
Resettable Cryptography in Constant Rounds – the

Case of Zero Knowledge

Yi Deng† Dengguo Feng] Vipul Goyal‡ Dongdai Lin] Amit Sahai§

Moti Yung\

† NTU Singapore and SKLOIS, Institute of Software, CAS, China
‡ MSR India

] SKLOIS, Institute of Software, CAS
§ UCLA

\ Google Inc., USA

Abstract

A fundamental question in cryptography deals with understanding the role that random-

ness plays in cryptographic protocols and to what extent it is necessary. One particular

line of works was initiated by Canetti, Goldreich, Goldwasser, and Micali (STOC 2000)

who introduced the notion of resettable zero-knowledge, where the protocol must be zero-

knowledge even if a cheating verifier can reset the prover and have several interactions in

which the prover uses the same random tape. Soon afterwards, Barak, Goldreich, Gold-

wasser, and Lindell (FOCS 2001) studied the setting where the verifier uses a fixed random

tape in multiple interactions. Subsequent to these works, a number of papers studied the

notion of resettable protocols in the setting where only one of the participating parties uses

a fixed random tape multiple times. The notion of resettable security has been studied in

two main models: the plain model and the bare public key model (also introduced in the

above paper by Canetti et. al.).

In a recent work, Deng, Goyal and Sahai (FOCS 2009) gave the first construction of a

simultaneous resettable zero-knowledge protocol where both participants of the protocol can

reuse a fixed random tape in any (polynomial) number of executions. Their construction

however required O(nε) rounds of interaction between the prover and the verifier. Both in

the plain as well as the BPK model, this construction remain the only known simultaneous

resettable zero-knowledge protocols.

In this work, we study the question of round complexity of simultaneous resettable zero-

knowledge in the BPK model. We present a constant round protocol in such a setting based

on standard cryptographic assumptions. Our techniques are significantly different from the

ones used by Deng, Goyal and Sahai.

1 Introduction

A fundamental question in cryptography deals with understanding the role that randomness

plays in cryptographic protocols and to what extent it is necessary. Progress on this question was

made relatively early with the result of Goldreich and Oren [GO94] showing that zero knowledge

protocols cannot exist in the setting where the parties do not have access to any randomness

resource at all. While this work showed that randomness cannot be completely eliminated, it

simultaneously motivated several natural questions studying the “extent” to which randomness

1



is necessary. A rich line of work deals with studying the usage of imperfect randomness in

various settings (see [KLRZ08, DOPS04] and the references therein). Another line of work (and

the one dealt with in this paper) studies whether all the random choices can be made “offline”

and be fixed once and for all. In other words, is it possible to design cryptographic protocols

where a party can reuse the same random tape in multiple (or even all) executions?

The question of reusing randomness in cryptographic protocols was first considered in the

context of zero knowledge by Canetti, Goldreich, Goldwasser, and Micali [CGGM00] who pro-

posed the notion of resettable zero knowledge. In resettable zero knowledge, the zero knowledge

property is required to hold even if a malicious verifier can “reset” the prover to the initial

state and start a new interaction where the prover uses the same random tape. Canetti et al.

[CGGM00] proposed constructions of resettable zero knowledge protocols based on standard

cryptographic assumptions. Barak, Goldreich, Goldwasser, and Lindell [BGGL01] showed how

to construct zero knowledge protocols for opposite setting (where soundness is required to hold

even if the verifier uses the same random tape in multiple executions), which following Micali

and Reyzin [MR01b]1 they call resettably sound (rS) zero-knowledge. Barak et. al. also showed

that any resettable sound zero-knowledge protocol must make use of non-black-box simulation

techniques (introduced in a breakthrough work of Barak [Bar01]).

Subsequent to these two works, a number of papers have studied the notion of resettable

security primarily in the setting where only one of the participating parties uses a fixed random

tape multiple times. Protocols have been proposed in the so called plain model (cf. [CGGM00,

BGGL01, BLV03, DL07a, GS09]. A larger body of literature studies resettable security in the so

called bare public key (BPK) model. In the BPK model, a (possibly adversarial chosen) public

key is selected and published by the verifier(s) before any protocol interaction starts 2. Protocol

for resettable security in the BPK model were studied in [CGGM00, MR01b, ZDLZ03, CPV04,

DL07b, YZ07]. A more complete account of the related works is given in a later subsection.

In a recent work, Deng, Goyal and Sahai (FOCS 2009) gave the first construction of a

simultaneous resettable zero-knowledge protocol where both participants of the protocol can

reuse a fixed random tape in any (polynomial) number of executions. Their construction was

in the plain model. The construction however required nε rounds of interaction between the

prover and the verifier. Even in the BPK model, the DGS construction remains the best known

simultaneous resettable zero-knowledge protocol. This motivates the following question:

“Does there exist a polylogarithmic (or even constant) round simultaneous resettable zero-

knowledge protocol in the BPK model?”

Our Results. In this paper, we resolve the above question by constructing a constant round

protocol for simultaneous resettable zero-knowledge in the BPK model. Our main theorem is

as follows.

Theorem 1.1 If there exist trapdoor permutations and collision resistant hash function fam-

ilies, then there exist constant-round resettably-sound resettable ZK arguments for NP in the

BPK model.

1Micali and Reyzin defined resettable soundness (and other soundness notions) in what is called the bare

public key model.
2Such a model is quite different from having a “setup assumption” where one would assume, e.g., that a

trusted party ensured that the public key was chosen correctly.

2



We leave open the question of round complexity of simultaneous resettable zero-knowledge

in the plain model. Note that every resettable zero-knowledge protocol is also concurrent zero-

knowledge [CGGM00]. Hence, a breakthrough will be required to construct a protocol in the

plain model which matches the round complexity of the one in the BPK model given in our

paper.

Our Techniques. The techniques used in our paper are quite different from the ones used in

the DGS construction [DGS09]. Here we outline the main technical problem which is required to

be resolved to obtain a constant round construction of simultaneous resettable zero-knowledge

in the BPK model.

The source of large round complexity in the DGS construction is the usage of recursive

rewinding strategies (cf. [RK99, KP01, PRS02]) which are coupled with a novel non-black-

box simulation strategy. In the BPK model however, it is indeed possible to avoid recursive

rewinding because of the existence of a “long term” trapdoor associated with the public key of

the verifier (which the simulator can try to extract). At a high level, our protocol in the BPK

would follow the following structure. The verifier would first prove knowledge of a long term

trapdoor associated with the public key using a zero-knowledge protocol. The prover would

then give a witness indistinguishable argument of knowledge (WIAOK) proving either x ∈ L or

that it “knows” such a trapdoor. Very roughly, now once the simulator extracts a long term

trapdoor for a public key, it never needs to rewinds a session with that public key (and the

simulation can be done straight line). This would lead to a much simpler rewinding strategy

avoiding large round complexity.

The key problem that arises while implementing the above approach in the simultaneous

resettable setting is that obtaining a WIAOK protocol from the prover to the verifier is non-

trivial and quite complex (since an adversarial verifier may rewind the prover to extract the

witness). Instead, we would like to resort to using ZAPs [DN00] which are two round WI

protocol (and hence already “secure” in the simultaneous resettable setting). Using a ZAP

leads to the following problem. To arrive a contradiction in the proof of (resettable) soundness,

the prover should be forced to prove a false statement about the trapdoor of the verifier (since

we are not using an argument of knowledge protocol). This is turn means that the theorems the

verifier proves about its long term trapdoor must also be false (this is important for the proof of

resettable zero-knowledge to go through). However note that statements about the same public

key (and the long term trapdoor) are being proven by the verifier in multiple sessions. To

simulate its proof in all of those sessions, it seems that the verifier will need to use a (constant

round) concurrent zero-knowledge protocol!

To overcome this problem, the verifier needs to be able to prove different statements in

different sessions with the same public key such that some of them could be false while the

others are true. This might suggest that the witness (containing the trapdoor) used by the

verifier in each session is different. Yet we need that once we extract a trapdoor for any of

these sessions, it should be a long term trapdoor which should enable the simulator to simulate

every session with this public key (including even future sessions). Our protocol uses a careful

technique to resolve this tension between “using sufficiently different witnesses in each session”

and yet having “a common long term trapdoor binding them all”. Our full protocol is described

in Section 3.

3



Related Work. Subsequent to the works of Canetti et al. [CGGM00] and Barak et al. [BGGL01]

described above, a number of works have investigated the problem of security against resetting

attacks for zero-knowledge protocols in the plain model. Barak, Lindell, and Vadhan [BLV03]

constructed the first constant-round public-coin argument that is bounded resettable zero-

knowledge. Deng and Lin [DL07a] showed a zero-knowledge argument system that is bounded

resettable zero-knowledge and satisfies a weak form of resettable soundness.

A larger body of work has investigated the same problems in a relaxed setting, called the

“bare public key” (BPK) model, introduced by [CGGM00], which assumes that parties must

register (arbitrarily chosen) public keys prior to any attack taking place. [CGGM00] presented

a constant-round resettable zero-knowledge argument in the BPK model, the round complexity

of which was improved by Micali and Reyzin [MR01b]. Micali and Reyzin [MR01b] also first

investigated different notions of soundness in the BPK model, including the notion of resettable

soundness. Di Crescenzo, Persiano, and Visconti [CPV04] described a resettable zero-knowledge

protocol with concurrent soundness, and Deng and Lin [DL07b] improved the computational

assumptions needed to obtain this result. Yung and Zhao [YZ07] also construct resettable zero-

knowledge and concurrently sound arguments in the BPK model, using a general and efficient

transformation. Micali and Reyzin [MR01a] also proposed a stronger variant of the BPK model

for constructing bounded-secure protocols, and provided constant-round bounded resettable

zero-knowledge arguments in this model; this result was strengthened by Zhao et al. [ZDLZ03]

also in a bounded setting for resettable zero knowledge.

Goyal and Sahai [GS09] study the notion of general resettable two-party and multi-party

computation and presented general feasibility results when only one of the parties may be reset.

In this work, we restrict ourselves to the study of the zero-knowledge functionality.

Rest of this paper. We provide some basic definitions in section 2. In section 3, we construct

a constant-round resettably-sound concurrent ZK arguments for NP in the BPK model. At last,

we apply the transformation of Deng, Goyal and Sahai [DGS09] to the protocol constructed in

section 3 to obtain our main result.

2 Definitions

Notation. We abbreviate probabilistic polynomial time as PPT. A function f(n) is said to be

negligible if for every polynomial q(n) there exists an N such that for all n ≥ N , f(n) ≤ 1/q(n).

If L is a language in NP, we define the associated relation as the relation RL = {(x,w) |x ∈
L;w is a witness for ‘x ∈ L’}.

Interactive Arguments in the BPK Model. The bare public-key model (BPK model)

assumes that:

• A public file F that is a collection of records, each containing a verifier’s public key, is

available to the prover.

• An (honest) prover P is an interactive polynomial-time algorithm that is given as inputs

a secret parameter 1n, a n-bit string x ∈ L, a witness w for x ∈ L, a public file F and a

random tape r.

• An (honest) verifier V is an interactive polynomial-time algorithm that works in two stages.

In stage one (key registration stage), on input a security parameter 1n and a random tape

4



r, V generates a key pair (pk, sk) and stores pk in the file F . In stage two (proof stage),

on input sk, an n-bit string x and a random string ρ, V performs the interactive protocol

with a prover, and outputs “accept x” or “reject x”.

Definition 2.1 (Complete Interactive Arguments in the BPK Model) We say that the

protocol < P, V > is complete for a language L in NP, if for all n-bit string x ∈ L and any

witness w such that (x,w) ∈ RL, the probability that V interacting with P on input w, outputs

“reject x” is negligible in n.

Malicious Resetting Provers in the BPK model. Let s be a positive polynomial and P ∗

be a PPT algorithm on input 1n.

A resetting attack by a s-resetting malicious prover P ∗ in the BPK model is defined as the

following process:

• Run the key generation stage of V on input 1n and a random string r to obtain pk and

sk. P ∗ obtains pk and V stores the corresponding sk.

• Choose s(n) random string ρi, 1 ≤ i ≤ s(n), for V .

• P ∗ is allowed to initiate any (polynomial) number of sessions with each verifier and interact

with it in the second stage (proof stage) of the protocol. The i-th verifier uses input sk,

ρi.

Definition 2.2 (Resettably sound arguments in the BPK model) < P, V > satisfies re-

settable soundness for an NP language L in the BPK model if for all positive polynomial s, for

all s-resetting malicious prover P ∗, the probability that in an execution of resetting attack, P ∗

ever receives “accept x” for x /∈ L from any of these oracles is negligible in n

Malicious Resetting/Concurrent Verifiers in the BPK model. A resetting attack by

a (s, t)-resetting malicious PPT verifier V ∗, for any two positive polynomials s and t, can be

defined as the following process:

• In the key generation stage, on input 1n, V ∗ receives s instances x1, ..., xs(n) ∈ L of length

n each, and, outputs an arbitrary public file F

• Choose r1, ..., rs(n) for P uniformly at random.

• In proof stage, V ∗ starts in the final configuration of the key generation stage, is given

oracle access to s3(n) provers, P (xi, wi, pkj , rk, F ), 1 ≤ i, j, k ≤ s(n).

• V ∗ finally outputs its entire view of the interaction (i.e., its random tape and the messages

received from the provers). The total number of steps of V ∗ in both stages is at most t(n).

The concurrent attack by V ∗ is defined in the same way except that we choose s2 random

tapes ri,j , 1 ≤ i, j ≤ s, and V ∗ is allowed to interact with s2 provers P (xi, wi, pkj , ri,j , F )

(1 ≤ i, j ≤ s) concurrently. Note that here each random tape is used only once.

Definition 2.3 (Resettable zero-knowledge in the BPK model) < P, V > is (non-black-

box) resettable zero knowledge for an NP language L in the BPK model if for every pair of

positive polynomials (s, t), for all (s, t)-resetting malicious verifier V ∗, there exists a simulator

S, given as input the description of V ∗, such that for every x1, ..., xs(n) ∈ L, the following two

distributions are computational distinguishable:

5



1. The output of V ∗ at the end of a resetting attack described above,

2. The output of S(V ∗, x1, ..., xs(n)).

Definition 2.4 (Concurrent zero-knowledge in the BPK model) < P, V > is (non-black-

box) concurrent zero-knowledge for an NP language L in the BPK model if for every pair of

positive polynomials (s, t), for all (s, t)-concurrent malicious verifier V ∗, there exists a simulator

S, given as input the description of V ∗, such that for every x1, ..., xs(n) ∈ L, the following two

distributions are computational distinguishable:

1. The output of V ∗ at the end of a concurrent attack described above,

2. The output of S(V ∗, x1, ..., xs(n)).

3 Constructing Resettably-Sound Concurrent Zero Knowledge

Arguments for NP in the BPK Model

As a first step towards obtaining a simultaneous resettable zero-knowledge protocol, we present

a resettably-sound concurrent zero knowledge argument for an NP language in the BPK Model

in this section. We will later show how to use a compiler described in [DGS09] to obtain our

main theorem.

Let (G,E,D) be a semantically secure public-key encryption scheme, where G, E, and D

denote key-generation algorithm, encryption algorithm, and decryption algorithm respectively.

The commitment scheme Com is a statistically binding and computationally hiding commitment

scheme. Com(s, r) denotes the commitment to a string s using the random tape r. The protocol

proceeds as follows.

The resettably-Sound Concurrent ZK Argument (P, V ) in the BPK model

The key registration stage: V runs the key generation algorithm G of a semantically

secure public key encryption scheme (G,E,D) twice independently, (pk0, sk0) = G(1n, rk0),

pk1, sk1) = G(1n, rk1), publishes (pk0, pk1) and stores rkb and skb for a random b ∈ {0, 1}.

The proof stage (main protocol):

Common input: x (supposedly in L) and verifier’s public key (pk0, pk1).

P ’s private input: the witness w such that (x,w) ∈ RL.

V ’s private input: the randomness rkb used in key generation for one the public keys

P ’s randomness: rp.

V ’s randomness: rv.

1. P sends a commitment c = Com(e, r) to a random challenge e.

2. V Compute two ciphertexts of 0 under pk0 and pk1 independently, c0 = E(pk0, 0, r0), c1 =

E(pk1, 0, r1); Send c0, c1 and the first message a of the 3-round WI proof of Hamiltonian

Cycle for the following statement:

(a) there exists rkb such that (pkb, skb) = G(1n, rkb ) (equivalently, “I know one of secret

keys”); and,

6



(b) there exist r0 and r1 such that c0 = E(pk0, 0, r0) and c1 = E(pk1, 0, r1) (i.e., both

cipertexts are encryption of 0).

The randomness used by V in this step as well as the rest of the protocol is generated by

applying a pseudorandom function frv to the first message c of the prover.

3. P sends e and execute the BGGL protocol in which P proves that either: 1) there exists

r such that c = Com(e, r), or, 2) x ∈ L.

4. V now responds to the challenge e by sending the final message z of the 3-round WI

protocol of Hamiltonian Cycle.

5. P executes a ZAP in which P proves that either x ∈ L or there exists rkd , d ∈ {0, 1}, such

that (pkd, skd) = G(1n, rkd) and 0 = D(skd, cd) (i.e., one of the decryptions result to the

message 0).

Remark 1. For simplicity of presentation, we view com and ZAPs as non-interactive protocol

requiring only one message in each direction. However our construction can indeed use two

round protocols for each in a straight-forward way.

Remark 2. Note that there is fine difference between the verifier and the prover in proving a

ciphertext is an encryption of 0: the verifier uses the knowledge of randomness in encryption

to prove the ciphertext is an encryption of 0, while the prover uses the knowledge of the secret

key (more precisely, randomness that used to generate the public/secret key pair) to prove that

one plaintext is actually 0. We stress that this difference is crucial for security proof. In the

course of simulation, once our simulator extracts the randomness used for generating one of pk0
and pk1 (note that it does not need the randomness used in these encryptions by the verifier to

execute a session), it can handle all sessions under the same public key (pk0, pk1). On the other

hand, in the proof of soundness, the reduction algorithm, playing the role of verifier, needs only

one of secret keys to execute a session, and this will enable it to use the power of cheating prover

to either break the semantic security of the other public key scheme or break the WI property

of the underlying 3-round WI protocol if such a cheating prover exists.

We now state the following theorem.

Theorem 3.1 The above protocol (P, V ) is a resettably-sound concurrent zero knowledge ar-

gument.

The completeness is obvious. We will prove concurrent zero knowledge and resettable-

soundness in next two subsections.

Hardness assumption. Note that the 2-round statistically-binding commitment scheme and

semantically secure public key encryption scheme can be based on trapdoor permutations, which

also imply the existence of ZAPs. In addition, we need to assume collision-resistant hash

functions required for the resettably sound BGGL protocol (which makes use of non-black-box

simulation techniques). Thus we can base the above resettably-sound concurrent ZK argument

on the assumption of existence of trapdoor permutations and collision-resistant hash function

families.

7



3.1 Proof of Concurrent Zero-Knowledge

Let V ∗ be an concurrent malicious verifier. Assume w.l.g. in real world, on input a fixed

YES instance sequence x1, ..., xs(n) ∈ L of length n each, V ∗ generates s public keys F =

((pk10, pk
1
1), ..., (pks0, pk

s
1)), and interacts with s2(n) incarnations of prover, P (xi, wi, (pk

j
0, pk

j
1), ri,j , F ),

1 ≤ i, j ≤ s(n). We now construct a simulator S as required by definition 2.3.

S operates as follows. First, given a fixed YES instance sequence x1, ..., xs ∈ L of length n

each as input, S runs the key-generation phase of V ∗ to obtain the public file F .

In proof stage, the first task of S is to extract one rkb (b ∈ {0, 1}) for each public key pair

(pkj0, pk
j
1) such that rkb is the randomness used for generating one public key pkjb . Note that

once these rkb ’s are obtained, S is able to carry out all sessions successfully in a straight-line

manner by decrypting one of two ciphetexts (and relying on the soundness of the WI protocol).

We say a session under public key (pkj0, pk
j
1) is solved if S already extracted the corresponding

randomness rkb ; otherwise, we say it is unsolved.

The extraction is done in a sequential way. Once receiving an accepting execution of the 3-

round WI protocol in an unsolved session under public key (pkj0, pk
j
1), S rewinds to the beginning

of step 3, sends a random challenge e′ and runs the simulator for BGGL protocol to prove that

c is a commitment to e′. When another accepting execution of this subprotocol is obtained, S

solved all sessions under this public key.

We would like to make the following remarks on the above extraction:

• The non-black-box simulator for the standalone BGGL protocol handles only a single

session, but it runs in a concurrent setting. This means, during the execution of this

subprotocol, many other sessions may appear. To deal with this issue, we have the fol-

lowing strategy. First observe that all the other sessions are being executed honestly by

the simulator (and the current rewinding thread will be aborted if an unsolved session

reaches its final prover message). Thus, we consider these sessions (and the part of the

simulator handling these sessions) as part of the adversarial machine itself. Then our

modified non-black-box simulator Sim will now simply act on this new machine (by using

its code) instead of the original one.

• For the analysis of running time to go through, we use the Goldreich-Kahan technique to

bound the running time of S.

The detailed description of S follows.

The Simulator S:

Input: the code of V ∗, s YES instances x1, ..., xs.

1. select a random tape for V ∗, and run the key-generation phase of V ∗ to obtain the public

file F = ((pk10, pk
1
1), ..., (pks0, pk

s
1)).

2. Set h← (x1, ..., xs) and S ← ∅.

3. Do the following:

(a) Adopt the honest prover strategy until the final ZAP in every session, and extend h

to include the transcript generated in this step. If V ∗ terminates during this step,

return h; Otherwise, go to next step.

8



(b) If a solved session reaches the final ZAP, use the relevant randomness and secret key

to produce a prover message of the final ZAP, and extend h to include this message.

If V ∗ terminates during this step, return h; Otherwise, go to next step.

(c) If an unsolved session reaches the end of of the underlying 3-round WI protocol, and

the resulting transcript (a, e, z) so far is accepting, do the following:

• (Estimation) Suppose that the first two messages sent in the current session

are c, (c0, c1, a), and the corresponding public key is (pkj0, pk
j
1). Rewind P ∗ to

the point (we call it rewinding point) where the verifier’s message (c0, c1, a)

was just sent, and repeat the following until it receives the accepting transcript

(a, e, z) of the underlying 3 round WI argument n2 times: send the honest chal-

lenge e and choose independent randomness to execute the underlying BGGL

protocol honestly; when another unsolved session reaches the final ZAP, S aborts

the current thread3.

We denote by X the total number of iterations (or threads) of this step.

• (Extraction) Rewind V ∗ to the above rewinding point again, and repeat the

following until it obtains another accepting transcript (a, e′, z′) with e 6= e′ until

the X + 1st iteration is reached. If all iterations fails, output “⊥”.

– For the current session, S send a new random challenge e′ 6= e, and then

runs the non-black-box simulator Sim to prove that c is a commitment to e′,

where Sim proceeds exactly the same as the simulator for the BGGL protocol

(except for acting on the new adversarial machine as described earlier).

– For any other solved session, S executes the strategy described in step b; if

an unsolved session reaches the final ZAP, S aborts the current iteration.

(d) From the two accepting transcripts of the 3-round WI protocol (a, e, z) and (a, e′, z′),

compute the randomness rkb such that (pkjb , sk
j
b) = G(1n, rkb ),4 and update S to

include rkb , and go to step 1. (Note that the above step 3(c) does not update history).

The concurrent zero knowledge property of our protocol follows from the following claims.

Claim 1 S runs in expected polynomial time.

Claim 2 The output h by S is indistinguishable from real interaction.

Proof of Claim 1. We first count the number of queries which the simulator makes to the

adversary. Observe that the number of queries which S makes in a single solved session is a

constant C. Suppose that for a specific session i, S enters step 3(c) with probability pi, then we

have for this session, the expected number of iterations in step 3(c) is at most pi ·(2n2/pi) < 2n2.

Since V ∗ is only allowed to initiate s2 sessions, the entire simulation of S will makes an expected

s2 ·C · (2n2 +1) number of queries (which is polynomial). Since each query additionally requires

only polynomial time, the overall running time of the simulator is expected polynomial. �

Proof of Claim 2. We first prove the probability that S outputs ⊥ is negligible. Observe that

S outputs ⊥ only if it fails to extract a relevant secret key.

3in this case, S cannot proceed further without knowledge of the relevant secret key.
4Note that we can also compute the randomness that were used in the two encryptions to 0, but we don’t

need it to carry out the final ZAP.

9



Assume that for session i, S enters step 3(c) with probability pi (taken over the random coins

used in step 3 of the protocol; here prover proves that e is the correct challenge). We claim

that in a single run of the Extraction in step 3(c), the probability that S obtains an accepting

transcript of the 3-round WI protocol is at least pi − neg(n) for some negligible function neg

(except for a negligible fraction of protocol prefixes, i.e., transcripts of steps 1 and 2), otherwise,

we can use V ∗ to break either the computational-hiding property of the scheme Com or the

zero knowledge property of the BGGL protocol.

Note that the Goldreich-Kahan technique [GK96] guarantees that, the estimation n2/X of

pi is within a constant factor of pi except with exponentially small probability, thus, we conclude

that X > n2/(c · pr0) holds for some constant c except with exponentially small probability.

Thus, the probability that S enters step 3(c) but doesn’t extract out the randomness used

in generation of some public key is

pi(1− pi + neg)X

≤pi(1− pi + neg)n
2/(c·pi)

which is negligible.

Observe that the only difference between S and the honest prover is that they use different

witness to carry out the final ZAP in each session. Now by the WI property of the ZAP,

we conclude that h is indistinguishable from the real interaction between honest provers and

V ∗. �

3.2 Proof of Resettable-Soundness

Assume that there is a PPT resetting P ∗ that can cheat an honest verifier V (and complete a

protocol execution) on a NO instance x with noticeable probability p. We shall now consider

the following 5 hybrid verifier strategies. We shall prove that in each hybrid, the probability of

the verifier being able to cheat (in some session) is still noticeable. In the final hybrid, we note

that the above cheating probability must be negligible by the soundness of the ZAP system (and

thus arrive at a contradiction). We shall first describe the hybrid strategies and then argue that

the probability of cheating remains negligible in each.

V1: Follow the honest verifier strategy V , except that whenever V is instructed to applying the

pseudorandom function specified by its random tape to generate randomness, V1 uses truly

random coins (while still making sure that for a given prover first message c, it always

uses the same random coins).

V2: Follow the strategy below.

1. In the key registration stage, V2 acts exactly as V1.

2. In the proof stage, V2 first picks a session i at random.

Suppose that the first prover message in session i is c, and that the public key is

(pk0, pk1) and the secret key stored by V2 is skb for some b ∈ {0, 1}.
3. For all sessions having a first prover message different than c, V2 executes honest

verifier’s strategy throughout the entire interaction between P ∗ and V2.

10



4. For all sessions having the first prover message c, V2 executes honest verifier’s strat-

egy until when a session among them first completes an accepting proof via BGGL

protocol for the correctness of challenge e, and then rewinds to the point where it

received c for the first time, computes two encryptions of 0 under both public key

pkb and pk1−b honestly again, produces a fake first massage a that can answer e

successfully according to the 3-round WI protocol5, and continue (without using the

actual witness).

V3: Follow the strategy of V2 except that, in item 4 of V2, computes an encryption of 0 under

public key pkb and an encryption of 1 under public key pk1−b after extracting the challenge

e and then rewinding (but produces the first message a in the same way as V2),

V4: Follow the strategy of V3 except that, in all sessions, whenever V3 needs to use rkb as partial

witness to carry out the 3-round WI protocol, V4 uses rk1−b.

V5: Follow the strategy of V4 except that, after rewinding, V5 computes two encryptions of 1

under pk0 and pk1 respectively in those sessions having the first prover message c.

First, we have that P ∗ can cheat V1 with probability negligibly close to p, due to the

pseudorandomness of the pseudorandom function specified by the random tape of V .

We now prove that P ∗ can cheat V2 in a session having the first prover message c with

probability negligibly close to p/poly, where poly is the total number of distinct first prover

messages appeared in the whole interaction between P ∗ and V2. Observe that for a randomly

chosen first prover message c, P ∗ will cheat V1 in a session having this first prover message

with probability exactly p/poly, and that the only difference between the second run of V2 and

V1 is the way in which the transcript (a, e, z) is produced. Since in the 3-round protocol for

Hamiltonian Cycle, the simulated transcript (a, e, z) is computationally indistinguishable to a

real one, we conclude that V2 will accept with probability negligibly close to p/poly in a session

having the first prover message c.

We further claim that P ∗ can also cheat V3 in a session having the first prover message

c with probability negligibly close to p/poly. Notice that the only difference between V2 and

V3 is, in their second run (after rewinding), V2 encrypts to 0 under public key pk1−b, while V3
encrypts to 1 under public key pk1−b. Notice also that in both their second runs, the message

a is produced independently of these encryptions. Thus, if the aforementioned claim is false,

we can construct an algorithm Vh to break the semantic security of the public key encryption

scheme: Vh acts as V2 except that, after rewinding, it obtains the ciphertext (that is supposed

to be 0 or 1) under the public key pk1−b from an external challenger, instead of computing this

ciphertext itself; When P ∗ convinces Vh to accept in a session having the first prover message

c, Vh outputs 0, otherwise, outputs 1. Observe that if the ciphertext obtained from encryption

oracle is an encryption of 0, then Vh is identical to V2; if this ciphertext is an encryption of 1,

Vh is identical to V3. Hence, in a session having the first message c, if there is a non-negligible

gap between the probability that V2 accepts and the probability that V3 accepts, Vh breaks the

semantic security of the underlying public key encryption scheme.

For strategies V3 and V4, we observe that the only difference between them is that they use

different witnesses to carry out the 3-round WI protocol. Consider the following algorithm Vwi.

5In the 3-round WI protocol for Hamiltonian Cycle, given a challenge e, there exists a simple simulator that

can produce an accepting transcript (a, e, z) efficiently.

11



Vwi: 1. In the key registration stage, Vwi generates two public keys honestly, i.e., it computes

(pk0, sk0) = G(1n, rk0), (pk1, sk1) = G(1n, rk1), publishes (pk0, pk1), chooses a random

bit b and stores both rk0 and rk1 .

2. Like V2, Vwi first picks a session i at random. Again, suppose that the first prover

message in session i is c.

3. For all sessions having a first prover message different than c, when a session with a

distinct first prover message c′ was initiated for the first time, Vwi executes honest

verifier’s strategy to compute two encryptions of 0, c0 = E(pk0, 0, r0) and c1 =

E(pk1, 0, r1), send (rk0 , r
k
1 , r0, r1) to an independent honest prover Pwi of the 3-round

WI protocol, and forward the Pwi’s first message a′ along with c0, c1 to P ∗; Once

a session with the first prover message c′ first completes the correctness proof via

BGGL protocol for the challenge e′, Vwi sends e′ to Pwi and forward Pwi’s answer z′

to P ∗; in all sessions with c′ as the first prover message, Vwi sends the same (a′, c0, c1)

to P ∗, and if P ∗ reveals the same e′ again and completes the correctness BGGL proof,

Vwi answers with the same z′; Otherwise, Vwi outputs “failure”.

4. When P ∗ sends c for the first time, Vwi acts the same as the above strategy: computes

two encryptions of 0, sends all random tapes to an independent Pwi and forward Pwi’s

first message a (and the two encryptions) to P ∗. Once P ∗ repeats c, Vwi responds

with the same a. When a session with the first prover message c first completes an

accepting proof via BGGL protocol for the correctness of challenge e, it rewinds to

the point where it received c for the first time, computes an encryptions of 0 under

public key pkb and an encryption of 1 under public key pk1−b, produces a fake first

massage a that can answer e successfully according to the 3-round WI protocol, and

continue.

We first note that Vwi outputs “failure” only if P ∗ opens some commitment c′ to two different

values and gives two accepting proofs for both. Due to the statistically-binding property of the

commitment scheme and resettable-soundness of the BGGL protocol, the probability that Vwi
outputs “failure” is negligible. Note also that, each independent Pwi is run once (i.e., the 3-round

WI protocol is executed in concurrent setting), and that if all these Pwi’s uses rkb (resp., rk1−b)

as partial witness, then Vwi is identical to V3 (resp., V4). Note that the 3-round WI protocol is

concurrent witness indistinguishable. Thus, we conclude that the probability that P ∗ cheats V4
in a session with the first prover message c is negligibly close to p/poly.

Finally, notice that both V4 and V5 do not use knowledge of the randomness rkb (used

in generation the public/secret key pair (pkb, skb)) to carry out any session in their entire

interaction, and the only difference between them is that they encrypt different messages under

pkb in sessions having the first prover message c after rewinding. Similar to the analysis of

V2 and V3, due to the semantic security of the public key encryption scheme (pkb, skb), the

probability that P ∗ cheats V5 in a session with the first prover message c is negligibly close to

p/poly. However, since both ciphertexts in these sessions are encryptions of 1, by the soundness

of the ZAP system, P ∗ can cheat V5 in any one of these sessions only with negligible probability.

Thus we have p is negligible.

12



4 Simultaneous Resettable Zero-Knowledge Arguments for NP

in the BPK model

In this section, we apply the transformation of [DGS09] to the resettably-sound concurrent ZK

arguments presented in last section, and obtain simultaneously resettable arguments for NP in

the BPK model. This establishes theorem 1.1.

Given a resettably-sound concurrent ZK argument (PRC , VRC) for NP language L in the

BPK model and a common input x ∈ L, the simultaneously resettable argument (P, V ) for L

proceeds as follows.

The key registration stage: V acts exactly the same as VRC in the key registration stage.

The proof stage:

Common input: x (supposedly in L) and verifier’s public key ver k

P ’s randomness: (γ1p , γ
2
p)

V ’s randomness: (γ1v , γ
2
v)

1. P uses randomness γ1p to generate a random string rp (of appropriate length) and a first

verifier message ρp of a ZAP system. P sends Cp = Com(rp) and ρp (where Com is a

perfect binding commitment scheme).

2. V sets (τ1v , τ
2
v ) = fγ1v (x, ver k, Cp). Using randomness τ1v generates a first verifier message

ρv and compute a commitment Ct = Com(0) to 0. V sends ρv and Ct.

3. V and P execute the BGGL protocol in which V uses random tape τ2v and proves that Ct
is a commitment to 0. In addition, in each verifier step in this subprotocol, P generates a

ZAP proof along with each verifier message for the following OR statement:

(a) The current message is produced by an honest verifier of the BGGL protocol using

random tape rp, or,

(b) x ∈ L

4. V sets (τ3v , τ
4
v ) = fγ2v (hist), where hist is the history so far except those ZAP proofs. Using

randomness τ3v , V sends a commitment Cv = Com(τ3v ) to P . In the remaining steps, V

uses randomness τ4v .

5. P sets τp = fγ2p (hist). Using random tape τp, P and V execute (PRC , VRC) in which P

proves x ∈ L, except that for every VRC ’s message, we have V give an additional ZAP

proof for the following OR statements:

(a) the current message is produced by an honest verifier of (PRC , VRC) using random

tape τ3v , or,

(b) Ct is a commitment to 1.

V accepts if only if V ′ accepts the transcript of (PRC , VRC).

13



Remark. In [DGS09], the actual transformation of resettably-sound concurrent ZK argument

into a resettably-sound resettable ZK argument takes two steps: 1) transform the resettably-

sound concurrent ZK argument into a hybrid sound hybrid zero knowledge argument; 2) trans-

form a hybrid sound hybrid zero knowledge protocol into a resettably-sound resettable zero

knowledge protocol. The second step is done by simply having each party refresh their random-

ness via a pseudorandom function. Here for the sake of simplicity and keeping the proof short,

we merge these two steps into a single transformation (and refer the reader to [DGS09] for a

detailed formal presentation).

Theorem 4.1 The protocol (P, V ) is a resettably-sound resettable zero knowledge.

Proof sketch. The proof of this theorem is similar in spirit to the one appeared in [DGS09].

Here we just give a proof outline.

The completeness is obvious.

Resettable-Soundness. For a given cheating prover P ∗ for (P, V ) and a NO instance x /∈ L,

we can construct a series of hybrid verifiers to show the cheating probability is negligible just

like the hybrid verifiers V1, V2, V3, V4 and V5 we set up in the previous section. Whenever a

hybrid verifier needs to rewind in some target sessions with a specific first prover message Cp,

it always computes a commitment Ct to 1 in its first step, and then runs the simulator for the

BGGL protocol to prove that Ct is a commitment to 0 in all sessions having the same first

prover message Ct
6; Whenever it produces a fake first message a of the underlying 3-round WI

protocol in (PRC , VRC), it uses the witness for “Ct is a commitment to 1” to execute ZAP for

the correctness of message a. Similar to the analysis presented in previous section, it is not hard

to show that, if all building blocks are secure, the above protocol (P, V ) is resettably-sound.

Resettable ZK. Note that the BGGL protocol is resettably-sound, and hence for any malicious

resetting verifier, if an execution of BGGL protocol in step 3 is accepting, the message Ct sent

in step 2 is guaranteed to be a commitment to 0 (except with negligible probability). As a

consequence, all verifier’s messages sent in the subprotocol (PRC , VRC) are determined by the

commitment Cv sent in step 4 and the session history of (PRC , VRC) due to the fact that ZAP is

resettably-sound, that is, for a fixed session prefix until step 4, all subexecutions of (PRC , VRC)

are identical. This observation enables us to adopt essentially the same simulation strategy of

S which works for concurrent adversary and prove the property of resettable zero knowledge.

Given a resetting verifier V ∗, our simulator S’ proceeds as follows. For all sessions, S’ follows

the honest prover strategy until step 4. When reaching the subprotocol (PRC , VRC), S’ acts as

the simulator S for (PRC , VRC). For those solved sessions, S’ uses the relevant secret key as

witness to carry out the final ZAP. When an unsolved session reaches the end of the 3-round

WI protocol in (PRC , VRC), S’ applies the extraction strategy of S to extract a secret key. We

can perform a similar analysis and show that S’ will run in expected polynomial time and its

output is distinguishable from that in the real interaction. �

6Note that, all subexecutions of BGGL protocol in these sessions are actually identical, due to the resettable-

soundness of ZAP and the instance x to be proven is a NO instance. This is why the simulator for BGGL protocol

in the standalone setting works in this specific resettable setting.

14



References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages

106–115, 2001.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-

sound zero-knowledge and its applications. In FOCS, pages 116–125, 2001.

[BLV03] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-black-box

zero knowledge. In FOCS, pages 384–393, 2003.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-

knowledge (extended abstract). In STOC, pages 235–244, 2000.

[CPV04] Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti. Constant-round

resettable zero knowledge with concurrent soundness in the bare public-key model.

In CRYPTO, pages 237–253, 2004.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability

conjecture and a new non-black-box simulation strategy. In FOCS, pages 251–260.

IEEE Computer Society, 2009.

[DL07a] Yi Deng and Dongdai Lin. Instance-dependent verifiable random functions and

their application to simultaneous resettability. In Naor [Nao07], pages 148–168.

[DL07b] Yi Deng and Dongdai Lin. Resettable zero knowledge with concurrent soundness in

the bare public-key model under standard assumption. In Inscrypt, pages 123–137,

2007.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS, pages

283–293, 2000.

[DOPS04] Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the

(im)possibility of cryptography with imperfect randomness. In FOCS, pages 196–

205. IEEE Computer Society, 2004.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge

proof systems for np. J. Cryptology, 9(3):167–190, 1996.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof

systems. J. Cryptology, 7(1):1–32, 1994.

[GS09] Vipul Goyal and Amit Sahai. Resettably secure computation. In Antoine Joux,

editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages

54–71. Springer, 2009.

[KLRZ08] Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman. Network extractor

protocols. In FOCS, pages 654–663. IEEE Computer Society, 2008.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-

loalgorithm rounds. In STOC, pages 560–569, 2001.

15



[MR01a] Silvio Micali and Leonid Reyzin. Min-round resettable zero-knowledge in the public-

key model. In EUROCRYPT, pages 373–393, 2001.

[MR01b] Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In CRYPTO,

pages 542–565, 2001.

[Nao07] Moni Naor, editor. Advances in Cryptology - EUROCRYPT 2007, 26th Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Barcelona, Spain, May 20-24, 2007, Proceedings, volume 4515 of Lecture

Notes in Computer Science. Springer, 2007.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with

logarithmic round-complexity. In FOCS, pages 366–375, 2002.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-

knowledge proofs. In EUROCRYPT, pages 415–431, 1999.

[YZ07] Moti Yung and Yunlei Zhao. Generic and practical resettable zero-knowledge in the

bare public-key model. In Naor [Nao07], pages 129–147.

[ZDLZ03] Yunlei Zhao, Xiaotie Deng, Chan H. Lee, and Hong Zhu. Resettable zero-knowledge

in the weak public-key model. In EUROCRYPT, pages 123–139, 2003.

16


