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Abstract

In this work we investigate the hardness of a computational problem introduced in the recent work
of Baumslag et al. in [3, 4]. In particular, we study the Bn-LHN problem, which is a generalized version
of the learning with errors (LWE) problem, instantiated with a particular family of non-abelian groups
(free Burnside groups of exponent 3). In our main result, we demonstrate a random self-reducibility
property for Bn-LHN. Along the way, we also prove a sequence of lemmas regarding homomorphisms of
free Burnside groups of exponent 3 that may be of independent interest.
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1 Introduction

Motivation & Background. In the recent work of Baumslag et al. [3, 4], the authors derive a number
of basic cryptographic primitives (e.g., symmetric encryption) from a generalization of the learning parity
with noise (LPN [1, 11, 5]) and learning with errors (LWE [15, 14, 12, 2]) problems to an abstract class of
group-theoretic learning problems, termed learning homomorphisms with noise (LHN). As shown in [3],
this class of problems contains LPN and LWE as special cases, but also allows instantiations based on
non-abelian groups. Specifically, the work of [3] describes a combinatorial instantiation of LHN using a
class of finite groups known as free Burnside groups, which are in some sense the “most general” groups
for which every element has a finite order dividing some constant n. The Burnside group instantiation
of the problem was termed learning Burnside homomorphisms with noise (Bn-LHN). While a number of
cryptographic aspects of the Bn-LHN problem were addressed in [3] (cf. Appendix A for a discussion on
the computational aspects of Burnside groups, and their relevance for cryptographic applications), several
important matters were left open; perhaps the most prominent being the question of complexity reductions
(e.g., worst-case to average-case reductions). We take steps toward resolving these questions by showing a
certain random self-reducibility property for Bn-LHN.

Random self-reducibility. Since any practical implementation of a cryptographic scheme must include
an algorithm which generates hard problem instances, it is desirable that such instances do not take
much effort to find. One notion that in some sense captures this idea is that of random self-reducibility.
Roughly speaking, a random self-reducibility property makes an assertion about the average-case hardness
of a computational problem. In particular, it says that solving the problem on a random instance is
not any easier than solving the problem on an arbitrary instance. Hence, if a computational problem
satisfies random self-reducibility, it is a trivial matter to sample “good” instances: a random instance
will suffice. Indeed, random self-reducibility is one of the hallmarks of intractability assumptions that have
withstood the test of time. Notable examples include the RSA problem [16]; the discrete logarithm problem
and the Diffie-Hellman problem [6]; the quadratic residuosity assumption [7]; the composite residuosity
assumption [13]; and the learning with errors (LWE) problem [15]. As it turns out, however, random self-
reducibility properties come in several shapes. For example, the type of random self-reducibility enjoyed
by the LWE is, in a sense, the strongest, in that the secret key itself can be randomized: given instances
relative to a secret s, new instances relative to a uniformly random secret s′ can be constructed in a way
that solutions to the latter yield solutions to the former. This is a more complete form of random self-
reducibility than what is known for many number-theoretic assumptions, like RSA, where it is possible to
randomize individual instances based on a given private key, but for which there is no apparent way to
re-randomize the key itself. More concretely, given an instance c = me mod n, one can compute a new
instance c′ = cre mod n = (mr)e mod n, whose solution (together with knowledge of r) yields a solution
for c, yet there is no apparent way to find a connected instance relative to a different modulus n′ 6= n. We
stress that the reduction shown in our work is of the LWE type: the worst-case to average-case reduction
applies to the secret keys.

Our Contributions. In this paper, we make progress towards understanding the computational hardness
of learning Burnside homomorphisms with noise. In particular, we establish a random self-reducibility
property for Bn-LHN, by showing that learning under uniform surjective secret homomorphisms is no
easier than learning under an arbitrary one. We remark that the original formulation of Bn-LHN did not
require that the homomorphism be a surjection. However, this limitation seems rather inconsequential for
the cryptographic application of the assumption. First, as the security parameter grows, the probability of
sampling a non-surjective secret diminishes exponentially. Hence the distributions of instances coming from
the two variations on the assumption are in fact statistically close (cf. Appendix B). Moreover, as shown
in Section 5, there is an efficiently computable test for surjectivity, so that the distribution of instances for
the modified assumption remains efficiently sampleable (via rejection sampling). Finally, in Section 6, we
present a limited form of a search-to-decision reduction for Bn-LHN.

Techniques. Most of the technical lemmas regarding homomorphisms of free Burnside groups of expo-
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nent 3 (denoted Bn) involve relating the groups and their morphisms to their abelianized counterparts
(Bn/[Bn, Bn]), as well as finding certain useful facts that are preserved under this relation. In a study with
such a focus on homomorphisms, a number of elementary ideas from homological algebra apply naturally.
In particular, we make frequent use of commutative diagrams, exact sequences, and occasionally, the five
lemma. These techniques are briefly reviewed in Appendix 2.

Organization. Section 3 provides some background on free Burnside groups of exponent 3. The learning
Burnside homomorphisms with noise (Bn-LHN) problem is defined in Section 4. Section 5 presents the
random self-reducibility result for Bn-LHN. Section 6 looks into the relationship between the search and
decision versions of Bn-LHN.

2 Background: Group Theory and Homological Algebra

Free groups. If X is a subset of a group G, let X−1 = {x−1 | x ∈ X}. An expression w of the form
a1 . . . an (n ≥ 0, ai ∈ X ∪X−1) is termed a word or an X-word. Such an X-word is said to be reduced
if n > 0 and no subword aiai+1 takes either of the forms xx−1 or x−1x. If F is a group and X is a subset
of F such that X generates F and every reduced X-word is different from 1F , then one says that F is a
free group, freely generated by the set X, and refers to X as a free set of generators of F , and writes F
as F (X). A key property of a free group F freely generated by a set X is that for every group H, every
mapping θ from X into H can be extended uniquely to a homomorphism θ∗ from F into H. If θ∗ is a
surjection, and if K is the kernel of θ∗, then the quotient group F/K is isomorphic to H. If R is a subset of
F , then in the event that K is generated by all of the conjugates of the elements of R, we express this by
writing H = 〈X;R〉 and term the pair 〈X;R〉 a presentation of H (notice that the mapping θ is usually
implicit).

Relatively Free Groups. If F is a free group and K a normal subgroup of F , then the factor group
F/K is called relatively free if K is fully invariant, i.e., if α(K) ≤ K for any endomorphism α of F .
If x1, . . . , xn are free generators of F , then x1K, . . . , xnK are called relatively free generators of F/K, and
typically denoted simply by x1, . . . , xn when there is no risk of confusion. Let En denote a relatively free
group of rank n, i.e., Fn = F (x1, . . . , xn) and En = Fn/K for some fully invariant K. One key property
of such a group is that any set map on its generators into En can be extended to an endomorphism of En.
Hence, one is immediately equipped with an exponential number of homomorphisms, provided that the
image is non-trivial.

Cayley distance. Finitely generated groups can also be viewed as geometric objects via the notion of
the Cayley graph. The Cayley graph of a group G relative to a particular set of generators has the group
elements as vertexes, and an edge between two vertexes if and only if multiplication by a generator (or
its inverse) translates one to the other. Figure 1 depicts Cayley graphs for several groups, including the
27-element Burnside group B(2, 3) of exponent 3 with 2 generators. (Burnside groups are discussed in
Section 3.) The Cayley distance between two group elements is defined as the length of the shortest
path between the corresponding nodes in the Cayley graph. The maximum Cayley distance between any
two elements in the graph is the diameter of the Cayley graph. The Cayley norm of an element x,
denoted ‖x‖, is its distance from the identity element in the Cayley graph. We remark that maxx∈G(‖x‖)
corresponds precisely to the diameter.

Commutators. In non-abelian groups, the commutator of two group elements a, b, denoted [a, b], is the
group element satisfying the identity ab = ba[a, b], that is, [a, b] = a−1b−1ab. Starting with the generators
x1, . . . , xn of the group as the recursive basis, one obtains an ordered sequence of formal commutators
by combining two formal commutators a, b into the formal commutator [a, b]. The weight of a formal
commutator is defined by assigning weight 1 to the generators, and defining the weight of [a, b] as the sum
of the weights of a and b. The weight imposes a partial order on formal commutators, which is typically
made total by assuming an arbitrary ordering among formal commutators of any given weight greater than
1, and by adopting the lexicographical order among the generators.
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(a) Free group, F (a, b) (b) B(2, 2) ∼= (F2
2,+) (c) B(2, 3) = B2

Figure 1: Cayley graphs for various groups

Commutator subgroups. If G is a group, then the commutator subgroup [G,G] is the subgroup of
G generated by elements of the form [a, b] where a, b ∈ G. The commutator subgroup of G is a normal
subgroup of G. More generally, if A and B are normal subgroups of G, then [A,B] is the subgroup of
G generated by elements of the form [a, b] where a ∈ A and b ∈ B. Thus, we can define a sequence of
subgroups G1 = G, G2 = [G,G], G3 = [[G,G], G], and recursively, Gn+1 = [Gn, G]. This sequence of
groups is called the lower central series for G.

Abelianization. If G is a group, then G/[G,G] is called the abelianization of G: It is an abelian
group obtained from G by creating new relations to ensure that all elements of the group commute. The
canonical epimorphism ρG : G - G/[G,G] that takes g ∈ G into its g[G,G] in G/[G,G] is usually
referred to as the projection onto the abelianization of G. When there is no risk of confusion, we will
drop the subscript and denote the projection onto the abelianization simply by ρ.

It is a basic fact from category theory that ρ is universal for homomorphisms from G into abelian
groups: that is, if A is any abelian group, then any homomorphism θ : G - A splits as θ = θ′ ◦ ρ, for a
unique homomorphism θ′ : G/[G,G] - A. If G and H are groups, and φ : G - H is a homomorphism,
then using the above construction on θ = ρH ◦ φ yields a homomorphism φ : G/[G,G] - H/[H,H] so
that the following diagram commutes:

G
φ

- H

G/[G,G]

ρG

? φ
- H/[H,H]

ρH

?

We refer to φ as the abelianization of the homomorphism φ.

Exact Sequences and the Five Lemma. Consider a sequence of homomorphisms of groups

A1
f1- A2

f2- A3
f3- · · · fk−1- Ak.

Such a sequence is said to be exact if for every j ∈ {1, . . . , k − 2} we have that Im(fj) = ker(fj+1). One

common example is 0 - H
j- G

p- G/H - 0 where H C G, j is the inclusion of H into
G, and p is the canonical epimorphism of G onto the quotient, sending g 7→ gH. Consider the following
commutative diagram, where the rows are exact.

A - B - C - D - E

A′

e

?
- B′

f

?
- C ′

g

?
- D′

h

?
- E′

i

?
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The five lemma states that if e is surjective and i is injective, then if f and h are isomorphisms, so is g.
Furthermore, if i is injective and f and h are surjective, then g is also surjective.1

3 Brief Background on Burnside Groups

For a positive integer k, consider the class of groups for which all elements x satisfy xk = 1. Such a
group is said to be of exponent k. We will be interested in a certain family of such groups called the
free Burnside groups of exponent k, which are in some sense the “largest.” The free Burnside groups are
uniquely determined by two parameters: the number of generators n, and the exponent k. We will denote
these groups by B(n, k):

Definition 3.1 (Free Burnside group) For any n, k ≥ 0, the Burnside group of exponent k with n
generators is defined as

B(n, k) = 〈{x1, . . . , xn}; {wk | for all words w over x1, . . . , xn}〉.

Since we are interested in average-case hardness, it is important that B(n, k) be finite, else even basic
issues regarding the probability distribution become unclear. The question of whether B(n, k) is finite or
not is known as the bounded Burnside problem. For sufficiently large k, B(n, k) is generally infinite [10].
For small exponents, it is known that k ∈ {2, 3, 4, 6} yields finite groups for all n. (We remark that with
the exception of k = 2, for which B(n, k) = Fn2 is abelian, these are non-trivial results.) For other small
values of k (most notably, k = 5), the question remains open.

To ensure finiteness, our current knowledge of Burnside groups would require k to be in the set
{2, 3, 4, 6}; however, following the work of [3], we will focus on k = 3. The main reasons are as fol-
lows: k = 2 would give the more familiar (and already studied) case B(n, k) = Fn2 ; it is convenient for k to
be prime (hence eliminating k = 4 and k = 6); and perhaps most importantly, the structure of B(n, 3) is
much better understood in comparison to than that of k = 4, 6. Hence, in what follows we will deal only
with B(n, 3) and denote it simply by Bn for brevity.

Next, we review some important facts about Bn (see also Appendix B, or [9, 8] for a fuller account).

Bn is free. In the category of groups of exponent 3, Bn is a free object on the set of generators {x1, . . . , xn}.
That is, if G is any group such that g3 = 1 for all g ∈ G, then for any set map f : {x1, . . . , xn} - G,
there exists a unique homomorphism f : Bn - G such that f(xi) = f(xi) for every i ∈ [n]. In other
words, to define a homomorphism from Bn to G we need only define the function on {x1, . . . , xn}. Any
such assignment will extend uniquely to a group homomorphism.

Normal form of Bn. Although Bn is non-abelian, an interesting consequence of the order law w3 = 1
for w ∈ Bn is that Bn has a simple normal form: Each Bn-element can be written uniquely as an ordered
sequence of (a subset of) generators (or their inverses2), appearing in lexicographical order, followed by (a
subset of) the commutators of weight 2 (or their inverses), and finally by (a subset of) the commutators
of weight 3 (or their inverses):

xα1
1 · · ·x

αi
i · · ·x

αn
n [x1, x2]β1,2 · · · [xi, xj ]βi,j · · · [xn−1, xn]βn−1,n [x1, x2, x3]γ1,2,3

· · · [xi, xj , xk]γi,j,k · · · [xn−2, xn−1, xn]γn−2,n−1,n =
n∏
i=1

xαi
i

∏
i<j

[xi, xj ]
βi,j

∏
i<j<k

[xi, xj , xk]
γi,j,k

where all αi, βi,j , γi,j,k ∈ {0, 1,−1} for all 1 ≤ i < j < k ≤ n, and [xi, xj , xk] = [[xi, xj ], xk].

Order of Bn. From the above normal form, it follows that Bn has exactly 3n+(n2)+(n3) elements.

1Dually, if e is surjective and f, h injective, then g is also injective.
2Note that x−1 = x2 in Bn, as Bn has exponent 3.
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Center of Bn. The center, Z(Bn) = {g ∈ Bn | [g, h] = 1 ∀h ∈ Bn} is the subgroup [[Bn, Bn], Bn] gen-
erated by all commutators of weight 3. This follows in part from the fact that all commutators of weight
4 are the identity in Bn.

Homomorphisms from Bn to Br. There are 3n(r+(r2)+(r3)) homomorphisms from Bn - Br. This
follows immediately from the order of Br and from the fact that Bn is a free object in the category of
groups of exponent 3 with generating set of size n.

4 Learning Burnside Homomorphisms with Noise

In this section, we review (a variant of) a group-theoretic learning problem introduced in [3], under the
name of learning Burnside homomorphisms with noise (Bn-LHN). Our formulation of the problem samples
only surjective homomorphisms for problem instances, in contrast to [3] which samples uniformly over all
homomorphisms. As we show in Appendix B, this modification is of essentially no consequence from a
computational perspective. In what follows, for groups G,H we will denote the set of epimorphisms (i.e.,
surjective homomorphisms) from G to H by Epi(G,H).

4.1 The Bn-LHN Problem

For a security parameter n > 0, the Bn-LHN setting consists of the groups Gn
.
= Bn and Pn

.
= Br, where

2 ≤ r.3 Let Φn be the uniform distribution over the set of surjective homomorphisms from Bn to Br:
Φn

.
= U(Epi(Bn, Br)). At a high level, the Bn-LHN problem is to distinguish random Gn × Pn pairs from

random (preimage, “noisy” image) pairs under a hidden homomorphism ϕ
$← Φn. The “noise” in the pairs

is determined by an error distribution Ψn on Br, which amounts to taking a randomly ordered product of
a random subset of the generators and their inverses. More precisely, the probability mass function of Ψn

is defined as:

∀e ∈ Br, Pr
E

$←Ψn
[E = e] = Pr

v
$←Fr

3,σ
$←Sr

[
e =

r∏
i=1

xviσ(i)

]
(1)

where the xi’s are the generators of Br, the vi’s are the components of v, and Sr denotes the symmetric
group on r letters. Since x2 = x−1 in Br, the norm ‖e‖ of a Ψn-sample e is at most r.

Definition 4.1 (LHN-Decision Problem) For a (Bn, Br)-homomorphism ϕ, define the distribution AΨn
ϕ

on Bn ×Br whose samples are preimage/distorted image pairs (a, b) where a
$← U(Bn) and b = ϕ(a)e for

e
$← Ψn. The LHN-decision problem is to distinguish the uniform distribution U(Bn ×Br) from AΨn

ϕ , for

ϕ
$← Φn.

Since Bn is a relatively free group, any mapping of its n generators uniquely extends to a homo-
morphism, and hence U(hom(Bn, Br)) is efficiently sampleable. Furthermore, we argue that surjective
homomorphisms account for an overwhelming fraction of hom(Bn, Br) (cf. Appendix B) and are efficiently
recognizable (cf. Section 5). It follows that Φn is efficiently sampleable via rejection sampling.

5 Random Self-Reducibility of Bn-LHN

In this section, we establish a random self-reducibility property of the learning Burnside homomorphisms
with noise problem: Learning under uniform surjective secret homomorphisms is no easier than learning
under an arbitrary one (Theorem 5.6).

We start with a general observation regarding the LHN problem over arbitrary groupsGn, Pn (Lemma 5.1),
which immediately yields a partial key-randomization property for LHN in general. We then show that this

3For the cryptographic applications described in [3], it was required that r ≤ 4 so that a certain computational problem in
Br remained feasible. We do not need any such restrictions here.
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randomization is in fact complete for the specific case of Bn-LHN if we restrict the Bn-LHN secret key to be
surjective. This essentially follows from proving that any two epimorphisms from Bn to Br can be converted
into each other via automorphisms of Bn (Lemma 5.4). In turn, this “transitivity” property hinges upon
a technical lemma that characterizes (Bn, Br)-epimorphisms as precisely those maps whose abelianization
is an (Fn3 ,Fr3)-epimorphism (Lemma 5.2). Together with Lemma 5.1, Lemma 5.4 essentially establishes the
random self-reducibility of Bn-LHN under surjective homomorphisms (Theorem 5.6). (In light of the argu-
ment of Appendix B about the prominence of epimorphisms among (Bn, Br)-homomorphisms, Theorem 5.6
additionally yields the random self-reducibility of the original Bn-LHN assumption from [3].)

Lemma 5.1 Let
(
a, b = ϕ(a) · e

)
∈ Gn × Pn be an instance of LHN sampled according to AΨn

ϕ , and α be

a permutation on Gn. It holds that (a′, b) =
(
α(a), b

)
∈ Gn × Pn is sampled according to AΨn

ϕ◦α−1.

Proof: We have (a′ = α(a), b) =
(
α(a), ϕ(a) · e

)
=
(
α(a), ϕ ◦ α−1(α(a)) · e

)
=
(
a′, ϕ ◦ α−1(a′) · e

)
. �

Let ρ : G - G/[G,G] denote the projection onto the abelianization. Consider the following diagram:

Bn
ρ

- Fn3

Br

ϕ

? ρ
- Fr3

ϕ

?

(2)

Lemma 5.2 Let ϕ ∈ hom(Bn, Br), and let ϕ ∈ hom(Fn3 ,Fr3) be the corresponding map on the abelianiza-
tion. Then ϕ is surjective ⇐⇒ ϕ is surjective.

Proof: Consider the following diagram:

0 - [Bn, Bn]
i

- Bn
ρ

- Fn3 - 0

0 - [Br, Br]

ϕ̂

? i
- Br

ϕ

? ρ
- Fr3

ϕ

?
- 0

(3)

The short exact sequences are the result of abelianization of Bn and Br to Fn3 and Fr3, respectively.
The central vertical map is the given homomorphism ϕ, and ϕ̂ is ϕ restricted to the commutator subgroup
[Bn, Bn]. Since homomorphisms map commutators to commutators, ϕ̂ maps into [Br, Br]. The map ϕ is
obtained by considering the map ρ ◦ ϕ : Bn - Fr3, which is a map to an abelian group and therefore
factors through the abelianization of Bn as ϕ ◦ ρ. Thus, this diagram is commutative.
( =⇒ ) If ϕ ∈ Epi(Bn, Br), then a diagram chase around (2) shows that ϕ is also surjective.
( ⇐= ) Now suppose that ϕ is surjective. Let {x1, . . . , xr} be the generators for Br. Ideally, we would
like to argue that xi is in the image of ϕ for all i, which would yield the desired result. Surjectivity of ϕ
does not immediately imply that ϕ hits all generators xi of Br; nevertheless, along with commutativity of
the right square of (3), it guarantees that ϕ hits a collection of “quasi-generators”: there exist elements
e1, . . . , er ∈ Bn and γ1, . . . γr ∈ [Br, Br] so that

ϕ(ei) = xiγi.

Next, we leverage the existence of the ei’s and the properties of their commutators to argue surjectivity of
ϕ̂; surjectivity of ϕ will follow by the Five Lemma.
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To show that ϕ̂ is surjective, in turn we invoke the Five Lemma on the commutative diagram below:

0 - [[Bn, Bn], Bn]
j
- [Bn, Bn]

π
- [Bn, Bn]/[[Bn, Bn], Bn] - 0

0 - [[Br, Br], Br]

α

? j
- [Br, Br]

ϕ̂

? π
- [Br, Br]/[[Br, Br], Br]

β

?
- 0

(4)

The map α is the restriction of ϕ̂ (and hence of ϕ) to [[Bn, Bn], Bn], and since commutators map to
commutators, it maps into [[Br, Br], Br]. The existence of the homomorphism β and the commutativity of
the diagram is a standard diagram chase. All that remains to prove is then surjectivity of α and β.

Because the lower central series for Br terminates at [[Br, Br], Br], we know that [Br, Br] is generated
by {[xi, xj ]}i,j and {[[xi, xj ], xk]}i,j,k. Therefore, [Br, Br]/[[Br, Br], Br] is generated by {π[xi, xj ]}i,j , and
so to show that β is surjective, it suffices to show that for every i and j, π([xi, xj ]) is in the image of β.

Recall that there exist ei so that ϕ(ei) = xiγi. We show below that π([ei, ej ]) is a pre-image of π([xi, xj ])
under β. We compute:

ϕ̂([ei, ej ]) = ϕ([ei, ej ]) = [ϕ(ei), ϕ(ej)] = [xiγi, xjγj ] = γ−1
i x−1

i γ−1
j x−1

j xiγixjγj (5)

We then introduce a commutator to reverse the order of the first two elements:

=x−1
i γ−1

i [γ−1
i , x−1

i ]γ−1
j x−1

j xiγixjγj

and then use the fact that [γ−1
i , x−1

i ] ∈ [[Bn, Bn], Bn] is in the center, to move this commutator past the
other terms, to the far right:

=x−1
i γ−1

i γ−1
j x−1

j xiγixjγj [γ
−1
i , x−1

i ]. (6)

Comparing this result with (5), we note that this sequence of manipulations allowed us to move the first
term γ−1

i one element to the right, at the expense of generating one element [γ−1
i , x−1

i ] ∈ [[Br, Br], Br] at
the far right. Using this same technique, we move γ−1

i to the right again and again, until it is adjacent
to γi, at which point it cancels γi. As before, each such move produces another [[Br, Br], Br]-factor on
the right. Next, we deal with γ−1

j analogously: We move it to the right (each time producing additional
[[Br, Br], Br]-elements) until it cancels γj . At the end of this procedure, continuing from (6), we have

. . . =x−1
i x−1

j xixj
∏

yk

where each yk is some element of [[Br, Br], Br]. If we call this product zi,j =
∏
yk, we then have

ϕ̂([ei, ej ]) =[xi, xj ]zi,j

where zi,j ∈ [[Br, Br], Br]. We then see that

β(π([ei, ej ])) = π(ϕ̂([ei, ej ])) = π([xi, xj ]zi,j) = π([xi, xj ]).

Therefore, β is surjective.
Now we wish to show α is surjective. Since [[Br, Br], Br] is generated by {[[xi, xj ], xk]}i,j,k, it suffices to

show that these are all in the image of α. In particular, we show below that, for all i, j, k, α([[ei, ej ], ek]) =
[[xi, xj ], xk]. Again we compute

α([[ei, ej ], ek]) = ϕ([[ei, ej ], ek]) = [[xiγi, xjγj ], xkγk].
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Recalling from the previous computation that [xiγi, xjγj ] = [xi, xj ]zi,j , we have

=[[xi, xj ]zi,j , xkγk]

Since zi,j ∈ [[Br, Br], Br] is central, we can commute it and its inverse together in this expression and
cancel them:

=[[xi, xj ], xkγk].

We then expand this commutator

=[xi, xj ]
−1γ−1

k x−1
k [xi, xj ]xkγk

and introduce [[xi, xj ], xk] to move xk to the left:

=[xi, xj ]
−1γ−1

k x−1
k xk[xi, xj ][[xi, xj ], xk]γk

We then use the fact that [[xi, xj ], xk] ∈ [[Br, Br], Br] is central to move this to the right.

=[xi, xj ]
−1γ−1

k [xi, xj ]γk[[xi, xj ], xk]

and move γk to the left using another commutator:

=[xi, xj ]
−1γ−1

k γk[xi, xj ][[xi, xj ], γk][[xi, xj ], xk]

at which point we can first cancel γ−1
k with γk, and then cancel [xi, xj ]

−1 with [xi, xj ], to get

=[[xi, xj ], γk][[xi, xj ], xk].

Next, we note that the first factor, [[xi, xj ], γk], is in [[Br, Br], [Br, Br]], which is trivial. What remains
is [[xi, xj ], xk], which we have now shown to be in the image of α. Therefore α is an epimorphism. The
Five Lemma on (4) then proves that ϕ̂ is an epimorphism, and the Five Lemma on (3) proves that ϕ is an
epimorphism. �

We also make note of the following simple but useful consequence of this Lemma.

Corollary 5.3 Let ρ : Br - Fr3 denote the projection onto the abelianization. Let {t1, . . . , tn} ⊂ Br.
Then {t1, . . . , tn} generates Br if and only if {ρ(t1), . . . , ρ(tn)} generates Fr3.

Proof: Consider the map ϕ : Bn - Br defined by xi 7→ ti for each i ∈ [n], and let ϕ : Fn3 - Fr3
be the abelianization. Then {t1, . . . , tn} generates Br if and only if ϕ is surjective, and {ρ(t1), . . . , ρ(tn)}
generates Fr3 if and only if ϕ is surjective. By Lemma 5.2, these two conditions are equivalent. �

Remarks. We use Lemma 5.2 below in our proof that the randomization from Lemma 5.1 is in fact a
complete random self reduction, but it also has computational significance: given a description of ϕ ∈
hom(Bn, Br) as mappings of the generators, we now have an easy test for surjectivity: simply compute the
rank of the corresponding map of linear spaces in the abelianization.

Next, we show that Aut(Bn) acts transitively on Epi(Bn, Br) by composition on the right, and thus
for the case of Bn-LHN, the construction from Lemma 5.1 provides a random self-reduction.

Lemma 5.4 Aut(Bn) acts transitively on Epi(Bn, Br) by composition on the right. That is, for any
ϕ,ϕ∗ ∈ Epi(Bn, Br), there exists α ∈ Aut(Bn) such that ϕ∗ = ϕ ◦ α.
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Proof: Let ϕ∗ ∈ Epi(Bn, Br) denote the “target” surjection, and let ϕ ∈ Epi(Bn, Br) be an arbitrary
surjection. We would like to find α ∈ Aut(Bn) such that ϕ∗ = ϕ ◦ α. In other words, we wish to define a
bijective map α so that the following diagram commutes:

Bn
ϕ∗

- Br

Bn

α

? ϕ
- Br

1Br

?

(7)

Let x1, . . . , xn be free generators of Bn. To define α, it suffices to define α(xi) for each i ∈ [n]. To
derive suitable α(xi) values such that α as a whole is bijective, it is convenient to study the abelianization
of all the groups and maps in (7), which results in the following diagram:

Bn
ϕ∗ - Br

0 - K -

ρ

Bn
ϕ -

α
-

ρ

Br - 0

1
B
r

-

Fn
3

?
ϕ∗- Fr

3

?

0 - K

τ

?
- Fn

3

ρ

?
ϕ -

α
-

Fr
3

ρ

?
- 0

1F r
3

-

(8)

In this diagram, the vertical maps ρ denote the projections onto the abelianization. K is the kernel
of ϕ, K is the kernel of ϕ, and τ is an epimorphism from K to K (essentially just the restriction of
ρ : Bn - Fn3 to K ⊂ Bn) that is defined in Step 3 below.
Step 1: Finding a minimal subset T of the {ϕ∗(xi)}i∈[n] that generates Br.
Let ti = ϕ∗(xi) for i ∈ [n]. Since ϕ∗ is surjective, the ti must generate Br. Let T ⊂ {t1, . . . , tn} be a minimal
generating set for Br, and let S ⊂ [n] denote the corresponding set of indexes (so that T = {ti}i∈S). By
Corollary 5.3, ρ(T ) is also a minimal generating set for Fr3. Since Fr3 is a vector space of dimension r, we
know that T , and thus S, has r elements.
Step 2: Finding a set {ai}i∈[n] of ϕ-preimages of the {ti}i∈[n] of minimal “rank”.
We would like to define elements {ai}i∈[n] ⊂ Bn such that ϕ(ai) = ti for every i ∈ [n], yet the subgroup of
Bn generated by the {ai}i∈[n] admits a generating set A = {ai}i∈S with only r elements. To this aim, for
i ∈ S we invoke surjectivity of ϕ on ti to find ai ∈ Bn such that ϕ(ai) = ti. For i ∈ [n] \ S, instead, we
leverage the fact that T is a generating set for Br and define ai as a word over A. In detail, let wi be a
word that expresses ti in terms of T , i.e., such that ti = wi(T ). We then define

ai = wi(A).

Note that ϕ(ai) = ϕ(wi(A)) = wi(ϕ(A)) = wi(T ) = ti; moreover, A generates 〈a1, . . . , an〉 by construction.
Step 3: Defining τ : K - K.
We define a morphism τ : K - K to make the leftmost portion of diagram (8) above commute.
To do this, we note that the maps from K to Bn and from K to Fn3 are inclusions. Now if k ∈ K,
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then ρ(ϕ(k)) = ρ(1) = 0. By commutativity of the right square in (8), ϕ(ρ(k)) = ρ(ϕ(k)) = 0, i.e.,
ρ(k) ∈ ker(ϕ) = K. Defining τ : k ∈ K 7→ ρ(k) ∈ K maps K to K and makes the diagram commute.
Step 4: Proving τ : K - K is a surjection.
Next, we prove that τ : K - K is an epimorphism, i.e., that τ(K) = K. Toward this end, let
y ∈ K = ker(ϕ). By the surjectivity of ρ : Bn - Fn3 , there exists a b ∈ Bn so that ρ(b) = y. Since
0 = ϕ(y) = ϕ(ρ(b)) = ρ(ϕ(b)), we have that ϕ(b) ∈ [Br, Br]. By the proof of Lemma 5.2, we know that
ϕ restricted to [Bn, Bn] maps surjectively to [Br, Br], so there exists a γ ∈ [Bn, Bn] so that ϕ(γ) = ϕ(b).
Then ϕ(bγ−1) = 1 so bγ−1 ∈ K. Now τ(bγ−1) = ρ(bγ−1) = ρ(b)+ρ(γ−1) = y−0 = y, and thus τ(K) = K.
Step 5: Defining a minimal generating set K ⊂ K.
Consider the map ϕ : Fn3 - Fr3 in (8). This is a surjective linear map of vector spaces, and so its kernel
is a linear subspace of dimension n− r. Choose a basis K for ker(ϕ). Since τ is surjective, for each ki ∈ K,
we find pre-images ki ∈ K with τ(ki) = ki. We denote this set by K. It will be convenient to use the n− r
elements of [n] \ S as indices so that K = {ki}i∈[n]\S .
Step 6: Defining the homomorphism α.
We are now ready to define α. Since x1, . . . , xn are free generators, to define α it will suffice to define
α(xi) for each i ∈ [n]. The natural choice might seem to be defining α(xi) = ai, but in order to ensure α
is bijective, it will be necessary to tack on elements of K when necessary. In particular, define

α(xi) =

{
ai, if i ∈ S;
aiki if i ∈ [n] \ S.

Since Bn is free on the xi, this assignment defines a unique homomorphism α on Bn.
Step 7: Proving that ϕ∗ = ϕ ◦ α.
By freeness of Bn, it suffices to show that ϕ∗ and ϕ ◦ α agree on x1, . . . , xn. For all i ∈ S, we have
ϕ ◦ α(xi) = ϕ(ai) = ϕ∗(xi). For all i 6∈ S, we have ϕ ◦ α(xi) = ϕ(aiki) = ϕ(ai)ϕ(ki) = ϕ(ai) = ϕ∗(xi).
Step 8: Proving that the abelianization α of α is an epimorphism.
We now study the abelianization α of α. Note that ρ(A) must have dimension r, and furthermore,
〈ρ(A)〉 ∩K = {0} by commutativity of (8).4 Therefore, ρ(A) ∪ K is a basis of Fn3 . Furthermore, letting
ui = ρ(xi), we see that α(ui) = ρ(α(xi)). This, in turn, depends on whether i ∈ S or i 6∈ S:

α(ui) =

{
ρ(ai), i ∈ S
ρ(ai) + ki, i 6∈ S

(9)

Now for i ∈ S, α(ui) = ρ(ai), so ρ(A) ⊂ Span(α(u1), . . . , α(un)). For i 6∈ S, α(ui) = ρ(wi(A)) + ki,
and subtracting off ρ(wi(A)) = wi(ρ(A)) (which is clearly in Span(α(u1), . . . , α(un))), we see that also
ki ∈ Span(α(u1), . . . , α(un)). Therefore, we see that ρ(A) ∪ K ⊂ Span(α(u1), . . . , α(un)), and hence the
α(ui) span all of Fn3 . Thus, α is an epimorphism.
Step 9: Proving α is an isomorphism.
By Lemma 5.2, it follows that α is also an epimorphism of Bn. Since α is a surjective map from a finite
set into itself, it is also bijective. Therefore α is an automorphism of Fn3 , which completes the proof. �

Lemma 5.5 Let G be a finite group, and S a set on which G acts transitively. Let s ∈ S be an arbitrary
element, and consider the distribution As on S whose samples are g ·s where g

$← U(G). Then As = U(S).

Proof: Let t ∈ S be an arbitrary element. We wish to compute Pr [As = t]; that is, the probability that

g · s = t, over the uniform choice of g
$← G. Recall that the stabilizer of s ∈ S (denoted by stab(s)) is the

subgroup of G defined by stab(s) = {g ∈ G | g · s = s}. Note that # {g | g · s = t} is given by |stab(s)|
since g · s = g′ · s ⇐⇒ g′−1g ∈ stab(s), which states that g, g′ are in the same coset modulo stab(s).5

Recall that
[G : stab(t)] = |G · t| = |S|

4This can also be seen via the rank theorem, which states that Fn
3 = 〈ρ(A)〉 ⊕K, with ρ(A) ∪ K serving as a basis.

5This argument requires the existence of at least one g such that g · s = t; we are given such a g by transitivity.

10



with the last equality following from the transitivity of the action. Hence, |stab(t)| = |G|/|S|, and

Pr [As = t] =
|G|
|S|
· 1

|G|
=

1

|S|
which completes the proof. �

Theorem 5.6 (Bn-LHN Random Self-Reducibility) With notation as in Definition 4.1, any instance
of the Bn-LHN-decision problem in which ϕ is an arbitrary surjection from Bn onto Br can be reduced to
a Bn-LHN-instance in which ϕ

$← Epi(Bn, Br).

Proof: This is a straightforward consequence of Lemma 5.1, Lemma 5.4, and Lemma 5.5. Let ϕ ∈
Epi(Bn, Br) be an arbitrary surjection and suppose we are given a distribution R which is either U(Bn×Br)
or AΨn

ϕ . Let α
$← Aut(Bn). (Note that by Lemma 5.2, we can efficiently, sample such an α.) We then

construct a new distribution R′ whose samples are (α(a), b) where (a, b)
$← R. If R = U, then R′ = U

as well, since α is a bijection. Otherwise, by Lemma 5.1, R′ = AΨn
ϕ′ , where ϕ′ = ϕ ◦ α−1. Moreover, by

Lemma 5.4 and Lemma 5.5, we see that ϕ′ is distributed according to U(Epi(Bn, Br)). It follows that
an algorithm to solve the Bn-LHN-decision problem on a random epimorphism can be used to solve the
Bn-LHN-decision problem on an arbitrary one. �

6 A Weak Decision-to-Search Equivalence

In this part, we investigate the relation between BrLHN and LHN-Decision. We first observe the following.

Proposition 6.1 Let q be the cardinality6 of Br. Let also A be an algorithm distinguishing AΨn
ϕ from

U(Bn ×Br) in time t with advantage at least ε, i.e. A is an algorithm solving LHN-Decision. Finally, let

x
$← Bn. There exists an algorithm B working in poly(q, t) such that:

Pr
(a,b)

$←AΨn
ϕ

[
B
(
a, b, x

)
= ϕ(x)

]
≥ ε+ 1

q
,

Proof: We can w.l.o.g. assume that the success probability of A is greater on AΨn
ϕ than on U(Bn×Br),

i.e. it holds that:

Pr
(a,b)

$←AΨn
ϕ

[
A(a, b) = 1

]
− Pr

(a,b)
$←U(Bn×Br)

[
A(a, b) = 1

]
≥ ε.

Let Pr1 = Pr
(a,b)

$←AΨn
ϕ

[
A(a, b) = 1

]
, and Pr2 = Pr

(a,b)
$←U(Bn×Br)

[
A(a, b) = 1

]
.

Algorithm B works as follows. It samples (a, b)
$← AΨn

ϕ , a guess h
$← U(Br) for the value of ϕ(x), and

invokes algorithm A on
(
x · a, h · b

)
= (a′, b′). Finally, B returns h if A returns 1 and any value of Br \ {h}

otherwise.

Suppose h = ϕ(x), then h · ϕ(a) = ϕ(x · a). It follows that (a′, b′) =
(
x · a, h · ϕ(a) · e

)
is sampled

according to AΨn
ϕ . Hence:

Pr
(a,b)

$←AΨn
ϕ

[
B
(
a, b, x

)
= ϕ(x)

]
= Pr

(a′,b′)
$←AΨn

ϕ

[
A
(
a′, b′

)
= 1

]
= Pr1.

Assume now that h 6= ϕ(x). In this case, (a′, b′) =
(
x ·a, h ·ϕ(a) ·e

)
is distributed according to U(Bn×Br).

Thus:

Pr
(a,b)

$←AΨn
ϕ

[
B
(
a, b, x

)
= ϕ(x)

]
=

Pr
(a′,b′)

$←U(Bn×Br)

[
B(a′, b′) = 0

]
q − 1

=
1− Pr2

(q − 1)
.

6We recall that Br is independent of the security parameter. Thus, we enumerate all elements of Br efficiently, i.e. O(1).
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As a consequence:

Pr
(p,b)

$←AΨn
ϕ

[
B
(
p,b, x

)
= ϕ(x)

]
=

1

q

(
Pr1 + (q − 1)

(1− Pr2)

q − 1

)
=

Pr1 − Pr2 + 1

q
≥ ε+ 1

q
.

�
Thus, Proposition 6.1 proves that an oracle for LHN-Decision allows to predict the results of ϕ(x), for

arbitrary x
$← Bn, slightly better than guessing randomly.

In the high advantage case (i.e. the distinguisher is perfect), we get:

Corollary 6.2 (“Weak” Decision-to-Search) Let q be the cardinality of Br. If AΨn
ϕ and U(Bn ×

Br) are are perfectly distinguishable, i.e. there exists a distinguisher A working in time t accepting with
probability exponentially close to 1 elements from AΨn

ϕ and rejecting with probability exponentially close to
1 elements from U(Bn ×Br) then there is an algorithm C working in poly(t, q) such that:

Pr
(a,b)

$←AΨn
ϕ ,y

$←C(a,b)

[
ϕ(y) = b

]
with probability exponentially close to 1.

Proof: The algorithm C to consider is exactly the algorithm described in the proof of Prop. 6.1. �
We emphasize that the general case (arbitrary advantage) remains an open problem. Interestingly

enough, this reduces to generalize the famous Goldreich-Levin Theorem to non-abelian groups. The ob-
stacle on the proofs seems to be the impossibility – due to non-commutativity – to sufficiently amplify the
success probability of Proposition 6.1.

7 Conclusions and Future Work

In this work, we take steps towards understanding the computational hardness of the Bn-LHN problem
put forth in [3]. With a minor modification to the problem formulation (which results in an instance
distribution statistically close to the original), we demonstrate a strong random self-reducibility property,
giving evidence that the Bn-LHN problem is difficult in the average case.

Future work includes continued efforts to assess the hardness of the Bn-LHN problem—either via
explicit algorithms that demonstrate upper bounds on its complexity, or via further reductions to other
computational problems. In particular, one interesting open problem is to fully reduce the search version
of Bn-LHN to the corresponding decision version.
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A Computational Aspects of Burnside Groups

In order for the Burnside groups to be of use in cryptography, at a minimum, they must have a concise
representation, and the group operation must be efficiently computable. We demonstrate here that both
criteria are met. First, we note that as described above, each element of Bn has a unique normal form as
a product of the generators and certain commutators. Hence by storing an array of the exponents (each
of which is in the set {0, 1,−1}) we can uniquely represent an element. The size of the array is cubic in n.

As for the group operation, this can be computed simply by concatenating two normal forms, and then
reducing the resulting word back into normal form. This process, referred to as the collection process,
takes cubic time (see [9], chap. 11) in the length of the input (which is itself cubic in n). However, all
commutators of weight 3 are in the center Z(Bn) ofBn, and hence there is no need to expand them and apply
the collection process—one can simply add the corresponding exponents modulo 3. Furthermore, since all
commutators of weight 4 are trivial (see [9], chap. 18), we know that [Bn, Bn] is commutative. Hence, we
can again avoid the collection process when moving the weight-2 commutators amongst themselves, and in
cubic time, we can reduce the expression to a “nearly” normal form consisting of a product of at most 2n
generators (or their inverses) followed by commutators in normal form. Therefore we need only to apply
the collection process on linear input, and so the overall running time of computing the product is indeed
O(n3). Inverses can also be computed over Bn in at most cubic time by a similar (yet somewhat simpler)
collecting process.

The last and most challenging computational aspect of Bn relates to its geodesics—the computation of
distances in the Cayley graph. For the applications introduced in [3], it suffice to compute the norm (i.e.,
the distance to the identity of the group), in the codomain group Pn, which is generally small, and does not
necessarily grow with the security parameter (although it may grow with a correctness parameter). For the
case of the free Burnside group Br, one possible solution is to perform a breadth-first search of the Cayley
graph, storing the norm of every element in a table. This process will begin to become infeasible around
r = 5. However, even with this small number of generators, the diameter is large enough to properly
decode for many interesting error distributions Ψn.

B Surjective Homomorphisms of Bn

The original phrasing of the Bn-LHN problem sampled secrets uniformly from all of hom(Bn, Br), in
contrast to the above definition, in which Φn = U(Epi(Bn, Br)). We argue below that this modification
has minimal impact on the computational aspects of the problem.

First, we note that as the security parameter n grows, the probability of sampling an instance ϕ that is
not surjective is negligible in n. As we will show in Lemma 5.2, a homomorphism ϕ ∈ hom(Bn, Br) is surjec-
tive if and only if its corresponding “abelianized” map ϕ ∈ hom(Fn3 ,Fr3) is surjective. Furthermore, any two
ϕ,ϕ′ ∈ hom(Fn3 ,Fr3) are associated (via abelianization) to the same number of (Bn, Br)-homomorphisms.
Hence, to compute the fraction of hom(Bn, Br) which is not surjective, we need only compute the fraction
of hom(Fn3 ,Fr3) which is not surjective. A crude upper bound that suffices for our purposes can be obtained
via the union bound: We estimate the probability that a randomly selected ϕ ∈ hom(Fn3 ,Fr3) is not surjec-
tive by bounding the probability that its image is contained in some r − 1 dimensional subspace V of Fr3.

Specifically, for ϕ
$← hom(Fn3 ,Fr3) and any subspace V ⊂ Fr3 such that dim(V ) = r− 1, denote with EV the

event that Im(ϕ) ⊂ V . Then we have

Pr [ϕ 6∈ Epi(Fn3 ,Fr3)] = Pr

 ⋃
dim(V ) = r − 1

V ⊂ Fr
3

EV


where the probability is over ϕ

$← hom(Fn3 ,Fr3), and the union on the right hand side is over all subspaces of
dimension r−1. Since each (r−1)-dimensional subspace corresponds uniquely (up to sign) to a non-trivial
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linear equation over the basis of Fr3, we see that there are 3r−1
2 such subspaces. Furthermore, the image of

each of the n generators of Fn3 satisfies the linear equation of the subspace wth a 1/3 chance, and hence
Pr [EV ] = 1

3n for each V . By the union bound we then have

Pr

 ⋃
dim(V ) = r − 1

V ⊂ Fr
3

EV

 ≤ 3r − 1

2 · 3n
< 3r−n

which is negligible in n as long as the gap between r and n is superlogarithmic (e.g., if r is a constant
fraction of n). We remark that in fact r is bounded by a small constant both in the formulation of the
Bn-LHN assumption in this paper (cf. Definition 4.1) and in that of [3].

As a consequence, our distribution of instances Φn is statistically close to the uniform distribution
U(hom(Bn, Br)). Indeed, for any Xn ⊂ Sn, we have

∆(U(Xn),U(Sn)) =
|Sn \Xn|
|Sn|

where U(Xn) is considered a distribution on Sn by assigning probability 0 to all elements in Sn \Xn, and
where ∆ denotes statistical distance (total variation distance). Hence, whenever ν(n) = |Sn \Xn| / |Sn| is
negligible in n (as in our case), then the ensemble of distributions U(Xn) is statistically close to U(Sn).

To summarize, for typical choices of the parameters r and n, the computational hardness of the Bn-LHN
problem under uniform unconstrained homomorphisms (the original assumption from [3]) vs. uniform
epimorphisms (Definition 4.1) are information-theoretically equivalent. In other words, constraining the
sampling of instances to Epi(Bn, Br) does not alter the computational characteristics of the Bn-LHN
assumption.
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