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Abstract

We consider the problem of fair multiparty computation, where fairness means (informally)
that all parties should learn the correct output. A seminal result of Cleve (STOC 1986) shows
that fairness is, in general, impossible to achieve if a majority of the parties is malicious. Here,
we treat all parties as rational and seek to understand what can be done.

Asharov et al. (Eurocrypt 2011) showed impossibility of rational fair computation in the
two-party setting, for a particular function and a particular choice of utilities. We observe,
however, that in their setting the parties have no strict incentive to compute the function even
in an ideal world where fairness is guaranteed. Revisiting the problem, we show that rational fair
computation is possible, for arbitrary functions, as long as the parties have a strict incentive to
compute the function in an ideal world where fairness is guaranteed. Our results extend to more
general utility functions that do not directly correspond to fairness, as well as to the multi-party
setting. Our work thus shows a new setting in which game-theoretic considerations can be used
to circumvent a cryptographic impossibility result.

1 Introduction

Cryptography and game theory are both concerned with understanding interactions between mu-
tually distrusting parties with potentially conflicting interests. Cryptography typically adopts a
“worst case” viewpoint; that is, cryptographic protocols are designed to protect the interests of
each party against arbitrary (i.e., malicious) behavior of the other parties. The game-theoretic per-
spective, however, views parties as being rational ; game-theoretic protocols, therefore, only need
to protect against rational deviations by other parties.

Significant effort has recently been devoted to bridging cryptography and game theory; see [12,
28] for surveys. This work has tended to focus on two general sets of questions:

Using cryptographic protocols to implement games (e.g., [10, 13, 6, 11, 32, 1, 25, 24]).
Given a game played by parties relying on an external trusted entity (a mediator), when can the
mediator be replaced by a cryptographic protocol executed by the parties themselves?

Applying game theory to cryptographic protocols (e.g., [23, 28, 19, 33, 1, 20, 21]). What
game-theoretic definitions are appropriate for computationally bounded, rational parties executing
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a protocol? Can impossibility results in the cryptographic setting be circumvented if we are willing
to take a game-theoretic approach?

Here, we turn our attention to the question of fair computation in a rational setting, where
fairness means that all parties should learn the value of some function f evaluated on the parties’
inputs. Following the work of Asharov et al. [4] (see further below), our goal is to understand
when fairness is achievable by rational parties running some cryptographic protocol, without the
aid of any external trusted entity. Our work touches on both the settings outlined above. Our
motivation was to circumvent the strong impossibility result of Cleve [9] for fair computation
without an honest majority by investigating a relaxed model where parties are rational but not
malicious. In this sense, our work can be viewed as a generalization of the line of work on rational
secret sharing [23, 19, 33, 1, 29, 30, 37, 35, 5, 14], which can be viewed as a special case of fair
computation for a specific function with parties’ inputs provided by a trusted dealer. It is also
possible to view rational fair computation from a different perspective. Specifically, consider a
natural “fairness game” involving a trusted mediator who computes a function f on behalf of some
parties (and gives all parties the result), and where parties can choose whether or not to participate
and, if so, what input to send to the mediator. One can then ask whether there exists a real-world
protocol (replacing the mediator) that preserves equilibria of the original mediated game. Our work
demonstrates a close connection between these complementary viewpoints.

In addition to the above, we also consider more general utilities that do not directly correspond
to fairness. Here, too, our goal is to understand when there exists a protocol such that running the
protocol is a game-theoretic equilibrium with respect to the given utility function(s).

1.1 Our Results

We begin by discussing the two-party case where utilities correspond naturally to the problem of
fairness. We then describe our more general results that include this setting as a special case.

Fairness in the two-party setting. Consider first the setting studied by Asharov et al. [4].
Here, there are two parties P1 and P2 who wish to compute a function f of their inputs x1 and x2,
where the joint distribution of x1 and x2 is common knowledge. (Asharov et al. assume that x1, x2
are uniform and independent but we allow for arbitrary distributions.) Furthermore, as in work
on rational secret sharing, assume parties’ utilities are such that each party prefers to learn the
correct answer f(x1, x2) and otherwise prefers that the other party outputs an incorrect answer.
Informally, a cryptographic protocol computing f is rationally fair if having both parties run the
protocol is a (computational, Bayesian) Nash equilibrium with respect to fail-stop deviations.1

Asharov et al. show a negative result in this context: they give a function f , a distribution
on the inputs, and a specific set of utilities for which there is no fair protocol computing f with
correctness better than 1/2. They also show that correctness 1/2 can be achieved (for that func-
tion, distribution, and utilities), but their work seemed to suggest that the power of rational fair
computation is relatively limited.

Looking closely at their impossibility result, we observe that for their specific choices of f ,
the input distribution, and the utilities, the parties have no strict incentive to run any protocol
at all. Namely, the utility each party obtains by running any protocol that correctly (and fairly)
computes f is equal to the expected utility that each party obtains if it simply guesses the input

1Later we will consider Byzantine deviations as well, but we assume fail-stop deviations here for simplicity.
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of the other party and computes the function on its own (without any interaction).2 In other
words, even in an ideal world with a trusted mediator computing f with complete fairness, the
parties would be indifferent between using the trusted mediator or not. In game-theoretic terms,
computing f (even in an ideal world) is not a strict Nash equilibrium. If running a (real-world)
protocol incurs any cost at all, there is thus little hope that the parties will prefer to run any
protocol for computing f .

Asharov et al. rule out rational fair computation for a specific function, a specific input distri-
bution, and a specific set of utilities. Are there any settings where rational fair computation (with
complete correctness) is possible? Assuming the existence of secure oblivious transfer, we show:

Theorem (Informal) Fix f , a distribution on inputs, and utility functions such that computing f
in the ideal world (with complete fairness) is a strict Nash equilibrium for both parties. Then,
for the same input distribution and utility functions, there is a protocol Π for computing f (where
correctness holds with all but negligible probability) such that following Π is a computational Nash
equilibrium. This holds in both the fail-stop and Byzantine settings.

In addition to the fact that we show a positive result, our work goes beyond the setting consid-
ered in [4] in several respects: we handle arbitrary (deterministic) functions where parties receive
possibly different outputs, and treat arbitrary distributions over the parties’ inputs. (In [4], only
single-output functions and independent, uniform input distributions were considered.) Moreover,
we also treat the Byzantine setting where, in particular, parties have the option of changing their
inputs; Asharov et al. [4] only treat the fail-stop case.

The multiparty setting, and general utilities. The preliminary version of our paper [22] only
considered the two-party setting. Here, we also generalize the above to the multi-party setting,
where there are k parties and up to t of them may be colluding. We first observe that rational
fairness3 is easy to achieve if completely fair computation for t malicious parties is possible, i.e.,
when t < k/2 if a broadcast channel is available, and when t < k/3 otherwise. This is because
no matter what the t parties in the coalition do they will be unable to prevent the rest of the
parties—assuming they follow the protocol—from learning the correct output. Thus, the problem
is only interesting when t, k are such that completely fair computation is not possible.

A next question is: what set of utilities best models fairness in the multi-party setting? Should
the utility of a party in a coalition depend only on whether that party learns the correct answer,
or also on whether every member of the coalition learns the correct answer? Similarly, does it
matter whether no party outside the coalition learns the correct answer, or whether even one party
outside the coalition fails to do so? Rather than choose arbitrarily among these options, we make
no assumptions on the utility functions of the parties. Each party can have a different utility
function, and in fact these utilities need not correspond to a notion of fairness at all. We show:

Theorem (Informal) Fix f , a distribution on inputs, and utility functions such that computing f
in the ideal world is a strict Nash equilibrium for all coalitions of size at most t. Then, for the same
input distribution and utility functions, there is a protocol Π for computing f (where correctness

2Specifically, using the input distributions and utility functions from [4], a party’s utility if both parties (run some
protocol and) output the correct answer is 0, whereas if both parties guess then each party is (independently) correct
with probability 1/2 and so the expected utility of each party is 1

4
· 1 + 1

4
· (−1) + 1

2
· 0 = 0.

3We stress here that we consider only computational Nash equilibria, not stronger equilibrium notions. Our notion
of rational fairness also allows the colluding parties to arbitrarily change their inputs.

3



holds with all but negligible probability) such that following Π is a computational Nash equilibrium
for coalitions of size at most t. This holds in both the fail-stop and Byzantine settings.

Note that this subsumes the result in the two-party case described earlier.

1.2 Other Related Work

The most relevant prior work is that of Asharov et al. [4], already discussed above. Here we merely
add that their main motivation was to develop formal definitions of various cryptographic goals in
a game-theoretic context, with fairness being only one example. Their paper takes an important
step toward that goal.

As observed earlier, work on rational secret sharing [23, 19, 33, 1, 29, 30, 37, 35, 5, 14] can
be viewed as a special case of fair secure computation, where the function being computed is the
reconstruction function of the secret-sharing scheme being used, the parties’ inputs are generated
(and authenticated) by a dealer, and a specific class of utilities is assumed. Thus, in certain settings,
our results give rational secret-sharing protocols where following the protocol is a (computational)
Nash equilibrium. Most of the work on rational secret sharing, however, has focused on achieving
stronger equilibrium notions, something we leave for future work.

An analogue of our results is given by Izmalkov et al. [31, 32, 27, 26] who, essentially, also show
protocols for rational fair computation of a function whenever parties would prefer to compute
that function in the ideal world. The main difference is that we assume standard communication
channels, whereas the protocols of Izmalkov et al. require strong physical assumptions such as
secure envelopes and ballot boxes.

There has recently been a significant amount of work on fairness in the cryptographic setting,
showing functions that can be computed with complete fairness [16, 17, 2, 34, 3] and exploring
various notions of partial fairness (see [18, 7] and references therein). The class of functions that
are known to be computable with complete fairness is fairly limited; partial fairness and rational
fairness are incomparable notions.

2 Model and Definitions

Given a deterministic function f : X1× · · ·×Xk → Y1× · · ·×Yk, we let fi denote the restriction of
f to its ith output. We consider two settings in which k parties P1, . . . , Pk wish to compute f on
their respective inputs x1, . . . , xk, with Pi receiving fi(x1, . . . , xk): an ideal-world computation of
f using a trusted party, and a real-world computation of f using some protocol Π. In each setting,
the inputs x1, . . . , xk are chosen according to some joint probability distribution D known to all
parties, and in each setting we consider both fail-stop and Byzantine strategies.

We consider general utility functions defined over the (true) inputs4 and (actual) outputs5 of the
parties. (This encompasses the case considered in [4, 22], where utilities are specifically assumed
to model fairness.) We assume without loss of generality that utilities are nonnegative.

We consider potential deviations by coalitions of parties, with single-player deviations as a

special case. If C ⊂ {1, . . . , k} is a coalition, then C def
= {1, . . . , k}\C. We let xC (resp., yC) represent

4Parties may send any value to the trusted party (resp., use any value when running Π), but their true inputs are
those given to them at the outset of the game.

5Parties may choose their actual output arbitrarily, and need not output the value given to them by the trusted
party (resp., the value they obtain from running Π).
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the inputs (resp., outputs) of the members of C and, for i ∈ C, let xC [i] (resp., yC [i]) denote the
input (resp., output) of Pi. The utility of a coalition of parties is simply the sum of the utilities of
its members. Following the cryptographic convention, we view a coalition of parties as being under
the control of some central entity who coordinates the actions of the members of the coalition. We
assume that the members of the coalition are able to freely communicate out-of-band, and so in
particular they can share their inputs at the outset of the game.

2.1 Execution in the Ideal World

Our ideal world includes a trusted party who computes f with complete fairness. This defines a
natural game that proceeds as follows:

1. Inputs x1, . . . , xk are sampled according to a joint probability distribution D, and xi is then
given to Pi.

2. Each party sends a value to the trusted party. We also allow parties to send a special value ⊥
denoting an abort. Let x′i denote the value sent by Pi.

3. If any x′i =⊥, the trusted party sends ⊥ to all parties. Otherwise, the trusted party sends
fi(x

′
1, . . . , x

′
k) to each party Pi.

4. Each party Pi outputs some value yi which need not be equal to the value it received from
the trusted party.

In the fail-stop setting, we restrict x′i ∈ {xi,⊥}. In the Byzantine setting we allow x′i to be arbitrary.
The “desired” play in this game is for each party to send its input to the trusted party, and

then output the value returned by the trusted party. To fully define an honest strategy, however,
we must specify what each party does for every possible value (including ⊥) it receives from the
trusted party. Let Wi denote a function from inputs to a distribution on outputs. We formally
define strategy (cooperate,Wi) for Pi as follows:

Pi sends its input xi to the trusted party. If the trusted party returns anything other
than ⊥, then Pi outputs that value. If instead ⊥ is returned, then Pi generates output
according to the distribution Wi(xi).

As long as all parties follow honest strategies, the distributions Wi are irrelevant (as they are
never used). They are important, however, insofar as they serve as threats in case of an abort by
other parties: namely, P1 (for example) knows that if he aborts then every other Pi will determine
its own output according to Wi(xi), and so P1 must take this into account when deciding whether
to abort. The situation in which each party Pi plays (cooperate,Wi) is a t-resilient, Bayesian, strict
Nash equilibrium if the following two conditions hold:

1. For every coalition C of size at most t, every (allowed6) deviation by the members of C does
not increase the expected utility of C.

2. Moreover, for every coalition C of size at most t, every (allowed) deviation by the members
of C that has x′C ̸= xC with nonzero probability results in strictly lower expected utility for C.

6I.e., in the fail-stop case the only allowed deviation is aborting, whereas in the Byzantine case parties are allowed
to send arbitrary inputs. In either case deviating parties may determine their outputs arbitrarily.
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The second condition means that the members of any coalition have a strict incentive to send their
true inputs to the trusted party. The first condition implies that, having done so, these parties
have no incentive to output anything other than what they received from the trusted party.

Definition 1. Fix f , a distribution D, and utility functions {Ui}ki=1. We say these are t-incentive
compatible in the fail-stop (resp., Byzantine) setting if there exist {Wi}ki=1 such that the strategy

profile
(
(cooperate,W1), . . . , (cooperate,Wk)

)
is a t-resilient, Bayesian, strict Nash equilibrium in

the ideal-world game defined above.

The setting of Asharov et al. [4]. For completeness, we show that the (two-party) setting con-
sidered by Asharov et al. is not incentive compatible, even in the fail-stop setting. In [4] the utilities
are such that (1) getting the correct answer while the other party outputs an incorrect answer gives
utility 1; (2) getting an incorrect answer while the other party outputs the correct answer gives
utility −1; and (3) any other outcome gives utility 0. Furthermore (cf. [4, Definition 4.6]), f corre-
sponds to boolean XOR, and the inputs for each party are chosen uniformly and independently. We
claim that there is no choice of W1,W2 for which

(
(cooperate,W1), (cooperate,W2)

)
is a 1-resilient,

Bayesian, strict Nash equilibrium. To see this, fix W1,W2 and note that playing
(
(cooperate,W1),

(cooperate,W2)
)
gives utility 0 to both parties. On the other hand, if P1 aborts and outputs a

random bit, then regardless of the guessing strategy W2 employed by P2, the parties P1 and P2 are
each correct with independent probability 1/2 and so the expected utility of P1 remains 0. This
shows an allowed deviation by P1 that does not result in lower expected utility for P1.

In contrast, if the utilities are modified so that when both parties get the correct answer they
each obtain utility 1/2 (and everything else is unchanged), then the setting is incentive compatible
in the fail-stop setting. To see this, let W1,W2 be the uniform distribution (regardless of the input).
Playing

(
(cooperate,W1), (cooperate,W2)

)
gives utility 1/2 to both parties. If, on the other hand,

P1 ever aborts on some input then—no matter how P1 determines its output—P1 and P2 are each
correct with independent probability 1/2. The expected utility of deviating is 1/8, which is strictly
smaller than 1/2; thus, we have a Bayesian strict Nash equilibrium. Our results imply that a
rational (fair) protocol can be constructed for this setting.

2.2 Execution in the Real World

In the real world there is no trusted party, and the players instead must communication in order
to compute f . We thus have a real-world game in which inputs x1, . . . , xk are jointly sampled
according to D, input xi is given to Pi, and the parties execute some strategy (i.e., run some
protocol) and then decide on their respective outputs.

The goal is to construct a protocol Π such that running the protocol is a (computational) Nash
equilibrium. In designing the protocol, we assume the existence of a secure communication channel
between each pair of parties, as well as a broadcast channel. (These could both be realized using
standard cryptographic techniques.) We assume that communication occurs in synchronous rounds,
but allow rushing so that in any given round a deviating coalition obtains the messages sent to it
by other parties before sending its own messages for that round.

The running times of the parties, as well as the protocol itself, are parameterized in terms
of a security parameter n; however, the function f as well as the parties’ utilities are fixed and
independent of n. We assume all parties run in probabilistic polynomial-time (in n), and only
consider protocols where correctness holds with all but negligible probability (in n).
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As in the ideal world, we again consider two types of deviations. In the fail-stop setting, each
party follows the protocol as directed except that it may choose to abort the protocol at any
point. Upon aborting, a party may output whatever value it likes (and not necessarily the value
prescribed by the protocol). Parties who follow the protocol decide on their output as prescribed
by the protocol. We stress that in the fail-stop setting a party is assumed not to change its input
when running the protocol. In contrast, in the Byzantine setting parties may behave arbitrarily
(and, in particular, may run the protocol using a different input).

We now define what it means for Π to induce a game-theoretic equilibrium. Our equilibrium
notion of interest is (Bayesian) computational Nash equilibrium (see [28]). We say a protocol
induces a t-resilient computational Nash equilibrium if any (allowed) deviation by a coalition C of
at most t probabilistic polynomial-time parties yields expected payoff at most negligibly more than
what C can obtain by running the protocol honestly (and then outputting the value prescribed by
the protocol); in other words, deviating from the protocol cannot increase the expected utility of C
more than a negligible amount. (By Bayesian we simply mean that we take the expectation also
over the possible inputs of the parties outside the coalition C.) In our setting, then, we have the
following definition of what it means for Π to be a rational protocol (the definition is equivalent to
a generalized version of the definition used by Asharov et al. [4, Definition 4.6]):

Definition 2. Fix f , a distribution D, utilities for the parties, and a protocol Π computing f . We
say Π is a t-rational protocol (with respect to these parameters) in the fail-stop (resp., Byzantine)
setting if running Π is a t-resilient, Bayesian, computational Nash equilibrium in the real-world
game defined above.

We consider computational Nash equilibria, rather than computational strict Nash equilibria,
since the latter are notoriously difficult to define [14]; also, the goal of our work is only to construct
real-world protocols that induce a Nash equilibrium. (We define strict Nash equilibria in the ideal
world only because we use it for our results.) We stress that it only makes sense to speak of Π
being a rational protocol with regard to some specific input distribution and utilities; it is possible,
e.g., for Π to be rational for one set of utilities but not another.

3 Positive Results for Rational Computation

We show broad positive results for rational computation in both the fail-stop and Byzantine settings.
Namely, we show that whenever computing the function honestly is a t-resilient, Bayesian, strict
Nash equilibrium in the ideal world, then there exists a protocol Π computing f such that running
Π is a Bayesian computational Nash equilibrium in the real world.

Our protocols all share a common structure. As in prior work on fairness [16, 36, 18], our
protocols have two stages. The first stage is a “pre-processing” step that relies on any protocol
for (unfair) secure multi-party computation, and the second stage takes place in a sequence of n
iterations, where n is the security parameter. In our work, the stages take the following form:

First stage:

1. A value r∗ ∈ {1, . . .} is chosen according to a geometric distribution. This represents the
iteration (unknown to the parties) in which all parties will learn the correct output.

2. Values {(tr1, . . . , trk)}nr=1 are chosen, with tri the value that Pi should learn in iteration r. For
r ≥ r∗ we have tri = fi(x1, . . . , xk), while for r < r∗ the value tri depends on Pi’s input only
(see below for details).
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3. Each trI value is shared in a k-out-of-k manner among all parties.

Second stage: In each iteration r ∈ {1, . . . , n}, for every i ∈ {1, . . . , k} each party other than
Pi broadcasts its share of tri , thus allowing (only) Pi to reconstruct tri . When the protocol ends
(either through successful termination or an abort by the other party) each party Pi outputs the
most-recently-learned value tri .

The key difference with respect to prior work is how we set the distribution of the {tri } for
r < r∗. Here we use the assumption that f,D, and the utilities are incentive compatible, and thus
there are “guessing strategies” Wi(xi) for the parties—in case the protocol is aborted—that are in
equilibrium (see Section 2.1). We use exactly these distributions in our protocol.

3.1 The Fail-Stop Setting

We first present an analysis of the fail-stop setting, which already demonstrates the main issues.
We say Wi has full support if for every xi the distribution Wi(xi) puts nonzero probability on every
element in the range of fi. We begin by proving a technical lemma.

Lemma 3. Fix a function f , a distribution D, and utilities for the parties that are t-incentive
compatible in the fail-stop (resp., Byzantine) setting. Then there exist {Wi} with full support

such that
(
(cooperate,W1), . . . , (cooperate,Wk)

)
is a t-resilient, Bayesian, strict Nash equilibrium

in the fail-stop (resp., Byzantine) setting.

Proof We focus on the fail-stop setting; the proof for the Byzantine setting is analogous. In-
centive compatibility means that there exist distributions {W ′

i} such that the strategy vector(
(cooperate,W ′

1), . . . , (cooperate,W ′
k)
)

is a t-resilient, Bayesian, strict Nash equilibrium. The

{W ′
i} may not have full support, but we show that they can be modified so that they do.
Let umax denote the highest possible utility a coalition of size at most t can obtain. For some

coalition C and inputs xC for the members of this coalition, let u⊥(xC) denote the maximum expected
utility this coalition can obtain if it aborts; this expectation is taken over the distribution D from
which inputs are chosen, as well as the randomized strategies—determined by {W ′

i}—that are used
by the players outside of C. Let u(xC) be the expected utility the coalition obtains if each member
of the coalition sends its input to the trusted party and then outputs the value received from the
trusted party. Let u∗ be the minimum value of u(xC)− u⊥(xC), where this minimum is taken over
all coalitions C of size at most t and over all inputs xC . By definition of incentive compatibility, we
must have u∗ > 0.

Set ϵ = u∗

2k·umax
> 0, and define Wi(xi) as follows: with probability (1 − ϵ) choose output

according to W ′
i (xi), and with probability ϵ output a uniform element from the range of fi. Note

that Wi has full support. We claim that the strategy vector
(
(cooperate,W1), . . . , (cooperate,Wk)

)
is a t-resilient, Bayesian, strict Nash equilibrium. To see this, consider any coalition C of size at
most t, and some set of inputs xC for the members of this coalition. In case of an abort by any
member of C, note that the parties outside C all follow the original strategies {W ′

i} with probability
at least 1 − ϵk. Therefore, the maximum expected utility of C following an abort (assuming the
players outside of C determine their outputs using the modified strategies {Wi}) is at most

u⊥(xC) + ϵk · umax < u⊥(xC) + u∗ = u(xC).
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Functionality ShareGen

Inputs: ShareGen takes as input a value xi from each Pi.

Computation: Proceed as follows:

1. If any xi input is invalid, then output ⊥ to all parties.

2. Choose r∗ according to a geometric distribution with parameter p.

3. Set the values of tri for every r ∈ {1, . . . , n} and every i ∈ {1, . . . , k} as follows:
• If r < r∗, choose tri ←Wi(xi).

• If r ≥ r∗, set tri = fi(x1, . . . , xk).

4. For each tri , choose values sri,j as random k-out-of-k secret shares of tri . I.e., the

{sri,j}kj=1 are chosen uniformly subject to
⊕k

j=1 s
r
i,j = tri .

Output: Send Pj the values sri,j for all i and r.

Figure 1: Functionality ShareGen. The security parameter is n. This functionality is parameterized
by a real number p > 0 to be determined later.

That is, aborting results in strictly lower utility than behaving honestly.

We now formally state and prove our main theorem.

Theorem 1. Fix a function f , a distribution D, and utilities for the parties. If these are t-incentive
compatible in the fail-stop setting, then (assuming the existence of general secure multiparty compu-
tation for t fail-stop adversaries) there exists a protocol Π computing f such that Π is a t-rational
protocol (with respect to the same distribution and utilities) in the fail-stop setting.

Proof By definition of t-incentive compatibility, and using Lemma 3, there exist {Wi} with

full support for which the strategy profile
(
(cooperate,W1), . . . , (cooperate,Wk)

)
is a t-resilient,

Bayesian, strict Nash equilibrium. We define a functionality ShareGen (cf. Figure 1) based on
these {Wi}; this functionality is also parameterized by a constant p > 0 that we will set later. We
define our protocol Π, that uses ShareGen as a building block, in Figure 2.

ShareGen starts by choosing a special iteration r∗ according to a geometric distribution with
a parameter p to be defined later. It then creates outputs for each party in each iteration. In
iterations before r∗, the outputs are chosen independently using the distributions {Wi(xi)}. From
iteration r∗ on, the outputs are the actual value of the function. These output values are then
shared in a k-out-of-k manner, with shares sent to each player, to prevent the output values from
being learned prematurely. Since p is a constant, we have r∗ ≤ n with overwhelming probability,
and hence when Π is run honestly all parties obtain the correct answer with all but negligible
probability. (Alternately, one could modify ShareGen to enforce that r∗ ≤ n always.)

Protocol Π can use any multiparty computation protocol π for computing ShareGen that is secure
with unanimous abort [15] against t fail-stop adversaries. Since we assume a fail-stop adversarial
model, this means we can analyze Π in a hybrid world where there is a trusted entity computing
ShareGen without fairness but with agreement on abort. (This means that a deviating coalition
may learn its output from ShareGen while all remaining parties receive ⊥.) It is not hard to see
(following [8]) that if Π is a computational Nash equilibrium in this hybrid world, then so is Π
when executed in the real world (with a secure protocol implementing ShareGen).
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Protocol Π

Stage one: Parties execute a secure protocol for computing ShareGen. This results in each party
Pj obtaining output sri,j for 1 ≤ i ≤ k and 1 ≤ r ≤ n. (If ShareGen returns ⊥, go to the
output-determination phase.)

Stage two: There are n iterations. In each iteration r ∈ {1, . . . , n} do:
• Each Pj broadcasts {sri,j}i ̸=j .

• If some party does not broadcast a value, go to the output-determination phase.
Otherwise, each Pj computes trj =

⊕k
i=1 s

r
j,i.

Output determination: Each party Pj determines its output as follows:

• If an abort occurs before Pj has computed t1j , then Pj chooses its output according
to distribution Wj(xj).

• If an abort occurs at any other point, or the protocol completes successfully, then Pi

outputs the last tri value it computed.

Figure 2: Formal definition of our protocol.

Our goal is to show that there exists a p > 0 for which Π (in the hybrid world discussed above)
is a t-rational protocol with respect to the given function f , distribution D, and parties’ utilities.
Fix an arbitrary coalition C of size at most t, and an arbitrary input xC for the parties in C. We
show that no fail-stop deviation by C can increase the expected utility of the coalition. (Because
we are now in a hybrid world with access to an ideal functionality computing ShareGen, we no
longer need to restrict attention to polynomial-time behavior, or consider negligible changes to the
expected utility.)

Before continuing the analysis, we introduce two conceptual changes to the protocol that can
only increase the expected utility of C. First, at the outset of each iteration r we first inform C
whether r > r∗ or not. Second, if any party in C ever aborts in some iteration r with r ≤ r∗, then
we inform the parties in C whether r = r∗ before those parties generate their output. (The decision
to abort, however, cannot be changed.)

Note that once r > r∗, the coalition C cannot increase its expected utility by deviating from
the protocol: although the parties in C have learned the correct outputs of the function, the parties
outside C have also obtained their respective correct outputs in iteration r∗ ,and will only ever
output those values from then on. Thus, this situation is analogous to the situation in the ideal
world once all parties have been given their outputs by the trusted party. Since, by assumption,
the parties in C have no incentive to deviate—namely, to output values other than the ones given
to them by the trusted party—in the latter case, they have no incentive to deviate in the former
case, either.

Let umax denote the highest possible utility a coalition of size t can obtain. Let u(xC) be the
expected utility of the parties in C if they follow the protocol honestly when given inputs xC , and
let u⊥(xC) be the maximum expected utility the coalition can obtain (in the ideal world) if it aborts
when given those inputs. Let u∗ be the minimum value of u(xC)− u⊥(xC), where this minimum is
taken over all coalitions C of size at most t and all inputs xC ; since we have a strict Nash equilibrium
in the ideal world, u∗ > 0.

Fix some inputs xC for the parties in C, and consider some iteration r < n in which r ≤ r∗. The
parties in C learn their respective values tCr and can then decide whether to abort or not. If they
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do not abort, and execute the protocol until the end, they receive expected utility u(xC). On the
other hand, if they abort then with some probability α (which may depend on both xC and trC) they
are told that r = r∗, in which case they can potentially obtain utility umax; with probability 1−α,
however, they are told that r > r∗ in which case they receive expected utility at most u⊥(xC) (as
C has no information beyond what it could compute from its own inputs). That is, the expected
utility of aborting is at most

α · umax + (1− α) · u⊥(xC).

Thus, as long as α ≤ u∗/umax, the expected utility of aborting is at most the expected utility of
following the protocol. We now show that the parameter p > 0 can be set so that the stated bound
on α holds (for all xC and trC).

Let q = minxC ,tC{Pr[∀Pi ∈ C : Wi(xi) = ti]}. Since the {Wi} have full support, q > 0. Now, for
any coalition C given inputs xC and observing outputs tC in some iteration r ≤ r∗, we have

α
def
= Pr[r∗ = r | trC = tC ∧ r∗ ≥ r]

=
Pr[r∗ = r ∧ trC = tC | r∗ ≥ r]

Pr[trC = tC | r∗ ≥ r]

=
Pr[r∗ = r | r∗ ≥ r] · Pr[trC = tC | r∗ = r]

Pr[r∗ = r | r∗ ≥ r] · Pr[trC = tC | r∗ = r] + Pr[r∗ > r | r∗ ≥ r] · Pr[trC = tC | r∗ > r]

=
p · Pr[trC = tC | r∗ = r]

p · Pr[trC = tC | r∗ = r] + (1− p) · Pr[trC = tC | r∗ > r]

≤ p

p+ (1− p) · q

=
p

p · (1− q) + q
≤ p

q
.

We thus see that by setting p to a sufficiently small (positive) constant, we can ensure α ≤ u∗/umax

as required above.
Assuming p is set as just described, the above shows that in any iteration r < n, the coalition

C has no incentive to abort. The only remaining case to analyze is when r = n. In this case it
would indeed be advantageous for C to abort when r∗ ≥ n; however, this occurs with only negligible
probability and so does not impact the expected utility of C by more than a negligible amount.

Although security notions beyond game-theoretic equilibria are not the focus of our work, we
note that the protocol presented in the proof of the previous theorem is private in addition to
being rational. That is, the parties learn the function output only, but nothing else regarding other
parties’ inputs.

3.2 The Byzantine Setting

The fail-stop setting already captures the main difficulties of the problem. We can handle the
Byzantine setting by modifying the protocol from the previous section. Specifically, we first modify
the ShareGen functionality so that it authenticates the shares given to each of the parties. The
simplest way to handle this is to have ShareGen also generate public and private keys for a digital
signature scheme, sign each share given to each party (along with the party’s identifier and the
iteration number), and output the public key to all parties. In the protocol itself, the parties should
compute ShareGen using a sub-protocol that is secure (with unanimous abort) against t malicious
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parties. Moreover, all parties should now verify the signatures on all broadcast shares, and treat
an invalid or missing signature as an abort. We omit the details, which are straightforward.

A proof of the following is completely analogous to the proof in the previous section:

Theorem 2. If a function f , a distribution D, and utilities for the parties are t-incentive compatible
in the Byzantine setting, then (assuming the existence of digital signatures and general secure
multiparty computation for t malicious adversaries) there exists a protocol Π computing f that is a
t-rational protocol (with respect to the same distribution and utilities) in the Byzantine setting.

4 Conclusions and Future Work

Given the stark impossibility results for fairness in a purely malicious context [9], it is natural to
try to understand whether, or to what extent, fairness is achievable in a rational setting. Asharov
et al. [4] gave a somewhat pessimistic answer to this question, as they show a specific case where
rational fairness cannot be achieved (if correctness better than 1/2 is desired). Our work, in
contrast, shows broad feasibility results for rational fairness: roughly, we show that whenever
computing the function is a strict Nash equilibrium in the ideal world, then it is possible to
construct a rational fair protocol computing the function in the real world.

Within the broader context of research at the intersection of game theory and cryptography,
our result can be interpreted in two ways:

• Given a “fairness game” defined in an ideal world where there is a trusted entity (i.e., a
“mediator”) computing some function on behalf of the parties, a natural question to ask is
when a game-theoretic equilibrium in the ideal world can be implemented via a real-world
protocol. We do not provide a complete answer to this question, but we do show a partial
characterization: roughly, whenever there is a strict Nash equilibrium in the ideal world,
there is a protocol that induces a computational Nash equilibrium in the real world.

• We show a new setting in which cryptographic impossibility results can be circumvented by
assuming rational behavior. Viewed in this light, our results can be seen as a generalization
of work on rational secret sharing.

Our work suggests several interesting directions for future research. First, can positive results
be shown even when our definition of a strict Nash equilibrium is relaxed? Or can a converse of our
result be shown, at least under certain conditions? It will also be interesting to explore stronger
game-theoretic solution concepts in the real world. We construct real-world protocols that induce
a computational Nash equilibrium, but one could also aim to construct protocols satisfying some
of the stronger equilibrium notions proposed, e.g., in [23, 29, 30, 14].
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