
On a generalized combinatorial conjecture involving
addition mod 2k − 1

Gérard Cohen ∗ Jean-Pierre Flori ∗

Tuesday 14th February, 2012

Abstract
In this note, we give a simple proof of the combinatorial conjecture proposed by Tang,

Carlet and Tang, based on which they constructed two classes of Boolean functions with many
good cryptographic properties. We also give more general properties about the generalization
of the conjecture they propose.

1 Introduction
In a very recent paper inspired by the previous work of Tu and Deng [6], Tang, Carlet and Tang [5]
constructed an infinite family of Boolean functions with many good cryptographic interesting
properties depending on the validity of the following combinatorial property:

Conjecture 1.

∀k ≥ 2, max
t∈(Z/(2k−1)Z)∗

#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | a− b = t; w(a) + w(b) ≤ k − 1
}
≤ 2k−1 .

They verified it experimentally for k ≤ 29, as well as the following generalized property for
k ≤ 15 where u ∈ Z/(2k − 1)Z is such that gcd(u, 2k − 1) = 1:

Conjecture 2.

∀k ≥ 2, max
t∈(Z/(2k−1)Z)∗

#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua± b = t; w(a) + w(b) ≤ k − 1
}
≤ 2k−1 .

This generalized conjecture includes the original conjecture proposed by Tu and Deng [6].
From now on, let us denote by Sk,t,±,u the quantity of interest:

Sk,t,±,u = #
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua± b = t; w(a) + w(b) ≤ k − 1
}

.

In Section 2, we give some general properties about such sets and their cardinalities. In
Section 3, we give the proof of Conjecture 1. In Section 4, we conjecture a recursive formula for
2k−1 − Sk,t,−,1.
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2 General properties
Here we follow the approach of the previous attempts to prove the original conjecture of Tu and
Deng [2, 1].

We recall the elementary results:

Lemma 1. For k ≥ 1,

• ∀a ∈ Z/(2k − 1)Z, w(2a) = w(a);

• ∀a ∈
(
Z/(2k − 1)Z

)∗, w(−a) = k − w(a).

We first remark that for a given a ∈ Z/(2k − 1)Z, b must be equal to ±(t− ua), whence the
following lemma.

Lemma 2. For k ≥ 2,

Sk,t,±,u = #
{

a ∈ Z/(2k − 1)Z | w(a) + w(±(t− ua)) ≤ k − 1
}

.

We now show that is enough to study the conjecture for one t, but also one u, in each
cyclotomic class.

Lemma 3. For k ≥ 2,
Sk,t,±,u = Sk,2t,±,u .

Proof. Indeed a 7→ 2a is a permutation of Z/(2k − 1)Z so that

Sk,2t,±,u = #
{

a ∈ Z/(2k − 1)Z | w(a) + w(±(2t− ua)) ≤ k − 1
}

= #
{

a ∈ Z/(2k − 1)Z | w(2a) + w(±2(t− ua)) ≤ k − 1
}

= #
{

a ∈ Z/(2k − 1)Z | w(a) + w(±(t− ua)) ≤ k − 1
}

= Sk,t,±,u .

Lemma 4. For k ≥ 2,
Sk,t,±,u = Sk,t,±,2u .

Proof. Using the previous lemma:

Sk,t,±,2u = Sk,2t,±,2u

= #
{

a ∈ Z/(2k − 1)Z | w(a) + w(±(2t− 2ua)) ≤ k − 1
}

= #
{

a ∈ Z/(2k − 1)Z | w(a) + w(±(t− ua)) ≤ k − 1
}

= Sk,t,±,u .

We now show a more elaborate relation.

Lemma 5. For k ≥ 2 and gcd(u, 2k − 1) = 1,

Sk,t,±,u = Sk,±u−1t,±,u−1 .
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Proof. We use the fact that a 7→ u−1(∓a + t) is a permutation of Z/(2k − 1)Z.

Sk,t,±,u = #
{

a ∈ Z/(2k − 1)Z | w(a) + w(±(t− ua)) ≤ k − 1
}

= #
{

a ∈ Z/(2k − 1)Z | w(u−1(∓a + t)) + w(a) ≤ k − 1
}

= #
{

a ∈ Z/(2k − 1)Z | w(±(±u−1t− u−1a)) + w(a) ≤ k − 1
}

= Sk,±u−1t,±,u−1 .

3 Proof of the conjecture
We now prove Conjecture 1, and so its extension for u equal to any power of 2, that is Conjecture 2
for u = 2i and the sign −, according to Lemma 4.

First, we note that for u = 1 and the sign −, Lemma 5 becomes

Sk,t,−,1 = Sk,−t,−,1 .

Second, for the specific values of a = 0, t, we have that

• w(0) + w(−t) = w(−t) ≤ k − 1,

• and w(t) + w(0) = w(t) ≤ k − 1,

so that we always have

{0, t} ⊂
{

a ∈ Z/(2k − 1)Z | w(a) + w(−(t− a)) ≤ k − 1
}

.

Finally, for a 6= 0, t, we have that

w(a) + w(−(t− a)) = k − w(−a) + k − w(t− a)
= 2k − (w(−a) + w(t− a)) .

Then using the fact that a 7→ −a is a permutation of Z/(2k − 1)Z:

Sk,t,−,1 = 2 + #
{

a ∈ Z/(2k − 1)Z \ {0, t} | w(a) + w(−(t− a)) ≤ k − 1
}

= 2 + #
{

a ∈ Z/(2k − 1)Z \ {0, t} | w(−a) + w(t− a) ≥ k + 1
}

= 2 + #
{

a ∈ Z/(2k − 1)Z | w(−a) + w(t− a) ≥ k + 1
}

= 2 + #
{

a ∈ Z/(2k − 1)Z | w(a) + w(t + a) ≥ k + 1
}

= 2 + (2k − 1−#
{

a ∈ Z/(2k − 1)Z | w(a) + w(t + a) ≤ k
}

)
≤ 2 + (2k − 1−#

{
a ∈ Z/(2k − 1)Z | w(a) + w(t + a) ≤ k − 1

}
)

≤ 2k + 1− Sk,−t,−,1

≤ 2k + 1− Sk,t,−,1 .

Hence
2Sk,t,−,1 ≤ 2k + 1 ,

but we know that Sk,t,−,1 is an integer, which concludes the proof of Conjecture 1.
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We also note that for t = 0,

Sk,0,−,1 = #
{

a ∈ Z/(2k − 1)Z | 2w(a) ≤ k − 1
}

=
b k−1

2 c∑
w=0

#
{

a ∈ Z/(2k − 1)Z | w(a) = w
}

=
b k−1

2 c∑
w=0

(
k

w

)
,

which is equal to 2k−1−
(

k
(k+1)/2

)
if k is odd, and 2k−1−

(
k

k/2−1
)
−
(

k/2
k

)
/2 if k is even. Therefore

the conjecture can be naturally extended to include the case t = 0.

4 Computing the exact gap
If we rewrite the above reasoning more carefully, we find that

Sk,t,−,1 = 2k−1 + (1−#
{

a ∈ Z/(2k − 1)Z | w(a) + w(t + a) = k
}

)/2 .

It is an interesting problem to find a closed-form formula for the value of

Mk,t = #
{

a ∈
(
Z/(2k − 1)Z

)∗ | w(a) + w(t + a) = k
}

,

Mk = min
t∈Z/(2k−1)Z

Mk,t .

We denote by ∆k the following value

∆k = Mk − 1
2 ,

so that Sk,t,−,1 = 2k−1 −∆k.
The experimental results of Tang, Carlet and Tang suggest that the following recursive formula

is verified:
∆k+1 =

{
2∆k + 1 if k even,
2∆k + 1− Γ(k−1)/2 if k odd,

where

Γn = 1 +
n−1∑
w=0

Cw

and Cw =
(2w

w

)
/(w + 1) is the w-th Catalan number. Γn is the sequence A155587 in OEIS [3].

Further experimental investigations made with Sage [4] show that the minimal value Mk

seems to be attained for t = 1 if k is even and t = 3 if k is odd. In fact, the next proposition
gives explicit formulae for Mk,1 and Mk,3.

We recall that r(a, t) = w(a + t)− w(a)− w(t) can be interpreted as the number of carries
occurring while adding a and t. Then we can describe Mk,t as

Mk,t = #
{

a ∈
(
Z/(2k − 1)Z

)∗ | w(a) + w(t + a) = k
}

= #
{

a ∈
(
Z/(2k − 1)Z

)∗ | 2w(a) + w(t)− r(a, t) = k
}

= #
{

a ∈
(
Z/(2k − 1)Z

)∗ | r(a, t) = −k + w(t) + 2w(a)
}

.
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Proposition 1. For k ≥ 2,

Mk,1 =
b(k+1)/2c∑

w=1

(
2w − 2
w − 1

)
.

Proof. We know that Mk,1 = Mk,−1, so we enumerate the set of a’s verifying r(a,−1) = 2w(a)−1
according to w(a) or equivalently r(a,−1). The binary expansion of −1 is 1---10.

First, for any number t ∈ Z/(2k − 1)Z, 0 ≤ r(a, t) ≤ k, so we deduce that a must verify
1 ≤ w(a) ≤ b(k + 1)/2c.

Second, for a given number of carries r, a number a verifying r(a,−1) = r must be of the
following form

−1 = 1---1---10 ,

a = ????1{
r

0---0 .

Such a description is valid even if r(a,−1) = k. So, for a given weight w, a number a verifying
w(a) = w and r(a,−1) = 2w − 1 must be of the following form

−1 = 1---1---10 ,

a = ????1{ 2w−1

0---0 ,

with the other w− 1 bits equal to 1 anywhere among the 2w− 2 first bits. Hence there are
(2w−2

w−1
)

differents a’s of weight w verifying r(a,−1) = 2w − 1.
Finally, summing up on 1 ≤ w ≤ b(k + 1)/2c, we get that Mk,1 =

∑b(k+1)/2c
w=1

(2w−2
w−1

)
.

Proposition 2. For k ≥ 3,

Mk,3 = 1 + 2
bk/2c∑
w=1

(
2w − 2
w − 1

)
.

Proof. We proceed as in the proof of Proposition 1. The arguments are only slightly more
technical.

We know that Mk,3 = Mk,−3, so we enumerate the set of a’s verifying r(a,−3) = 2w(a)− 2
according to w(a) or equivalently r(a,−3). The binary expansion of −3 is 1---100.

First, from r(a,−3) = 2w(a)− 2, we deduce that 1 ≤ w ≤ bk/2c+ 1.
Second, for a given number of carries r, there are now different possibilities.
For any t ∈ Z/(2k − 1)Z, there are exactly

∑k−w(t)−1
w=0

(
k−w(t)

w

)
different a’s producing no

carries. Indeed, such a’s are characterized by the facts that they have no bits equal to 1 in front
of any bit of t equal to 1 and that they can not have only 1’s in front of the bits of t equal to 0.
For t = −3, the such a’s are exactly 0, 1 and 2 and both 1 and 2 have weight 1.

Then, for a given number of carries 1 ≤ r < 2bk/2c, a number a verifying r(a,−3) = r cannot
have its two last bits (in front of the two bits of −3 equal to 0) equal to 1. Otherwise it would
produce k carries. So it must be of one of the following forms

−3 = 1---1---100 ,

a = ????1{

r

0--0?0 ,

a = ???1{

r−1

0----01 .
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So for a given weight w, a number a verifying w(a) = w and r(a,−3) = 2w − 2 must be of one of
the following forms

−3 = 1---1---100 ,

a = ????1{ 2w−2

0--0?0 ,

a = ???1{2w−3

0----01 ,

with the other w − 1 bits set to 1 anywhere among the 2w − 2 remaining bits in the first case,
and the other w − 2 bits set to 1 anywhere among the 2w − 4 first bits in the second one. Hence
there are

(2w−2
w−1

)
+
(2w−4

w−2
)
differents a’s of weight w.

Finally, if k is odd and w(a) = bk/2c+ 1, then r(a, t) = k − 1 and a must be of the following
form

−3 = 1---100 ,

a = ????101 .

There are
(2w−4

w−2
)
different such a’s. And, if k is even and w(a) = bk/2c+ 1, then r(a, t) = k and

a must be of the following form

−3 = 1---100 ,

a = ?????11 .

There are also
(2w−4

w−2
)
different such a’s.

Therefore, we find that

Mk,3 = 2 +
bk/2c∑
w=2

(
2w − 2
w − 1

)
+
bk/2c+1∑

w=2

(
2w − 4
w − 2

)

= 1 + 2
bk/2c∑
w=1

(
2w − 2
w − 1

)
.

We now prove recurrence relations for Mk,1 and Mk,3.
Corollary 1. If k is even, then

2Mk,1 + 1 = Mk+1,3 .

If k is odd, then
Mk,3 − Γ(k−1)/2 = (Mk+1,1 − 1)/2 .

Proof. The first equality is a simple consequence of the fact bk/2c = b(k + 1)/2c when k is even.
For the second one, we write

Mk,3 − Γ(k−1)/2 = 1 + 2
bk/2c∑
w=1

(
2w − 2
w − 1

)
− 1−

(k−3)/2∑
w=0

(
2w

w

)
/(w + 1)

= 2
(k−1)/2∑

w=1

(
2w − 2
w − 1

)
−

(k−3)/2∑
w=0

(
2w

w

)
/(w + 1)

= 1 +
(k−3)/2∑

w=1
(2− 1/(w + 1))

(
2w

w

)
,
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and

(Mk+1,1 − 1)/2 =
bk/2c+1∑

w=2

(
2w − 2
w − 1

)
/2

=
(k−1)/2∑

w=1

(
2w

w

)
/2 ,

so that we can equivalently show that(
k − 1

(k − 1)/2

)
− 2 =

(k−3)/2∑
w=1

(3− 2/(w + 1))
(

2w

w

)
,

which follows from a simple induction. For k = 3, this reduces to 0 = 0 which is indeed true; for
k > 3 odd, we have (

k + 1
(k + 1)/2

)
− 2 = 4k/(k + 1)

(
k − 1

(k − 1)/2

)
− 2

= (4− 1/(k + 1))
(

k − 1
(k − 1)/2

)
− 2 ,

and

(k−1)/2∑
w=1

(3− 2/(w + 1))
(

2w

w

)
=

(k−3)/2∑
w=1

(3− 2/(w + 1))
(

2w

w

)+ (3− 1/(k + 1))
(

k − 1
(k − 1)/2

)
.

To conclude this section, let us note that Mk,1 ≤ Mk,3 if k is even and Mk,3 ≤ Mk,1 if k is
odd. So, if we assume that these are indeed the minimal values Mk according to the parity of k,
then ∆k is given by

∆k =
{

(Mk,1 − 1)/2 if k even,
(Mk,3 − 1)/2 if k odd,

and the recursive formulae are proved.
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