWEq,n,χ problem is: for uniformly random r ∈ Znq , given a poly(n) number of samples
that are either (all) from Ar,χ or (all) uniformly random in Znq × Zq, output 0 if the former holds and 1
if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time algorithms A, the
probability that A solves the decision-LWE problem (over r and A’s random coins) is negligibly close
to 1/2 as a function of n.

The power of the LWE problem comes from the fact that for certain noise distributions χ, solving the
search-LWE problem is as hard as finding approximate solutions to the shortest independent vectors problem
(SIVP) and the decision version of the shortest vector problem (GapSVP) in the worst case. For polynomial
size q there is a quantum reduction due to Regev, while for exponential size q there is a classical reduction
due to Peikert. Furthermore, the search and decision versions of the problem are equivalent whenever q is a
product of small primes. These results are summarized in the following:

Definition 3.6. For α ∈ (0, 1) and an integer q > 2, let Ψα denote the probability distribution over Zq
obtained by choosing x ∈ R according to the normal distribution with mean 0 and standard deviation α/

√
2π

and outputting bqxe.

Theorem 3.7 ([36]). Let n, q be integers and α ∈ (0, 1) such that q = poly(n) and αq > 2
√
n. If there

exists an efficient (possibly quantum) algorithm that solves decision-LWEq,n,Ψα , then there exists an efficient
quantum algorithm that approximates SIVP and GapSVP to within Õ(n/α) in the worst case.

Theorem 3.8 ([35]). Let n, q be integers and α ∈ (0, 1), and q =
∏
i qi ≥ 2n/2, where the qi are distinct

primes satisfying ω(
√

log n)/α ≤ qi ≤ poly(n). If there exists an efficient (classical) algorithm that solves
decision-LWEq,n,Ψα , then there exists an efficient (classical) algorithm that approximates GapSVP to within
Õ(n/α) in the worst case.

The following lemma will be used to show correctness of decryption.

Lemma 3.9 ([2, Lemma 12]). Let e be some vector in Zm and let y← Ψ
m
α . Then the quantity |〈e,y〉| when

treated as an integer in (−q/2, q/2] satisfies

|〈e,y〉| ≤ ‖e‖qα · ω(
√

logm) + ‖e‖
√
m/2

with overwhelming probability (in m).

4 A Functional Encryption Scheme for Inner Product Predicates

In our system, each secret key will be associated with a predicate vector ~v ∈ Z`q (for some fixed ` ≥ 2)
and each ciphertext will be associated with an attribute vector ~w ∈ Z`q. Decryption should succeed if and
only if 〈~v, ~w〉 = 0 (mod q). Hence the predicate associated with the secret key is defined as f~v(~w) = 1 if
〈~v, ~w〉 = 0 (mod q), and f~v(~w) = 0 otherwise.

4.1 The Construction

Let n ∈ Z+ be a security parameter and ` be the length of predicate and attribute vectors. Let q = q(n, `) and
m = m(n, `) be positive integers. Let σ = σ(n, `) and α = α(n, `) be positive real Gaussian parameters.
Let r = r(n, `) ≥ 2 be an integer and define k = k(n, `) := blogr qc.

8

LinFE.Setup(1n, 1`): On input a security parameter n and a parameter ` denoting the length of predicate
and attribute vectors, do:

1. Use the algorithm TrapGen(q, n,m) (from Theorem 3.1) to select a matrix A ∈ Zn×mq together
with a full-rank set of vectors TA ⊆ Λ⊥q (A) such that ‖T̃A‖ ≤ m · ω(

√
logm).

2. Choose ` · (1 + k) uniformly random matrices Ai,γ ∈ Zn×mq for i = 1, . . . , ` and γ = 0, . . . , k.

3. Select a uniformly random vector u ∈ Znq .

Output PP = (A, {Ai,γ}i∈{1,...,`},γ∈{0,...,k},u) and MK = TA.

LinFE.KeyGen(PP,MK, ~v): On input the public parameters PP, the master secret key MK, and a predicate
vector ~v = (v1, . . . , v`) ∈ Z`q, do:

1. For i = 1, . . . , `, let v̂i be the integer in [0, q − 1] congruent to vi mod q. Write the r-ary
decomposition of v̂i as

v̂i =
k∑
γ=0

vi,γ · rγ , (4.1)

where vi,γ are integers in [0, r − 1].

2. Define the matrices

C~v :=
∑̀
i=1

k∑
γ=0

vi,γAi,γ ∈ Zn×mq

A~v := [A ‖ C~v] ∈ Zn×2m
q .

3. Using the master secret key MK = (TA, σ), compute e← SampleLeft(A,C~v,TA,u, σ).
Then e is a vector in Z2m satisfying A~v · e = u mod q.

Output the secret key sk~v = e.

LinFE.Enc(PP, ~w,M): On input public parameters PP, an attribute vector ~w, and a message M ∈ {0, 1},
do:

1. Choose a uniformly random matrix B
R← Zn×mq .

2. Choose a uniformly random s
R← Znq .

3. Choose a noise vector x← Ψ
m
α and a noise term x← Ψα.

4. Compute c0 ← ATs + x.

5. For i = 1, . . . , ` and γ = 0, . . . , k, do the following:

(a) Pick a random matrix Ri,γ ∈ {−1, 1}m×m.
(b) Compute ci,γ ← (Ai,γ + rγwiB)Ts + RT

i,γx.

6. Compute c′ ← uT s + x+M · bq/2e ∈ Zq.

Output the ciphertext CT := (c0, {ci,γ}i∈{1,...,`},γ∈{0,...,k}, c′).

9

LinFE.Dec(PP, sk~v,CT): On input the public parameters PP, a secret key sk~v for predicate vector ~v, and a
ciphertext CT = (c0, {ci,γ}, c′), do:

1. Define the r-ary expansion of the vector ~v as in (4.1), and compute

c~v :=
∑̀
i=1

k∑
γ=0

vi,γci,γ

2. Let c := [c0|c~v].
3. Compute z ← c′ − eTc (mod q).

Output 0 if |z| < q/4 (when interpreted as in integer in (−q/2, q/2]) and 1 otherwise.

Note that, unlike in [2], the only role played by the matrix B in the main system is that of a “ciphertext
polluter.” Concretely, this means that the terms involving B vanish, and thus enable decryption, exactly when
the conditions are right; i.e., when 〈~v, ~w〉 = 0. Thus, the encryptor can choose, use, and discard this matrix
ephemerally and the key generation procedure does not need B at all. This is not the case in the IBE of [2],
where B is crucially required by both the encryption and key generation algorithms.

4.2 Correctness

We now show that for certain parameter choices, if a bit M is encrypted to the attribute vector ~w, the secret
key s~v corresponds to a predicate vector ~v, and 〈~v, ~w〉 = 0 (mod q), then the LinFE.Dec algorithm recovers
M .

Lemma 4.1. Suppose the parameters q and α are such that

q

log q
= Ω

(
σ · ` · r

log r
·m3/2

)
and α ≤

(
log q · σ · ` · r

log r
·m · ω

√
logm

)−1

.

Let
e← KeyGen(PP,MK, ~v), CT← Enc(PP, ~w,M), and M̃ ← Dec(PP, e,CT).

If 〈~v, ~w〉 = 0 (mod q), then with overwhelming probability we have M ′ = M .

Proof. During the first step of LinFE.Dec, we compute c~v, which is by definition:

c~v =
∑̀
i=1

k∑
γ=0

vi,γci,γ .

This can be expanded as

c~v =
∑̀
i=1

k∑
γ=0

vi,γ
[
(Ai,γ + rγwiB)Ts + RT

i,γx
]

=

∑̀
i=1

k∑
γ=0

vi,γAi,γ

T

s +

∑̀
i=1

k∑
γ=0

rγvi,γwi


︸ ︷︷ ︸

~v·~w

BTs +
∑̀
i=1

k∑
γ=0

vi,γR
T
i,γx. (4.2)

10

If 〈~v, ~w〉 = 0 (mod q) then the middle term of (4.2) disappears, leaving

c~v =

∑̀
i=1

k∑
γ=0

vi,γAi,γ

T

s +
∑̀
i=1

k∑
γ=0

vi,γR
T
i,γx (mod q)

In the second step of LinFE.Dec, we have:

c = [c0|c~v]

=

A∥∥∥∥∑̀
i=1

k∑
γ=0

vi,γAi,γ

T

s +

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T
i,γx

]
(mod q)

= AT
~v · s +

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T
i,γx

]
(mod q)

In the third step of LinFE.Dec, we multiply c with the key e. Recall that by Theorem 3.3 we have A~v ·e = u
(mod q). It follows that

eTc = uT s + eT

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T
i,γx

]
(mod q).

Finally, we compute:

z = c′ − eTc (mod q)

= (uT s + x+M · bq/2e)− uT s− eT

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T
i,γx

]
(mod q)

= M · bq/2e+
(
x− eT

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T
i,γx

])
︸ ︷︷ ︸

low-norm noise

(mod q)

To obtain M̃ = M , it suffices to set the parameters so that with overwhelming probability,∣∣∣∣x− eT

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T
i,γx

]∣∣∣∣ < q/4. (4.3)

Writing e = [e1|e2] with ei ∈ Zm allows us to rewrite this “noise” term as

x−
(
e1 +

∑̀
i=1

k∑
γ=0

vi,γRi,γe2

)T

x.

By Theorem 3.3 and Lemma 3.2, we have ‖e‖ < σ
√

2m with overwhelming probability. By Lemma A.1 we
have ‖Ri,γ · e2‖ ≤ 12

√
2m · ‖e2‖ with overwhelming probability. Since vi,γ ∈ [0, r − 1] it follows that∥∥∥∥e1 +

∑̀
i=1

k∑
γ=0

vi,γRi,γe2

∥∥∥∥ < (1 + 12 · ` · (1 + k) · r
√

2m
)
· σ
√

2m = O(` · k · r · σ ·m).

11

It now follows from Lemma 3.9 that the error term (4.2) has absolute value at most(
qα · ω(

√
logm) +

√
m/2

)
·O
(
` · r

log r
· σ ·m · log q

)
. (4.4)

(Recall that k = blogr qc.) For the quantity (4.4) to have absolute value less than q/4, it suffices to choose q
and α as in the statement of the Lemma.

4.3 Security

We use the simulation technique of Agrawal, Boneh, and Boyen [2] to reduce the security of our system to
the hardness of the decision-LWE problem.

Theorem 4.2. Suppose m ≥ 6n log q. If the decision-LWEq,α problem is infeasible, then the predicate
encryption scheme described above is weakly attribute hiding.

To prove the theorem we define a series of games against an adversary A that plays the weak attribute
hiding game (subject to the modification described in Remark 2.3). The adversary A outputs two attribute
vectors ~w0 and ~w1 at the beginning of each game, and at some point outputs two messages M0 and M1. The
first and last games correspond to the real security game with challenge ciphertexts LinFE.Enc(PP, ~w0,M0)
and LinFE.Enc(PP, ~w1,M1), respectively. In the intermediate games we use “alternative” setup, key
generation, and encryption algorithms Sim.Setup, Sim.KeyGen, and Sim.Enc. The algorithm Sim.Setup
takes as additional input an attribute vector ~w∗, and Sim.Enc takes as additional input the master key output
by Sim.Setup. Recall that during the course of the game the adversary can only request keys for predicate
vectors ~v such that 〈~v, ~w0〉 6= 0 and 〈~v, ~w1〉 6= 0.

Game0: The challenger runs the LinFE.Setup algorithm, answers the adversary’s secret key queries using
the LinFE.KeyGen algorithm, and generates the challenge ciphertext using the LinFE.Enc algorithm
with attribute ~w0 and message M0.

Game1: The challenger runs the Sim.Setup algorithm with ~w∗ = ~w0 and answers the adversary’s secret key
queries using the Sim.KeyGen algorithm. The challenger generates the challenge ciphertext using the
Sim.Enc algorithm with attribute ~w0 and message M0.

Game2: The challenger runs the Sim.Setup algorithm with ~w∗ = ~w0 and answers the adversary’s secret
key queries using the Sim.KeyGen algorithm. The challenger generates the challenge ciphertext by
choosing a uniformly random element of the ciphertext space.

Game3: The challenger runs the Sim.Setup algorithm with ~w∗ = ~w1 and answers the adversary’s secret
key queries using the Sim.KeyGen algorithm. The challenger generates the challenge ciphertext by
choosing a uniformly random element of the ciphertext space.

Game4: The challenger runs the Sim.Setup algorithm with ~w∗ = ~w1 and answers the adversary’s secret key
queries using the Sim.KeyGen algorithm. The challenger generates the challenge ciphertext using the
Sim.Enc algorithm with attribute ~w1 and message M1.

Game5: The challenger runs the LinFE.Setup algorithm, answers the adversary’s secret key queries using
the LinFE.KeyGen algorithm, and generates the challenge ciphertext using the LinFE.Enc algorithm
with attribute ~w1 and message M1.

We now define the alternative setup, key generation, and encryption algorithms.

12

Sim.Setup(1n, 1`, ~w∗): On input a security parameter n, a parameter ` denoting the length of predicate
and attribute vectors, and an attribute vector ~w∗ ∈ Z`q, do the following:

1. Choose a random matrix A
R← Zn×mq and a random vector u R← Znq .

2. Use TrapGen(q, n,m) to generate a matrix B∗ ∈ Zn×mq along with a basis TB∗ ∈ Zm×m of Λ⊥q (B∗).

3. For i = 1, . . . , ` and γ = 0, . . . , k, pick random matrices R∗i,γ
R← {−1, 1}m×m and set

Ai,γ ← AR∗i,γ − rγw∗i B∗.

Output the public parameters and master key

PP =
(
A, {Ai,γ}i∈{1,...,`},γ∈{0,...,k},u

)
, MK =

(
~w∗, {R∗i,γ}i∈{1,...,`},γ∈{0,...,k},B∗,TB∗

)
Sim.KeyGen(PP,MK, ~v): On input a master key MK and a vector ~v ∈ Z`q, do the following:

1. If 〈~v, ~w∗〉 = 0, output ⊥.

2. Define the r-ary decomposition of vi as in (4.1).

3. Define the matrices

C~v :=
∑̀
i=1

k∑
γ=0

vi,γAi,γ ∈ Zn×mq

A~v := [A ‖ C~v] ∈ Zn×2m
q .

Observe that

A~v =

[
A
∥∥∥A(∑̀

i=1

k∑
γ=0

vi,γR
∗
i,γ

)
−
(∑̀
i=1

k∑
γ=0

rγvi,γw
∗
i

)
︸ ︷︷ ︸

〈~v,~w∗〉

B∗

]
.

4. Let e← SampleRight

(
A, −〈~v, ~w∗〉B∗,

∑`
i=1

∑k
γ=0 vi,γR

∗
i,γ , TB∗ , u, σ

)
∈ Z2m

q .

Output the secret key sk~v = e.

Sim.Enc(PP, ~w,M,MK): This algorithm is the same as the LinFE.Enc algorithm, except:

1. In Step 1, matrix B∗ ∈ MK is used instead of a random matrix B.

2. In Step 5a, the matrices R∗i,γ ∈ MK for are used instead of random matrices Ri,γ for i = 1, . . . , ` and
γ = 0, . . . , k.

To prove security of our system, we show that each pair of games (Gamei,Gamei+1) are either statistically
indistinguishable or computationally indistinguishable under the decision-LWE assumption.

13

Lemma 4.3.

(a) The view of the adversary A in Game0 is statistically close to the view of A in Game1.

(b) The view of the adversary A in Game4 is statistically close to the view of A in Game5.

Proof. It suffices to prove (a) only. We first show that public parameters and challenge ciphertext output by
the alternative Sim.Setup and Sim.Enc algorithms are statistically indistinguishable from those output by
the real Setup and Enc algorithms.

First, the matrix A in the public parameters is chosen by running TrapGen in Game0, whereas it is a
uniformly random matrix in Zn×mq in Game1. Since m ≥ 6n log q, by Theorem 3.1, the matrix A output by
TrapGen is statistically indistinguishable from a uniformly random matrix, and thus the distribution of A in
Game0 and Game1 are statistically close.

Next, we show that the joint distribution of Ai,γ in the public parameters and ci,γ in the ciphertext in
Game0 and Game1 are statistically indistinguishable, for every i ∈ {1, . . . , `} and γ ∈ {0, . . . , k}. The
difference between (Ai,γ , ci,γ) in the two games is as follows:

• In Game0 the matrix Ai,γ is uniformly random in Zn×mq for every i ∈ {1, . . . , `} and γ ∈ {0, . . . , k}.
In Game1, Ai,γ is equal to AR∗i,γ − rγw∗iB∗ where (by Theorem 3.1) B∗ is statistically close to
uniformly random in Zn×mq (and is the same for all i, γ), and the matrices R∗i,γ are independently
chosen from {−1, 1}m×m for every i and γ.

• In Game0 the challenge ciphertext components ci,γ are computed as

ci,γ =
(
Ai,γ + rγw∗iB

∗
)T

s + R∗i,γ
Tx,

where B∗ is uniformly random in Zn×mq (and is the same for all i, γ) and the matrices R∗i,γ are
independently chosen from {−1, 1}m×m for every i and γ.

In contrast, in Game1, the corresponding challenge ciphertext components are

ci,γ =
(
AR∗i,γ − rγw∗iB∗ + rγw∗iB

∗
)T

s + R∗i,γ
Tx = R∗i,γ

T
(
ATs + x

)
where R∗i,γ are the same matrices used to compute the public parameters Ai,γ . Indeed, the main
difference between the two games is that the matrices R∗i,γ are chosen by the encryption algorithm and
used only in the ciphertext ci,γ in Game0, whereas in Game1, they play a double role: they are used to
construct the matrices Ai,γ in the public parameters as well as the ciphertext ci,γ .

We now argue that the distributions of the set S :=
(
A, {Ai,γ , ci,γ}i∈{1,...,`},γ∈{0,...,k}

)
in Game0 and

Game1 are statistically indistinguishable. The key is to observe that for every i and γ, if Ai,γ is uniformly
random and R∗i,γ is uniformly random in {−1, 1}m×m, then it follows from Lemma A.2 that the following
two distributions are statistically indistinguishable for every fixed matrix B∗, every ~w∗ and every vector
x ∈ Zmq :

(A,AR∗i,γ − rγw∗iB∗,R∗i,γ
Tx) ≈s (A,Ai,γ ,R

∗
i,γ

Tx) (4.5)

14

Furthermore, since the matrices R∗i,γ are chosen independently for every i, γ, the joint distributions of these
quantities for all i, γ are also statistically close:(

A,
{
AR∗i,γ − rγw∗iB∗,R∗i,γ

Tx
}
i,γ

)
≈s
(
A,
{
Ai,γ ,R

∗
i,γ

Tx
}
i,γ

)
(4.6)

If we add the same quantity to both sides of Equation 4.6 and use the fact that that applying any function
to two statistically indistinguishable ensembles produces statistically indistinguishable ensembles, we see
that the following two distributions are statistically close:(

A,

{
AR∗i,γ − rγw∗iB∗,

(
AR∗i,γ − rγw∗iB∗ + rγw∗iB

∗
)T

s︸ ︷︷ ︸
added term

+R∗i,γ
Tx

}
i,γ

)

≈s
(
A,

{
Ai,γ ,

(
Ai,γ + rγw∗iB

∗
)T

s︸ ︷︷ ︸
added term

+R∗i,γ
Tx

}
i,γ

)
(4.7)

Now observe that the distribution on the left hand side of (4.7) is the distribution of the public parameters
and the challenge ciphertext in Game1, while that on the right hand side is the distribution in Game0. It
follows that the joint distributions of the public parameters and the challenge ciphertext in the two games are
statistically indistinguishable.

To conclude the proof, we show that the secret keys output by Sim.KeyGen are statistically
indistinguishable from those output by LinFE.KeyGen (given the public parameters and the challenge
ciphertext). Assuming σ is sufficiently large, this follows from the properties of the algorithms SampleLeft
and SampleRight. By the properties of SampleLeft (Theorem 3.3), the key sk~v in Game0 comes from a
distribution statistically indistinguishable from DΛu

q (A~v),σ. By the properties of SampleRight (Theorem 3.4),
the key sk~v in Game1 comes from a distribution statistically close to DΛu

q (A~v),σ as well. In Section 4.4 we
will analyze exactly how large σ must be for these statements to hold.

Lemma 4.4.

(a) If the decision-LWE assumption holds, then the view of the adversary A in Game1 is computationally
indistinguishable from the view of A in Game2.

(b) If the decision-LWE assumption holds, then the view of the adversary A in Game3 is computationally
indistinguishable from the view of A in Game4.

Proof. It suffices to prove (a) only. Suppose we are given m + 1 LWE challenges (ai, yi) ∈ Znq × Zq for

j = 0, . . . ,m, where either yj = 〈aj , s〉+ xj for some (fixed) random secret s R← Znq and discrete Gaussian
noise xj ← Ψα, or yj is uniformly random in Zq (and this choice is the same for each challenge). We define
the following variables:

A :=

 | |
a1 · · · am
| |

 ∈ Zn×mq u := a0

c0 := (y1, . . . , ym) ∈ Zmq c′ := y0 +M · b q2e

(4.8)

We simulate the challenger as follows:

15

• Setup: Run Sim.Setup with ~w∗ = ~w0, and let A and u be as in (4.8).

• Private key queries: Run the Sim.KeyGen algorithm.

• Challenge ciphertext: For i = 1, . . . , ` and γ = 0, . . . , k, let ci,γ = R∗i,γ
Tc0 (using R∗i,γ ∈ MK).

Output (c0, {ci,γ}, c′).

Now observe that for i = 1, . . . , ` and γ = 0, . . . , k, the Sim.Enc algorithm sets

ci,γ =
(
ARi,γ − rγw∗iB∗ + rγw∗iB

∗)Ts + R∗i,γ
Tx = R∗i,γ

T(ATs + x).

It follows that if yj = 〈aj , s〉+ xj , then ci,γ = R∗i,γ
Tc0 and the simulator described above is identical to a

Game1 challenger.
On the other hand, if yj is random in Zq, then the simulated ciphertext is (c0,R

∗T
c0, c

′), where R
∗ is

the concatenation of the matrices R∗i,γ . By the standard leftover hash lemma (e.g. [41, Theorem 8.37]), the

quantities AR
∗ and R

∗T
c0 are independent uniformly random samples. Thus in this case the ciphertext is

uniformly random and the simulator described above is identical to a Game2 challenger.
We conclude that any efficient adversary that can distinguish Game1 from Game2 can solve the decision-

LWE problem.

Lemma 4.5. The view of the adversary A in Game2 is statistically indistinguishable from the view of A in
Game3.

Proof. Note that the only place where ~w∗ appears in the two games is in the public parameter Ai,γ :=

AR∗i,γ − rγw∗iB∗. Let A ∈ Zn×`(k+1)
q and R

∗ ∈ Z`(k+1)×`(k+1)
q be the concatenation of the Ai,γ and the

R∗i,γ , respectively. Then we have A = AR
∗. By Lemma A.2, (A,AR

∗
) is statistically indistinguishable

from (A,C) where C is uniformly random. Since for any fixed value of X and uniformly random C, the
variable C − X is also uniformly random, it follows that the distributions of Ai,γ in the two games are
statistically indistinguishable.

Proof of Theorem 4.2. Suppose that there is an efficient adversary A that wins the security game. Let A(i)

denote the output of A interacting with Gamei. Then we have

|Pr[A(0) = 1]− Pr[A(5) = 1]| ≥ 1

poly(n)
.

By a standard hybrid argument, this implies that

|Pr[A(i) = 1]− Pr[A(i+1) = 1]| ≥ 1

poly(n)
(4.9)

for some i in 0, . . . , 4. Since A is polynomial time, Lemma 4.3 implies that (4.9) cannot hold for i = 0 or
i = 4, while Lemma 4.5 implies that (4.9) cannot hold for i = 2. It now follows from Lemma 4.4 that A can
be used to solve the decision-LWE problem.

16

4.4 Parameter Selection

We can extract from the above description the parameters required for correctness and security of the system.
For correctness of decryption, by Lemma 4.1 we require

q

log q
= Ω

(
σ · ` · r

log r
·m3/2

)
and α ≤

(
log q · σ · ` · r

log r
·m · ω

√
logm

)−1

. (4.10)

In our security theorem (Theorem 4.2), we require

m > 6n lg q (4.11)

in order for the output of TrapGen to be statistically random. The additional constraints imposed by our
security reduction are the following:

• From the description of LinFE.Setup and LinFE.KeyGen, we have ‖T̃A‖ = O(
√
n log q) (by

Theorem 3.1) and e← DΛu
q (A||B),σ (by Theorem 3.3), subject to the requirement that

σ ≥ ‖T̃A‖ · ω(
√

logm) = O(
√
n log q) · ω(

√
logm).

• From the description of Sim.Setup and Sim.KeyGen, we have ‖T̃B∗‖ = O(
√
n log q) (by

Theorem 3.1), and e← DΛu
q (A||B),σ where, by Theorem 3.4, subject to the requirement that

σ ≥ ‖T̃B∗‖ · sR · ω(
√

logm) (4.12)

Since R is a sum of ` · (logr q + 1) random matrices with {1,−1} entries, it follows from Lemma A.1
that sR = sup{x:‖x‖=1} ‖Rx‖ = O(` · (logr q + 1) ·

√
m) with overwhelming probability. Plugging

this value into (4.12), we see that it suffices to choose

σ ≥ O(
√
n log q) ·O(` · (logr q + 1) ·

√
m) · ω(

√
logm).

Thus, to satisfy the more stringent of the above two conditions (namely, the latter), we set

σ = ω(m` log q ·
√

logm), (4.13)

using the fact (noted above) that m ≥ 6n log q.
In order to reduce decision-LWE to approximating worst-case lattice problems to within poly(n) factors

we have two options: for polynomial size q we can use Regev’s quantum reduction (Theorem 3.7) with
qα > 2

√
n and α ≥ 1/poly(n), while for exponential size q we can use Peikert’s classical reduction

(Theorem 3.8) with each prime factor qi of q satisfying ω(
√

log n)/α < qi < poly(n). (Note that a large
value of q may be required for certain applications; see Section 5.)

The following selection of parameters satisfies all of these constraints. For a given `, pick a small constant
δ > 0, and set

r = 2
m = dn1+δe, to satisfy (4.11)
σ = dn2+2δ · `e, to satisfy (4.13)
qi = the ith prime larger than (` log `)2 · n7/2+5δ

α = Ω
(
(` log `)2 · n3+5δ

)−1 to satisfy (4.10)

17

Observe that the above setting of parameters satisfies the conditions for applying Theorems 3.7 and 3.8.
To obtain polynomial size q we use q = q1, while to obtain exponential size q we use q =

∏τ
i=1 qi, where τ

is chosen so that q > 2n/2. In either case we can choose δ large enough so that n1+δ > 6n lg q. In the former
case, the security of the scheme can be based on the hardness of approximating SIVP and GapSVP to within a
factor of Õ(n/α) = Õ((` log `)2·n4+5δ) in the worst case (by quantum algorithms). In the latter case, security
is based on the hardness of approximating GapSVP to within a factor of Õ(n/α) = Õ((` log `)2 · n4+5δ) in
the worst case (by classical algorithms).

Note that since m > n lg q and qi > n, the matrices A and B have full rank modulo each prime divisor
of q with overwhelming probability, as required for successful execution of the SampleLeft and SampleRight
algorithms.

Finally, we note that one might be able to choose these parameters to have somewhat smaller values,
however we have made no attempt to optimize them. In particular, one might be able to reduce the ciphertext
size by choosing a larger value of r.

4.5 Multi-bit Encryption

As in the case of the GPV encryption scheme [24, §7] and the ABB IBE scheme [2, §6.5], our scheme can be
extended to encrypt multiple bits simultaneously using the same encryption randomness s. Briefly, we can do
this by replacing the public parameter u with one vector uj ∈ Znq for each message bit and encrypting the ith
message bit Mj using uj to form the ciphertext component

c′j ← uT
j s + xj +Mj · bq/2e ∈ Zq.

(where xj ← Ψα). The components c0 and ci,γ remain as before for all i, γ. The security analysis remains
almost exactly the same, except that in the reduction from LWE in Lemma 4.4 we use m LWE samples to
produce the matrix A and the ciphertext component c0, and use one additional sample for each message bit
to produce uj and c′j .

This multi-bit version of our scheme allows us to achieve the semantics of Definition 2.1 as discussed
on page 4. In particular, our proof of security shows that for CT ← LinFE.Enc(PP, ~w,M) and sk~v ←
LinFE.KeyGen(MK, ~v), if 〈~v, ~w〉 6= 0 then LinFE.Dec(skv,CT) is indistinguishable from a random bit
under the decision-LWE assumption.

5 Applications

Katz, Sahai, and Waters [28, §5] describe a number of applications of their predicate encryption scheme for
inner product predicates. Predicate and attribute vectors in their scheme are defined over ZN for some N
that is exponential in the security parameter n, and attributes and predicates can correspond to any vector in
Z`N . In our scheme vectors are defined over Zq where q may be either polynomial in n or exponential in n;
attributes and predicates now correspond to any vector in Z`q.

The key technique that allows us to handle arbitrary predicate vectors ~v ∈ Z`q is the decomposition of ~v
into its r-ary representation for some small r (e.g., r = 2). As a consequence, if it is known in advance that
predicate vectors will have only entries in [0, r− 1] (for example, if the vector takes only binary values), then
all of the matrices Ai,γ and ciphertext terms ci,γ may be discarded for τ ≥ 1, thus reducing the size of both
the public parameters and the ciphertext by a factor of approximately k = logr q.

18

We now consider the principal applications described by Katz, Sahai, and Waters and determine what
effect, if any, the size of q and the r-ary decomposition of predicate vectors have on each.

Hidden vector encryption. Boneh and Waters [16] developed a predicate encryption scheme called hidden
vector encryption (HVE) and showed how the scheme can be used to perform conjunctions of subset and
comparison queries. Katz, Sahai, and Waters [28, §5.2] showed how HVE can be realized using inner product
predicates.

Briefly, let Σ be a set and Σ? = Σ ∪ {?}. For vectors ~a ∈ Σk
∗ and ~x ∈ Σk, define

φhve~a (~x) =

{
1 if for all i either ai = xi or ai = ?.
0 otherwise.

To encode this predicate using inner products, we assume Σ ⊂ Zq \ {0} and associate to the predicate ~a a
vector ~A ∈ Z2k

q with A2i−1 = 1 and A2i = ai if ai 6= ?, and A2i−1 = A2i = 0 if ai = ?. For the attribute

vector ~x we choose a random vector ~r R← Zkq and associate to ~x the vector ~X with X2i−1 = −rixi and
X2i = ri.

Correctness of this encoding requires that a random element of Zq be zero with negligible probability,
which implies that q must be superpolynomial. We must therefore use exponential size q and Peikert’s
worst-case reduction (Theorem 3.8). However, since the random elements ri appear in attribute vectors only,
if predicate vectors contain only small entries then we can reduce the size of the public parameters and
ciphertext by eliminating the Ai,γ and ci,γ for γ ≥ 1. Indeed, in the applications of HVE described by Boneh
and Waters [16, §6], the predicate vectors have entries in {0, 1}.

Polynomial evaluation and CNF/DNF formulae. Katz, Sahai, and Waters [28, §5.3] observe that inner
products of length k vectors can be used to evaluate degree d polynomials in t variables as long as k > td. In
this formulation, predicate vectors encode the coefficients of a polynomial f and attribute vectors encode all
monomials in the variables. The predicate is 1 if and only if f evaluates to zero.

Our scheme supports both the polynomial evaluation functionality (for any q) as well as the “dual”
concept, where attributes are coefficients and predicates are monomials. Furthermore, if the polynomial
coefficients are small, then we can compress the public parameters and ciphertext as discussed above. (The
same holds if the variables in the “dual” system take only small values.)

Katz, Sahai, and Waters also show how to use polynomial evaluation to evaluate conjunctions and
disjunctions: to test whether x1 = a1 or x2 = a2 we evaluate the polynomial (x1−a1) · (x2−a2). Assuming
the variables take values in a small set, this predicate can be handled by our system using polynomial size q.

On the other hand, to test whether x1 = a1 and x2 = a2 we evaluate the polynomial r1(x1 − a1) +
r2(x2 − a2) for random r1, r2. As in the HVE example, correctness depends on a random element of Zq
being zero with negligible probability. Thus to test conjunctions we require q to be exponential.

We conclude that when q is of exponential size we can use our scheme to implement either key-policy
or ciphertext-policy attribute based encryption [27, 9] where policies are given by CNF or DNF formulae.
Furthermore, if implementing ciphertext-policy ABE with boolean attribute variables, then we can compress
the public parameters and ciphertexts by removing Ai,γ and ci,γ for γ ≥ 1.

Remark 5.1. It was pointed out to us by Brent Waters that predicates consisting of disjunctions only can be
instantiated using an anonymous IBE scheme (such as those of [19, 2, 3]) and still achieve the same level of
privacy as our scheme provides. Briefly, a key for the predicate (X = a OR X = b) consists of the two IBE

19

keys for a and b, and one decrypts by trying all of the keys in one’s possession. The anonymity property of
the IBE guarantees that the scheme is weakly attribute hiding, but the scheme clearly does not satisfy the
strong attribute hiding property. To achieve the stronger form of privacy for disjunctions — which was one of
the principal achievements of [28] — it appears that new techniques are needed.

We note that the construction of disjunction predicates using anonymous IBE gives constant-size
ciphertexts with key sizes linear in the number of terms in the disjunction, while our instantiation using inner
products gives constant-size keys and linear-size ciphertexts.

6 Conclusion and Open Questions

We have presented a lattice-based predicate encryption scheme for inner product predicates whose security
follows from the difficulty of the learning with errors (LWE) problem. Our construction can instantiate
applications such as range and subset queries, polynomial evaluation, and CNF/DNF formulas on encrypted
data. Our construction is the first functional encryption scheme based on lattice techniques that goes beyond
basic identity-based encryption.

Many open questions still remain in this field. One direction of research is to improve the security of
our construction. Our scheme is weakly attribute hiding in the selective security model, but for stronger
security guarantees we would like to construct a scheme that is fully secure and/or fully attribute hiding.
Achieving either task will require new simulation techniques; a natural question is whether the “dual-system”
approach introduced by Waters [43] and used to prove full security of attribute-based encryption and predicate
encryption in bilinear groups [29, 8, 33] can be adapted to lattice based constructions.

Finally, it is a open question to construct predicate encryption schemes (via any technique) that support a
greater range of functionality than inner product predicates. Ideally we would like a system that could support
any polynomial-size predicate on encrypted data. Now that predicate encryption has moved into the world of
lattices, perhaps techniques used to construct fully homomorphic encryption from lattices [23, 18, 17] could
be used to help us move towards this goal.

Acknowledgments. The authors thank Dan Boneh, Brent Waters and Hoeteck Wee for helpful discussions.

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Paillier,
and H. Shi. “Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and
extensions.” J. Cryptology 21 (2008), 350–391.

[2] S. Agrawal, D. Boneh, and X. Boyen. “Efficient lattice (H)IBE in the standard model.” In Advances in
Cryptology — EUROCRYPT 2010, ed. H. Gilbert, Springer LNCS 6110 (2010), 553–572. Full version
at http://crypto.stanford.edu/˜dabo/pubs/papers/latticebb.pdf.

[3] S. Agrawal, D. Boneh, and X. Boyen. “Lattice basis delegation in fixed dimension and shorter-ciphertext
hierarchical IBE.” In Advances in Cryptology — CRYPTO ’10, ed. T. Rabin, Springer LNCS 6223
(2010), 98–115.

[4] S. Agrawal and X. Boyen. “Identity-based encryption from lattices in the standard model.” Manuscript
(2009). Available at http://www.cs.stanford.edu/˜xb/ab09/.

20

http://crypto.stanford.edu/~dabo/pubs/papers/latticebb.pdf
http://www.cs.stanford.edu/~xb/ab09/

[5] M. Ajtai. “Generating hard instances of the short basis problem.” In Automata, Languages, and
Programming — ICALP ’99, ed. J. Wiedermann, P. van Emde Boas, and M. Nielsen, Springer LNCS
1644 (1999), 1–9.

[6] J. Alwen and C. Peikert. “Generating shorter bases for hard random lattices.” In STACS (2009), 75–86.
Full version available at http://www.cc.gatech.edu/˜cpeikert/pubs/shorter.pdf.

[7] N. Attrapadung and H. Imai. “Conjunctive broadcast and attribute-based encryption.” In Pairing-Based
Cryptography — Pairing ’09, ed. H. Shacham and B. Waters, Springer LNCS 5671 (2009), 248–265.

[8] N. Attrapadung and B. Libert. “Functional encryption for inner product: Achieving constant-size
ciphertexts with adaptive security or support for negation.” In Public Key Cryptography — PKC ’10, ed.
P. Q. Nguyen and D. Pointcheval, Springer LNCS 6056 (2010), 384–402.

[9] J. Bethencourt, A. Sahai, and B. Waters. “Ciphertext-policy attribute-based encryption.” In IEEE
Symposium on Security and Privacy (2007), 321–334.

[10] C. Blundo, V. Iovino, and G. Persiano. “Predicate encryption with partial public keys.” In Cryptology
and Network Security — CANS 2010, ed. S.-H. Heng, R. N. Wright, and B.-M. Goi, Springer LNCS
6467 (2010), 298–313.

[11] D. Boneh and X. Boyen. “Efficient selective-ID secure identity-based encryption without random
oracles.” In Advances in Cryptology — EUROCRYPT ’04, ed. C. Cachin and J. Camenisch, Springer
LNCS 3027 (2004), 223–238.

[12] D. Boneh and X. Boyen. “Secure identity based encryption without random oracles.” In Advances in
Cryptology — CRYPTO ’04, ed. M. Franklin, Springer LNCS 3152 (2004), 443–459.

[13] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. “Public key encryption with keyword
search.” In Advances in Cryptology — EUROCRYPT ’04, ed. C. Cachin and J. Camenisch, Springer
LNCS 3027 (2004), 506–522.

[14] D. Boneh and M. Franklin. “Identity-based encryption from the Weil pairing.” SIAM J. Comput. 32
(2003), 586–615. Extended abstract in CRYPTO ’01.

[15] D. Boneh, A. Sahai, and B. Waters. “Functional encryption: Definitions and challenges.” In Theory of
Cryptography — TCC ’11, ed. Y. Ishai, Springer LNCS 6597 (2011), 253–273.

[16] D. Boneh and B. Waters. “Conjunctive, subset, and range queries on encrypted data.” In Theory of
Cryptography — TCC ’07, ed. S. Vadhan, Springer LNCS 4392 (2007), 535–554.

[17] Z. Brakerski and V. Vaikuntanathan. “Efficient fully homomorphic encryption from (standard) LWE.”
In submission (2011).

[18] Z. Brakerski and V. Vaikuntanathan. “Fully homomorphic encryption from ring-LWE and security for
key dependent messages.” In Advances in Cryptology — CRYPTO ’11, ed. P. Rogaway, Springer LNCS
6841 (2011), 505–524.

[19] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. “Bonsai trees, or, how to delegate a lattice basis.” In
Advances in Cryptology — EUROCRYPT ’10, ed. H. Gilbert, Springer LNCS 6110 (2010), 523–552.

21

http://www.cc.gatech.edu/~cpeikert/pubs/shorter.pdf

[20] M. Chase. “Multi-authority attribute based encryption.” In Theory of Cryptography — TCC ’07, ed.
S. Vadhan, Springer LNCS 4392 (2007), 515–534.

[21] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. “Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data.” SIAM J. Comput. (2008), 97–139.

[22] C. Gentry. “Practical identity-based encryption without random oracles.” In Advances in Cryptology —
EUROCRYPT ’06, ed. S. Vaudenay, Springer LNCS 4004 (2006), 445–464.

[23] C. Gentry. A fully homomorphic encryption scheme. Ph.D. dissertation, Stanford University (2009).
Available at http://crypto.stanford.edu/craig.

[24] C. Gentry, C. Peikert, and V. Vaikuntanathan. “Trapdoors for hard lattices and new cryptographic
constructions.” In 40th ACM Symposium on Theory of Computing — STOC ’08. ACM (2008), 197–206.

[25] C. Gentry and A. Silverberg. “Hierarchical ID-based cryptography.” In Advances in Cryptology —
ASIACRYPT ’02, ed. Y. Zheng, Springer LNCS 2501 (2002), 548–566.

[26] V. Goyal, A. Jain, O. Pandey, and A. Sahai. “Bounded ciphertext policy attribute based encryption.”
In Automata, Languages, and Programming — ICALP ’08 (Part II), ed. L. Aceto, I. Damgård, L. A.
Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, Springer LNCS 5126 (2008),
579–591.

[27] V. Goyal, O. Pandey, A. Sahai, and B. Waters. “Attribute-based encryption for fine-grained access
control of encrypted data.” In ACM Conference on Computer and Communications Security (2006),
89–98.

[28] J. Katz, A. Sahai, and B. Waters. “Predicate encryption supporting disjunctions, polynomial equations,
and inner products.” In Eurocrypt 2008, ed. N. Smart, Springer LNCS 4965 (2008), 146–162. Full
version at http://eprint.iacr.org/2007/404.

[29] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. “Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner product encryption.” In Advances in Cryptology —
EUROCRYPT ’10, ed. H. Gilbert, Springer LNCS 6110 (2010), 62–91.

[30] A. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann. “Smallest singular value of random
matrices and geometry of random polytopes.” Advances in Mathematics 195 (2005), 491–523.

[31] D. Micciancio and O. Regev. “Worst-case to average-case reductions based on Gaussian measures.” In
45th Annual IEEE Symposium on Foundations of Computer Science — FOCS ’04 (2004), 372–381.

[32] T. Okamoto and K. Takashima. “Hierarchical predicate encryption for inner-products.” In Advances in
Cryptology — ASIACRYPT ’09, ed. M. Matsui, Springer LNCS 5912 (2009), 214–231.

[33] T. Okamoto and K. Takashima. “Fully secure functional encryption with general relations from the
decisional linear assumption.” In Advances in Cryptology — CRYPTO ’10, ed. T. Rabin, Springer LNCS
6223 (2010), 191–208.

[34] R. Ostrovsky, A. Sahai, and B. Waters. “Attribute-based encryption with non-monotonic access
structures.” In ACM Conference on Computer and Communications Security (2007), 195–203.

22

http://crypto.stanford.edu/craig
http://eprint.iacr.org/2007/404

[35] C. Peikert. “Public-key cryptosystems from the worst-case shortest vector problem.” In 41st Annual
ACM Symposium on Theory of Computing — STOC ’09 (2009), 333–342.

[36] O. Regev. “On lattices, learning with errors, random linear codes, and cryptography.” In 37th Annual
ACM Symposium on Theory of Computing — STOC ’05 (2005), 84–93.

[37] A. Sahai and B. Waters. “Fuzzy identity-based encryption.” In Advances in Cryptology — EUROCRYPT
’05, ed. R. Cramer, Springer LNCS 3494 (2005), 457–473.

[38] E. Shen, E. Shi, and B. Waters. “Predicate privacy in encryption systems.” In Theory of Cryptography —
TCC ’09, ed. O. Reingold, Springer LNCS 5444 (2009), 457–473.

[39] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. “Multi-dimensional range query over
encrypted data.” In IEEE Symposium on Security and Privacy (2007), 350–364.

[40] E. Shi and B. Waters. “Delegating capabilities in predicate encryption systems.” In Automata, Languages,
and Programming — ICALP ’08 (Part II), ed. L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, Springer LNCS 5126 (2008), 560–578.

[41] V. Shoup. A Computational Introduction to Number Theory and Algebra, second edition. Cambridge
University Press (2008).

[42] B. Waters. “Efficient identity-based encryption without random oracles.” In Advances in Cryptology —
EUROCRYPT ’05, ed. R. Cramer, Springer LNCS 3494 (2005), 114–127.

[43] B. Waters. “Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions.”
In Advances in Cryptology — CRYPTO ’09, ed. S. Halevi, Springer LNCS 5677 (2009), 619–636.

[44] B. Waters. “Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure
realization.” In Public Key Cryptography — PKC ’11, ed. D. Catalano, N. Fazio, R. Gennaro, and
A. Nicolosi, Springer LNCS 6571 (2011), 53–70.

A Probability

Let X and Y be two random variables taking values in some countable set Ω. We define the statistical
distance, denoted ∆(X;Y), to be

∆(X;Y) :=
1

2

∑
s∈Ω

∣∣Pr[X = s]− Pr[Y = s]
∣∣

If X(n) and Y (n) are ensembles of random variables, we say X and Y are statistically close or statistically
indistinguishable if ∆(X;Y) is a negligible function of n.

The norm of a random matrix. Let Sm denote the m-sphere; i.e., the set of all vectors in Rm+1 of length
1. We define the norm of a matrix R ∈ Rk×m to be supx∈Sm−1‖Rx‖. Then we have the following:

Lemma A.1 ([30, Fact 2.4],[2, Lemma 15]). Let R be a k ×m matrix chosen at random from {−1, 1}k×m.
Then Pr[‖R‖ > 12

√
k +m] < e−(k+m).

23

Randomness extraction. We will use the following lemma, which follows from a generalization of the
leftover hash lemma due to Dodis et al. [21]. Agrawal, Boneh, and Boyen [2] prove the lemma for prime
moduli q; we observe that the result extends to square-free values of q by the Chinese remainder theorem.

Lemma A.2 ([2, Lemma 13]). Suppose that m > (n+ 1) lg q + ω(log n) and that q > 2 is square free. Let
R be an m × k matrix chosen uniformly in {1,−1}m×k mod q where k = k(n) is polynomial in n. Let
A and B be matrices chosen uniformly in Zn×m and Zn×k respectively. Then for all vectors w ∈ Zm, the
distribution (A,AR,Rtw) is statistically close to the distribution (A,B,Rtw).

24

	Introduction
	Overview of the Construction

	Predicate Encryption
	Security

	Lattice Preliminaries
	Lattices
	Sampling algorithms
	The LWE Problem

	A Functional Encryption Scheme for Inner Product Predicates
	The Construction
	Correctness
	Security
	Parameter Selection
	Multi-bit Encryption

	Applications
	Conclusion and Open Questions
	Probability

