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Abstract. We investigate in this paper the security of HFE and Multi-HFE schemes as well
as their minus and embedding variants. Multi-HFE is a generalization of the well-known HFE
schemes. The idea is to use a multivariate quadratic system – instead of a univariate polynomial
in HFE – over an extension field as a private key. According to the authors, this should make
the classical direct algebraic (message-recovery) attack proposed by Faugère and Joux on HFE no
longer efficient against Multi-HFE. We consider here the hardness of the key-recovery in Multi-
HFE and its variants, but also in HFE (both for odd and even characteristic). We first improve and
generalize the basic key recovery proposed by Kipnis and Shamir on HFE. To do so, we express this
attack as matrix/vector operations. In one hand, this permits to improve the basic Kipnis-Shamir
(KS) attack on HFE. On the other hand, this allows to generalize the attack on Multi-HFE. Due to
its structure, we prove that a Multi-HFE scheme has much more equivalent keys than a basic HFE.
This induces a structural weakness which can be exploited to adapt the KS attack against classical
modifiers of multivariate schemes such as minus and embedding. Along the way, we discovered
that the KS attack as initially described cannot be applied against HFE in characteristic 2. We
have then strongly revised KS in characteristic 2 to make it work. In all cases, the cost of our
attacks is related to the complexity of solving MinRank. Thanks to recent complexity results on
this problem, we prove that our attack is polynomial in the degree of the extension field for all
possible practical settings used in HFE and Multi-HFE. This makes then Multi-HFE less secure
than basic HFE for equally-sized keys. As a proof of concept, we have been able to practically break
the most conservative proposed parameters of multi-HFE in few days (256 bits security broken in
9 days).
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1 Introduction

The problem of finding a low rank linear combination of matrices is a basic linear algebra
problem [12] known as MinRank in cryptography [16]. This problem is NP-hard [12] and has
been used to design a zero-knowledge authentication scheme [16]. More generally, it appears
that MinRank is underlying the security of several cryptographic schemes [32, 15]. A well known
example is the key recovery attack of the multivariate scheme HFE [38] (Hidden Field Equations)
proposed by Kipnis and Shamir [32] who showed that the security of HFE can be reduced to the
difficulty of MinRank. Their technique is usually called Kipnis-Shamir’s attack, or KS attack.
They also proposed a general algorithm to solve MinRank. The idea is to map an instance
of MinRank to an algebraic system. They then proposed an “ad-hoc” technique to solve such
polynomial systems.

Later, Faugère, Levy-dit-Vehel and Perret [26] improve Kipnis-Shamir’s attack by using
Gröbner bases [9, 10, 11] techniques. In particular, they noticed that the system arising in Kipnis-
Shamir’s attack has a very specific structure: it is “bilinear”. This means that each equation
of the system is the product of linear forms with distinct variables. Soon after, Faugère, Safey
El Din and Spaenlehauer [28] presented a detailed study of the complexity of solving bilinear
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systems with Gröbner bases. In particular, [28] proved that (generic or random) bilinear systems
are much easier to solve than (generic) algebraic systems of the same size.

However, it seems reasonable to believe that polynomial systems occurring in cryptographic
applications (such as in MinRank) are likely not generic; motivating then a dedicated analysis
for important cases. In [27], MinRank instances occurring in authentication schemes have been
further studied. In this paper, we consider instances of MinRank occurring in the cryptanalysis
of multivariate public-key schemes.

Multivariate Public-Key Cryptography (MPKC) is the set of asymmetric schemes using
the NP-hardness of solving a quadratic system of multivariate algebraic equations [29]. Mul-
tivariate schemes are often considered as possible “low-cost” alternatives [36] to number the-
ory based public key schemes. Their encryption/decryption procedures are very efficient and
can be done in constrained environments [7, 13]. The main drawback is that the public key
is rather large. Indeed, the one-way function is defined by a set of m quadratic polynomials
(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) ∈ K[x1, . . . , xn]m. Namely, the public operation is the ap-
plication

G : (v1, . . . , vn) ∈ Kn 7→ (g1(v1, . . . , vn), . . . , gm(v1, . . . , vn)) ∈ Km.

To introduce a trapdoor, we choose a transformation F given by a system of algebraic equations
(f1, . . . , fm) ∈ K[x1, . . . , xn]m. Thanks to a well chosen structure, the system is easy to solve. Let
GLn(K) be the group of invertible linear transformations and let Affn(K) ' GLn(K)×Kn be the
space of invertible affine transformations. This structure is hidden by two affine transformations
S ∈ Affn(K) and T ∈ Affm(K) represented by matrices S and T. The public key is then:

G = T ◦ F ◦ S
(g1, . . . , gm) = (f1 ((x1, . . . , xn) S) , . . . , fm ((x1, . . . , xn) S)) T.

In such schemes, the transformations S, T and (usually) F are kept secret and G is made public.
To encrypt a message m = (m1, . . . ,mn) ∈ Kn, we compute:

c = (c1, . . . , cm) = (g1(m1, . . . ,mn), . . . , gm(m1, . . . ,mn)) ∈ Km.

To decrypt, the owner of the secret key inverts separately each component. As S, T and F are
easy to invert, this is done efficiently. The first multivariate scheme C* has been introduced by
Matsumoto and Imai [34] and broken by Patarin [37]. After that, several trapdoor functions
have been proposed in this framework [38, 33, 35, 40]. HFE probably remains the most famous
one. In this paper we focus on the HFE and Multi-HFE structure introduced in [38, 6, 14].

In the original HFE [38], the secret inner system is the representation of a univariate poly-
nomial over some extension of degree n ∈ N of a finite field Fq. This polynomial is chosen to
be easy to solve (low degree) and has a special structure that allows to have only quadratic
polynomials in its (multivariate) small field representation. A practical message recovery at-
tack [23, 25] and a theoretical key recovery [32] undermined the security of this scheme. To
tackle these attacks, a generalization of HFE that uses a system of N equations in N variables
(instead of one univariate polynomial) in an extension field of degree d has been proposed in [6]
and in [13]. In this paper, we call this construction Multi-HFE. The basic HFE scheme is then
an instantiation of Multi-HFE with N = 1, d = n.

1.1 Main results

First, we propose an improved key recovery attack against HFE in odd-characteristic. To do so,
we have improved and adapted the “classical” Kipnis-Shamir (KS) attack [32]. The KS attack
reduces to a MinRank over Fqn related to the public key. Contrarily to the KS attack, we show
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that the MinRank can be expressed in the small field and directly on the quadratic forms of
the public key (g1, . . . , gn) ∈ Fq[x1, . . . , xn]n. This allows to considerably speed up the solving
step (for instance we have a speedup factor of 424 for q = 31 and n = 19) and also simplifies
the KS attack. Due to its simpler description, we are able to generalize our attack to Multi-
HFE (N > 1) in odd-characteristic. These results were first published in [5] and concerns only
odd-characteristic fields. In characteristic 2, there is no symmetric quadratic form representing
a quadratic polynomial, and contrarily to what was stated in [32], KS attack does not work as
initially described. Using the specificity of the problem in characteristic 2 and the possibility
to add the field equations, we give two methods for adapting our attack in characteristic 2
depending on the parity of the target rank of the MinRank. Note that our adaptation applies
both for HFE and Multi-HFE.

The MinRank problems occurring are very specific. First, a certain degree of freedom is left
for its solving. This is related to a large amount of equivalent keys in HFE/Multi-HFE. We
isolated two kind of transformations allowing to build equivalent keys. These transformations
generalizes those given in [42, 43] for HFE. We show that an equivalent key has a canonical rep-
resentation in terms of these transformations. As a direct consequence, we give a lower bound on
the number of equivalent key for Multi-HFE, more precise than the one given in [5]. Second, the
MinRank considered are greatly over-determined. Thanks to recent results on MinRank [26, 27],
bilinear systems [28] and a new expression of the Hilbert function using orthogonal polynomials,
we provide a precise complexity analysis of our attack. For all proposed practical parameters,
we prove that the attack is polynomial in d, the degree of the extension and linear in log(q),
just as we conjectured in [5].

Another consequence of equivalent keys is the possibility to attack two variants of Multi-
HFE, namely Multi-HFE- and Multi-HFE with embedding. In Multi-HFE-, several polynomials
are removed from the public keys. We show that only (n − N) matrices are needed to solve
the MinRank problem instead of n. These N degrees of freedom in the MinRank problem allow
to perform our key recovery with no additional cost as the rank property still holds as long as
the number of removed equations does not exceed N . For the embedding variant, the public
polynomials have less variables leading to matrices with fewer rows and columns. However, a
low rank linear combination of the quadratic forms can still be found. In this case, the matrix S
(corresponding to the change of variable) recovered is rectangular. In order to make it invertible,
we need to extend this matrix in a special way to keep the shape of F unchanged.

All in all, for the same size of keys, the Multi-HFE family seems to be less secure than the
original HFE (N = 1). As a proof of concept, we provide a practical key recovery on the most
conservative parameters (256-bit security) proposed in [14] in less than 10 days.

1.2 Organization of the Paper

The paper is organized as follows. After this introduction, we present in Sect. 2 the necessary
material regarding the MinRank problem and the algorithmic tools to solve it. We also review
previous known attacks against HFE, and more particularly the KS attack on which ours is
based. Section 3 is devoted to the presentation of our key recovery attack on both HFE and
Multi-HFE. Equivalent keys are an important feature for our attack. They are discussed in
Sect. 4 and the consequences are presented in Sect. 5. We use the degrees of freedom induced
by equivalent keys to enhance the solving step by fixing some variables. After that, we unroll
our attack on an example in Sect. 6. In this section, we also describe how to adapt our attack
in characteristic 2. The complexity analysis of our attack is given in Sect. 7, and in Sect. 8 we
devise how to extend our attack for the minus and the embedding variants of HFE/Multi-HFE.
Finally, as a conclusion we show in Sect. 9 that Multi-HFE is less secure than HFE.
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2 Preliminaries

Let K be a field. Throughout this paper, we use the following conventions: an underlined letter
denotes a vector, e.g. v = (v1, . . . , vn) ∈ Kn. A capital bold font letter denotes a matrix, e.g.
M ∈ Mn×n (K) where Mn×n (K) denotes the set of n× n matrices whose entries lie in K. We
also write M = [mi,j ] to denote that the (i, j)-th coefficient of the matrix M is mi,j ∈ K for
0 6 i, j < n. We will also indifferently use ker (M) to denote the left kernel of M or (more
often) a matrix whose rows form a basis of its left kernel. A calligraphic capital letter denotes
a general mapping, e.g. F . The set of invertible matrices of Mn×n (K) is denoted by GLn(K).
The space of affine invertible transformations is denoted by Affn(K) ' GLn(K)×Kn.

2.1 Multi-HFE

The parameters considered are (q,N, d,D) ∈ N4. Here, q denotes the size of the ground field
Fq, d is the degree of the extension field Fqd , N is the number of variables and equations of the
secret polynomials in the ring Fqd [X1, . . . , XN ], and D their degree. In the rest of the paper, we
use capital letters for elements relative to the extension Fqd (a.k.a. “big field” in this paper),
e.g. Vi ∈ Fqd , Fi ∈ Fqd [X1, . . . , XN ], and small letters for elements relative to Fq (a.k.a. “small
field”), e.g. vi ∈ Fq, fi ∈ Fq[x1, . . . , xn]. To build the trapdoor function F , we use the following
transformation over the big field

F∗ : (V1, . . . , VN ) ∈ (Fqd)N 7→ (F1(V1, . . . , VN ), . . . , FN (V1, . . . , VN )) ∈ (Fqd)N

with Fk ∈ Fqd [X1, . . . , XN ],∀k, 1 6 k 6 N , and deg (Fi) 6 D. In addition, the polynomials
F1, . . . , FN are constructed in a specific way. For all k, 1 6 k 6 N :

Fk =
∑

16i6j6N

∑
06u,v<d
qu+qv6D

Ak,i,u,
j,v

Xqu

i Xqv

j +
∑

16i6N

∑
06u<d
qu6D

Bk,i,uX
qu

i + Ck,

where Ak,i,u,
j,v

, Bk,i,u, Ck ∈ Fqd ,∀i, j, 1 6 i, j 6 N, ∀u, v, 0 6 u, v < d. From now on, we say

that such systems have (multi-)HFE-shape. For convenience, we denote n = N d. Let ϕN be a
morphism from (Fqd)N to Fn

q . The transformation F use the small field representation of the

secret polynomials, F = ϕN ◦ F∗ ◦ ϕ−1N with

F : (v1, . . . , vn) ∈ Fn
q 7→ (h1(v1, . . . , vn), . . . , hn(v1, . . . , vn)) ∈ Fn

q .

Due to the HFE-shape, each polynomial hi, for i, 1 6 i 6 n has total degree 2.
The original HFE scheme [38] is mostly used over F2 and always with a single univariate

polynomial as a secret map. It is then an instantiation of multi-HFE with q = 2 and N = 1. The
construction PHFE [19] (for projected HFE) is an odd characteristic univariate HFE that uses
the embedding modifier (see Sect. 8.2). The scheme IFS [6] (for Intermediate Field System) is
a multi-HFE in characteristic 2 and THFE [14] is a multi-HFE in odd characteristic (possibly
with embedding modifier). To make the decryption efficient, all instances of multi-HFE with
N > 1 use quadratic polynomials as internal secret transformations. In Table 1, we provide
sample of parameters from the literature.

We briefly review known attacks against HFE/multi-HFE.

2.2 Direct Algebraic Attack

Let (c1, . . . , cn) ∈ Fn
q be a ciphertext. A message-recovery attack in a multivariate scheme

reduces to solve a system of quadratic equations, i.e. {g1 − c1 = 0, . . . , gn − cn = 0}, where
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Table 1. Parameters of various Multi-HFE instances found in several papers.

q N d D security

HFE [38] 2 1 128 513 128
PHFE [19] 7 1 67 56 201
IFS [6] 2 8 16 2 128
THFE [14] 31 3 10 2 150

the gi’s are the public polynomials. A classical way to solve algebraic systems is to compute
a Gröbner basis [9, 10, 11, 1, 17]. The historical method for computing such bases has been
proposed by Buchberger in his PhD thesis [9]. The algorithms F4 [21] and F5 [22] by Faugère
permit to improve the basic Buchberger’s algorithm. A good measure of the complexity for
Gröbner bases is the so-called “degree of regularity” of a system. This can be viewed as the
maximum degree of the polynomials appearing during the computation (see [2, 3]).

It appeared [23, 25] that inverting the public key of the original HFE is much easier than
expected (i.e. in comparison to a random system of the same size). For original HFE, the degree
of regularity has been experimentally shown to be roughly logq(D) (see [25]). This makes the
attack sub-exponential in the number of variables. Further analysis [30] confirmed this result.
Note that the field equations (i.e. xq1 − x1 = . . . = xqn − xn = 0) are mandatory to achieve
this complexity. Their role is to force the solutions to be only in the base field Fq. To prevent
a direct algebraic attack, it has been proposed [19] to use a field with a bigger characteristic.
During the Gröbner basis computation, field equations only intervene in degree at least q. Note
that the hybrid approach described in [4] has been especially designed to solve such systems
(for “intermediate” fields). As an example, for n = 28 and q = 31 the complexity of the hybrid
approach is 282. It is better than a direct solving (2115) but the attack remains impractical.

More specifically, a HFE system with q > n is very hard to solve with a direct approach
such as in [25] (for n sufficiently big). This intuition has been recently confirmed in [20] where
the authors extend the analysis of [30] for all fields. After this, [18] produces an explicit bound
on the degree of regularity which is

(q − 1)dlog (D)e
2

+ 2.

We remark that this bound is linear in q. This makes the cost of a direct Gröbner basis computa-
tion exponential in q and then useless for a big enough field. For example, HFE with parameters
q = 23, D = 1058 and n = 120, the (upper) bound on the degree of regularity according to [18]
is 35. The corresponding cost for mounting a direct message-recovery attack is then 2242 opera-
tions. For a comparison, the key-recovery attack presented in this paper will need 228 operations
for the same parameters.

For multi-HFE, there are less results. In characteristic 2, multi-HFE can still be attacked
similarly to HFE as pointed in [6]. This confirms that the algebraic attack is somehow “optimal”
over F2. However, as for basic HFE, the direct algebraic attack does not affect instantiations of
multi-HFE with bigger odd characteristic.

2.3 Original Kipnis-Shamir Attack

We now describe the key recovery attack proposed in [32] against the original HFE scheme
(N = 1, n = d). The starting idea is to remark that the polynomials of the public key –
as well as the transformations S, T – can be viewed as mappings G∗,S∗, T ∗ : Fqn 7→ Fqn and
represented by the univariate polynomials G,S, T ∈ Fqn [X] respectively. The public key relation
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then becomes
G = G∗(X) = T ∗(F∗(S∗(X))).

Kipnis and Shamir [32] proposed interpolation to recover a univariate representation of the
public key. We present a more efficient and simpler way in Sect. 3 to perform this step.

Kipnis and Shamir [32] also showed that the univariate polynomials can be written as a
“non-standard quadratic form”. For instance, we have:

G =

n−1∑
i=0

n−1∑
j=0

gi,jX
qi+qj = XGXt, where X = (X,Xq, . . . , Xqn−1

)

and G = [gi,j ] ∈ Mn×n (Fqn). Note that this representation does not work in characteristic
2. In this section and in Sect. 3, we assume then that q is odd. The characteristic 2 case is
addressed in Sect. 6.3. Similarly, we define F = [fi,j ] ∈ Mn×n (Fqn) as the symmetric matrix
representation of the secret univariate polynomial.

The Kipnis-Shamir attack is based on the remark that the rank of F is bounded, namely
Rank

(
F
)
6 logq (D). Indeed, the degree of the secret polynomial is smaller than D and the

entries fi,j in F are non-zero only if i, j 6 logq (D). In addition, we write T ∗−1(X) =
∑n−1

k=0 tkX
qk

and S∗(X) =
∑n−1

k=0 skX
qk .

The equation G∗(X) = T ∗(F∗(S∗(X))) implies the so-called “Fundamental Equation” (see [32]
for the proof):

n−1∑
k=0

tkG
∗k = G′ = W̃FW̃t, (1)

where W̃ = [w̃i,j ] ∈ Mn×n (Fqn) is a specified invertible matrix such that w̃i,j = sq
i

(j−i) mod n,

for all i, j, 0 6 i, j < n. Finally, for a given k, 0 6 k < n, G∗k is the matrix whose (i, j)-th entry

is gq
k

(i−k) mod n,(j−k) mod n, for all i, j, 0 6 i, j < n. As the rank of F is bounded, so is the rank of

G′. Recovering the tk’s reduces to solve a MinRank problem.
Once the tk’s of (1) are known, the sk’s are recovered by solving a linear system. From (1),

we see that ker(G′) = ker(W̃F) and thus ker(G′) W̃ = ker(F). Let ` = dlogq(D)e, we recall
that only the upper left ` × ` submatrix of F has non-zero coefficients. Thus, any (n − `) × n
matrix K whose first ` columns are 0 ensures KF = 0. Furthermore, if Rank(F) = ` and the
rows of K are chosen linearly independent, then their rows form a basis of ker(F).

In any case, this is enough to ensure that the ` first columns of ker(G′) W̃ are zero. This
gives rise to a linear system of equations over Fqn of ` (n− `) equations in the n2 coefficients of

W̃. In addition, W̃ has the following shape:

W̃ =



w̃0,0 w̃0,1 . . . . . . w̃0,n−2 w̃0,n−1
w̃q
0,n−1 w̃

q
0,0 w̃q

0,1 . . . . . . w̃q
0,n−2

. . .
. . .

. . .
. . .

. . .
. . .

. . . . . . w̃qn−2

0,n−2 w̃
qn−2

0,n−1 w̃
qn−2

0,0 w̃qn−2

0,1

w̃qn−1

0,1 . . . . . . w̃qn−1

0,n−2 w̃
qn−1

0,n−1 w̃
qn−1

0,0


.

This is due to the fact that w̃i+1,j+1 = sq
i+1

(j+1)−(i+1) =
(
sq

i

(j−i)

)q
= w̃q

i,j . Thus, Kipnis and Shamir

proposed to reinterpret the equations over Fq. This gives n ` (n−`) equations in only n2 variables
over Fq. Solving this overdetermined system completes the key recovery. The main (and more
difficult) part of the attack is to solve the so-called MinRank problem. In the next section, we
present the problem as well as the tools to solve it.
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2.4 The MinRank Problem

The (square) MinRank problem over a finite field K is defined as follows:
MinRank (MR)
Input: n, r, k ∈ N and M0,M1, . . . ,Mk ∈Mn×n(K).
Question: Find – if any – a k-tuple (λ1, . . . , λk) ∈ Kk such that:

Rank

(
k∑

i=1

λi Mi −M0

)
6 r.

We review below known algebraic techniques to solve this problem.

Kipnis-Shamir Modeling Kipnis and Shamir [32] proposed to formulate MinRank as a mul-
tivariate polynomial system of equations. With the previous notations, solving MinRank over a
finite field K is equivalent to solving the algebraic system of n (n− r) equations in r (n− r) + k
variables given by the entries of the matrix1 x1,1 . . . x1,r

. . .
...

...
1 xn−r,1 . . . xn−r,r

 ·( k∑
i=1

λi Mi −M0

)
.

Solving this system is equivalent to find a left kernel (in echelon form) of

(∑k
i=1 λi Mi−M0

)
.

This left kernel can be written in such a systematic form with high probability over a finite field.
Initially, relinearization [32] has been used to solve this algebraic system. The authors of [26]
proposed instead to use Gröbner bases tools to solve this system. In addition, [26] noticed that
the system has a specific structure: it is formed by bilinear equations [28].

Minors Modeling Alternatively, MinRank is equivalent to finding a vector (λ1, . . . , λk) ∈ Kk

vanishing all the minors of size r + 1 of the matrix
(∑k

i=1 λi Mi −M0

)
are zero. We have

then to solve a multivariate polynomial system of
(

n
r+1

)2
equations in k variables as pointed

in [26, 27]. The system has more equations and less variables than the Kipnis-Shamir modeling
but the degree of the equations is r. However, it seems that this approach is more efficient [27]
(at least for MinRank instances used in the authentication scheme [16]). In addition, precise
complexity bounds can be derived for this modeling [27].

Complexity. We recall the complexity of the F5 algorithm as given in [2, 3].

Theorem 1. The complexity of computing a Gröbner basis of a zero-dimensional (i.e. with a
finite number of solutions in the algebraic closure of the coefficient field) polynomial system of
m equations in n variables with F5 is

O
((

n+ dreg
dreg

)ω)
,

where dreg is the degree of regularity of the ideal and 2 6 ω 6 3 the linear algebra constant.

Informally, dreg is the maximum degree reached during a Gröbner basis computation. For random
instances of square (m = n) quadratic systems, it holds that dreg = n + 1 (see [2]). It has to
be noticed that if the degree of regularity does not depend on the number of variables, the
complexity then becomes polynomial in n.
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We consider now MinRank systems obtained by the minors modeling, Corollary 3 of [27]
gives a bound on the degree of regularity of these particular systems. Note that this bound is
also an upper bound for the degree of regularity of the Kipnis-Shamir modeling [27].

Proposition 1 (Faugère, Safey El Din, Spaenlehauer [27]). Let (n, r, k) be the param-
eters of a MinRank instance. Let A(t) = [ai,j(t)] be the (r × r)-matrix defined by ai,j(t) =∑n−max(i,j)

`=0

(
n−i
`

)(
n−j
`

)
t`. The degree of regularity of MinRank polynomial systems is bounded

from above by 1 + deg (HS(t)) where HS(t) is the polynomial obtained from the first positive
terms of the series

(1− t)(n−r)2−k det A(t)

t(
r
2)

.

In Sect. 7, we will see that Proposition 1 is useful to bound the complexity of MinRank
problems coming from HFE/multi-HFE.

3 Improvement and Generalization of the MinRank Attack

To generalize the MinRank attack proposed by Kipnis and Shamir [32], it is convenient to
interpret it as matrix/vector operations. In what follows, we denote by Frobk the function raising
all the components of a vector (or a matrix) to the power qk in any field K of characteristic q.

For example, for a vector v = (v1, . . . , vm) ∈ Km, we have Frobk(v) = (vq
k

1 , . . . , v
qk
m ) ∈ Km. For

a matrix A = [ai,j ] ∈ Mn×n (K), we have Frobk(A) = [aq
k

i,j ] ∈ Mn×n (K). In this section, we
will suppose that the characteristic of the field Fq is different than two. This particular case is
addressed in Sect. 6.3.

3.1 Improving the Univariate Case

To express the KS attack as matrix/vector operation, we introduce the following change basis
matrix.

Proposition 2. Let (θ1, . . . , θn) ∈ (Fqn)n be a vector basis of Fqn over Fq and Mn ∈Mn×n (Fqn)
be the matrix whose columns are the Frobenius powers of the basis elements, i.e.:

Mn =


θ1 θ

q
1 . . . θ

qn−1

1

θ2 θ
q
2

...
...

. . .
...

θn θ
q
n . . . θ

qn−1

n

 .

We can express the morphism ϕ1 : Fqn → Fn
q as

V 7→ (V, V q, . . . , V qn−1
) M−1

n

and its inverse ϕ−11 : Fn
q → Fqn as

(v1, . . . , vn) 7→
(
(v1, . . . , vn) Mn

)
[1],(

(v1, . . . , vn) Mn

)
[1] denoting the first component of the vector (v1, . . . , vn) Mn. More generally,

we have

(v1, . . . , vn) Mn = (V, V q, . . . , V qn−1
).

8



Proof. Let (v1, . . . , vn) ∈ Fn
q be the decomposition of V ∈ Fqn as a vector in Fn

q . That is,
V =

∑n
i=1 viθi ∈ Fqn . By construction:

(v1, . . . , vn) Mn =

(
n∑

i=1

viθ
q0

i , . . . ,
n∑

i=1

viθ
qn−1

i

)
=

( n∑
i=1

viθi

)q0

, . . . ,

(
n∑

i=1

viθi

)qn−1


=
(
V q0 , . . . , V qn−1

)
.

As a consequence:
ϕ−11 (v1, . . . , vn) =

(
(v1, . . . , vn) Mn

)
[1] = V.

Mn being invertible, we have for ϕ1:(
V q0 , . . . , V qn−1

)
= (v1, . . . , vn) Mn(

V q0 , . . . , V qn−1
)

M−1
n = (v1, . . . , vn) = ϕ1(V ).

ut

The matrix Mn allows to go back and forth from the big field Fqn to the vector-space Fn
q . It

can be used to compute the univariate representation of the public key in a simpler way than
in [32]. Namely, we replace interpolation by a matrix multiplication. For the sake of simplicity,
we consider from now on only linear transformations and homogeneous polynomials. This is not
a restriction since what follows can easily be adapted to the affine case (as already pointed in
[32]).

Let F∗k ∈ Mn×n
(
Fqd
)

be the matrix whose (i, j)-th entry is f q
k

i−k,j−k (indexes are modulo

n). The matrix F∗k is in fact the “matrix representation” of the qk-th power of the univariate
polynomial F . Indeed, since F =

∑n−1
i=0

∑n−1
j=0 fi,jX

qi+qj , we have

F qk =

n−1∑
i=0

n−1∑
j=0

fi,jX
qi+qj

qk

=
n−1∑
i=0

n−1∑
j=0

f q
k

i,jX
qi+k+qj+k

=
n−1+k∑
i=k

n−1+k∑
j=k

f q
k

i−k,j−kX
qi+qj .

The sums can be divided as follows:

F qk =
n−1∑
i=k

n−1+k∑
j=k

f q
k

i−k,j−kX
qi+qj

+
n−1+k∑

i=n−1+1

n−1+k∑
j=k

f q
k

i−k,j−kX
qi+qj


F qk =

n−1∑
i=k

n−1∑
j=k

f q
k

i−k,j−kX
qi+qj +

n−1+k∑
j=n−1+1

f q
k

i−k,j−kX
qi+qj


+

n−1+k∑
i=n−1+1

n−1∑
j=k

f q
k

i−k,j−kX
qi+qj +

n−1+k∑
j=n−1+1

f q
k

i−k,j−kX
qi+qj


F qk =

n−1∑
i=k

n−1∑
j=k

f q
k

i−k,j−kX
qi+qj +

k−1∑
j=0

f q
k

i−k,n+j−kX
qi+qn+j


+

k−1∑
i=0

n−1∑
j=k

f q
k

n+i−k,j−kX
qn+i+qj +

k−1∑
j=0

f q
k

n+i−k,n+j−kX
qn+i+qn+j

 .
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Remark that Xqn = X. By reducing the indexes of fi,j modulo n, we get:

F qk =
n−1∑
i=k

n−1∑
j=k

f q
k

i−k,j−kX
qi+qj +

k−1∑
j=0

f q
k

i−k,j−kX
qi+qj


+

k−1∑
i=0

n−1∑
j=k

f q
k

i−k,j−kX
qi+qj +

k−1∑
j=0

f q
k

i−k,j−kX
qi+qj

 .

Grouping the sums back together, we obtain

F qk =
n−1∑
i=0

n−1∑
j=0

f q
k

i−k,j−kX
qi+qj = XF∗kXt. (2)

Thanks to Proposition 2, we deduce a useful property on these matrices.

Lemma 1. Let Mn ∈Mn×n (Fqn) be the matrix defined in Proposition 2. We consider also the
symmetric matrices (H1, . . . ,Hn) ∈ (Mn×n (Fq))

n associated to the secret quadratic polynomials
in the small field (h1, . . . , hn) ∈

(
Fq[x1, . . . , xn]

)n
, i.e. hi = xHix

t for all i, 1 6 i 6 n. It holds
that:

(H1, . . . ,Hn) =
(
Mn F∗0 Mt

n, . . . ,MnF∗n−1 Mt
n

)
M−1

n .

Proof. By construction, for all v = (v1, . . . , vn) ∈ Fn
q :

(h1 (v) , . . . , hn (v)) = ϕ1

(
F
(
ϕ−11 (v)

))
.

Using the matrix definition of ϕ1, we express this relation as follows:

(h1 (v) , . . . , hn (v)) = ϕ1 (F (vMn)) =
(
F q0 (vMn) , . . . , F qn−1

(vMn)
)

M−1
n .

We recall that the matrix representation of F qk is F∗k. Thus for all v ∈ Fn
q :(

vH1 v
t, . . . , vHn v

t
)

=
(
vMn F∗0 Mn

t vt, . . . , vMn F∗n−1 Mt
n v

t
)
M−1

n

(H1, . . . ,Hn) =
(
Mn F∗0 Mn

t, . . . ,Mn F∗n−1 Mt
n

)
M−1

n .

ut

We consider now the symmetric matrices (G1, . . . ,Gn) ∈ (Mn×n (Fq))
n associated to the public

polynomials (g1, . . . , gn) ∈
(
Fq[x1, . . . , xn]

)n
, i.e. gi = xGix

t for all i, 1 6 i 6 n. We want to
bind the public matrices Gi in the small field to the secret matrix F in the big field. To do that,
the equation G = T ◦ F ◦ S can also be interpreted as matrix/vector operations.

G(x) = T ◦ F ◦ S(x)

(g1(x), . . . , gn(x)) =
(
h1(xS), . . . , hn(xS)

)
T(

xG1 x
t, . . . , xGn x

t
)

=
(
xS H1 St xt, . . . , xS Hn St xt

)
T

(G1, . . . ,Gn) =
(
S H1 St, . . . ,S Hn St

)
T.

Thanks to Lemma 1:

(G1, . . . ,Gn) =
(
S Mn F∗0 Mt

n St, . . . ,S MnF∗n−1 Mt
n St

)
M−1

n T.
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As T and Mn are invertible, we have

(G1, . . . ,Gn) T−1Mn = (SMnF∗0Mt
nSt, . . . ,SMnF∗n−1Mt

nSt). (3)

In other words, we have a direct relation between the polynomials of the public key written
as quadratic forms and the secret polynomial F or more precisely its matrices F∗i, for all
i, 0 6 i < n.

Notice that Equation (3) involves left products of a matrix with Mn. This product has an
interesting property.

Proposition 3. Let A = [ai,j ] ∈Mn×n (Fq), and B = [bi,j ] = A Mn ∈Mn×n (Fqn). We have:

bi,j = bqi,j−1, for all i, j, 0 6 i, j < n.

That is, each column is obtained from the previous one using a Frobenius application. As a
consequence, the whole matrix B = [bi,j ] = A Mn can be defined with any of its columns.

Proof. Due to the definition of Mn in Proposition 2, bi,j =
∑n−1

k=0 ai,k θ
qj

k+1, for all i, j, 0 6 i, j <
n. Consequently:

bqi,j−1 =

(
n−1∑
k=0

ai,kθ
qj−1

k+1

)q

.

As ai,j ∈ Fq (i.e. aqi,j = ai,j) and since the Frobenius is linear, we get:

bqi,j−1 =
n−1∑
k=0

aqi,k

(
θq

j−1

k+1

)q
=

n−1∑
k=0

ai,k θ
qj

k+1 = bi,j .

ut

From now on, we will write T−1 Mn = U = [ui,j ] ∈ Mn×n (Fqn) and S Mn = W = [wi,j ] ∈
Mn×n (Fqn). We then rewrite (3) as follows:

(G1, . . . ,Gn) U = (WF∗0Wt, . . . ,WF∗n−1Wt). (4)

According to Proposition 3, ui,j+1 = uqi,j and wi,j+1 = wq
i,j , for all i, j, 0 6 i, j < n. Thus,

we only need to know one column of U (resp. W) to recover the whole matrix. Let then
(u0,0, . . . , un−1,0) ∈ (Fqn)n be the components of the first column of U. We have:

n−1∑
k=0

uk,0Gk+1 = WF∗0Wt = WFWt. (5)

The equation is similar to (1), but we have not used the univariate representation of G. Here
again, as the rank of F is logq(D), so is the rank of WFWt. Contrarily to the initial attack,
the Gi’s are the public matrices and not matrices whose coefficients are in the big field. In the
other hand, the solution of such MinRank lies in (Fqn)n. This leads to the following theorem.

Theorem 2. For HFE, recovering U = T−1 Mn ∈ Mn×n (Fqn) reduces to solve a MinRank
with k = n and r = dlogq(D)e on the public matrices (G1, . . . ,Gn) ∈Mn×n (Fq)

n whose entries
are in Fq. The solutions (i.e. the linear combinations) of this MinRank are in (Fqn)n.
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Table 2. Comparison between the original KS attack and the new attack on HFE (N = 1) with parameters
q = 31, D = 312 + 31 = 992 using Magma [8] (V2.17-1) on a 2.93 GHz IntelR© XeonR© CPU. The gain (ratio) is
expected to be between n logn and n2.

n 12 13 14 15 16 17 18 19

KS attack (in s.) 390 1325 1796 2754 14434 38996 30064 138656
new attack (in s.) 3.3 6.7 12.6 25.7 54.3 107 196 327

ratio 120 197 143 107 266 366 153 424

Computing a Gröbner basis of a polynomial system whose coefficients are over a smaller field
(Fq instead of Fqn) is faster as the cost of arithmetic operations is decreased. The expected gain
is a factor M(n) (the cost of the multiplication of two univariate polynomials of degree n) over
the KS attack.

In Table 2, we compare the original KS MinRank attack and the new MinRank attack on
HFE (N = 1) with parameters q = 31, D = 312 + 31 = 992.

Our attack allows a considerable speedup over the original KS attack. It makes it practical for
a wide range of parameter whereas the original KS attack was considered theoretical. Another
advantage of this new formulation is that it can be easily extended to Multi-HFE.

3.2 Generalization to Multi-HFE

The Kipnis-Shamir attack uses the univariate representation of the public key. In multi-HFE,
the degree of the univariate representation of the secret key is not bounded. This was in fact
the initial motivation for the design of IFS [6]. As a consequence, there is no linear combination
of the G∗k (notation as in (2)) leading to a small rank, making the MinRank attack impossible
at first glance. The hidden field structure exists but it can only be unveiled by working in the
right field. To have the correct analogy with the univariate case, we introduce a new change of
basis between the “small” field vector space Fn

q and the “big” field vector space (Fqd)N .

The whole idea of our generalization is to “expand” the concepts of Sect. 3.1 to N variables.
We recall that n = N d. Hence, a n dimensional vector over the small field can be divided in
N blocks of size d. Each such block represents an element in the big field (i.e Fqd) and has to
be processed as in Sect. 3.1. The process is applied N times, once for each block. This leads to
consider N simultaneous MinRank. To this end, the matrix defined in Proposition 2 has to be
expanded. Precisely, we consider block diagonal matrices as in the next proposition.

Proposition 4. Let (θ1, . . . , θd) ∈ (Fqd)d be a vector basis of Fqd over Fq. Let Md ∈Md×d
(
Fqd
)

be the matrix as defined in Proposition 2. We construct the matrix MN,d = Diag(Md, . . . ,Md︸ ︷︷ ︸
N

) ∈
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Mn×n (Fqn), namely

MN,d =



θ1 θ
q
1 . . . θ

qd−1

1

θ2 θ
q
2 . . . θ

qd−1

2
...

... . . .
... 0

θd θ
q
d . . . θ

qd−1

d
. . .

. . .
. . .

. . .
. . .

. . .

θ1 θ
q
1 . . . θ

qd−1

1

θ2 θ
q
2 . . . θ

qd−1

2

0
...

... . . .
...

θd θ
q
d . . . θ

qd−1

d



.

We can express the morphism ϕN : (Fqd)N → Fn
q as

(V1, . . . , VN ) 7→ (V1, V
q
1 , . . . , V

qd−1

1 , . . . . . . . . . , VN , V
q
N , . . . , V

qd−1

N ) M−1
N,d

and its inverse ϕ−1N : Fn
q → (Fqd)N as

(v1, . . . , vn) 7→ (W1,Wd+1, . . . ,Wd(N−1)+1)

where (W1, . . . ,Wn) = (v1, . . . , vn) MN,d.

Proof. Once again, we recall that n = N d. Hence, a n dimensional vector (v1, . . . , vn) ∈ Fn
q can

be divided in N blocks of size d. Due to the construction of MN,d, each block of d elements
in (v1, . . . , vn) is multiplied by the matrix Md. Eventually, the matrix acts just as if we apply
Proposition 2 to each of the N blocks of d elements. This is then a multi-dimensionnal extension
of Proposition 2.

More formally, we define Vk =
∑d

i=1 v(k−1)d+iθi for all k, 1 6 k 6 N . That is, the k-th block

of d components in (v1, . . . , vn) ∈ Fn
q represents the k-th component of (V1, . . . , VN ) ∈ (Fqd)N ,

for all k, 1 6 k 6 N , i.e. ϕN (V1, . . . , VN ) = (ϕ1(V1), . . . , ϕ1(VN )) = (v1, . . . , vn).
Let (W1, . . . ,Wn) = (v1, . . . , vn) MN,d. We point out that the k-th block of d components of

the vector (W1, . . . ,Wn)
(
resp. (v1, . . . , vn)) is (W(k−1)d+1, . . . ,Wkd

) (
resp. (v(k−1)d+1, . . . , vkd)

)
.

Then, by construction of MN,d:

(W(k−1)d+1, . . . ,Wkd) = (v(k−1)d+1, . . . , vkd) Md, ∀k, 1 6 k 6 N.

From Proposition 2:

(v(k−1)d+1, . . . , vkd) Md = (V q0

k , . . . , V qd−1

k ),∀k, 1 6 k 6 N.

By gathering all N blocks:

(W1, . . . ,Wn) = (V q0

1 , . . . , V qd−1

1 , . . . , V q0

N , . . . , V qd−1

N )

(v1, . . . , vn) MN,d = (V q0

1 , . . . , V qd−1

1 , . . . , V q0

N , . . . , V qd−1

N ) .

This proves the proposition for ϕ−1N . As MN,d is invertible, it also holds that

(V q0

1 , . . . , V qd−1

1 , . . . , V q0

N , . . . , V qd−1

N ) M−1
N,d = (v1, . . . , vn),

which proves the proposition for ϕN . ut
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Note that Proposition 4 indeed generalizes Proposition 2 since M1,d = Md. Using this definition
for ϕN , a non-standard representation of the secret polynomials – similar to the one of Kipnis-
Shamir – can be introduced. For a multi-HFE shaped polynomial F ∈ Fqd [X1, . . . , XN ], this cor-

responds to the matrix F ∈ Mn×n
(
Fqd
)

such that F = X̃FX̃
t

where X̃ = (X1, X
q
1 , . . . , X

qd−1

1 ,

. . . , XN , X
q
N , . . . , X

qd−1

N ). We need now to generalize the F∗k matrices used in Sect. 2.3.

Definition 1. Let F = [fi,j ] ∈ Mn×n
(
Fqd
)

be the non-standard matrix representation of a
HFE-shaped polynomial F ∈ Fqd [X1, . . . , XN ]. We have n = Nd, and the matrix F can be

divided in N × N blocks of size d × d. We denote then by F∗d,k ∈ Mn×n
(
Fqd
)

the matrix
obtained from F by rotating the rows and columns of each d × d blocks from k positions and
raising each components to the power qk. That is, if we denote by Fi,j the d × d block of F
located at position (i, j), 0 6 i, j < N , we have:

F∗d,k =

 F∗k0,0 . . . F∗k0,N−1
...

...
F∗kN−1,0 . . . F

∗k
N−1,N−1

 .

The definition generalizes the one of F∗k. As in the univariate case the matrix F∗d,k indeed
represents the qk-th power of a polynomial in Fqd [X1, . . . , XN ].

Proposition 5. Let F ∈ Fqd [X1, . . . , XN ] be a HFE-shaped polynomial and F = [fi,j ] ∈
Mn×n

(
Fqd
)

be its non-standard matrix representation. F∗d,k is the non-standard matrix repre-

sentation of F qk .

To prove Proposition 5, one can remark that the block Fi,j of the matrix F operates only on
the variables Xi+1 and Xj+1. To apply the Frobenius action to the whole polynomial F , it has
to be applied to each of these blocks, leading to the shape of F∗d,k. The precise proof can be
found in Appendix B.

Thanks to Proposition 5, equation (4) can be generalized for multi-HFE. To this end, we
propose a multivariate version of Lemma 1. Namely:

Lemma 2. Let MN,d ∈ Mn×n
(
Fqd
)

be the matrix defined in Proposition 4. Let F1, . . . ,FN

be the non-standard symmetric matrices representing the secret polynomials F1, . . . , FN , and
Fi
∗d,k be the matrices defined in Definition 1. Finally, we consider the symmetric matrices

(H1, . . . ,Hn) ∈
(
Mn×n (Fq)

)n
associated to the secret quadratic polynomials in the small field

(h1, . . . , hn) ∈
(
Fq[x1, . . . , xn]

)n
, i.e. hi = xHix

t for all i, 1 6 i 6 n. It holds that:

(H1, . . . ,Hn) =
(
MN,d F1

∗d,0 Mt
N,d, . . . ,MN,d F1

∗d,d−1 Mt
N,d, . . .

. . . ,MN,dFN
∗d,0 Mt

N,d, . . . ,MN,dFN
∗d,d−1 Mt

N,d

)
M−1

N,d.

Proof. The proof is very similar to the proof of Lemma 1. We start from the definition of the
small field polynomials h1, . . . , hn. For all v ∈ Fn

q ,

(h1 (v) , . . . , hn (v)) = ϕN

(
F1

(
ϕ−1N (v)

)
, . . . , FN

(
ϕ−1N (v)

))
.

Similarly, we need to express the above equation by matrix operations. We use then the definition
of ϕN and its inverse using the matrix MN,d of Proposition 4, (h1 (v) , . . . , hn (v)) =(

F q0

1 (vMN,d) , . . . , F qd−1

1 (vMN,d) , . . . , F q0

N (vMN,d) , . . . , F qd−1

N (vMN,d)
)

M−1
N,d.
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Recall from Proposition 5 that Fi
∗d,j is the matrix representation of F qj

i , ∀i, 1 6 i 6 N and
∀j, 0 6 j < d. We replace the polynomials by their matrix expression and we get for all v ∈ Fn

q :

(vH1 v
t, . . . , vHn v

t) =
(
vMN,d F1

∗d,0 Mt
N,d v

t, . . . , vMN,d F1
∗d,d−1 Mt

N,d v
t, . . .

. . . , vMN,dFN
∗d,0 Mt

N,d v
t, . . . , vMN,dFN

∗d,d−1 Mt
N,d v

t
)
M−1

N,d,

which concludes the proof. ut

Now, let U = T−1 MN,d ∈ Mn×n
(
Fqd
)
, W = S MN,d ∈ Mn×n

(
Fqd
)

and Fi
(j) = WFi

∗d,jWt,
with i, 1 6 i 6 N , and j, 0 6 j < d. We have the relation:

G(x) = T ◦ F ◦ S(x),

(g1(x), . . . , gn(x)) =
(
h1(xS), . . . , hn(xS)

)
T,(

xG1 x
t, . . . , xGn x

t
)

=
(
xS H1 St xt, . . . , xS Hn St xt

)
T,

(G1, . . . ,Gn) =
(
S H1 St, . . . ,S Hn St

)
T.

Using Lemma 2:

(G1, . . . ,Gn) =
(
S MN,d F1

∗d,0 Mt
N,d St, . . . ,S MN,d F1

∗d,d−1 Mt
N,d St, . . .

. . . ,S MN,dFN
∗d,0 Mt

N,d St, . . . ,S MN,dFN
∗d,d−1 Mt

N,d St
)
M−1

N,d T. (6)

Matrices T and MN,d being invertible, we obtain:

(G1, . . . ,Gn) T−1MN,d = (F1
(0), . . . ,F1

(d−1), . . . . . . ,FN
(0), . . . ,FN

(d−1)),

(G1, . . . ,Gn) U = (F1
(0), . . . ,F1

(d−1), . . . . . . ,FN
(0), . . . ,FN

(d−1)). (7)

As in the univariate case, matrices U and W have a useful property.

Proposition 6. Let A = [ai,j ] ∈ Mn×n (Fq), and B = [bi,j ] = A MN,d ∈ Mn×n
(
Fqd
)
. For all

i, 0 6 i < n, k, 0 6 k < N and j, 0 6 j < d, we have:

bi,k d+j = bqi,k d+((j−1) mod d).

That is, for each group of d columns, one column is obtained from the previous one using a
Frobenius application. Each group of d columns is defined by one of them, and consequently, the
whole matrix is defined by N columns, one in each group.

The proof of Proposition 6 is similar to the proof of Proposition 3. The property comes from
the fact that each group of d columns is processed by a matrix Md leading to a similar property
as Proposition 3 for each group. The precise proof can be found in Appendix B.

To get the analogy with the MinRank in the univariate case, we remark that Fi
∗d,0 = Fi.

By considering the (i d)-th columns of U for all i, 0 6 i < N we have

n−1∑
k=0

uk,0Gk+1 = WF1Wt, . . . ,
n−1∑
k=0

uk,(N−1) dGk+1 = WFNWt. (8)

The following lemma allows to bind (8) to a MinRank problem.

Lemma 3. Let (F1, . . . , FN ) ∈ (Fqd [X1, . . . , XN ])N be polynomials having Multi-HFE shape.
For all k, 1 6 k 6 N , let Fk ∈ Mn×n

(
Fqd
)

be their non-standard symmetric matrix represen-
tation. Let D be the degree of each polynomial Fk and ` = dlogqDe. For all k, 1 6 k 6 N

Rank (Fk) 6 N`.
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Furthermore, let

KN,d,` =


∣∣0d−`,` Id−`

∣∣ 0d−`,d . . . 0d−`,d

0d−`,d
. . .

. . .
...

...
. . .

. . . 0d−`,d
0d−`,d . . . 0d−`,d

∣∣0d−`,` Id−`
∣∣

 ∈Mn−N`,n

(
Fqd
)

where 0d−`,` (resp. 0d−`,d) is the zero matrix with (d−`) rows and ` (resp. d) columns, and Id−`
is the identity matrix with (d− `) rows and columns. Then, the rows of the matrix KN,d,` are a
basis of the left kernel of Fk with high probability and does not depend on the entries of Fk.

Proof. Each polynomial Fk has degree bounded by D, for k, 1 6 k 6 N , thus each variable Xi

has at most degree D, for all i, 1 6 i 6 N . The only non-zero entries of the matrix Fk are the
ones in the upper-left logq(D) square of each N ×N block of size (d× d). Thus, Fk has at most
N` non-zero rows and columns and has the following structure

Fk =

 Ak
0,0 . . . Ak

0,N−1

...
...

Ak
N−1,0 . . . Ak

N−1,N−1


where each block Ak

i,j is a d× d matrix

Ak
i,j =



Ai,j
k,0,0 . . . A

i,j
k,0,` 0 . . . 0

...
...

...
...

Ai,j
k,`,0 . . . A

i,j
k,`,`

...
...

0 . . . . . . 0
...

...
. . .

...
0 . . . . . . . . . . . . 0


for i, j, 0 6 i, j < N . As the consequence, the rank of such matrix Fk is at most N`.

From the construction of KN,d,`, it is clear that KN,d,` Fk = 0. As KN,d,` has exactly
N (d − `) = (n − N`) linearly independent rows, if Rank(Fk) is exactly N`, which is the case
with high probability, then KN,d,` is a basis of the left kernel of Fk. ut

As in the univariate case, the problem of finding correct values for U turns to be a simulta-
neous MinRank problem.

Theorem 3. For multi-HFE, recovering U = T−1 MN,d ∈ Mn×n (Fqn) reduces to simultane-
ously solve N MinRank with k = n and r = N logq(D) on the public matrices (G1, . . . ,Gn) ∈
Mn×n (Fq)

n. On the other hand, the solutions (i.e. the linear combinations) of each MinRank
are in Fqd.

Proof. The N simultaneous MinRank come from (8). From Lemma 3, the rank of Fk is bounded
by r = Ndlogq(D)e. Since W is invertible, the rank of WFkWt is equal to the rank of Fk for
all k, 1 6 k 6 N . From Proposition 6, knowing one column in each of the N sequences of d
columns in U is enough to recover the whole matrix U. This allows to conclude the proof. ut

Recovering the transformation T reduces to solve a MinRank problem. Recovering the other
parts of a secret key reduce to solve linear systems. This will be discussed in Sect. 6. Before
that, we study the effects of equivalent keys. This allows to better understand the MinRank
arising in HFE/Multi-HFE as well as the other parts of the attack.
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4 About Equivalent Keys and Induced Degrees of Freedom

Two secret keys are equivalent if they lead to the the same public key. The subject has already
been treated for the original HFE [42, 41, 43]. It has been shown that n q2n(qn− 1)2 equivalent
keys exist for HFE. This phenomena is even amplified for multi-HFE. In this section, we exploit
this fact.

Definition 2. Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N, d,D) ∈ N4.
We say that (F∗′,S ′, T ′) is an equivalent key if and only if F∗′ has HFE-shape, and

T ′ ◦ ϕN ◦ F∗′ ◦ ϕ−1N ◦ S
′ = G = T ◦ ϕN ◦ F∗ ◦ ϕ−1N ◦ S (same public key).

Wolf and Preneel [42, 43] introduced the notion of sustaining transformations which is a couple
of affine transformations (A∗,B∗) such that B∗ ◦F∗ ◦A∗ preserves the “shape” of F∗. For HFE,
the “big sustainer” (multiplication in the big field), the “additive sustainer” and the “Frobenius
sustainer” keep the HFE-shape unchanged. In multi-HFE, multiplication keeps the HFE-shape.
But, we also have any affine transformation on the N variables. Thus, the two first sustainers
can be generalized as follows.

Proposition 7. Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N, d,D). For
any invertible affine transformations (A∗,B∗) ∈ AffN (Fqd)×AffN (Fqd), we set A = ϕN ◦A∗◦ϕ−1N

and B = ϕN ◦ B∗ ◦ ϕ−1N . Then

(
B∗ ◦ F∗ ◦ A∗, A−1 ◦ S, T ◦ B−1

)
is an equivalent key.

Proof. First, we show that B∗ ◦ F∗ ◦ A∗ has HFE-shape. This is due to the fact that the only
exponents occurring in a variable Xi is a power of q. The transformation A∗ mixes the variables
X1, . . . , XN by affine combinations. By linearity of the Frobenius, no other exponents can appear
and the system keeps its HFE-shape. Trivially, as B∗ only performs affine combinations of the
polynomials F1, . . . , FN the shape is also unchanged. To conclude, we notice that

G = T ◦ ϕN ◦ F∗ ◦ ϕ−1N ◦ S
G =

(
T ◦ ϕN ◦ B∗−1 ◦ ϕ−1N

)
◦ ϕN ◦ (B∗ ◦ F∗ ◦ A∗) ◦ ϕ−1N ◦

(
ϕN ◦ A∗−1 ◦ ϕ−1N ◦ S

)
G =

(
T ◦ B−1

)
◦ ϕN ◦ (B∗ ◦ F∗ ◦ A∗) ◦ ϕ−1N ◦

(
A−1 ◦ S

)
.

ut

The following proposition provides the structure of a transformation used in Proposition 7 in
the linear case (it has to be slightly adapted in the affine case).

Proposition 8. Let A∗ = [ai,j ] ∈ MN×N
(
Fqd
)

be the matrix associated to a linear transfor-

mation A∗ over (Fqd)N . The transformation A∗ can be represented in the field Fq as:

A = MN,dÃ∗M
−1
N,d ∈Mn×n (Fq) ,
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where MN,d ∈ Mn×n
(
Fqd
)

is the matrix of Proposition 4 and Ã∗ ∈ Mn×n
(
Fqd
)

is a matrix
composed of N ×N blocks of Frobenius powers of elements of A∗, i.e.

Ã∗ =



∣∣∣∣∣∣∣∣∣
a0,0

aq0,0
...

aq
d−1

0,0

∣∣∣∣∣∣∣∣∣ . . .
∣∣∣∣∣∣∣∣∣

a0,N−1

aq0,N−1

...

aq
d−1

0,N−1

∣∣∣∣∣∣∣∣∣
...

...∣∣∣∣∣∣∣∣∣
aN−1,0

aqN−1,0

...

aq
d−1

N−1,0

∣∣∣∣∣∣∣∣∣ . . .
∣∣∣∣∣∣∣∣∣
aN−1,N−1

aqN−1,N−1

...

aq
d−1

N−1,N−1

∣∣∣∣∣∣∣∣∣


Proof. Let (V1, . . . , VN ) ∈ (Fqd)N . We set:

(Z1, . . . , ZN ) = A∗(V1, . . . , VN ) =

(
N−1∑
i=0

ai,0Vi+1, . . . ,
N−1∑
i=0

ai,N−1Vi+1

)
.

According to Proposition 4, we need to compute the Frobenius images of (Z1, . . . , ZN ) to split
it to the small field. For all k, 0 6 k < d, we have:

(Zqk

1 , . . . , Zqk

N ) =

(
N−1∑
i=0

aq
k

i,0V
qk

i+1, . . . ,
N−1∑
i=0

aq
k

i,N−1V
qk

i+1

)
.

We notice that Zqk

i is obtained only from the V qk

j ’s for j, 1 6 j 6 N . This explains intuitively

the shape of Ã∗ We constructed the matrix Ã∗ such that:

(V1, V
q
1 , . . . , V

qd−1

1 , . . . , VN , V
q
N , . . . , V

qd−1

N ) Ã∗ = (Z1, Z
q
1 , . . . , Z

qd−1

1 , . . . , ZN , Z
q
N , . . . , Z

qd−1

N ).
(9)

Let A ∈Mn×n (Fq) be the small field representation ofA∗, we now prove that A = MN,dÃ∗M
−1
N,d.

First, let (v1, . . . , vn) ∈ Fn
q

(
resp. (z1, . . . , zn) ∈ Fn

q

)
be the small field representation of

(V1, . . . , VN ) (resp. (Z1, . . . , ZN )). It holds that

(v1, . . . , vn)A = (z1, . . . , zn).

From Proposition 4, we know that

(v1, . . . , vn) MN,d = (V1, V
q
1 , . . . , V

qd−1

1 , . . . , VN , V
q
N , . . . , V

qd−1

N ),

(z1, . . . , zn) MN,d = (Z1, Z
q
1 , . . . , Z

qd−1

1 , . . . , ZN , Z
q
N , . . . , Z

qd−1

N ).

By replacing in (9), we get

(v1, . . . , vm) MN,d Ã∗ = (z1, . . . , zm)MN,d

(v1, . . . , vm) MN,d Ã∗M−1
N,d = (z1, . . . , zm).

Then, A = MN,dÃ∗M
−1
N,d is the small field representation of A∗. ut

We consider now the Frobenius transformation.
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Proposition 9. Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N, d,D) ∈ N4.
For all k, 0 6 k < d:(

Frobk ◦F∗ ◦ Frobd-k, ϕN ◦ Frobk ◦ϕ−1N ◦ S, T ◦ ϕN ◦ Frobd-k ◦ϕ−1N

)
is an equivalent key.

Proof. For any k, 0 6 k < d, the polynomials of

(Frobk ◦F∗ ◦ Frobd-k)(X1, . . . , XN ) =
(
F∗(Xqd−k

1 , . . . , Xqd−k

N )
)qk

have the same monomials as F∗(X1, . . . , XN ) but their coefficients are raised to the power
of qk. This is explained in (2). As a consequence, if F∗(X1, . . . , XN ) has HFE-shape, so is
(Frobk ◦F∗ ◦ Frobd-k)(X1, . . . , XN ). In addition:

G = T ◦ ϕN ◦ F∗ ◦ ϕ−1N ◦ S
G =

(
T ◦ ϕN ◦ Frobd-k ◦ϕ−1N

)
◦
(
ϕN ◦ Frobk ◦F∗ ◦ Frobd-k ◦ϕ−1N

)
◦
(
ϕN ◦ Frobk ◦ϕ−1N ◦ S

)
.

As the Frobenius application is linear in Fq, the transformations T ◦ϕN ◦Frobd-k ◦ϕ−1N and ϕN ◦
Frobk ◦ϕ−1N ◦S remain affine. Finally, Frobk ◦F∗◦Frobd-k has HFE-shape, proving Proposition 9.

ut

We introduce also the matrix representation of a Frobenius application.

Proposition 10. Let Frobk ∈Mn×n (Fq) be the matrix representing the linear transformation
ϕN ◦ Frobk ◦ϕ−1N over Fq. Then

Frobk = MN,dPN,d,kM
−1
N,d

where PN,d,k = Diag(Rd,k, . . . ,Rd,k︸ ︷︷ ︸
N

) and Rd,k is the d× d matrix of a k positions left-rotation,

that is

Rd,k =

(
0k,d−k Ik
Id−k 0d−k,k

)
.

Proof. Let (V1, . . . , VN ) ∈ (Fqd)N . We set

Frobk(V1, . . . , VN ) = (V qk

1 , . . . , V qk

N ) = (Z1, . . . , ZN ).

In the big field, a left k-rotation of (V, V q, . . . , V qd−1
) is the application of Frobk to such vector.

Indeed, Frobk(V, V q, . . . , V qd−1
) = (V qk , . . . , V qd−1

, V, . . . , V qk−1
). More generally, the matrix

PN,d,k makes this rotation on each N components in the big field. That is

(V q0

1 , . . . , V qd−1

1 , . . . , V q0

N , . . . , V qd−1

N ) PN,d,k =

(V qk

1 , . . . , V qd−1

1 , V q0

1 , . . . , V qk−1

1 , . . . , V qk

N , . . . , V qd−1

N , V q0

N , . . . , V qk−1

N ) .

We have then:

(V q0

1 , . . . , V qd−1

1 , . . . , V q0

N , . . . , V qd−1

N ) PN,d,k = (Zq0

1 , . . . , Z
qd−1

1 , . . . , Zqk

N , . . . , Zqd−1

N ) . (10)

As in the proof of Proposition 8, let (v1, . . . , vn) ∈ Fn
q

(
resp. (z1, . . . , zn) ∈ Fn

q

)
be the small field

representation of (V1, . . . , VN ) (resp. (Z1, . . . , ZN )). According to Proposition 4, it holds that

(v1, . . . , vn) MN,d = (V1, V
q
1 , . . . , V

qd−1

1 , . . . , VN , V
q
N , . . . , V

qd−1

N ),

(z1, . . . , zn) MN,d = (Z1, Z
q
1 , . . . , Z

qd−1

1 , . . . , ZN , Z
q
N , . . . , Z

qd−1

N ).
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By replacing in (10):

(v1, . . . , vm) MN,d PN,d,k = (z1, . . . , zm)MN,d

(v1, . . . , vm) MN,d PN,d,k M−1
N,d = (z1, . . . , zm).

Then, MN,d PN,d,k M−1
N,d is indeed the small field representation of Frobk. ut

According to Proposition 9, we can derive (d−1) other equivalent keys from any valid private key.
This refers to the so-called Frobenius sustainer of [42, 43]. To count the number of equivalent keys
introduced by Proposition 7 and 9, we need to know how many different keys they generate. To
do that, we will show that any equivalent key obtained from the Frobenius and affine sustainers
has a unique representation.

Lemma 4. Let A∗ ∈ AffN (Fqd). For all k, 0 6 k < d, there exists A∗′ ∈ AffN (Fqd) such that
Frobk ◦A∗ = A∗′ ◦ Frobk.

Proof. As Frobd-k ◦Frobk is the identity, it holds that

Frobk ◦A∗ = Frobk ◦A∗ ◦ Frobd-k ◦Frobk .

Now we prove that A∗′ = Frobk ◦A∗ ◦ Frobd-k is an affine transformation. Let (X1, . . . , XN ) ∈
(Fqd)N :

A∗′ (X1, . . . , XN ) = Frobk ◦A∗ ◦ Frobd-k (X1, . . . , XN ) = Frobk ◦A∗
(
Xqd−k

1 , . . . , Xqd−k

N

)
A∗′ (X1, . . . , XN ) = Frobk

(∑N−1
i=0 Ai,0X

qd−k

i+1 +A0, . . . ,
∑N−1

i=0 Ai,N−1X
qd−k

i+1 +AN

)
A∗′ (X1, . . . , XN ) =

((∑N−1
i=0 Ai,0X

qd−k

i+1 +A0

)qk
, . . . ,

(∑N−1
i=0 Ai,N−1X

qd−k

i+1 +AN

)qk)
A∗′ (X1, . . . , XN ) =

(∑N−1
i=0 Aqk

i,0X
qd

i+1 +Aqk

N , . . . ,
∑N−1

i=0 Aqk

i,N−1X
qd

i+1 +Aqk

N

)
A∗′ (X1, . . . , XN ) =

(∑N−1
i=0 Aqk

i,0Xi+1 +Aqk

N , . . . ,
∑N−1

i=0 Aqk

i,N−1Xi+1 +Aqk

N

)
.

The transformation A∗′ is indeed an affine transformation with the same coefficients as A∗
raised to the power qk. ut

Lemma 4 shows that the Frobenius and the affine transformation somehow commute. This will
be useful to write uniquely an equivalent key.

Lemma 5. Let (A∗,A∗′) ∈ AffN (Fqd)×AffN (Fqd) be invertible affine transformations.
If Frobk ◦A∗ = Frobk′ ◦A∗′, for k, k′, 0 6 k, k′ < d, then A∗′ = A∗ and k′ = k.

Proof. First, it is straightforward to see that if k = k′, then

Frobk ◦A∗ = Frobk ◦A∗′ ⇔ Frobd-k ◦Frobk ◦A∗ = Frobd-k ◦Frobk ◦A∗′ ⇔ A∗ = A∗′ .

Then, we have only to prove that Frobk ◦A∗ = Frobk′ ◦A∗′ ⇒ k = k′. Assume for a contradiction
that there exists k and k′ such that Frobk ◦A∗ = Frobk′ ◦A∗′ and k′ 6= k. Then, we can write
k′ = k + `, with ` 6= 0:

Frobk ◦A∗ = Frobk′ ◦A∗′

Frobk ◦A∗ ◦ Frobd-k = Frobk+` ◦A∗′ ◦ Frobd-k

Frobk ◦A∗ ◦ Frobd-k = Frob` ◦Frobk ◦A∗′ ◦ Frobd-k .
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According to Lemma 4, Ã∗ = Frobk ◦A ◦ Frobd-k and Ã∗′ = Frobk ◦A∗′ ◦ Frobd-k are also affine
transformations. We write:

Ã∗ = Frob` ◦Ã∗′.

As ` 6= 0, the transformation Frob` ◦Ã∗′ has degree q`. That is, each polynomial in the repre-

sentation of Frob` ◦Ã∗′ has the form
(∑N

i=1A
q`

i X
q`

i +Aq`

0

)
, with Ai ∈ Fqd . As Ã∗′ is invertible,

at least one term of degree q` is non-zero. Thus, Frob` ◦Ã∗′ cannot be equal to Ã∗ which is an
affine transformation and has maximal degree 1. This proves that Frobk ◦A∗ = Frobk′ ◦A∗′ ⇒
k = k′ and A∗ = A∗′. ut

Together with Lemma 4, Lemma 5 is used to derive a canonical representation of equivalent
keys.

Theorem 4. Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N, d,D) ∈ N4. Let
A∗,B∗ ∈ AffN (Fqd) be affine transformations in the big field and k, 0 6 k < d be an integer.
Each Multi-HFE equivalent key (F ′,S ′, T ′) obtained using Proposition 7 and 9 can be written
uniquely

F ′ = Frobk ◦B∗ ◦ F∗ ◦ A∗ ◦ Frobd-k

S ′ = ϕN ◦ Frobk ◦A∗−1 ◦ ϕ−1N ◦ S
T ′ = T ◦ ϕN ◦ B∗−1 ◦ Frobd-k ◦ϕ−1N .

Proof. Let (F ′,S ′, T ′) and (F ,S, T ) be equivalent keys. By hypothesis, a equivalent key has
been obtained by composition of several Frobenius and affine transformations. According to
Lemma 4, the transformations can be reordered. Hence, any equivalent key can then be written
as

F ′ = Frobk1 ◦ · · · ◦ Frobkr ◦B∗1 ◦ · · · ◦ B∗nb
◦ F∗ ◦ A∗na

◦ · · · ◦ A∗1 ◦ Frobd-kr ◦ · · · ◦ Frobd-k1

S ′ = ϕN ◦ Frobk1 ◦ · · · ◦ Frobkr ◦A∗−11 ◦ · · · ◦ A∗−1na
◦ ϕ−1N ◦ S

T ′ = T ◦ ϕN ◦ B∗−1nb
◦ · · · ◦ B∗−11 ◦ Frobd-kr ◦ · · · ◦ Frobd-k1 ◦ϕ

−1
N .

The composition of two affine transformations is an affine transformation, and the composition
of two Frobenius transformations is a Frobenius transformation. This can then be simplified as

F ′ = Frobk ◦B∗ ◦ F∗ ◦ A∗ ◦ Frobd-k

S ′ = ϕN ◦ Frobk ◦A∗−1 ◦ ϕ−1N ◦ S
T ′ = T ◦ ϕN ◦ B∗−1 ◦ Frobd-k ◦ϕ−1N .

To show the uniqueness of this representation, suppose that there exists A∗′,B∗′ ∈ AffN (Fqd)
and k′ ∈ N, 0 6 k < d leading to the same equivalent key. Then, by considering S ′, we get:

ϕN ◦ Frobk ◦A∗−1 ◦ ϕ−1N ◦ S = ϕN ◦ Frobk′ ◦A∗′−1 ◦ ϕ−1N ◦ S
Frobk ◦A∗−1 = Frobk′ ◦A∗′−1 .

According to Lemma 5, this implies that k′ = k and A∗′−1 = A∗−1. Similarly for T ′, we show
that B∗′−1 = B∗−1, i.e. the representation is unique, proving the theorem. ut

We are finally able to count the total number of equivalent keys coming from Proposition 7 and
Proposition 9.
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Theorem 5. Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N, d,D) ∈ N4.
There are exactly

d

(
qdN

N−1∏
i=0

(qdN − qd i)

)2

equivalent keys coming from affine transformations and Frobenius transformations.

Proof. According to Theorem 4, each equivalent key is uniquely defined by two invertible affine
transformations (A∗,B∗) ∈ AffN (Fqd)× AffN (Fqd) and an integer k, 0 6 k < d. The number of
equivalent keys is the number of elements in

GLN(Fqd)× (Fqd)N ×GLN(Fqd)× (Fqd)N × Z/dZ.

There are exactly
∏N−1

i=0

(
(qd)N − (qd)i

)
invertible matrices in MN×N

(
Fqd
)
. Thus, we obtain

the expected number of keys. ut

5 Weaknesses of HFE/multi-HFE Induced by Equivalent Keys

We show here that the high number of equivalent keys turns out to be a weakness for HFE/Multi-
HFE schemes. For example, an interesting property of the MinRank arising in HFE/Multi-HFE
is that the kernel of the matrices in (8) is independent of the equivalent key used up to Frobenius
transforms. To show this property (Theorem 6), we first need to prove this property for a single
private key.

Lemma 6. Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N, d,D) ∈ N4. We
denote by (G1, . . . ,Gn) ∈ (Mn×n (Fq))

n the matrices associated to the public key G = T ◦
F ◦ S. Let S ∈ Mn×n (Fq) and T ∈ Mn×n (Fq) be the matrix representation of S and T ,
respectively. Finally, let U = T−1MN,d = [ui,j ] ∈ Mn×n

(
Fqd
)
, and K = ker(

∑n−1
i=0 ui,0Gi+1).

Then ∀t, k, 0 6 t < N , 0 6 k < d,

ker

(
n−1∑
i=0

ui,t d+kGi+1

)
= Frobk (K) .

Proof. Let t, 0 6 t < N and k, 0 6 k < d. Using equation (6) it holds that
∑n−1

i=0 ui,t d+kGi+1 =
SMN,dFt

∗d,kMt
N,dS

t . As S and MN,d are invertible, we have that

ker

(
n−1∑
i=0

ui,t d+kGi+1

)
= ker

(
SMN,dFt

∗d,k
)

ker

(
n−1∑
i=0

ui,t d+kGi+1

)
S MN,d = ker

(
Ft
∗d,k
)

ker

(
n−1∑
i=0

ui,t d+kGi+1

)
= ker

(
Ft
∗d,k
)

M−1
N,dS

−1 .

Recall that ` = dlogq (D)e. With high probability, ker (Ft) = ker (F1) = KN,d,N`, ∀t, 1 6 t 6 N

(see Lemma 3). From Definition 1, the non-zero columns of Ft
∗d,k are the ones of Ft after

rotating the columns of each d × d blocks from k positions. Then, rotating accordingly the
columns of KN,d,N` leads to a basis of ker(Ft

∗d,k). This rotation is exactly the one performed by
the matrix PN,d,−k defined in Proposition 10. Then, ker(Ft

∗d,k) = KN,d,N` PN,d,−k. As PN,d,−k
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is a permutation matrix, its inverse is simply PN,d,k (the rotation is done the other way). Finally
we obtain

ker
(∑n−1

i=0 ui,t d+kGi+1

)
= KN,d,N`PN,d,−kM

−1
N,dS

−1

ker
(∑n−1

i=0 ui,t d+kGi+1

)
= KN,d,N`

(
MN,dP

−1
N,d,−k

)−1
S−1

ker
(∑n−1

i=0 ui,t d+kGi+1

)
= KN,d,N` (MN,dPN,d,k)−1 S−1 .

The matrix MN,dPN,d,k is obtained from MN,d by rotating the columns of each d× d block to
the left. Due to the construction of MN,d, this is equal to Frobk(MN,d). Then:

ker
(∑n−1

i=0 ui,t d+kGi+1

)
= KN,d,N` Frobk (MN,d)−1 S−1

ker
(∑n−1

i=0 ui,t d+kGi+1

)
= KN,d,N` Frobk

(
M−1

N,d

)
S−1 .

As the coefficients of S and KN,d,N` lie in the field Fq, this is equal to

ker

(
n−1∑
i=0

ui,t d+kGi+1

)
= Frobk

(
KN,d,N`M

−1
N,dS

−1
)
.

Finally, as KN,d,N` = ker(F1) = ker(F1
∗d,0), we conclude:

ker

(
n−1∑
i=0

ui,t d+kGi+1

)
= Frobk

(
ker(F1

∗d,0)M−1
N,dS

−1
)

= Frobk

(
ker

(
n−1∑
i=0

ui,0Gi+1

))

ker

(
n−1∑
i=0

ui,t d+kGi+1

)
= Frobk (K) .

This proves the lemma. ut

In other words, the kernel is unique up to Frobenius transformation. This property is used to
prove the following theorem for any equivalent key.

Theorem 6. Let (F∗,S, T ) and (F∗′,S ′, T ′) be equivalent multi-HFE private keys and
(G1, . . . ,Gn) ∈ (Mn×n (Fq))

n be the matrices of their associated public key. Let (S, T) ∈
Mn×n (Fq) × Mn×n (Fq), and (S′,T′) ∈ Mn×n (Fq) × Mn×n (Fq) be the matrix representa-
tion of (S, T ), and (S ′, T ′) respectively. Let U = T−1MN,d = [ui,j ] ∈ Mn×n

(
Fqd
)
, and

K = ker(
∑n−1

i=0 ui,0Gi+1). Similarly, let U′ = T′−1MN,d = [u′i,j ] ∈ Mn×n
(
Fqd
)

and K′ =

ker(
∑n−1

i=0 u
′
i,0Gi+1). Then ∃k, 0 6 k < d, such that:

K′ = Frobk (K) .

Proof. From Theorem 4, we can write T ′ = T ◦ϕN◦A∗−1◦Frobd-k ◦ϕ−1N . Each of these application
has a matrix representation (see Proposition 4, 8 and 10). The matrix corresponding to T ′ is

then T′ = MN,dPN,d,d−kÃ∗
−1M−1

N,dT, where Ã∗ has the shape of Proposition 8. Its inverse is

the matrix T′−1 = T−1MN,dÃ∗P
−1
N,d,d−kM

−1
N,d. We have

U′ = T′−1MN,d = T−1MN,dÃ∗P
−1
N,d,d−kM

−1
N,dMN,d = UÃ∗PN,d,k .

23



Let Ã∗PN,d,k = [ai,j ] ∈Mn×n
(
Fqd
)
, we have:

u′i,j =
n−1∑
t=0

ui,tat,j ,∀i, j, 0 6 i, j < n.

Due to the shape of Ã∗ and PN,d,k, at,j is non-zero if and only if t ≡ j − k mod d. Then, we

have u′i,j =
∑N−1

t=0 ui,t d+(j−k mod d)at d+(j−k mod d),j for all i, j, 0 6 i, j < n. Therefore

n−1∑
i=0

u′i,0Gi+1 =
n−1∑
i=0

(
N−1∑
t=0

ui,t d+(−k mod d)at d+(−k mod d),0

)
Gi+1

=
N−1∑
t=0

at d+(−k mod d),0

(
n−1∑
i=0

ui,t d+(−k mod d)Gi+1

)
.

We denote by Γt,−k the matrix
(∑n−1

i=0 ui,t d+(−k mod d)Gi+1

)
. One can see that the kernel of

this matrix is the same for all t, 0 6 t < N . Indeed, according to Lemma 6:

ker (Γt,−k) = Frobt d+(-k mod d) mod d(K) = Frob-k mod d(K) ∀t, 0 6 t < N.

As
n−1∑
i=0

u′i,0Gi+1 =
N−1∑
t=0

at d+(−k mod d),0 Γt,−k

is a linear combination of Γt,−k for t, 0 6 t < N , then ker (Γt,−k) ⊆ ker
(∑n−1

i=0 u
′
i,0 Gi+1

)
. As

U′ is an equivalent key, there exists – according to (8) – a matrix W′ such that

n−1∑
i=0

u′i,0Gi+1 = W′F1 W′t,

so that the rank of
∑n−1

i=0 u
′
i,0Gi+1 is Rank (F1).

Similarly from (7), we get Γt,−k =
∑n−1

i=0 ui,t d+(−k mod d)Gi+1 = W Ft+1
∗d,−k Wt, where W

is invertible. As rotating rows and columns of a matrix does not change its rank, it holds that

Rank (Γt,−k) = Rank
(
Ft+1

∗d,−k
)

= Rank (Ft+1) = Rank (F1) = Rank

(
n−1∑
i=0

u′i,0Gi+1

)
.

Thus, we get ker (Γt,−k) = ker
(∑n−1

i=0 u
′
i,0Gi+1

)
= K′. Finally, K′ = Frob-k mod d(K), proving

the theorem. ut

With Theorem 6, we know that the matrices of (8) have the same kernel (up to Frobenius
transform), indenpendently on the equivalent key chosen.

Equivalent keys allow also to further slightly improve the MinRank attack. We consider an
instance of HFE with parameters (q,N, d,D) ∈ N4, and ` = dlogDe. We have to solve the
MinRank problem on the (n× n)-matrices G1, . . . ,Gn whose entries lie in Fq with target rank
N`. Using the Kipnis-Shamir modeling described in [32, 26, 27], we have to solve the algebraic
system of the (n (n − N`)) quadratic equations in (N` (n − N`) + n) variables given by the
entries of the matrix 1 x1,1 . . . x1,N`

. . .
...

...
1 xn−N`,1 . . . xn−N`,N`

 ·( n∑
i=1

λiGi

)
. (11)
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Note that we are looking for solutions in Fqd rather than in Fq. From now on, and similarly
to [26], these equations are called the KS (Kipnis-Shamir) equations. We denote by

IKS ∈ Fq[{xi,j}1≤j≤N`
1≤i≤n−N`, λ1, . . . , λn]

the ideal generated by the KS equations and VKS ⊂
(
Fqd
)N` (n−N`)+n

the corresponding variety.

Theorem 7. The MinRank problem associated to HFE (resp. multi-HFE) can be solved by
fixing one (resp. N) coefficient(s) to a random non-zero value (resp. to random non all zero
values) in Fqd. That is, the variety VKS has at least qd − 1 (resp. qdN − 1) solutions.

Proof. We know that the first column of U = T−1MN,d ∈ Mn×n
(
Fqd
)

is in VKS. Let Ã∗ ∈
Mn×n

(
Fqd
)

be an invertible matrix as described in Proposition 8 and A∗ ∈ GLN(Fqd) be the
induced transformation. According to Proposition 7, A∗ can be used to build an equivalent key.
Let then (F∗′,S ′, T ′) be an equivalent key such that T ′−1 = A◦ T −1 with A = ϕN ◦A∗ ◦ϕ−1N .

Consider now the matrix representation T′−1 of T ′−1. It holds that T′−1 = T−1 MN,d Ã∗M−1
N,d.

Being an equivalent key, the first column of U′ = T′MN,d ∈ Mn×n
(
Fqd
)

is also in VKS.

Using the construction of T−1, U′ = T−1 MN,d Ã∗M−1
N,d MN,d = U Ã∗. Each column of Ã∗

can have at most N non-zero entries. The N non-zero entries of the first column of Ã∗ are
a0,0, ad,0, . . . , a(N−1) d,0. The first column of UÃ∗ is then

λ = (λ1, . . . , λn) =

(
n−1∑
k=0

u0,kak,0, . . .
n−1∑
k=0

un−1,kak,0

)

λ =

(
N−1∑
k=0

u0,k dak d,0, . . .

n−1∑
k=0

un−1,k dak d,0

)
.

Consider the first N components of λ. This gives rise to a linear system of N equations:

λ1 =

N−1∑
k=0

u0,k dak d,0, . . . , λN =

N−1∑
k=0

uN,k dak d,0 .

For any fixed non all zero λ1, . . . , λN , this linear system has then one solution for a0,0, . . . , a(N−1) d,0
with high probability. This allows to choose N coefficients λi arbitrarily and still obtain a valid
solution (equivalent key). The variety VKS has then at least qdN − 1 solutions. ut

This means that for valid values {xi,j}1≤j≤N`
1≤i≤n−N` in (11), there are (qd)N vectors (λ1, . . . , λn)

such that the kernel of
(∑n

i=1 λiGi

)
is the one induced by the xi,j ’s. Therefore, the values of

N components (say λ1, . . . , λN ) can be randomly chosen. The new system still has (n (n−N`))
equations but only (N` (n−N`) + n−N) variables.

As described in Sect. 3.1, the coefficients of the polynomial system are in the small field Fq.
To keep this property, we fix variables with values over the small field. Experimentally, fixing
one variable to 1 (or any value from Fq) and the (N −1) others to 0 gives the best results. After
N variables (λ1, . . . , λN ) have been fixed, VKS has at least d elements. This property already
noticed in [31] for HFE is a direct consequence of Theorem 6, i.e. Frobenius images of the kernel
are also valid.

The MinRank allows to recover a kernel that is central to our attack. Once the matrix
K = ker (

∑n
k=1 λkGk) is known, it is used to recover the different parts of the private key as

described in the next section.

25



6 Full Key Recovery

In this part, we detail all the steps of a key-recovery attack against multi-HFE.

6.1 Roadmap

Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N, d,D) ∈ N4 (as defined in
Sect. 2.1). The attack is divided in 3 steps.

Recovering the Transformation on the Polynomials This part of the key-recovery cor-
responds to the MinRank problem described in Sect. 3. Solving the MinRanks of (8) allow to
recover a kernel matrix K related to the private key and consequently the transformation T .
There are N MinRanks to be solved but we show that this has to be done only once to recover
T .

Theorem 8. For multi-HFE, recovering U = [ui,j ] = T−1 MN,d ∈Mn×n
(
Fqd
)

reduces to solve
N − 1 linear systems of (n (n−N`)) equations in (n−N) variables in Fqd once one column of
U is known.

Proof. Assume w.l.o.g. that the first column of U is known i.e. after solving one of the MinRank

of (8). We can compute the matrix K = ker
(∑n−1

i=0 ui,0Gi+1

)
. According to Lemma 6, we also

have that K = ker
(∑n−1

i=0 ui,t d+0Gi+1

)
, ∀t, 0 6 t < N . Thus, for all t, 0 6 t < N , it holds that

K ·
(∑n−1

i=0 ui,t d+0Gi+1

)
= 0.

This is a linear system where the ui,t d+0’s are unknown. Solving this system gives another
column of the matrix U. This has to be done N − 1 times in order to recover N − 1 other
columns of U. According to Proposition 6, this is enough to recover the entire matrix U. ut

Recovering the Transformation on the Variables Kipnis and Shamir [32] originally pro-
posed a method for recovering the transformation on the variables by solving an overdetermined
system of (n ` (n − `)) linear equations in n2 variables over Fq with ` = dlogq (D)e. Applied to
multi-HFE, this would give (n ` (n − N`)) equations in n2 variables over Fq. We propose here
an alternative method which reduces the number of variables and equations by a factor d. On
the other hand, it operates on the big field.

Theorem 9. For multi-HFE, recovering W = [wi,j ] = S MN,d ∈ Mn×n
(
Fqd
)

reduces to solve
a linear system of (N` (n − N`)) equations in (N n) variables in Fqd once U = T−1 MN,d ∈
Mn×n

(
Fqd
)

is known.

Proof. Let K = ker
(∑n−1

k=0 uk,0Gk+1

)
. To find the coefficients wi,j of W, it is enough to re-

mark that according to (8), KW = ker (Fi) for all i, 1 6 i 6 n. According to Lemma 3, we
know that ker (Fi) has N` columns set to zero. Moreover, we know that only N columns are
needed to build the whole matrix W (see Proposition 6). We construct the corresponding linear
system of

(
N (n−N`)

)
equations in N n variables. However, If ` > 1, the system is underdeter-

mined. To circumvent this issue, we will use Lemma 6: Frobj(K) = ker
(∑n−1

k=0 uk,i d+jGk+1

)
=

ker
(
WFi

∗d,jWt
)

= ker
(
WFi

∗d,j). Finally:

ker
(
Fi
∗d,j
)

= Frobj(K)W . (12)
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For all j, 0 6 j < d, ker(Fi
∗d,j) has N` columns set to zero (see Lemma 3). Moreover, for j,

(d− `+ 1) 6 j < d, each matrix ker(Fi
∗d,j) has N common zero-columns with ker(Fi

∗d,0). We
may then add the N (n−N`) equations induced by (12) for each j, (d− `+ 1) 6 j < d. All in
all, the system has

(
N` (n−N`)

)
linear equations. This allows to recover W and thus S. ut

Recovering S amounts then to solve the linear system given by the entries of

Frob(d-`+1) (K)W′
(N) = · · · = Frob(d-1) (K)W′

(N) = K W′
(N) = 0 , (13)

where W′ is unknown and W′
(N) denotes the N columns submatrix of W corresponding to the

common zero columns of ker
(
Fi
∗d,0) , . . . , ker

(
Fi
∗d,d−1) for any i, 1 6 i 6 N .

Recovering the Inner Polynomial System As soon as the matrices T = MN,dU
−1 and

S = WM−1
N,d are recovered, we only need to reconstruct a private (inner) transformation. This

is done simply by computing F∗ = ϕ−1N ◦T −1 ◦G ◦S−1 ◦ϕN . By construction of its components,
the transformation F∗ respects the HFE-shape (as defined in Sect. 2.1).

A Step by Step Example To illustrate our attack, we consider a small odd characteristic
example. For the sake of simplicity, we use homogeneous polynomials and linear transformations.
Once again, our attack can be adapted to the affine case as explained in Sect. 6.2.

We consider the parameters q = 7, N = 2, d = 4, and D = 14. We denote n = Nd = 8,
and ` = dlogq(D)e = 2. We consider F74 = F7[x]/ < x4 + 5x2 + 4x + 3 >. Finally, let θ be a
primitive root of the defining irreducible polynomial.

Key Generation. We choose N random polynomials having a “multi-HFE shape” of degree less
than or equal to D as well as two invertible (n × n) matrices S and T. To visualize the rank

F1 = θ2097X14
1 + θ2150X8

1 + θ1623X7
1X

7
2 + θ481X7

1X2 + θ1131X2
1

+ θ83X1X
7
2 + θ1779X1X2 + θ940X14

2 + θ1075X8
2 + θ1220X2

2 ,

F2 = θ1586X14
1 + θ899X8

1 + θ1078X7
1X

7
2 + θ554X7

1X2 + θ260X2
1

+ θ1709X1X
7
2 + θ1971X1X2 + θ1090X14

2 + θ287X8
2 + θ179X2

2 .

F1 =



θ1131 θ1350 0 0 θ979 θ1683 0 0
θ1350 θ2097 0 0 θ2081 θ823 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
θ979 θ2081 0 0 θ1220 θ275 0 0
θ1683 θ823 0 0 θ275 θ940 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,F2 =



θ260 θ99 0 0 θ1171 θ909 0 0
θ99 θ1586 0 0 θ2154 θ278 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

θ1171 θ2154 0 0 θ179 θ1887 0 0
θ909 θ278 0 0 θ1887 θ1090 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

S =



0 0 5 3 6 4 4 2
5 6 2 0 1 6 6 1
5 5 1 6 4 5 3 1
3 4 1 4 3 5 0 6
1 2 2 1 2 2 6 0
1 2 3 5 3 0 3 3
1 3 3 6 2 1 0 0
4 0 3 0 0 0 2 2


, T =



2 2 3 4 6 1 6 0
4 6 6 1 3 0 1 4
6 0 3 1 1 5 3 6
1 0 0 5 1 2 4 3
5 0 3 3 6 4 3 3
0 6 5 5 0 4 6 0
1 5 4 0 6 3 2 3
0 2 2 2 2 6 0 5


.

Fig. 1. Private key of the Multi-HFE example with q = 7, N = 2, d = 4, and D = 14.
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property, we give in Fig. 1 the symmetric matrices Fi associated to the polynomials Fi, i.e.:

Fi = XFiX
t where X = (X1, X

q
1 , . . . , X

qd−1

1 , . . . , XN , X
q
N , . . . , X

qd−1

N ).

The public key of this multi-HFE instance is a set of n quadratic polynomials (g1, . . . , gn). We
give in Fig. 2 the symmetric matrix representation Gi of each gi, i.e.:

gi = (x1, . . . , xn) Gi (x1, . . . , xn)t.

G1 =



3 0 0 6 5 1 1 1
0 3 3 1 4 6 4 4
0 3 4 5 3 5 5 4
6 1 5 2 2 4 4 2
5 4 3 2 1 0 4 4
1 6 5 4 0 1 2 2
1 4 5 4 4 2 0 1
1 4 4 2 4 2 1 2


,G2 =



3 5 6 4 6 6 2 6
5 1 6 0 5 4 0 5
6 6 6 1 6 3 1 6
4 0 1 4 3 0 0 0
6 5 6 3 6 2 5 1
6 4 3 0 2 5 3 2
2 0 1 0 5 3 0 0
6 5 6 0 1 2 0 6


,G3 =



3 5 2 4 1 4 2 4
5 5 1 3 3 5 5 0
2 1 4 4 1 0 4 2
4 3 4 6 1 2 4 6
1 3 1 1 0 5 4 2
4 5 0 2 5 1 4 6
2 5 4 4 4 4 4 6
4 0 2 6 2 6 6 6


,

G4 =



1 5 0 0 3 1 0 6
5 5 5 3 2 1 1 4
0 5 5 3 3 4 2 0
0 3 3 4 3 6 5 5
3 2 3 3 3 5 1 4
1 1 4 6 5 6 4 0
0 1 2 5 1 4 0 3
6 4 0 5 4 0 3 5


,G5 =



4 2 6 6 2 6 5 5
2 3 4 2 2 5 3 0
6 4 6 0 4 3 6 5
6 2 0 0 2 5 2 5
2 2 4 2 1 4 0 2
6 5 3 5 4 0 2 0
5 3 6 2 0 2 3 0
5 0 5 5 2 0 0 3


,G6 =



2 0 2 6 2 4 2 3
0 6 0 2 3 6 1 5
2 0 2 4 6 0 6 1
6 2 4 0 2 0 0 1
2 3 6 2 4 3 1 4
4 6 0 0 3 6 4 6
2 1 6 0 1 4 5 1
3 5 1 1 4 6 1 2


,

G7 =



6 2 2 0 4 0 1 4
2 4 2 6 3 2 3 1
2 2 1 5 1 0 4 4
0 6 5 1 5 6 4 5
4 3 1 5 1 2 4 4
0 2 0 6 2 5 4 6
1 3 4 4 4 4 3 5
4 1 4 5 4 6 5 6


,G8 =



6 1 3 4 5 4 3 6
1 0 1 5 3 6 6 6
3 1 3 0 1 0 6 4
4 5 0 6 5 0 5 0
5 3 1 5 6 6 1 5
4 6 0 0 6 2 4 2
3 6 6 5 1 4 2 2
6 6 4 0 5 2 2 4


.

Fig. 2. Public key (given as matrices) of the Multi-HFE example considered with q = 7, N = 2, d = 4, and
D = 14.

Recovering an Equivalent T . The first step is to solve a MinRank problem. By construction,
there exists a non-zero vector (λ1, . . . , λn) ∈

(
Fqd
)n

such that Rank(
∑n

i=1 λiGi) = N` (The-
orem 3). According to Sect. 5, we can randomly fix N variables to have a zero-dimensional
ideal.

We fix for instance λ1 = 1 and λ2 = 0. Using the notations of Sect. 2.4, we have to solve
a MinRank with (M0 = −G1, M1, . . . ,M6 = G3, . . . ,G8) with n = Nd = 8, k = n −N = 6,
r = N` = 4. We have d = 4 solutions given by the vector

λ(1) = (1, 0, θ110, θ2215, θ830, θ1958, θ1889, θ2363)

as well as its Frobenius images Frobj(λ
(1)) for all j, 0 6 j < d. This is a direct consequence of

Proposition 9 from Sect. 4. The kernel K of (
∑n

i=1 λ
(1)
i Gi) can be computed, and we get the
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matrix

K =


1 0 0 0 θ828 θ1612 θ530 θ1086

0 1 0 0 θ502 θ134 θ1450 θ566

0 0 1 0 θ1981 θ1755 θ1660 θ2059

0 0 0 1 θ870 θ963 θ2276 θ425

 .

This matrix is then used to recover N columns of U′ = T′−1 MN,d according to Theorem 8. In
our example, we need only one more column as N = 2. This amounts to solve the linear system
K (

∑n
i=1 λiGi) = 0. As pointed again in Theorem 8, this is enough to recover the whole matrix

U. To have independent columns, we fix λ1 = 0 and λ2 = 1. Solving this linear system gives

λ(2) = (0, 1, θ1587, θ2150, θ59, θ1111, θ1093, θ1656).

The matrix U′ is finally reconstructed by taking the Frobenius of these vectors λ(1) and λ(2):

U′ =



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
θ110 θ770 θ590 θ1730 θ1587 θ1509 θ963 θ1941

θ2215 θ1105 θ535 θ1345 θ2150 θ650 θ2150 θ650

θ830 θ1010 θ2270 θ1490 θ59 θ413 θ491 θ1037

θ1958 θ1706 θ2342 θ1994 θ1111 θ577 θ1639 θ1873

θ1889 θ1223 θ1361 θ2327 θ1093 θ451 θ757 θ499

θ2363 θ2141 θ587 θ1709 θ1656 θ1992 θ1944 θ1608


.

The secret matrix T′ = MN,dU
′−1 has been recovered at this step:

T′ =



1 0 0 0 0 0 0 0
5 5 5 0 3 3 3 1
6 2 0 5 0 0 5 5
0 5 6 1 1 2 4 5
0 1 0 0 0 0 0 0
1 3 2 4 4 2 6 4
3 0 1 3 3 5 2 6
1 6 6 3 5 2 0 3


.

Recovering an Equivalent S. We follow the method explained in Sect. 6.1 to recover a valid
matrix W′ = S′MN,d. Even if the matrices F1 and F2 of the private key are unknown, we
know due to the HFE-shape that in echelon form we have for all i, 1 6 i 6 N :

ker (Fi) =


0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 , ker
(
Fi
∗d,(d−1)

)
=


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

 .

These two matrices have both their (i d)-th columns set to zero for 0 6 i < N (i.e. columns
0 and 4). We now construct a linear system of N (n − N`) equations in the N n variables
γ1,1, . . . , γ1,n, . . . , γN,1, . . . , γN,n from

K ·

γ1,1 γ2,1...
...

γ1,n γ2,n

 = 0, Frobd-1(K) ·

γ1,1 γ2,1...
...

γ1,n γ2,n

 = 0.
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The system has (qd)N solutions. This is again a consequence of equivalent keys explained in
Sect. 4. We then randomly set N variables in each one of the N columns to abitrary values.
For this example, we take γ1,1 = 1, γ1,2 = 0, γ2,1 = 0, γ2,2 = 1 (the columns have to be linearly
independent). This linear system has one solution providing two vectors:

w(1) = (1, 0, θ75, θ66, θ314, θ132, θ1308, θ2017),

w(2) = (0, 1, θ505, θ1673, θ1960, θ1947, θ733, θ1788).

As for U′, the rest of the matrix is built by raising the first columns to the power of qj , for all
j, 0 < j < d.

W′ =



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
θ75 θ525 θ1275 θ1725 θ505 θ1135 θ745 θ415

θ66 θ462 θ834 θ1038 θ1673 θ2111 θ377 θ239

θ314 θ2198 θ986 θ2102 θ1960 θ1720 θ40 θ280

θ132 θ924 θ1668 θ2076 θ1947 θ1629 θ1803 θ621

θ1308 θ1956 θ1692 θ2244 θ733 θ331 θ2317 θ1819

θ2017 θ2119 θ433 θ631 θ1788 θ516 θ1212 θ1284


.

The matrix S′ = W′M−1
N,d, which is part of a private key has been then recovered:

S′ =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
3 4 1 6 5 2 2 0
1 6 5 0 5 3 3 0
0 4 3 0 6 3 5 0
3 3 5 4 2 3 1 4
2 0 6 4 0 4 0 3
6 3 1 2 4 3 0 6


.

Recovering an Equivalent F . To conclude the attack, we have to recover a valid inner transfor-
mation. From the knowledge of S′ and T′, we compute:

F∗′ = ϕ−1N ◦ T
′−1 ◦ G ◦ S ′−1 ◦ ϕN .

In terms of matrix/vector operations, we first compute the small field representation of F∗′:

F ′ = T ′−1 ◦ G ◦ S ′−1

(H1
′, . . . ,Hn

′) = (S′−1G1S′−t, . . . ,S′−1GnS′−t) T′−1.

Then, we recover the transformation on the big field using the matrix MN,d of Proposition 4.

F∗′ = ϕ−1N ◦ F
′ ◦ ϕN

(F1
′, . . . ,FN

′) = (P1,Pd+1, . . . ,Pd (N−1)+1)

where (P1, . . . ,Pn) = (M−1
N,dH1

′M−t
N,d, . . . ,M

−1
N,dHn

′M−t
N,d) MN,d.

From the definitions of matrices U′ and W′, it is equivalent (and simpler) to directly compute

F∗′ = ϕ−1N ◦ T
′−1 ◦ G ◦ S ′−1 ◦ ϕN .

(F1
′, . . . ,FN

′) = (P1,Pd+1, . . . ,Pd (N−1)+1)

where (P1, . . . ,Pn) = (W′−1G1W′−t, . . . ,W′−1GnW′−t) U′.
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With the matrices F1
′, . . . ,FN

′, we recover a set of HFE-shaped polynomials. In our example,
we obtain

F1
′ =



θ784 θ1599 0 0 θ173 θ2089 0 0
θ1599 θ1581 0 0 θ59 θ709 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
θ173 θ59 0 0 θ157 θ1724 0 0
θ2089 θ709 0 0 θ1724 θ1791 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

F2
′ =



θ2277 θ375 0 0 θ321 θ1681 0 0
θ375 θ749 0 0 θ665 θ227 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
θ321 θ665 0 0 θ1384 θ510 0 0
θ1681 θ227 0 0 θ510 θ1556 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

Thus

F ′1 = θ1581X14
1 + θ2399X8

1 + θ1509X7
1X

7
2 + θ859X7

1X2 + θ784X2
1

+ θ489X1X
7
2 + θ973X1X2 + θ1791X14

2 + θ124X8
2 + θ157X2

2

F ′2 = θ749X14
1 + θ1175X8

1 + θ1027X7
1X

7
2 + θ1465X7

1X2 + θ2277X2
1

+ θ81X1X
7
2 + θ1121X1X2 + θ1556X14

2 + θ1310X8
2 + θ1384X2

2 .

The attack is now complete and a full valid private key has been recovered.

6.2 Affine Transformations

So far, we have only considered linear transformations and homogeneous polynomials. How-
ever, HFE or multi-HFE can use affine transformations and non-homogeneous polynomials. We
describe here how to generalize our approach to the affine case.

Representation The starting idea of our attack is to represent the polynomials in a matrix
form. If the HFE-shaped polynomial Fi ∈ Fqd [X1, . . . , XN ] is not homogeneous, then there
exists a matrix Fi ∈ M(n+1)×(n+1)

(
Fqd
)

such that Fi = XFiX
t where Fi is symmetric and

X̃ = (X1, X
q
1 , . . . , X

qd−1

1 , . . . , XN , X
q
N , . . . , X

qd−1

N , 1). Similarly, if a quadratic polynomial gi ∈
Fq[x1, . . . , xn] is not homogeneous, then we can write gi = xGix

t where Gi ∈M(n+1)×(n+1) (Fq)
is symmetric and x = (x1, . . . , xn, 1).

The matrix MN,d – allowing to change basis – given in Proposition 4 simply becomesMN,d

0
...

0 · · · 1

 .

The matrix representations of the secret polynomials F1, . . . , FN have however (n+ 1) rows and
columns instead of n. The rank of such matrices is (N` + 1) (one row and column have been
added). In our attack, we then try to find an affine combination of the public polynomials such
that the rank of its corresponding matrix representation is (N`+ 1).
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MinRank attack To adapt the MinRank attack, we remark that it is possible to find a linear
combination of the matrices instead of an affine combination. Thanks to equivalent keys (cf.
Sect. 4) such linear combination exists. The problem is then to find (u0,0, . . . , un−1,0) ∈ (Fqd)n

such that

Rank

(
n−1∑
k=0

uk,0Gk+1

)
= N`+ 1.

We recover in this way a matrix U ∈Mn×n
(
Fqd
)

as explained in 6.1. For the second step, the

matrix K = ker
(∑n−1

k=0 uk,0Gk+1

)
has (n+1) columns. To have an analogous property, the last

column of K is set to zero i.e.

K =


1 0 . . . . . . 0 k0,0 . . . k0,N 0

0 1
...

... . . .
...

...
...

. . .
...

... . . .
...

...
0 . . . . . . 0 1 kn−N,0 . . . kn−N,N 0


The first n columns of K can be used to perform the second step of the attack just as in Sect. 6.

The method described above is the most straightforward and natural. However, there are at
least two other ways of performing the MinRank attack.

Take the homogeneous part. The idea is to ignore the affine part. Namely, we perform the Min-
Rank attack on the homogeneous part of the polynomials. That is, we try to find (u0,0, . . . , un−1,0)
∈ (Fd)n such that

Rank

(
n−1∑
k=0

uk,0Gk+1
h

)
= N`

where Gi
h ∈Mn×n

(
Fqd
)

is the matrix of the homogeneous part of gi (i.e. the matrix Gi without
the last row and column).

Since the rank of
(∑n−1

k=0 uk,0Gk+1
h
)

is N`,
(∑n−1

k=0 uk,0Gk+1

)
is of rank N`+ 1. We added

one more row and column. The attack is completed as we have found a linear combination
such that the rank is N` + 1. From a practical point of view, this method turns to be less
efficient than the first one. This is probably due to the fact that the information coming from
the non-homogeneous part is not used.

Add a constant polynomial. We consider a third strategy. We look for a private equivalent key
such that F is homogeneous. This way, the rank of their matrices is N` instead of (N` + 1).
We are then looking for an affine combination of the public polynomials. Namely, we compute
(u0,0, . . . , un,0) ∈ (Fqd)n+1 such that

Rank

(
n−1∑
k=0

uk,0Gk+1 + un,0I

)
= N`

where I is the matrix of the constant polynomial 1 (i.e. I[i, j] = 1 if i = j = n + 1 and 0
otherwise).

In this case, we try to cancel the affine part of
(∑n−1

k=0 uk,0Gk+1

)
such that its rank is N`

instead of N`+ 1. Note that in this method, we move the affine part of the inner polynomials
to the matrix U and try to find an homogeneous internal transformation. Note that using only
the first n components (u0,0, . . . , un−1,0) of the solution leads back to the first method as the
linear combination is of rank (N`+ 1) (only one entry is modified).

Experimentally, this method is the most efficient for the non-homogeneous case. This can
be explained by the fact that the rank is lower and the affine part is taken into account.
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6.3 Key Recovery in Characteristic 2

Our attack uses the matrix representation of the public and secret polynomials. This represen-
tation has to be symmetric in order to keep a canonical representation of the quadratic forms.
Let A be a matrix representing some quadratic form. The symmetric representation is obtained
by computing A+At

2 . In characteristic 2, such matrix would be zero.
In their original paper, Kipnis and Shamir [32] suggest to use instead A + At. Whilst the

first step of the attack (MinRank) works indeed similarly, it appears that the second step of
the attack – recovering S – fails with the method described in Sect. 6.1. In characteristic 2, the
two steps are not independent and cannot be treated separately. We now discuss how to adapt
our attack in characteristic 2. For reasons which will be explained, our adaptation depends on
the parity of the rank. Thus, the section is divided in two parts. From now on, we denote by
r = N` the target rank of the MinRank. A toy example of our attack is given in Appendix A.

Even Rank. The first part of the attack is to find a linear combination of the public matrices
whose rank is r. For HFE, any solution (λ1, . . . , λn) ∈ (Fqd)n of the MinRank leads to another

solution α(λq
i

1 , . . . , λ
qi
n ), for any α ∈ F∗

qd
, and any i, 0 6 i < d. This is due to equivalent keys as

detailed in Sect. 4.
In characteristic 2, it has been noticed [31] that ∀(α, β) ∈ F∗

qd
×Fqd , a vector α(λq

i

1 , . . . , λ
qi
n )+

β(λq
i+1

1 , . . . , λq
i+1

n ) is also solution if r is even. As a consequence, the ideal generated by the
MinRank equations when r is even has dimension at least 1 (we can fix any value for β).

Assume then that we fix a random value for λ1. Even after that, the MinRank problem
has qd − 1 solutions (and their Frobenius images). That is d (qd − 1) in total. To decrease the
number of solutions (i.e. to have only d solutions), we can try to fix one more variable as
suggested in [31]. A matrix T′ can be computed, but there is an issue on the second step of the
attack (recovering S′). The linear system allowing to recover S′ has no solution, which means
that the T′ computed is not valid. This suggests a relation between the different steps of the
attack in characteristic 2.

The problem is that only solutions with β = 0 are actually equivalent keys. The solutions
coming from β 6= 0 are not equivalent keys obtained from the affine and Frobenius transfor-
mations as described in Sect. 4. They appear to be spurious solutions. Thus, if we fix another
variable as in [31], it is very likely that the matrix T′ that will be recovered does not lead to
an equivalent secret key. In the other hand, not fixing another variable leads to an ideal of
dimension at least 1 with an exponential number of solutions. As a consequence, the two parts
of the attack cannot be treated separately. Recall that ` = dlogq(D)e. We need both

Rank (
∑n

i=1 λiGi) = N` and ker (
∑n

i=1 λiGi) W′ = ker (F1).

Let K be the unknown kernel of (
∑n

i=1 λiGi), and let W′
(N) be the N columns matrix obtained

from W′ according to Sect 6.1. Thanks to (13), we have to solve:

K · (
∑n

i=1 λiGi) = 0 and


Frob(d-`+1) (K)W′

(N) = 0,
...

Frob(d-1) (K)W′
(N) = 0,

K W′
(N) = 0.

In our case K is unknown, thus the Frobenius transforms add equations of degree up to qd−1.
To avoid this, for any k, 0 6 k < d we use that

Frobd-k

(
Frobk(K)W′

(N)

)
= Frobd-k (Frobk(K)) Frobd-k(W′

(N)) = K Frobd-k(W′
(N)).
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As Frobk(K)W′
(N) = 0, we have K Frobd-k(W′

(N)) = Frobd-k(0) = 0. Thus, we use instead the
following equations:

K · (
∑n

i=1 λiGi) = 0 and


K Frob`-1 (W′

(N)) = 0,
...

K Frob1 (W′
(N)) = 0,

K W′
(N) = 0.

We use also the representation of the entries of W′ as a vector over F2 using the mapping ϕN .
As W′ = S′MN,d, we have w′i,j =

∑d−1
k=0 θ

k (qj mod d) s′i,d bj/dc+k with s′i,j ∈ F2 for 0 6 i, j < n.
Since the Frobenius transform is linear over F2, the degree does not increase. The field equations
s′2i,j − s′i,j = 0 can also be added.

Finally, the system to be solved is the union of two overdetermined bi-linear systems [28].
The system has r (n − r) variables coming from K, n coming from the λi’s, and dN n coming
from S′. There are n (n−r) equations coming from K ·(

∑n
i=1 λiGi) = 0, `N (n−r) coming from

K Frobk(W′
(N)) = 0 and n2 from the field equations. There is a total of n (n−r)+`N (n−r)+n2

equations in r (n− r) + n+ n2 variables.
On various small examples, we observed that the degree of regularity of such systems is

(N`+1) and does not depend on d when growing the size of d. This value matches the degree of
regularity of the MinRank attack (see Sect. 7 for the complexity analysis). Hence, our variant
seems to have asymptotically the same complexity as the attack in odd characteristic.

Odd Rank. We now consider the case where the target rank r = N` is odd. Here, the first step
of the attack can be performed as expected and we recover the matrix T′ (and consequently
U′ = T′−1MN,d), as well as a kernel K. Thus, we can assume now that the matrices T′, U′ and
K are known.

The second step of the attack is to recover S′. To do that in characteristic 6= 2, we had to
solve the system K W′ = ker (Fi), where W′ ∈ Mn×n

(
Fqd
)

is unknown. The success of this
step is based on the remark that ker (Fi) is independent on the actual value of Fi and is equal
to KN,d,` as described in Lemma. 3. In characteristic 2, this property does not hold. Recall that
the matrix Fi should be a symmetric matrix of rank N`. In characteristic 2, this matrix has zero
entries in its diagonal by following Kipnis-Shamir. The rank of such symmetric matrix cannot
be odd (see for instance [31].Thus, in characteristic 2, ker (Fi) 6= KN,d,` and cannot be used for
the second step of our attack. To fix our attack, one shall not consider the symmetric form of
Fi. Consider the relation between the components of an equivalent public/private key:

T ′ ◦ ϕN ◦ F∗′ ◦ ϕ−1N ◦ S
′ = G

F∗′ ◦ ϕ−1N ◦ S
′ = ϕ−1N ◦ T

′−1 ◦ G.

Recall that W′ = S′MN,d. When we consider the matrix representation, we obtain(
W′F1

′∗d,0W′t, . . . ,W′F1
′∗d,d−1W′t, . . . ,W′FN

′∗d,d−1W′t, . . . ,W′FN
′∗d,d−1W′t

)
= (G1, . . . ,Gn)U′.

The matrices Gi for i, 1 6 i 6 n are the public matrices and the matrix U′ has been recovered
during the first step of our attack. Hence, the right hand side of this equation is known. Even
if we do not know the value of the matrices Fi for i, 1 6 i 6 N , we know the “shape” of
these matrices. Indeed, only dlog (D)e × dlog (D)e elements are non-zero, and we know the
positions of these elements (see proof of Lemma. 3 for instance). The key is to use the upper
triangular matrix representing this quadratic form instead of a symmetric matrix. We will use
this knowledge to recover both W′ and Fi

′, for i, 0 6 i < N .
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Let u(1)t be the first column U. Recall that F1
∗d,0 = F1, we have for instance

W′F1
′∗d,0 W′t = (G1, . . . ,Gn)u(1)t

F1
′ = W′−1

(
(G1, . . . ,Gn)u(1)t

)
W′−t .

Equivalently, this amounts to solve the equations of F1
′−W′−1 ((G1, . . . ,Gn)u(1)t

)
W′−t = 0.

As in the even rank attack, we interpret the entries of W′−1 as elements in F2 to add the field
equations.

If we gather the equations coming from F1, . . . ,FN, solving this system (one set of equations
for each entry) is enough to recover W′ and F′i for i, 1 6 i 6 N . Note that this system is
quadratic. It features equations of degree 2 in the variables from W′ and linear in the variables
from Fi

′. In this case again, the observed degree of regularity is not more than the degree of
regularity of the MinRank step. The overall complexity is still bounded by the MinRank step.

7 Complexity Analysis of the MinRank Attack

In this section, we study the peculiarities of the MinRank arising in our attack, i.e. coming from
(8). In [32], it is conjectured that the basic Kipnis-Shamir attack against HFE is sub-exponential.
The authors remarked that the algebraic system to be solved is greatly over-determined. Recent
results on solving MinRank [27] allow to have a fresher look at the complexity of MinRank-
“type” key-recovery attacks against HFE and multi-HFE. From our experiments (next section),
we have remarked that the degree of regularity observed seems to be constant when d grows
(d being the degree of the extension field). We explain theoretically this behavior using the
formula (recalled Sect. 2.4) on the degree of regularity of MinRank instances given in [27].
In our case, the MinRank arising implies n matrices of size n × n and a target rank r = N `.
Thus, the MinRank considered are limited to instances of parameters (n, r, n). In this particular
overdetermined case, we can get a precise bound under some conditions.

Proposition 11. The degree of regularity of the MinRank problem (n, r, n) is exactly r+1 when
r < 4 and n > 6.

Proof. As in Proposition 1, we introduce the following polynomials:

ai,j(t) =

n−max(i,j)∑
`=0

(
n− i
`

)(
n− j
`

)
t`

and the corresponding r × r matrix Ar(t) = [ai,j(t)]. According to Proposition 1, the index of
the first negative coefficient of the power series

(1− t)(n−r)2−n det Ar(t)

t(
r
2)

(14)

gives the degree of regularity. To show that the degree of regularity is r + 1, we need then to
show that the coefficient of tr+1 in (14) is the first negative coefficient. Equivalently, we show

that the coefficient of tr+1+(r2) is the first negative coefficent in

Hr(t) = (1− t)(n−r)2−n det Ar(t) . (15)

We denote by Fn−i(t) the polynomial ai,i(t). It is straightforward to show that:

Fk(t) = (1− t)kLk

(
1 + t

1− t

)
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where Ln(X) is the n-th Legendre polynomial [39].

We can compute immediately det(A1(t)) = Fn−1(t) so that

H1(t) = 1 + n t− 1

4
n
(
n3 − 2n2 − n− 2

)
t2 +O

(
t3
)
.

The coefficients of t0 and t1 are clearly positive and the coefficient of t2 is of the opposite sign
of n3 − 2n2 − n− 2; this coefficient is thus < 0 as soon as n > 2.7.

To compute H2(t), we need to express a1,2(t)(= a2,1(t)) in terms of Fn−1.

a2,1(t) =
∑n−2

`=0

(
n−2
`

)(
n−1
`

)
t`

=
∑n−2

`=0
n−1−`
n−1

(
n−1
`

)2
t`

=
∑n−2

`=0

(
n−1
`

)2
t` − 1

n−1 t
∑n−2

`=0

(
n−1
`

)2
`t`−1

= (Fn−1(t)− tn−1)− t
n−1

∂
∂t(Fn−1(t)− tn−1)

= Fn−1(t)− t
n−1F

′
n−1(t).

Hence, we can compute:

det (A2(t)) =

∣∣∣∣ Fn−1 Fn−1 − t
n−1F

′
n−1

Fn−1 − t
n−1F

′
n−1 Fn−2

∣∣∣∣ = Fn−1Fn−2 − (Fn−1 − t
n−1F

′
n−1)

2

= t+ (n− 2)2 t2 + 1/2
(
n2 − 4n+ 5

)
(n− 2)2 t3+

1/36
(
5n2 − 16n+ 20

)
(n− 2)2 (n− 3)2 t4 +O

(
t5
)
.

Hence:

H2(t) = t+ nt2 + 1/2n (n+ 1) t3 − 1/36n
(
n5 − 6n4 + 13n3 − 18n2 − 14n− 12

)
t4 +O

(
t5
)
.

Clearly all the coefficients of t1, t2, t3 are positive and the coefficient of t4 is negative as soon as
n > 4.2.

When r = 3, we have

a2,3(t) = Fn−2 − t
n−2F

′
n−2

a1,3(t) = Fn−1 +
t2 F ′′n−1+2(2−n)t F ′n−1

(n−1)(n−2)

We can compute explicitly

det (A3(t)) = t3 + (n− 3)2 t4 +
1

2

(
n2 − 6n+ 10

)
(n− 3)2 t5

+
1

6

(
n2 − 6n+ 10

) (
n2 − 6n+ 11

)
(n− 3)2 t6

+
1

576

(
23n4 − 242n3 + 1067n2 − 2268n+ 1980

)
(n− 3)2 (n− 4)2 t7 +O

(
t8
)

and deduce that

H3(t) = t3 + nt4 +
1

2
n (n+ 1) t5 +

1

6
n (n+ 2) (n+ 1) t6

− 1

576
n
(
n7 − 12n6 + 58n5 −144n4 + 169n3 − 276n2 − 228n− 144

)
t7 +O

(
t8
)
.

Again the coefficients of t3, t4, t5 and t6 are obviously positive. Since the biggest real root of the
coefficient of t7 is ≈ 5.59 then it is negative when n > 5 ut

36



Instead of computing all the coefficients Hr given by equation (15), we can simply compute the

coefficient of tr+1+(r2) in Hr(t).

Proposition 12. The degree of regularity of the MinRank Problem (n, r, n) is less than r + 1
when r 6 10 and n > 6.

Proof. Let Cr(n) be the coefficient of tr+1+(r2) in Hr(t). We have:

C10 = − 1
1593350922240000 (n21 − 110n20 + 5665n19 − 181500n18 + 4054446n17 − 67075140n16 +

852003130n15 − 8501266400n14 + 67608163381n13 − 432299636670n12 + 2232012515445n11 −
9309555172500n10 + 31264617802396n9 − 84016440120800n8 + 177471642248560n7 −
299981580148800n6 + 330208359091776n5 − 468532034657280n4 − 130151988172800n3 −
586220360140800n2 − 411093107712000n− 144850083840000)n.

C9 = − 1
13168189440000 (n19 − 90n18 + 3765n17 − 97200n16 + 1733946n15 − 22676220n14 +

225084130n13 − 1731961800n12 + 10460514381n11 − 49893169050n10 + 188094067545n9 −
558407719800n8+1288998059896n7−2330497406880n6+2826910578960n5−3910275907200n4−
721132948224n3 − 5000541557760n2 − 3593557094400n− 1316818944000)n.

C8 = − 1
131681894400 (n17−72n16+2388n15−48384n14+669606n13−6704208n12+50170300n11−

285855552n10 + 1251320145n9 − 4215469608n8 + 10855779816n7 − 21379728384n6 +
28864042768n5 − 39461075712n4 − 2881845504n3 − 51701690880n2 − 38140139520n−
14631321600)n.

C7 = − 1
1625702400 (n15−56n14 + 1428n13−21952n12 + 226982n11−1667568n10 + 8962364n9−

35733376n8 + 105954513n7 − 233382296n6 + 356137768n5 − 490476672n4 + 30217104n3 −
661207680n2 − 501500160n− 203212800)n.

C6 = − 1
25401600 (n13−42n12+791n11−8820n10+64743n9−328986n8+1184153n7−3039960n6+

5376616n5 − 7669872n4 + 1745856n3 − 10725120n2 − 8372160n− 3628800)n.

C5 = − 1
518400 (n11 − 30n10 + 395n9 − 3000n8 + 14523n7 − 46710n6 + 100085n5 − 154500n4 +

67876n3 − 227760n2 − 182880n− 86400)n.

C4 = − 1
14400 (n9 − 20n8 + 170n7 − 800n6 + 2273n5 − 4100n4 + 2980n3 − 6600n2 −

5424n− 2880)n.

It is easy to check that the biggest real root of C4, C5, C6, C7, C8, C9, C10 are approximately:

7.03, 8.45, 9.86, 11.3, 12.7, 14.1, 15.5

As a consequence, C4, C5, C6, C7, C8, C9, C10 are all negative when n > 15. ut

From the previous propositions (Proposition 11 and 12) it is natural to make the following
conjecture.

Conjecture 1. Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N, d,D) ∈ N4 and
let ` = dlogq (D)e. The degree of regularity of the associated MinRank instances is bounded
from above by (N`+ 1) when d is big enough.

Note that the conjecture is proved when N` < 11 (Proposition12), this covers all possible prac-
tical settings for HFE and Multi-HFE. To further validate the conjecture, we have instantiated
the theoretical bound of Proposition1 with HFE/multi-HFE parameters for values of N 6 20
and ` 6 10. When d is sufficiently bigger than `, we always obtain a degree of regularity equals
to (N`+ 1). This has been verified for n = N d up to 500.

Interestingly enough, the parameter d is not involved. In our context the degree of regularity
depends only on the number N of secret variables and the degree D of the secret polynomials.
We have then the necessary material to evaluate the difficulty of the MinRank involved in
HFE/multi-HFE.
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Proposition 13. When N ` < 11, for N and ` fixed, the complexity of solving the MinRank
arising in Multi-HFE is O

(
d(N`+1)ω

) (
2 6 ω < 3 being the linear algebra constant

)
and thus

polynomial in d.

Proof. According to Proposition 12, the degree of regularity is not more than (N` + 1) and
thus independent of the degree of the extension d. When d grows to infinity and accord-

ing to Theorem 1 the complexity of the Gröbner basis computation is O
((

Nd+N`+1
N`+1

)ω) ∼
O
(
(Nd)(N`+1)ω

)
∼ O

(
d(N`+1)ω

)
. ut

Remark 1. According to Conjecture 1, Proposition 13 should be valid for any value of N and `.

This complexity refers to the number of arithmetic operations (in Fq) needed. This makes the
binary complexity logarithmic in q. As a comparison, the complexity of a message recovery
attack on HFE according to [18] is polynomial in ` but exponential in q. This makes our key
recovery attack more efficient than their message recovery.

8 Attacks on Multi-HFE Variants

8.1 Multivariate-HFE-

In this section, we study a classical variant of multivariate schemes, the so-called “minus”
modifier. It consists in removing some polynomials from the public key. We recall that this
construction is only suitable for signature as the decryption is not unique.

Description. Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N, d,D) ∈ N4

as defined in Sect. 2.1. We introduce a new parameter s ∈ N and the projection π : (Fq)
n 7→

(Fq)
n−s. The public key is the mapping G = π ◦ T ◦ ϕ−1N ◦ F∗ ◦ ϕN ◦ S viewed as (n − s)

polynomials in n variables. To sign, s random values from Fq are appended to a digest m =
(m1, . . . ,mn−s) ∈ Fn−s

q . The signature is generated by applying the basic decryption process to
such element. To verify a signature, we evaluate it on G.

Attack. The goal is to find a valid private key with only (n − s) public polynomials. Usually
the minus modification is enough to prevent classical attacks as some information is missing. In
particular, this is the case for the basic HFE (N = 1). However we have shown in Sect. 5 that
the problem has N degrees of freedom. As a consequence, only (n−N + 1) matrices are needed
to recover the (secret) kernel. This means that if the number of equation removed s is (strictly)
smaller than N , then the kernel matrix K can be found with no additional cost. Still, the last
steps of the attack have to be adapted.

The first step is as follows. We know that there exists a vector (λ1, . . . , λn) ∈ (Fq)
n and

symmetric (n× n)-matrices (Γ1, . . . ,Γs) such that

ker

(
n−s∑
i=1

λiGi +

s∑
i=1

λn−s+iΓi

)
= K.

The Γi’s are unknown matrices corresponding to the removed polynomials. According to Theo-
rem 7, we can fix N values λi and still having solutions to our polynomial system. For instance,
let

(λn−N+1, . . . , λn) = (`1, . . . , `N ).
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We write

K ·

(
n−N∑
i=1

λiGi +

N−s∑
i=1

`iGn−N+i +

s∑
i=1

`N−s+iΓi

)
= 0. (16)

The resulting system has n (n − N`) linear equations in
(

(n−N) + sn (n+1)
2

)
variables. The

system is greatly underdetermined and hence have many solutions. To find the entries of Γi, we
use the following remark:

Proposition 14. For any j, 0 6 j < d, we have Frobj(K) ·
(∑n

i=1 λ
qj

i Gi

)
= 0.

Proof. By definition, Frobj

(
K · (

∑n
i=1 λiGi)

)
= 0. By linearity of the Frobenius, this is equal

to:

Frobj (K) · Frobj

(
n∑

i=1

λiGi

)
= Frobj (K) ·

(
n∑

i=1

λq
j

i Frobj (Gi)

)
.

As each Gi has its entries in Fq, we also have that Frobj (Gi) = Gi. ut

Solving equations (16) together with their Frobenius images forces the entries of Γi to be in Fq.

In order to avoid equations of degree qj coming from λq
j

i , we add (d− 1)(n−N) new variables

(λ
(1)
1 , . . . , λ

(1)
n−N , . . . , λ

(d−1)
1 , . . . , λ

(d−1)
n−N ). From Proposition 14, we get that ∀j, 0 6 j < d:

Frobj(K) ·

(
n−N∑
i=1

λ
(j)
i Gi +

N−s∑
i=1

`q
j

i Gn−N+i +
s∑

i=1

`q
j

N−s+iΓi

)
= 0.

The resulting system is overdetermined and has a solution if (`1, . . . , `N ) 6= (0, . . . , 0). We have
to solve N times this linear system with different values for (`1, . . . , `N ) to get a valid matrix
U as explained in Theorem 8.

Experimental Results We present experimental results for the attack. It has been imple-
mented in Magma [8] (V2.16-10). MinRank instances have been solved using the Kipnis-Shamir
modeling. Our results are presented in Table 3. We mounted our attack on a basic multi-HFE
and on multi-HFE- with the same parameters As predicted, the minus modifier does not change

Table 3. Comparison of each step of our attack on minus variant on multi-HFE with parameters q = 31, N =
3, d = 8, D = 2 (≈ 120 bits security) using a Magma [8] (V2.16-10) implementation on a 2.93 GHz IntelR© XeonR©

CPU.

MR time MR dreg Finding U Finding W

No variant (ref. time) 23.3 s 3 0.01 s 7.29 s

Minus (s = 1) 23.2 s 3 0.01 s 16.71 s
Minus (s = 2) 23.4 s 3 0.01 s 35.24 s
Minus (s = 3) Not possible

the time of the MinRank attack but recovering W is a bit slower. As a conclusion, the private
key of a multi-HFE− can be recovered with this technique almost as efficiently as the standard
construction if the number of withdrawn equations is less than (N − 1).
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8.2 Multivariate-HFE with Embedding

In [19], it has been proposed to use a variant of HFE with embedding. This so-called PHFE
construction consists in removing/fixing few variables of the public key. This scheme is claimed
to resist Kipnis-Shamir’s attack [19]. The authors of [14] use the same modification on multi-
HFE and claim that it prevents a possible “big-field” based attack. Still, for both PHFE and
its multivariate version a key recovery attack is possible.

Description. Let (F∗,S, T ) be a multi-HFE private key with parameters (q,N, d,D) ∈ N4 as
defined in Sect. 2.1. We define a new parameter r ∈ N and the embedding ρ : (Fq)

n−r 7→ (Fq)
n

which is part of the private key. The public key is the mapping G = T ◦ ϕ−1N ◦ F∗ ◦ ϕN ◦ S ◦ ρ.
To encrypt a plaintext, we still evaluate G. To decrypt, as in the standard scheme, one inverts
each component separately. To simplify, we can assume w.lo.g. that the embedding is always
ρ0 : (x1, . . . , xn−r) ∈ (Fq)

n−r 7→ (x1, . . . , xn−r, 0, . . . , 0) ∈ (Fq)
n. Indeed, from any embedding

ρ and any invertible transformation S, one can find an invertible transformation S ′ such that
S ◦ ρ = S ′ ◦ ρ0; this gives equivalent keys.

Attack. The matrix representation Gi of the public key polynomials have (n − r) rows and
columns. However, the rank of

∑n−1
i=0 ui,0Gi+1 remains bounded by N logq(D) (i.e. removing

rows or columns does not increase the rank).

Let K = ker
(∑n−1

i=0 ui,0Gi+1

)
. As usual a matrix U′ can still be recovered by solving a

MinRank. The problem appears when trying to recover the matrix W′ = S′MN,d where S′ is
an equivalent matrix (for the private key). By following the method described in Sect. 6.1, we
get a system having N` (n− r −N`) equations with only N (n− r −N) variables. Let W′ be
a matrix solution of this linear system. This matrix is as follows:

W′ =


w0,0 wq

0,0 . . . wqd−1

0,0 . . . . . . w0,N−1 wq
0,N−1 . . . wqd−1

0,N−1
...

... . . .
... . . . . . .

...
... . . .

...

wn−r,0 w
q
n−r,0 . . . w

qd−1

n−r,0 . . . . . . wn−r,N−1 w
q
n−r,N−1 . . . w

qd−1

n−r,N−1

 .

This matrix W′ has (n − r) rows and thus is not invertible. However, such W′ needs to be
inverted in order to compute a full private key.

The first idea is to build a new invertible matrix Wr by appending to W′ a (r × n)-matrix
V = [vi,j ] such that vqi,j = vi,j+1. The secret inner mapping is reconstructed by computing

Gi
′ = Wr

−1GiWr
−t. As the matrix Wr

−1 has non-zero coefficients in its r last rows, so is G′i.
Recall that the MinRank was done over (n − r × n − r)-matrices. Therefore, when we finally
compute

∑n
i=0 ui,0Gi+1

′, monomials in the last variables (xn−r+1, . . . , xn) are mixed with the
other monomials. This eventually leads to polynomials that are not in HFE-shape (and then
hard to invert).

To circumvent this issue, we no longer append a “quasi” random matrix to W′. Instead, we
construct an invertible matrix Wz by appending vertically to W′ the matrix

Z =

0 . . . . . . . . . . . . 0 1
...

...
. . .

0 . . . . . . . . . . . . 0 1

 .

From the way it is constructed, Wz is indeed invertible. The variables (xn−r+1, . . . , xn) do not
appear in Gi

′ = Wz
−1GiWz

−t, and the rank property is preserved. The only difference is
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that the relation wq
i,j = wi,j+1 only holds for all i, 0 6 i < n − r. The consequence is that

S′ = WzM
−1
N,d has coefficients in the big field Fqd . But, this is not an issue; S′ can be inverted

and a mapping F∗ with HFE-shape can be recovered.

Experimental Results Experimental results are given in Table. 4. We compare the differ-
ent steps of the attack on a basic multi-HFE to the same attack running on multi-HFE with
embedding.

Table 4. Comparison of each step of our attack on embedding variant on multi-HFE with parameters q =
31, N = 3, d = 8, D = 2 (≈ 120 bits security) using a Magma [8] (V2.16-10) implementation on a 2.93 GHz
IntelR© XeonR© CPU.

MR time MR dreg Finding U Finding W

No variant (ref. time) 23.3 s 3 0.01 s 7.29 s

Embedding (r = 1) 788 s 3 0.01 s 6.14 s
Embedding (r = 2) 2811 s 3 0.01 s 5.25 s
Embedding (r = 3) 401 s 3 0.01 s 4.44 s

In practice, the MinRank occuring in multi-HFE with embedding takes more time to break.
However, the degree of regularity remains the same. Thus, there is only a constant factor between
the complexity of solving a regular MR occuring in multi-HFE and a MR occuring in multi-HFE
with embedding. As a conclusion, the embedding modifier does not add more security to the
basic HFE/multi-HFE construction.

To further point out this weakness, we practically broke a 256 bits Multi-HFE scheme using
embedding whilst a classical HFE instance with n = 256 bits is still intractable. In Table 5, we
show our results on the parameters proposed in [13] (multi-HFE with embedding r = 1). The
degree of regularity experimentally observed is noted dreg. The theoretical degree of regularity
is denoted by dtheoreg . The proposed parameters are not secure since they are practically broken
(9 days for the most conservative, i.e. 256 bits claimed security). One may get even better
results using the minors modeling of MinRank and the F5 implementation available in the FGb
software [24].

Table 5. MinRank attack on real-scale parameters from [13] using a Magma [8] (V2.16-10) implementation of
Kipnis-Shamir modeling and a FGb [24] implementation of the minors modeling on a 2.93 GHz IntelR© XeonR©

CPU.

q N d D security dtheoreg
time

Magma
mem

Magma
time
FGb

dreg

31 2 15 2 150 bits 3 2 min 27 s 434 MB 21.1 s 3
31 3 10 2 150 bits 4 1 h 38 min 1.5 GB 24 min 56 s 3
31 3 15 2 192 bits 4 2 days 1 h 12 GB 3
31 3 18 2 256 bits 4 9 days 16 h 33 GB 3

9 Weaknesses of Multi-HFE relative to HFE

In light of our results, we concude the paper by evaluating the real security gain offered by the
Multi-HFE construction (w.r.t. basic HFE). In order to compare instances of HFE/multi-HFE
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with each other, we introduce and formalize the notion of “similarity” between two instances of
multi-HFE.

Definition 3. Two multi-HFE instances of respective parameters (q1, N1, d1, D1) and (q2, N2,
d2, D2) are similar iff

i) q1 = q2 (same base field)
ii) N1d1 = N2d2 (same public key size)

iii) N1 logq1(D1) = N2 logq2(D2) (same private key size)

This definition is motivated by the following fact.

Property 1. Two similar instances of multi-HFE share the same size of public key and (almost)
the same size of private key.

Proof. The transformations S and T have the same size for two similar multi-HFE instances.
Each secret polynomial can be written as a non-standard quadratic form on the q-th powers of
the variables. As the degree is bounded by D, we have at most (N logq(D)+1)(N logq(D)+2)/2
monomials in each polynomial. We then have to storeN (N logq(D)+1)(N logq(D)+2)(d log2(q))
bits. ut

This definition includes HFE as it is a particular case of Multi-HFE (N = 1) To illustrate
the concept of equivalent keys, we provide in Table 6 two multi-HFE parameters proposed by
[6] and [14]. The table shows the correspondence between their similar univariate instance, as
well as the complexity of solving the MinRank for each set of parameters.

Note that this definition takes into account the size of the private key. The speed of decryp-
tion can vary a lot between two similar instances as pointed in Table 6. A different notion of
similarity with respect to the speed of decryption could also be considered.

Table 6. Similar univariate HFE parameters for multi-HFE instances. The two sets of parameters in each line
provide the same general security (key sizes and message space) but the decryption speed and the complexity of
our attack vary a lot.

q N d D msg space pub (bits) priv (bits) decr. time MinRank comp.

IFS 2 8 16 2 128 bits 2130048 39042 0.610 s. 169ω = 236ω

HFE 2 1 128 192 128 bits 2130048 38018 0.120 s. 1289ω = 263ω

THFE 31 3 10 2 150 bits 144150 11110 < 0.001 s. 103ω ≈ 210ω

HFE 31 1 30 1922 150 bits 144150 11110 ≈ 10 s. 303ω ≈ 215ω

The KS equations of two similar instances have the same number of variables and equations
as the target rank is the same N logq(D). According to the complexity of the MinRank given
in Proposition 13, the bigger is d, the harder it is to mount our attack. In particular, the case
N = 1 (original HFE) is the more resistant. This behavior has also been verified experimentally.
For similar keys, choosing N = 1 seems to be the optimal value for security. With respect to
our attack, multi-HFE is then less secure than HFE.
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A Example of Key Recovery in Characteristic 2

A.1 Example for Even Rank

We consider an instance of HFE with the following parameters: q = 2, N = 1, d = 6, D =
(q+ 1) = 3, r = N dlogq (d)e = 2. The private key is given in Fig. 3 and the public key in Fig. 4.

F1 = θ30X3
1 + θ33X2

1 .

S =


1 1 1 1 1 1
0 0 0 0 1 0
1 0 0 1 1 1
1 1 0 0 1 0
1 0 1 0 1 1
1 0 0 0 1 1

 ,T =


1 0 0 1 0 0
0 0 0 1 0 0
1 0 1 0 1 1
0 1 0 0 1 1
0 1 0 1 0 1
1 0 1 0 0 0

 .

Fig. 3. Private key for a (Multi-)HFE with parameters q = 2, N = 1, d = 6, and D = 3.

G1 =



1 1 1 1 0 1 0
0 1 1 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,G2 =



1 1 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 1 0 1 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,G3 =



1 1 1 0 0 0 0
0 0 1 1 0 1 0
0 0 0 0 1 1 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


,

G4 =



1 0 0 1 1 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


,G5 =



1 1 0 1 1 1 0
0 1 1 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


,G6 =



1 1 0 0 0 0 0
0 1 1 1 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Fig. 4. Public key for a (Multi-)HFE with parameters q = 2, N = 1, d = 6, and D = 3.

As explained in Sect. 6.1, we can fix λ1 = 1. However, the MinRank problem has still
d (qd − 1) = 6 × 63 = 378 solutions. We can fix one more variable as suggested in [31]. For
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example, we fix λ2 = θ. We have now only d = 6 solutions, i.e.:

(1, θ, θ15, θ, θ61, θ50), (1, θ, θ17, θ41, θ, θ30), (1, θ, θ22, θ43, θ51, θ38),

(1, θ, θ28, θ53, θ24, θ60), (1, θ, θ42, θ11, θ9, θ17), (1, θ, θ45, θ20, θ32, θ).

We build the corresponding matrices K and T′. In the second step – recovering S′– the linear
system KW = ker (Fi) has no solution. The computed T′ is then not valid.

Using the technique described in Sect. 6.3, we have to solve a system of 68 equations in 50
variables. After fixing λ1 = 1 and w′0,0 = 1, the system is of dimension 0 and the solution is:

λ = (1, θ9, θ5, θ28, θ41, θ15),

K =


1 0 0 0 θ46 θ32

0 1 0 0 θ29 θ41

0 0 1 0 θ12 θ39

0 0 0 1 θ38 θ21

 , S′ =



1 0 0 1 0 0
0 0 0 1 1 1
0 0 1 0 1 0
1 1 1 0 1 1
0 1 1 1 1 0
0 1 0 1 1 1

 .

Finally, the matrix T′ can be recovered

T′ =



0 0 1 1 0 0
0 0 1 0 0 1
1 1 0 1 0 0
0 0 0 0 1 1
1 0 0 0 1 0
1 0 1 0 1 0

 .

With the matrices T′ and S′, we recover a secret polynomial F ′1 = θ48X3
1 + θ46X2

1 which
completes the key recovery.

A.2 Example for Odd Rank

We consider an instance of HFE with the following parameters: q = 2, N = 1, d = 6, D =
(q2 + 1) = 5, and r = N dlogq (D)e = 3. The private key is given in Fig. 5 and the public key in
Fig. 6.

F1 = θ27X5
1 + θ61X4

1 + θ36X3
1 + θ53X2

1 .

S =


1 0 0 0 1 1
0 0 0 1 1 0
0 0 1 1 1 1
0 1 0 1 0 0
1 1 1 1 1 1
0 0 0 1 0 0

 ,T =


0 0 0 1 1 1
0 0 1 1 0 1
1 0 1 0 1 1
1 0 0 1 0 1
1 1 1 0 0 1
0 1 1 0 1 0

 .

Fig. 5. Private key of a (Multi-)HFE with parameters: q = 2, N = 1, d = 6, and D = 3.

After fixing λ1 = 1, the MinRank problem has d solutions. The solution are:

λ(1) = (1, θ7, θ52, θ4, θ33, θ36)

46



G1 =



0 0 0 0 1 0 0
0 1 0 0 1 1 0
0 0 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


,G2 =



1 1 1 1 1 0 0
0 1 1 1 1 1 0
0 0 0 1 0 1 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,G3 =



0 1 0 1 1 1 0
0 0 1 1 0 0 0
0 0 0 0 0 0 0
0 0 0 1 1 1 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


,

G4 =



1 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


,G5 =



0 1 0 1 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,G6 =



1 1 0 0 0 0 0
0 0 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Fig. 6. Public key of a (Multi-)HFE with parameters: q = 2, N = 1, d = 6, and D = 3.

and all its Frobenius images. The matrix T′ can be recovered normally:

T′ =



0 0 0 1 0 1
1 1 0 0 0 1
0 0 0 1 1 0
0 1 1 0 1 1
1 1 1 0 1 1
0 0 1 0 1 1

 .

The first step of the attack runs pretty well and we are able to compute K. Nevertheless, one
can remark that the kernel matrix of F1 is

ker(F1) =


0 1 θ9 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

The matrix has 1 column set to zero instead of 3 leading to an underdetermined linear system
when we consider KW = ker(F1). We can try to fix more variables in such system. For instance:

w(1) = (1, θ, θ31, θ16, θ50, θ5)

is a possible solution to our system. However, when we use it as in Sect. 6.1 to build the matrix
W′, W′ is not invertible, making the full key recovery impossible. Another possible solution is

w(1) = (1, θ5, θ12, θ36, θ34, θ6).

In this case, W′ is invertible. But, we have:

F ′1 = θ7X33
1 + θ5X32

1 + θ55X17
1 + θ23X16

1 + θ50X9
1+

θ61X8
1 + θ26X5

1 + θ18X4
1 + θ59X3

1 + θ61X2
1 + θ31X1

whose degree is not anymore bounded by D.
Using the method described in Sect. 6.3, we know that:

F1 =



a1 a2 a3 0 0 0
0 a4 a5 0 0 0
0 0 a6 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,
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for some values a1, . . . , a6 ∈ Fqd . We have

(G1, . . . ,Gn)λ(1)t =



θ56 θ47 θ50 θ28 θ17 θ58

0 θ41 θ14 θ39 θ54 θ45

0 0 θ12 θ56 θ44 θ36

0 0 0 θ25 θ15 θ4

0 0 0 0 θ14 θ5

0 0 0 0 0 θ2


using the same notations as in Sect. 6.3. The resulting system

F1 = W′−1
(

(G1, . . . ,Gn)λ(1)t
)

W′−t.

has 21 quadratic equations and 36 field equations in 42 variables. After fixing W′−1[0, 0] = 1
the system has dimension 0 and it gives

F1
′ =



θ41 θ23 θ61 0 0 0
0 θ26 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , S′ =



1 0 1 1 0 0
1 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 0 0 0
0 1 0 0 1 1


The polynomial F ′1 = θ61X5

1 + θ26X4
1 + θ23X3

1 + θ41X2
1 has HFE-shape and it can be verified

that the recovered components are a valid equivalent key.

B Proofs from Section 3.2

Proof (Proposition 5). Let F =
∑N−1

r=0,s=0

∑d−1
u=0,v=0Ar,s,u,vX

qu

r+1X
qv

s+1 be a HFE-shaped polyno-
mial and

X̃ = (X1, X
q
1 , . . . , X

qd−1

1 , . . . , XN , X
q
N , . . . , X

qd−1

N ).

From the definition of the non-standard matrix representation, we have that F = X̃ F X̃
t

with

F = [fi,j ] ∈ Mn×n
(
Fqd
)

and then Ar,s,u,v = fr d+u,s d+v. Assume that F ′ = X̃ F∗d,k X̃
t
, we will

prove that F ′ = F qk . From Definition 1, each element of F∗d,k can be expressed from the fi,j ’s.
By construction of F∗d,k, it is straightforward to show that

F∗d,k = [f q
k

d bi/dc+(i−k mod d),d bj/dc+(j−k mod d)].

Then, the polynomial F ′ is:

F ′ =
n−1∑
i=0

n−1∑
j=0

f q
k

d bi/dc+(i−k mod d),d bj/dc+(j−k mod d)X
qi mod d

bi/dc+1X
qj mod d

bj/dc+1.

We do the replacement i← r d+ u and j ← s d+ v.

F ′ =
N−1∑
r=0

d−1∑
u=0

N−1∑
s=0

d−1∑
v=0

f q
k

d r+(u−k mod d),d s+(v−k mod d)X
qu

r+1X
qv

s+1

F ′ =
N−1∑
r,s=0

d−1∑
u,v=0

f q
k

d r+(u−k mod d),d s+(v−k mod d)X
qu

r+1X
qv

s+1.
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We shift the indexes u and v by k (i.e. u← u+ k, v ← v + k). As in (2) – as the indexes being
computed mod d – we have

F ′ =

N−1∑
r,s=0

d−1∑
u,v=0

f q
k

d r+(u mod d),d s+(v mod d)X
qu+k mod d

r+1 Xqv+k mod d

s+1

F ′ =
N−1∑
r,s=0

d−1∑
u,v=0

(
fd r+u,d s+vX

qu

r+1X
qv

s+1

)qk

F ′ =

N−1∑
r,s=0

d−1∑
u,v=0

Ar,s,u,vX
qu

r+1X
qv

s+1

qk

F ′ = F qk .

This proves the proposition. ut

Proof (Proposition 6). The proof is very similar to the proof of Proposition 3. For i, j, 0 6 i, j <
n, let mi,j be the (i, j)-th element of MN,d. According to the definition of MN,d in Proposition 4,
mi,j = 0 if bi/dc 6= bj/dc. For all i, j, 0 6 i, j < n, an element bi,j of B is then

bi,j =

n−1∑
`=0

ai,`m`,j =

d−1∑
`=0

ai,bj/dc+`mbj/dc+`,j =

d−1∑
`=0

ai,bj/dc+` θ
j mod d
`+1 .

Thus: bi,k d+((j−1) mod d) =
∑d−1

`=0 ai,k+` θ
j−1
`+1 . Consequently:

bqi,k d+((j−1) mod d) =

(
d−1∑
`=0

ai,k+` θ
j−1
`+1

)q

.

As ai,j ∈ Fq (i.e. aqi,j = ai,j) and since the Frobenius is linear, we get:

bqi,k d+((j−1) mod d) =

d−1∑
`=0

aqi,k+`

(
θj−1`+1

)q
=

d−1∑
`=0

ai,k+` θ
j
`+1 = bi,k d+j .

ut
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