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Abstract. We propose a new non-interactive (perfect) zero-knowledge (NIZK) shuffle argument
that, when compared the only previously known efficient NIZK shuffle argument by Groth and
Lu, has a small constant factor times smaller computation and communication, and is based on
more standard computational assumptions. Differently from Groth and Lu who only prove the
co-soundness of their argument under purely computational assumptions, we prove computational
soundness under a necessary knowledge assumption. We also present a general transformation that
results in a shuffle argument that has a quadratically smaller common reference string (CRS) and
a small constant factor times times longer argument than the original shuffle.
Our main technical result is a “1-sparsity” argument that has linear CRS length and prover’s
communication. This should be compared to the basic arguments of Groth (Asiacrypt 2010) and
Lipmaa (TCC 2012), where the prover’s computational complexity is quadratic. This gives a new
insight to the NIZK arguments of Groth and Lipmaa, and we hope that the 1-sparsity argument
(and possible related future basic arguments) can be used to build NIZK arguments for other
interesting languages.
Keywords. Bilinear pairings, cryptographic shuffle, non-interactive zero-knowledge, progression-
free sets.

1 Introduction

In a shuffle argument, the prover proves that two tuples of randomized ciphertexts encrypt the same
multiset of plaintexts. Such an argument is needed in e-voting and anonymous broadcast. In the case
of e-voting, shuffles are used to destroy the relation between the voters and their ballots. There, the
voters first encrypt their ballots. The ciphertexts are then sequentially shuffled by several independent
mix servers, where every server also produces a zero-knowledge [GMR85] shuffle argument. At the end,
all shuffle arguments are verified and the final ciphertexts are threshold-decrypted. If all arguments are
accepted, then the shuffle is correct. Moreover, as long as one mix server is honest, the shuffle remains
private (that is, one cannot relate the voters and their ballots). As a completely different application, we
point out simulatable oblivious transfer [KNP10,KNP11], where the use of shuffle makes it possible for
the client to query database elements by using permuted indexes.

A lot of research [Cha81,Nef01,FS01,Gro03] has been conducted in the area of constructing secure
and efficient shuffle arguments, with recent work resulting in shuffles that have sublinear communication
and very competitive computational complexity. However, it is also important that the shuffle argument
is non-interactive, due to the fact that non-interactive arguments are transferable (create once, verify
many times without interacting with the prover). This is especially important in e-voting, where the
correctness of e-voting (and thus of the shuffle) should be verifiable in years to come. Practically all
previous shuffle arguments are interactive, and can only be made non-interactive by using the Fiat-
Shamir heuristic [FS86], that is, in the random oracle model. For example, Groth and Ishai [GI08],
Groth [Gro09], and Bayer and Groth [BG12] have constructed shuffle arguments with communication
Θ(n2/3), Θ(n1/2), and Θ(n1/2) respectively, where n is the number of ciphertexts. Unfortunately, they
make use of the Schwartz-Zippel lemma [Sch80] that requires the verifier to first provide a random input.
The only known way to make the Schwartz-Zippel lemma based arguments non-interactive is to use the
random oracle model. Unfortunately, it is well-known [CGH98,GK03] that there are protocols that are
secure in the random oracle model but not in the plain model. Even if there are no similar distinguishing
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|CRS| Comm. P’s comp. V’s comp. Pairing Sound Assumption

[GL07] 2n+ 8 15n+ 120 51n+ 246 75n+ 282 Sym. Co- PPA + SPA + DLIN

Sect. 5 7n+ 6 6n+ 11 17n+ 16 28n+ 18 Asym. Sound PKE + PSDL + DLIN

App. D 7
√
n+ 6 30n+ 33

√
n 63n+ 48

√
n 84n+ 54

√
n Asym. Sound PKE + PSDL + DLIN

Table 1. Brief comparison of existing (not random-oracle based) and new (two last ones) NIZK shuffle
arguments. Here, the communication complexity and the CRS length are given in group elements, prover’s
computation is given in exponentiations, and verifier’s computation is given in (symmetric or asymmetric)
bilinear pairings

attacks against any of the existing shuffle arguments, it is prudent to design alternative non-interactive
shuffle arguments that are not based on random oracle model.

The only known (not random-oracle based) efficient non-interactive zero-knowledge (NIZK) shuffle
argument (for the BBS cryptosystem [BBS04]) was proposed by Groth and Lu in [GL07]. The security
of the Groth-Lu argument is based on the common reference string model (since non-interactivity is
strongly desired, one cannot use a weaker model like the bare public key model [SV12]) and on two new
computational assumptions, the permutation pairing assumption (PPA, see App. C) and the simultaneous
pairing assumption (SPA). While Groth and Lu proved that their assumptions are secure in the generic
group model, one can argue that their assumptions are specifically constructed so as the concrete shuffle
argument will be co-sound [GOS11] (see [GL07] and Sect. 2 for discussions on co-soundness). It is therefore
interesting to construct a shuffle argument from “more standard” assumptions. Moreover, their shuffle
argument has a relatively large computational complexity and communication complexity. (See Tbl. 1
for a comparison.)

Our Contributions. We construct a new non-interactive shuffle argument that has better communi-
cation and is based on more standard computational security assumptions than the Groth-Lu argument.
Full comparison between the Groth-Lu and the new argument is given later. Recall that permutation
matrix is a Boolean matrix that has exactly one 1 in every row and column. From a very high-level point
of view, following [FS01] and subsequent papers, we let the prover to commit to a permutation matrix
and then present an efficient permutation matrix argument (given commitments commit to a permuta-
tion matrix). We then prove that the plaintext vector corresponding to the output ciphertext vector is
equal to the product of this matrix and the plaintext vector corresponding to the input ciphertext vector,
and thus is correctly formed. Both parts are involved. In particular, coming up with a characterization
of permutation matrices that allows for an efficient cryptographic implementation was not a trivial task.

Terelius and Wikström [TW10] constructed an interactive permutation matrix argument based on
the fact that a matrix is a permutation matrix iff its every column sums to 1 and its every row has
exactly one non-zero element. To verify that the committed matrix satisfies these properties, they used
the Schwartz-Zippel lemma with the verifier sending a random vector to the prover. This introduces
interaction (or the use of a random oracle). We do not know how to prove efficiently in NIZK that a
commitment commits to a unit vector; how to construct such an efficient argument is an interesting open
problem. We propose a superficially similar permutation matrix argument that is based on the (related)
fact that a matrix is a permutation matrix exactly if every column sums to 1 and every row has at most
one non-zero element. However, we do not explicitly use the Schwartz-Zippel lemma, and this makes it
possible for us to create a NIZK argument without using the random oracle model.

Cryptographically, the new permutation matrix argument is based on recent techniques of
Groth [Gro10] and Lipmaa [Lip12] who proposed an NIZK argument for circuit satisfiability based
on two subarguments, for Hadamard — that is, entry-wise — product and permutation. (The same basic
arguments were then used in [CLZ12] to construct an efficient non-interactive range proof.) Unfortu-

nately, in their subarguments, the prover has quadratic (or quasilinear O(n22
√

2 log2 n), if one only counts
the group operations) computational complexity. This is not acceptable in our case, and therefore we do
not use any of the arguments that were constructed in [Gro10,Lip12].

We propose 2 new basic arguments (a zero argument, see Sect. 3.1, and a 1-sparsity argument,
see Sect. 3.2), and then combine them in Sect. 3.3 to form a permutation matrix argument. The zero
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argument (the prover can open the given commitment to the zero tuple) can be interpreted as a knowledge
of the discrete logarithm argument, and is a special case of Groth’s restriction argument from [Gro10].
On the other hand, the 1-sparsity argument (the prover can open the given commitment to a tuple
a = (a1, . . . , an), where at most one coordinate ai is non-zero) is conceptually new.

Like the basic arguments of [Lip12], the new 1-sparsity argument relies on the existence of a dense
progression-free set. However, the costs of the 1-sparsity argument do not depend explicitly on the size of
the used progression-free sets. Briefly, in [Lip12] and the new 1-sparsity argument, the discrete logarithm
of the non-interactive argument is equal to the sum of two polynomials Fcon(x) and Fπ(x), where x is
the secret key. The first polynomial Fcon has exactly one monomial per constraint that a honest prover
has to satisfy. The number of constraints is linear (for any i, ai · bi = ci) in [Lip12] and quadratic
(for any two different coefficients ai and aj , ai · aj = 0) in the new 1-sparsity argument. The second

polynomial consists of monomials (a quasilinear number O(n22
√

2 log2 n) in [Lip12] and a linear number
in the new 1-sparsity argument) that have to be computed by a honest prover during the argument, and
this is the main reason why both the CRS length and the prover’s computational complexity are lower
in the 1-sparsity argument compared to the arguments in [Lip12]. We find this to be an interesting result
by itself, leading to an obvious question whether similar arguments (that have a superlinear number of
constraints and a linear number of spurious monomials) can be used as an underlying engine to construct
other interesting NIZK proofs.

In Sect. 5, we combine the permutation matrix argument with a knowledge version of the BBS [BBS04]
cryptosystem to obtain an efficient NIZK shuffle argument. Informally, by the KE assumption [Dam91],
in the knowledge BBS cryptosystem (defined in Sect. 4) the ciphertext creator knows both the used
plaintext and the randomizer. Since it is usually not required that the ciphertext creator also knows
the randomizer, the knowledge BBS cryptosystem satisfies a stronger than usual version of plaintext-
awareness. While this version of plaintext-awareness has not been considered in the literature before, it
is also satisfied by the Damg̊ard’s Elgamal cryptosystem from [Dam91].

According to [AF07], only languages in P/poly can have direct black-box perfect NIZK arguments.1

Since all known constructions of NIZK arguments use direct black-box reductions, one can argue that
the “natural” definition of soundness is not the right definition of soundness for perfect NIZK arguments,
see [GL07] for more discussion. To overcome the impossibility results of [AF07], Groth and Lu [GL07]
proved co-soundness [GL07,GOS11] of their argument under purely computational assumptions.

Our subarguments (the zero argument, the 1-sparsity argument, and the permutation matrix ar-
gument) are not computationally sound since their languages are based on a perfectly hiding commit-
ment scheme, see Sect. 3. Instead, we prove that these arguments satisfy a weak version of sound-
ness [Gro10,Lip12] under purely computational assumptions. We could use a similar definition of the
weak soundness of the shuffle argument and prove that the new shuffle argument is (weakly) sound
by using only standard computational assumptions. Instead (mostly since computational soundness is a
considerably more standard security requirement), we prove computational soundness of the shuffle argu-
ment under a (known) knowledge assumption. This is also the reason why we need to use the knowledge
BBS cryptosystem.

Apart from the knowledge assumption, the security of the new shuffle argument is based on the DLIN
assumption [BBS04] (which is required for the CPA-security of the BBS cryptosystem), and on the power
symmetric discrete logarithm (PSDL, see Sect. 2) assumption from [Lip12]. The PSDL assumption is
much more standard(-looking) than the SPA and PPA assumptions from [GL07].

Comparison with [GL07]. Tbl. 1 provides a comparison between [GL07] and the new shuffle argument.
Since it was not stated in [GL07], we have calculated ourselves2 the computational complexity of the
Groth-Lu argument. As seen from Tbl. 1, the new argument is computationally about 2.5 to 3 times
more efficient and communication-wise about 2 times more efficient, if one just counts the number of
exponentiations (in the case of the prover’s computation), pairings (verifier’s computation), or group

1 It is not necessary to have a perfect NIZK argument for a shuffle (one could instead construct a computational
NIZK proof), but the techniques of both [GL07] and especially of the current paper are better suited to
construct efficient perfect NIZK arguments. We leave it as an open question to construct a computational
NIZK proof for shuffle with a comparable efficiency.

2 Our calculations are based on the Groth-Sahai proofs [GS08] that were published after the Groth-Lu shuffle
argument. The calculations may be slightly imprecise.
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elements (communication). In addition, the new argument uses asymmetric pairings ê : G1 ×G2 → GT ,
while [GL07] uses symmetric pairings with G1 = G2. This means in particular that the difference in
efficiency is larger than seen from Tbl. 1. First, asymmetric pairings themselves are much more efficient
than symmetric pairings. Second, if asymmetric pairings were used in the Groth-Lu shuffle, one would
have to communicate two different versions (one in group G1 and another one in group G2) of some of
the group elements.

The main drawback of the new shuffle argument is that its soundness relies additionally on a
knowledge assumption. However, a non-standard assumption is necessary to achieve perfect zero-
knowledge [AF07]. Differently from the random oracle assumption that is known to be false in gen-
eral [CGH98,GK03], knowledge assumptions are just known to be non-falsifiable and thus might be true
for any practical purposes. (In comparison, the Groth-Lu argument was proven to be co-sound, which is
a weaker version of computational soundness, under purely computational assumptions.)

Moreover, the Groth-Lu shuffle uses the BBS cryptosystem (where one ciphertext is 3 group elements),
while we use the new knowledge BBS cryptosystem (6 group elements). This difference is small compared
to the reduction in the argument size. The use of knowledge BBS cryptosystem corresponds to adding a
proof of knowledge of the plaintexts (and the randomizers) by the voters. However, it means that in the
proof of soundness, we show security only against (white-box) adversaries who have access to the secret
coins of all voters and mixservers. It is a reasonable compromise, comparable to the case in interactive
(or Fiat-Shamir heuristic based) shuffles where the ballots are accompanied by a proof of knowledge of
the ballot, from which either the adversary of the simulator can obtain the actual votes, but without
the use of a random oracle, see Sect. 5 for more discussion. As we note there, our soundness definition
follows that of [GL07], but the mentioned issues are due to the use of a knowledge assumption. We hope
that the current work will motivate more research on clarifying such issues.

Another drawback of our scheme as compared to [GL07] is that it uses a lifted cryptosystem, and
thus can be only used to shuffle small plaintexts. This is fine in applications like e-voting (where the
plaintext is a candidate number). Many of the existing e-voting schemes (for example, [CGS97]) are based
on (lifted) Elgamal and thus require the plaintexts to be small. We note that significant speedups can
be achieved in both cases by using efficient multi-exponentiation algorithms and thus for a meaningful
computational comparison, one should implement the shuffle arguments.

Shorter CRS. In App. D, we show that one can transform both the Groth-Lu argument and the
new argument, by using the Clos network [Clo53,DT04], to have a CRS of size Θ(

√
n) while increasing

the communication and computation by a small constant factor. This version of the new argument is
computationally/communication-wise only slightly less efficient than the Groth-Lu argument but has a
quadratically smaller CRS, see Tbl. 1. This transformation can be applied to any shuffle argument that
has linear communication and computation, and a CRS of length f(n) = Ω(1). We pose it as an open
problem to construct (may be using similar techniques) an NIZK shuffle argument where both the CRS
and the communication are sublinear.

2 Preliminaries

Notation. Let [n] = {1, 2, . . . , n}. If y = hx, then let logh y := x. To help readability in cases like

gri+x
λ
ψ−1(i)

2 , we sometimes write exp(h, x) instead of hx. Let κ be the security parameter. PPT denotes
probabilistic polynomial time. For a tuple of integers Λ = (λ1, . . . , λn) with λi < λi+1, let (ai)i∈Λ =
(aλ1 , . . . , aλn). We sometimes denote (ai)i∈[n] as a. We say that Λ = (λ1, . . . , λn) ⊂ Z is an (n, κ)-nice
tuple, if 0 < λ1 < · · · < λi < · · · < λn = poly(κ). Let Sn be the set of permutations from [n] to [n].

Additive combinatorics. By using notation that is common in additive combinatorics [TV06],
if Λ1 and Λ2 are subsets of some additive group (Z or Zp within this paper), then Λ1 + Λ2 =
{λ1 + λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their sum set and Λ1−Λ2 = {λ1 − λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their differ-

ence set. In particular, if Λ is a set, then kΛ = {
∑k
i=1 λi : λi ∈ Λ} is an iterated sumset. On the other hand,

k ·Λ = {kλ : λ ∈ Λ} is a dilation of Λ. We also let 2̂Λ = {λ1 + λ2 : λ1 ∈ Λ ∧ λ2 ∈ Λ ∧ λ1 6= λ2} ⊆ Λ+Λ
to denote a restricted sumset.
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Progression-Free Sets. A set Λ = {λ1, . . . , λn} of integers is progression-free [TV06], if no three
elements of Λ are in arithmetic progression, that is, λi+λj = 2λk only if i = j = k. Let r3(N) denote the
cardinality of the largest progression-free set that belongs to [N ]. Recently, Elkin [Elk11] showed that

r3(N) = Ω((N · log1/4N)/22
√

2 log2 N ) .

On the other hand, it is known that r3(N) = O(N(log logN)5/ logN) [San11]. Thus, according to [San11],

the minimal N such that r3(N) = n is ω(n), while according to Elkin, N = O(n22
√

2 log2 n) = n1+o(1).
Thus, for any fixed n > 0, there exists N = n1+o(1), such that [N ] contains an n-element progression-free
subset [Lip12].

While the efficiency of arguments from [Lip12] directly depended on the choice of the progression-free
set, in our case the only thing dependent on this choice is the tightness of most of our security reductions;
see the definition of PSDL below, or the proofs of Thm. 2, Thm. 4 and Thm. 5. Due to this, one may opt
to use a less dense (but easy to construct) progression-free set. As an example, Erdős and Turán [ET36]
defined a set T (n) of all integers up to n that have no number 2 in their ternary presentation. Clearly,
|T (n)| ≈ nlog3 2 ≈ n0.63 and T (n) is progression-free. One can obtain a dense set of progression-free odd
positive integers by mapping every a in T (n) to 2a+ 1.

Bilinear groups. A bilinear group generator Gbp(1κ) outputs gk := (p,G1,G2,GT , ê, g1, g2)← Gbp(1κ)
such that p is a κ-bit prime, G1, G2 and GT are multiplicative cyclic groups of order p, ê : G1×G2 → GT
is a bilinear map (pairing), and gt ← Gt \ {1} is a random generator of Gt for t ∈ {1, 2}. Additionally,
it is required that (a) ∀a, b ∈ Z, ê(ga1 , g

b
2) = ê(g1, g2)ab, (b) ê(g1, g2) generates GT , and (c) it is efficient

to decide the membership in G1, G2 and GT , the group operations and the pairing ê are efficiently
computable, generators of G1 and G2 are efficiently sampleable, and the descriptions of the groups and
group elements each are O(κ) bit long. One can represent an element of G1/G2/GT in respectively
512/256/3072 bits, by using an optimal (asymmetric) Ate pairing [HSV06] over a subclass of Barreto-
Naehrig curves [BN05,PSNB11].

Public-key cryptosystem. A public-key cryptosystem (Gbp,Gpkc, Enc,Dec) is a tuple of efficient al-
gorithms, where Gbp is a bilinear group generator that outputs gk, Gpkc(gk) generates a secret/public
key pair (sk, pk), randomized encryption algorithm Encpk(µ; r) produces a ciphertext c, and determin-
istic decryption algorithm Decsk(c) produces a plaintext µ. It is required that for all gk ← Gbp(1κ),
(sk, pk) ∈ Gpkc(gk) and for all valid µ and r, Decsk(Encpk(µ; r)) = µ. Assume that the randomizer space
R is efficiently sampleable. A public-key cryptosystem (Gbp,Gpkc, Enc,Dec) is CPA-secure, if for all state-
ful non-uniform PPT adversaries A, the following probability is negligible in κ:∣∣∣∣∣Pr

[
gk← Gbp(1κ), (sk, pk)← Gpkc(gk), (µ0, µ1)← A(pk),

b← {0, 1} , r ← R : A(Encpk(µb; r)) = b

]
− 1

2

∣∣∣∣∣ .
Λ-Power Symmetric Discrete Logarithm Assumption. Let Λ be an (n, κ)-nice tuple for n =
poly(κ). A bilinear group generator Gbp is Λ-PSDL secure [Lip12], if for any non-uniform PPT adversary
A,

Pr[gk := (p,G1,G2,GT , ê, g1, g2)← Gbp(1κ), x← Zp : A(gk; (gx
`

1 , gx
`

2 )`∈Λ) = x]

is negligible in κ. (Note that A also has access to gx
0

t since it belongs to gk.) A version of PSDL
assumption in a non pairing-based group was defined in [GJM02]. Lipmaa [Lip12] proved that the Λ-
PSDL assumption holds in the generic group model for any (n, κ)-nice tuple Λ given that n = poly(κ).
More precisely, any successful generic adversary for Λ-PSDL requires time Ω(

√
p/λn) where λn is the

largest element of Λ. Thus, the choice of the actual security parameter depends on λn and thus also on
Λ.

Non-Interactive Zero-Knowledge for Group-Specific Languages. Let Gbp be a bilinear group
generator, and let gk := (p,G1,G2,GT , ê, g1, g2) ← Gbp(1κ). Let R = {(gk;C,w)} be an efficiently
computable group-specific binary relation such that |w| = poly(|C|). Here, C is a statement, and w is a
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witness. Let L = {(gk;C) : (∃w) (gk;C,w) ∈ R} be a group-specific NP-language. Shuffle (see Sect. 5)
has a natural corresponding group-specific language, since one proves a relation between elements of the
same group.

A non-interactive argument for R consists of the following PPT algorithms: a bilinear group generator
Gbp, a common reference string (CRS) generator Gcrs, a prover P, and a verifier V. For gk ← Gbp(1κ)
and crs← Gcrs(gk), P(gk, crs;C,w) produces an argument π. The verifier V(gk, crs;C, π) outputs either 1
(accept) or 0 (reject). If the verifier only accesses a small part crsv of crs, we say that crsv is the verifier’s
part of the CRS and we will give just crsv as an input to V. When efficiency is not important (e.g., in
the security definitions), we give the entire crs to V.

An argument (Gbp,Gcrs,P,V) is perfectly complete, if for all gk ← Gbp(1κ), all crs ← Gcrs(gk) and
all (C,w) such that (gk;C,w) ∈ R, V(gk, crs;C,P(gk, crs;C,w)) = 1. An argument (Gbp,Gcrs,P,V) is
adaptively computationally sound, if for all non-uniform PPT adversaries A, the probability Pr[gk ←
Gbp(1κ), crs ← Gcrs(gk), (C, π) ← A(gk, crs) : (gk;C) 6∈ L ∧ V(gk, crs;C, π) = 1] is negligible in κ.
The soundness is adaptive in the sense that the adversary sees the CRS before producing the state-
ment C. An argument (Gbp,Gcrs,P,V) is perfectly witness-indistinguishable, if for all gk ∈ Gbp(1κ),
crs ∈ Gcrs(gk) and ((gk;C,w0), (gk;C,w1)) ∈ R2, the distributions P(gk, crs;C,w0) and P(gk, crs;C,w1)
are equal. An argument (Gbp,Gcrs,P,V) is perfectly zero-knowledge, if there exists a PPT simula-
tor S = (S1,S2), such that for all stateful interactive non-uniform PPT adversaries A, Pr[gk ←
Gbp(1κ), crs← Gcrs(gk), (C,w)← A(gk, crs), π ← P(gk, crs;C,w) : (gk;C,w) ∈ R ∧ A(π) = 1] = Pr[gk←
Gbp(1κ), (crs, td)← S1(gk), (C,w)← A(gk, crs), π ← S2(gk, crs, td;C) : (gk;C,w) ∈ R ∧A(π) = 1]. Here,
td is the simulation trapdoor.

Λ-Power Knowledge of Exponent Assumption (Λ-PKE). The soundness of NIZK arguments (for
example, an argument that a computationally binding commitment scheme commits to 0) seems to be
an unfalsifiable assumption in general. We will use a weaker version of soundness in the subarguments,
but in the case of the shuffle argument, we will prove soundness. Similarly to [Gro10,Lip12], we will base
the soundness of that argument on an explicit knowledge assumption.

For two algorithms A and XA, we write (y; z) ← (A||XA)(x) if A on input x outputs y, and XA
on the same input (including the random tape of A) outputs z. Let Λ be an (n, κ)-nice tuple for some
n = poly(κ). Consider t ∈ {1, 2}. The bilinear group generator Gbp is Λ-PKE secure in group Gt if for
any non-uniform PPT adversary A there exists a non-uniform PPT extractor XA, such that

Pr


gk := (p,G1,G2,GT , ê, g1, g2)← Gbp(1κ), (α, x)← Z2

p,

crs← (gαt , (g
x`

t , g
αx`

t )`∈Λ), (c, ĉ; (a`)`∈{0}∪Λ)← (A||XA)(gk; crs) :

ĉ = cα ∧ c 6=
∏

`∈{0}∪Λ

ga`x
`

t


is negligible in κ. Note that the element a0 is output since gt belongs to the CRS, and thus the adversary

has access to (gx
`

t , g
αx`

t ) for ` ∈ {0} ∪ Λ. Groth [Gro10] proved that the Λ-PKE assumption holds in
the generic group model in the case Λ = [n]; his proof can be straightforwardly modified to the general
case. We later need the special case where Λ = ∅, that is, the CRS contains only gαt , and the extractor
returns a0 such that c = ga0

t . This KE assumption (in a bilinear group) is similar to Damg̊ard’s KE
assumption [Dam91], except that it is made in a bilinear group setting.

Commitment Schemes in the CRS Model. A (tuple) commitment scheme (Gcom, Com) consists of
two PPT algorithms: a randomized CRS generation algorithm Gcom, and a randomized commitment algo-
rithm Com. Here, Gtcom(1κ, n), t ∈ {1, 2}, produces a CRS ckt, and Comt(ckt;a; r), with a = (a1, . . . , an),
outputs a commitment value A ∈ Gt. Within this paper, we open a commitment Comt(ckt;a; r) by
publishing the values a and r.

A commitment scheme (Gcom, Com) is computationally binding in group Gt, if for every non-uniform
PPT adversary A and positive integer n = poly(κ), the probability

Pr

[
ckt ← Gtcom(1κ, n), (a1, r1,a2, r2)← A(ckt) :

(a1, r1) 6= (a2, r2) ∧ Comt(ckt;a1; r1) = Comt(ckt;a2; r2)

]
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is negligible in κ. A commitment scheme (Gcom, Com) is perfectly hiding in group Gt, if for any pos-
itive integer n = poly(κ) and ckt ∈ Gtcom(1κ, n) and any two messages a1 and a2, the distributions
Comt(ckt;a1; ·) and Comt(ckt;a2; ·) are equal. We use the following variant of the knowledge commit-
ment scheme from [Gro10] as modified by Lipmaa [Lip12]:

CRS generation Gtcom(1κ, n): Let Λ be an (n, κ)-nice tuple with n = poly(κ). Define λ0 = 0. Given a
bilinear group generator Gbp, set gk := (p,G1,G2,GT , ê, g1, g2)← Gbp(1κ). Choose random α, x← Zp.
The CRS is ckt ← (gk; ĝt, (gti, ĝti)i∈[n]), where gti = gx

λi

t and ĝti = gαx
λi

t . Note that gt = gt0 is a
part of gk.

Commitment: To commit to a = (a1, . . . , an) ∈ Znp in group Gt, the committing party chooses a
random r ← Zp, and defines Comt(ckt;a; r) := (grt ·

∏n
i=1 g

ai
ti , ĝ

r
t ·
∏n
i=1 ĝ

ai
ti ).

Let t = 1. Fix a commitment key ck1 that in particular specifies g2, ĝ2 ∈ G2. A commitment (A, Â) ∈ G2
1

is valid, if e(A, ĝ2) = e(Â, g2). The case of t = 2 is dual.
As shown in [Lip12], the knowledge commitment scheme in group Gt is perfectly hiding, and compu-

tationally binding under the Λ-PSDL assumption in group Gt. If the Λ-PKE assumption holds in group
Gt, then for any non-uniform PPT algorithm A, that outputs some valid knowledge commitments there
exists a non-uniform PPT extractor XA that, given as an input the input of A together with A’s random
coins, extracts the contents of these commitments.

A trapdoor commitment scheme has 3 additional efficient algorithms: (a) A trapdoor CRS generation
algorithm inputs t, n and 1κ and outputs a CRS ck∗ (that has the same distribution as Gtcom(1κ, n)) and
a trapdoor td, (b) a randomized trapdoor commitment that takes ck∗ and a randomizer r as inputs and
outputs the value Comt(ck∗; 0; r), and (c) a trapdoor opening algorithm that takes ck∗, td, a and r as
an input and outputs an r′, s.t. Comt(ck∗; 0; r) = Comt(ck∗;a; r′). The knowledge commitment scheme
is trapdoor, with the trapdoor being td = x: after trapdoor-committing A ← Comt(ck; 0; r) = grt for
r ← Zp, the committer can open it to (a; r −

∑n
i=1 aix

λi) for any a [Gro10,Lip12].

Adaptive Rco-Soundness. To avoid knowledge assumptions, one can relax the notion of soundness.
Following [GOS11] and [GL07], Rco-soundness is a weaker version of soundness, where it is required
that an adversary who knows that (gk;C) 6∈ L should not be able to produce a witness wco such that
(gk;C,wco) ∈ Rco (see [GL07] or [GOS11] for a longer explanation). More formally, let R = {(gk;C,w)}
and L = {(gk;C) : (∃w)(gk;C,w) ∈ R} be defined as earlier. Let Rco = {(gk;C,wco)} be an efficiently
computable binary relation. An argument (Gbp,Gcrs,P,V) is (adaptively) Rco-sound, if for all non-uniform
PPT adversaries A, the following probability is negligible in κ:

Pr

[
gk← Gbp(1κ), crs← Gcrs(gk), (C,wco, π)← A(gk, crs) :

(gk;C,wco) ∈ Rco ∧ V(gk, crs;C, π) = 1

]
.

Groth-Lipmaa Sublinear NIZK Arguments. In [Gro10], Groth proposed efficient NIZK arguments
that he proved to be sound under the power computational Diffie-Hellman assumption and the PKE
assumption. Groth’s arguments were later made more efficient by Lipmaa [Lip12], who also showed
that one can use somewhat weaker security assumptions (PSDL instead of PCDH). Groth [Gro10]
and Lipmaa [Lip12] proposed two basic arguments (for Hadamard product and permutation). In both
cases, Lipmaa showed that by using results about progression-free sets one can construct a set Λ2

with |Λ2| = O(n22
√

2 log2 n) = n1+o(1). Together with a trivial Hadamard sum argument, one obtains
a complete set of arguments that can be used to construct NIZK arguments for any NP language.
(See [Gro10,Lip12] for discussion.) However, this is always not the most efficient way to obtain a NIZK
argument for a concrete language. In Sect. 3 we define new basic arguments that enable us to construct
a very efficient permutation matrix argument and thus also a very efficient shuffle argument.

3 New Subarguments

In this section we present some subarguments that are required to construct the final shuffle argument.
However, we expect them to have independent applications and thus we will handle each of them sepa-
rately.
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CRS generation Gcrs(1κ): Let gk := (p,G1,G2,GT , ê, g1, g2) ← Gbp(1κ). Let α̊ ← Zp. Denote g̊t ← gα̊t for
t ∈ {1, 2}. The CRS is crs ← (̊g1, g̊2). The commitment key is ck2 ← (gk; g̊2), and the verifier’s part of the
CRS is crsv ← g̊1.

Common input: A2 ← gr2 ∈ G2.
Argument generation P0(gk, crs;A2, r): The prover defines Å2 ← g̊r2 , and sends π ← Å2 ∈ G2 to V as the

argument.
Verification V0(gk, crsv;A2, π = Å2): The verifier accepts if ê(̊g1, A2) = ê(g1, Å2).

Protocol 1: New zero argument in group G2

3.1 New Zero Argument

In a zero argument, the prover aims to convince the verifier that he knows how to open knowledge
commitment At ∈ Gt to the all-zero message tuple 0 = (0, . . . , 0). Alternatively, one aims to prove the
knowledge of the discrete logarithm of At, that is, that At = grt for some r. By using the homomorphic
properties of the knowledge commitment scheme, the prover can use the zero argument to show that At
can be opened to an arbitrary constant.

This argument can be derived from [Gro10,Lip12]. Intuitively, we set (only for this argument) n = 0
and show that A = A2 is a commitment to a length-0 tuple. For this, we only have to include to the CRS
the elements g̊1 and g̊2. (The case t = 1 can be handled dually.) The following theorem is basically a
tautology, since the KE assumption states that the prover knows r. However, since any (A2, Å2), where
Å2 = Aα̊2 , is a commitment of 0 (and thus, (gk;A2) ∈ L) for some r, we cannot claim that Prot. 1
is computationally sound (even under a knowledge assumption). Instead, analogously to [Gro10,Lip12],
we prove a weaker version of soundness (which is however sufficient to achieve soundness of the shuffle
argument). Note that the last statement of the theorem basically says that no efficient adversary can
output an input to the product argument together with an accepting argument and openings to all
commitments and all other pairs of type (y, ȳ) that are present in the argument, such that aibi 6= ci for
some i.

Theorem 1. The non-interactive zero argument in Prot. 1 is perfectly complete, perfectly zero-
knowledge. Any non-uniform probabilistic-polynomial time adversary has a negligible chance of returning
an input inp0 = A2 and a satisfying argument π0 = Å2 together with a opening witness w0 = (a, r), such
that (A2, Å2) = Com2(ck2;a; r), a 6= 0 but the verification V0(gk, crs;A2, Å2) accepts.

Proof. Perfect completeness is straightforward, since ê(̊g1, A2) = ê(gα̊1 , A2) = ê(g1, A
α̊
2 ) = ê(g1, Å2).

Perfect zero-knowledge: we construct the following simulator S = (S1,S2). The simulator S1

generates first td = α̊ ← Zp, and then crs ←
(̊
g1 ← gα̊1 , g̊2 ← gα̊2

)
, and saves td. Since the simulator

S2 later knows α̊, it can compute a satisfying argument Å2 as Å2 ← Aα̊2 . Clearly, Å2 has the same
distribution as in the real argument.

Weaker version of soundness: assume that there exists an adversary A that can break the
last statement of the theorem. That is, A can create (A2, (a, r), Å2) such that (A2, Å2) = Com2(a; r),

a 6= 0, and ê(̊g1, A2) = ê(g1, Å2). But then (A2, Å2) = (gr2 ·
∏n
i=1 g

aix
λi

2 , g̊r2 ·
∏n
i=1 g̊

aix
λi

2 ) with λI 6= 0 for

some I ∈ [n]. Since (gk, crs) contains g̊x
`

2 only for ` ∈ {0}, the adversary has thus broken the ∅-PSDL
assumption. But the ∅-PSDL assumption is straightforwardly true, since then the input of the adversary
does not depend on x at all. Thus, the argument in Prot. 1 satisfies the last statement of the theorem. ut

The fact that the weaker version of soundness of this argument does not require any (non-trivial) as-

sumption is, while somewhat surprising, also a logical consequence of CRS including g̊x
`

2 only for ` 6= 0.
In fact, if the CRS contained g̊x`2 for some other value of ` then the argument would not be sound under
any (reasonable) computational assumption. The proof of the following lemma is straightforward.

Lemma 1. The CRS length in Prot. 1 is 1 element from the group G1 and 1 element from the group
G2. The argument size in Prot. 1 is 1 element from the group G2. Prover’s computational complexity
is dominated by 1 exponentiation. The verifier’s computational complexity is dominated by 2 bilinear
pairings.
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3.2 New 1-Sparsity Argument

Assume that A2 ∈ G2. A vector a ∈ Znp is k-sparse, if it has at most k non-zero coefficients. In a 1-sparsity
argument in G2, the prover aims to convince the verifier that he knows an opening A2 = gr2 ·

∏n
i=1 g

ai
2,λi

such that a is 1-sparse, that is, there exists I ∈ [n] such that for i 6= I, ai = 0, while aI can take
any value, including 0. Alternatively, since Zp has no zero divisors, this means that the prover aims to
convince the verifier that aiaj = 0 for every i, j ∈ [n] such that i 6= j. (Note that the zero argument can
seen as a 0-sparsity argument.) A new 1-sparsity argument is depicted by Prot. 2; 1-sparsity argument
in G1 is defined dually.

Intuitively, the new 1-sparsity argument is constructed by following the same main ideas as the basic
arguments (for Hadamard product and permutation) from [Lip12]. That is, we start with a verification
equation ê(A1, A2) = ê(g1, F ), where the discrete logarithm of the left-hand side, see Eq. (1), is a sum of
two polynomials Fcon(x) and Fπ(x), where x is the secret key. In this case, Fcon(x) has n(n−1) monomials
(with coefficients aiaj with i 6= j) that all vanish exactly if the prover is honest. On the other hand, the
polynomial Fπ(x) has only 2n+1 monomials. Therefore, a honest prover can compute the argument given
2n+1 pairs (g2`, ḡ2`). Moreover, the prover can construct F by using 10 exponentiations. For comparison,
in the basic arguments (the Hadamard product argument and the permutation argument) of [Lip12],

the polynomial Fcon(x) had n monomials, and the polynomial Fπ(x) had O(n22
√

2 log2 n) = n1+o(1)

monomials. Thus, the CRS had O(n22
√

2 log2 n) = n1+o(1) group elements and the prover’s computational

complexity was dominated by O(n22
√

2 log2 n) = n1+o(1) exponentiations.
Similarly to the zero argument, we cannot prove the computational soundness of this argument, since

for every a, there exists r such that A2 = gr2
∏
i∈[n] g

aix
λi

2 . Instead, following [Gro10,Lip12], we prove a

weaker version of knowledge. Intuitively, the theorem statement includes f ′` only for ` ∈ Λ̄ (resp., a` for
` ∈ Λ together with r) since ḡ2` (resp., ḡ1`) belongs to the CRS only for ` ∈ Λ̄ (resp., ` ∈ {0} ∪ Λ).

Theorem 2. The 1-sparsity argument in Prot. 2 is perfectly complete and perfectly witness-
indistinguishable. Let Λ be a progression-free set of odd positive integers. If the Gbp is Λ̄-PSDL secure,
then any non-uniform PPT adversary has negligible chance of outputting inpspa ← (A2, Ā2) and a sat-
isfying argument πspa ← (A1, Ā1, F, F̄ ) together with an opening witness wspa ← ((a`)`∈Λ, r, (f

′
`)`∈Λ̄),

such that (A2, Ā2) = Com2(ck2;a; r), (F, F̄ ) = (g
∑
`∈Λ̄ f

′
`x`

2 , ḡ
∑
`∈Λ̄ f

′
`x`

2 ), for some i 6= j ∈ [n], aiaj 6= 0,
and the verification Vspa(gk, crs; (A2, Ā2), πspa) accepts.

The (weak) soundness reduction is tight, except that it requires to factor a polynomial of degree 2λn =
max

{
i ∈ Λ̄

}
.

Proof. Let η ← ê(A1, A2) and h← ê(g1, g2). Perfect witness-Indistinguishability: since satisfying
argument πspa is uniquely determined, all witnesses result in the same argument, and thus this argument
is witness-indistinguishable.

Perfect completeness. All verifications but the last one are straightforward. For the last verifi-
cation ê(A1, A2) = ê(g1, F ), note that logh η = (r +

∑n
i=1 aix

λi)(r +
∑n
j=1 ajx

λj ) = Fcon(x) + Fπ(x),
where

Fcon(x) =

n∑
i=1

n∑
j=1:j 6=i

aiajx
λi+λj

︸ ︷︷ ︸
δ∈2̂Λ

and Fπ(x) = r2 + 2r

n∑
i=1

aix
λi +

n∑
i=1

a2
ix

2λi

︸ ︷︷ ︸
δ∈Λ̄

. (1)

Thus, logh η is equal to a sum of xδ for δ ∈ 2̂Λ and δ ∈ Λ̄. If the prover is honest, then aiaj = 0 for
i 6= j, and thus logh η is a formal polynomial that has non-zero monomials γxδ with only δ ∈ Λ̄. Since
then ai = 0 for i 6= I, we have logh η = r2 + 2raIx

λI + a2
Ix

2λI = logg2
F . Thus, if the prover is honest,

then the third verification succeeds.
Weaker version of soundness: Assume that A is an adversary that can break the last statement

of the theorem. Next, we construct an adversary A′ against the Λ̄-PSDL assumption. Let gk← Gbp(1κ)

and x← Zp. The adversary A′ receives crs← (gk; (gx
`

1 , gx
`

2 )`∈Λ̄) as her input, and her task is to output

x. She sets ᾱ ← Zp, crs′ ← (ḡ1, ḡ2, (g
x`

1 , gᾱx
`

1 )`∈Λ, (g
x`

2 , gᾱx
`

2 )`∈Λ∪(2·Λ)), and then forwards crs′ to A.

Clearly, crs′ follows the distribution imposed by Gcrs(1κ). Denote ck2 ← (gk; ḡ2, (g
x`

2 , gᾱx
`

2 )`∈Λ). According
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System parameters: Let n = poly(κ). Let Λ = {λi : i ∈ [n]} be an (n, κ)-nice progression-free set of odd
positive integers. Denote λ0 := 0. Let Λ̄ = {0} ∪ Λ ∪ (2 · Λ).

CRS generation Gcrs(1κ): Let gk := (p,G1,G2,GT , ê, g1, g2) ← Gbp(1κ). Let ᾱ, x ← Zp. Denote ḡt ← gᾱt ,

gt` ← gx
`

t and ḡt` ← gᾱx
`

t for t ∈ {1, 2} and ` ∈ Λ̄. The CRS is crs← (ḡ1, ḡ2, (g1`, ḡ1`)`∈Λ, (g2`, ḡ2`)`∈Λ∪(2·Λ)).
Set ck2 ← (gk; ḡ2, (g2`, ḡ2`)`∈Λ), and let crsv ← (ḡ1, ḡ2) be the verifier’s part of crs.

Common input: (A2, Ā2) = Com2(ck2;a; r) = (gr2 · gaI2,λI
, ḡr2 · ḡaI2,λI

) ∈ G2
2, with I ∈ [n].

Argument generation Pspa(gk, crs; (A2, Ā2), (a, r)): The prover defines A1 ← gr1 · gaI1,λI
, Ā1 ← ḡr1 · ḡaI1,λI

, F ←

gr
2

2 · g2raI
2,λI

· ga
2
I

2,2λI
, and F̄ ← ḡr

2

2 · ḡ2raI
2,λI

· ḡa
2
I

2,2λI
. The prover sends πspa ← (A1, Ā1, F, F̄ ) ∈ G2

1 × G2
2 to the

verifier as the argument.
Verification Vspa(gk, crsv; (A2, Ā2), πspa): Vspa accepts iff ê(A1, g2) = ê(g1, A2), ê(Ā1, g2) = ê(A1, ḡ2),

ê(g1, Ā2) = ê(ḡ1, A2), ê(g1, F̄ ) = ê(ḡ1, F ), and ê(A1, A2) = ê(g1, F ).

Protocol 2: New 1-sparsity argument

to the last statement of the theorem, A(gk; crs′) returns ((A2, Ā2), wspa = ((a`)`∈Λ, r, (f
′
`)`∈Λ̄), πspa =

(A1, Ā1, F, F̄ )).
Assume that A was successful, that is, for some i, j ∈ [n] and i 6= j, aiaj 6= 0. Since (A2, Ā2) =

Com2(ck2;a; r) and Vspa(gk, crs′; (A2, Ā2), πspa) = 1, A′ has expressed logh η = logg2
F as a polynomial

f(x), where at least for some ` ∈ 2̂Λ, x` has a non-zero coefficient.
On the other hand, logg2

F =
∑
`∈Λ̄ f

′
`x
` = f ′(x). Since Λ is a progression-free set of odd positive

integers, then 2̂Λ∩ Λ̄ = ∅ and thus if ` ∈ Λ̄ then ` 6∈ 2̂Λ. Therefore, all coefficients of f ′(x) corresponding
to any x`, ` ∈ 2̂Λ, are equal to 0. Thus f(X) =

∑
f`X

` and f ′(X) =
∑
`∈Λ̄ f

′
`X

` are different polynomials
with

f(x) = f ′(x) = logg2
F .

Therefore, A′ has succeeded in creating a non-zero polynomial d = f−f ′, such that d(x) =
∑
`∈Λ̄ d`x

` =
0.

Next, A′ can use an efficient polynomial factorization [vHN10] algorithm in Zp[X] to efficiently

compute all 2λn + 1 roots of d(x). For some root y, gx
`

1 = gy
`

1 . A′ sets x← y, thus violating the Λ̄-PSDL
assumption. ut

The 1-sparsity argument is not perfectly zero-knowledge. The problem is that the simulator knows
td = (ᾱ, x), but given td and (A2, Ā2) she will not be able to generate πspa. E.g., she has to compute

A1 = gr1 · g
aIx

λI

1 based on A2 = gr2 · g
aIx

λI

2 and x, but without knowing r, I or aI . This seems to
be impossible without knowing an efficient isomorphism G1 → G2. Computing F and F̄ is even more
difficult, since in this case the simulator does not even know the corresponding elements in G1. Technically,
the problem is that due to the knowledge of the trapdoor, the simulator can, knowing one opening (a, r),
produce an opening (a′, r′) to any other a′. However, here she does not know any openings. For the
same reason, the permutation matrix argument of Sect. 3.3 will not be zero-knowledge. On the other
hand, in the final shuffle argument of Sect. 5, the simulator creates all commitments by herself and can
thus properly simulate the argument. By the same reason, the subarguments of [Gro10,Lip12] are not
zero-knowledge but their final argument (for circuit satisfiability) is.

Theorem 3. Consider Prot. 2. The CRS consists of 2n + 1 elements of G1 and 4n + 1 elements of
G2, with the verifier’s part of the CRS consisting of only 1 element of G1 and 1 element of G2. The
communication complexity (argument size) of the argument in Prot. 2 is 2 elements from G1 and 2
elements from G2. Prover’s computational complexity is dominated by 10 exponentiations. Verifier’s
computational complexity is dominated by 10 bilinear pairings.

Proof. Straightforward. E.g., in a single 1-sparsity argument, the prover’s (resp., the verifier’s) computa-
tional complexity is dominated by 10 exponentiations (resp., pairings). In the case of the zero argument,
the prover’s (resp., the verifier’s) computational complexity is dominated by 1 exponentiation (resp., 2
pairings). ut

3.3 New Permutation Matrix Argument

In this section, we will design a new permutation matrix argument where the prover aims to convince
the verifier that he knows a permutation matrix P such that (c2i, c̄2i) ∈ G2

2 are knowledge commitments
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Setup: let gk := (p,G1,G2,GT , ê, g1, g2)← Gbp(1κ).

Common reference string Gcrs(gk): Let ᾱ, α̊, x ← Zp, ḡt ← gᾱt , g̊t ← gα̊t , gt` ← gx
`

t , and ḡt` ← ḡx
`

t . Let
D ←

∏n
i=1 g2,λi . Let crs ← (ḡ1, ḡ2, g̊1, g̊2, (g1`, ḡ1`)`∈Λ, (g2`, ḡ2`)`∈Λ∪(2·Λ), D), ck2 = (gk; ḡ2, (g2`, ḡ2`)`∈Λ),

c̊k2 = (gk; g2, g̊2), and crsv = (ḡ1, ḡ2, g̊1).
Common input: (c2i, c̄2i) = Com2(ck2;Pi; ri) = (gri2 · g2,λψ(i)

, ḡri2 · ḡ2,λψ(i)
) for i ∈ [n].

Argument Generation Ppm(gk, crs; (c2, c̄2), (P, r)): Construct a zero argument π0 ← g̊
∑n
i=1 ri

2 that
(
∏n
i=1 c2i)/D commits to 0. For i ∈ [n], construct a 1-sparsity argument πspai = (c1i, c̄1i, Fi, F̄i) that (c2i, c̄2i)

commits to a 1-sparse row. Send πpm ← (π0,πspa) to the verifier.
Verification Vpm(gk, crsv; (c2, c̄2);πpm): The verifier checks n+ 1 arguments (π0,πspa).

Protocol 3: New permutation matrix argument in group G2 with P = Pψ

to P ’s rows. Recall that a permutation matrix is a Boolean matrix with exactly one 1 in every row and
column: if ψ is a permutation then the corresponding permutation matrix Pψ is such that (Pψ)ij = 1 iff
j = ψ(i). Thus (Pψ−1)ij = 1 iff i = ψ(j). We base our argument on the following lemma.

Lemma 2. An n×n matrix P is a permutation matrix if and only if the following two conditions hold:
(a) the sum of elements in any single column is equal to 1, and (b) no row has more than 1 non-zero
elements.

Proof. First, assume that P is a permutation matrix. Then every column has exactly one non-zero
element (namely, with value 1), and thus both claims hold. Second, assume that (a) and (b) are true.
Due to (a), every column must have at least one non-zero element, and thus the matrix has at least n
non-zero elements. Due to (b), no row has more than 1 non-zero elements, and thus the matrix has at
most n non-zero elements. Thus the matrix has exactly n non-zero elements, one in each column. Due
to (a), all non-zero elements are equal to 1, and thus P is a permutation matrix. ut

We now use the 1-sparsity argument and the zero argument to show that the committed matrix
satisfies the claims of Lem. 2. Therefore, by Lem. 2, P is a permutation matrix. Following [Gro10,Lip12]
and similarly to the case of the zero and 1-sparsity arguments, we prove that the permutation argument
satisfies a “weaker” version of soundness.

Theorem 4. The argument in Prot. 3 is a perfectly complete and perfectly witness-indistinguishable per-
mutation matrix argument. Let Λ be a progression-free set of odd positive integers. If the Λ̄-PSDL assump-
tion holds, then any non-uniform PPT adversary has a negligible chance in outputting an input inppm ←
(c2, c̄2) and a satisfying argument πpm ←

(
π0, (c1i, c̄1i, Fi, F̄i)i∈[n]

)
together with an opening witness

wpm ←
(
(ai)i∈Λ, ra, (Pi, ri, (f

′
ij)j∈Λ̄)i∈[n]

)
, such that

(
(
∏n
i=1 c2i) /D, π

0
)

= Com2(ck2;a; ra), (∀i ∈
[n])(c2i, c̄2i) = Com2(ck2;Pi; ri), (∀i ∈ [n]) logg2

Fi =
∑
j∈Λ̄ f

′
ijx

j, (a 6= 0 ∨ (∃i ∈ [n])Pi is not 1-sparse),
and the verification Vpm(gk, crs; (c2, c̄2), πpm) accepts.

Proof. Perfect Completeness: follows from the completeness of the 1-sparsity and zero arguments

and from Lem. 2, if we note that
∏n
i=1 c2i/D = g

∑n
i=1 ri

2 , and thus (
∏n
i=1 c2i/D, π

0) commits to 0 iff
every column of P sums to 1.

Weaker version of soundness: Let A be a non-uniform PPT adversary that creates (c2, c̄2), an
opening witness ((a`)`∈Λ, ra, (Pi, ri, (f

′
ij)j∈Λ̄)i∈[n]), and an accepting NIZK argument πspa.

Since the zero argument is (weakly) sound, verification of the argument π0 shows that every column
of P sums to 1. Here the witness is w0 = (a, ra) with a =

∑n
i=1Pi−1. By the Λ̄-PSDL assumption, the

1-sparsity assumption is (weakly) sound. Therefore, verification of the arguments πspa shows that every
row of P has exactly one 1 (here the witness is wspai = (Pi, ri, (f

′
ij)j∈Λ̄)). Therefore, by Lem. 2 and by

the (weak) soundness of the 1-sparsity and zero arguments, P is a permutation matrix.
Perfect witness-indistinguishability: since satisfying argument πpm is uniquely determined,

all witnesses result in the same argument, and therefore the permutation matrix argument is witness-
indistinguishable. ut

Lemma 3. Consider Prot. 3. The CRS consists of 2n + 2 elements of G1 and 5n + 4 elements of G2.
The verifier’s part of the CRS consists of 2 elements of G1 and of 2 elements of G2. The communication
complexity is 2n elements of G1 and 2n + 1 elements of G2. The prover’s computational complexity is
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dominated by 10n+ 1 exponentiations. The verifier’s computational complexity is dominated by 10n+ 2
pairings.

Proof. Straightforward. E.g., in a single 1-sparsity argument, the prover’s (resp., the verifier’s) computa-
tional complexity is dominated by 10 exponentiations (resp., pairings). In the case of the zero argument,
the prover’s (resp., the verifier’s) computational complexity is dominated by 1 exponentiation (resp., 2
pairings). ut

4 Knowledge BBS Cryptosystem

Boneh, Boyen and Shacham [BBS04] proposed the BBS cryptosystem Π = (Gbp,Gpkc, Enc,Dec). We will
use a (publicly verifiable) “knowledge” version of this cryptosystem so that according to the KE (that is,
the ∅-PKE) assumption, the party who produces a valid ciphertext must know both the plaintext and
the randomizer. We give a definition for group G1, the knowledge BBS cryptosystem for group G2 can
be defined dually.

Setup (1κ): Let gk← (p,G1,G2,GT , ê, g1, g2)← Gbp(1κ).

Key Generation Gpkc(gk): Set (α̃1, α̃2, α̃3) ← Z3
p, g̃1 ← gα̃3

1 , g̃
(1)
2 ← gα̃1

2 , g̃
(2)
2 ← gα̃2

2 , g̃
(3)
2 ← gα̃3

2 . The

secret key is sk := (sk1, sk2) ← (Z∗p)2, and the public key is pk ← (gk; g̃1, g̃
(1)
2 , g̃

(2)
2 , g̃

(3)
2 , f, f̃ , h, h̃),

where f = g
1/sk1

1 , f̃ = f α̃1 , h = g
1/sk2

1 , and h̃ = hα̃2 .
Encryption Encpk(µ;σ, τ): To encrypt a message µ ∈ Zp with randomizer (σ, τ) ∈ Z2

p, output the

ciphertext u = (u1, u2, u3, ũ1, ũ2, ũ3), where u1 = fσ, u2 = hτ , u3 = gµ+σ+τ
1 , ũ1 = f̃σ, and ũ2 = h̃τ ,

and ũ3 = g̃µ+σ+τ
1 .

Decryption Decsk(u1, u2, u3, ũ1, ũ2, ũ3): if ê(u1, g̃
(1)
2 ) = ê(ũ1, g2), ê(u2, g̃

(2)
2 ) = ê(ũ2, g2) and ê(u3, g̃

(3)
2 ) =

ê(ũ3, g2), then return the discrete logarithm of gµ1 ← u3/(u
sk1
1 usk2

2 ). Otherwise, return ⊥.

Since Encpk(µ1;σ1, τ1)·Encpk(µ2;σ2, τ2) = Encpk(µ1+µ2;σ1+σ2, τ1+τ2), the knowledge BBS cryptosystem
is additively homomorphic (with respect to element-wise multiplication of the ciphertexts). In particular,
one can re-encrypt (that is, blind) a ciphertext efficiently: if σ2 and τ2 are random, then Encpk(µ;σ1, τ1) ·
Encpk(0;σ2, τ2) = Encpk(µ;σ1 + σ2, τ1 + τ2) is a random encryption of µ, independently of σ1 and τ1.

The cryptosystem has to be lifted (i.e., the value µ be in exponent) for the soundness proof of the
new shuffle argument in Sect. 5 to go through; see there for a discussion. Thus, to decrypt, one has to
compute discrete logarithms. Since this the latter is intractable, in real applications one has to assume
that µ is small. Consider for example the e-voting scenario where µ is the number of the candidate
(usually a small number).

One can now use one of the following approaches. First, discard the ballots if the cipher-
text does not decrypt. (This can be checked publicly.) Second, use a (non-interactive) range
proof [Bou00,LAN02,Lip03,CCs08,RKP09,CLs10,CLZ12] (in the e-voting scenario, range proofs are only
given by the voters and not by the voting servers, and thus the range proof can be relatively less efficient
compared to the shuffle argument) to guarantee that the ballots are correctly formed. In this case, invalid
ballots can be removed from the system before starting to shuffle (saving thus valuable time otherwise
wasted to shuffle invalid ciphertexts). Both approaches have their benefits, and either one can be used
depending on the application.

The inclusion of ũ3 to the ciphertext is required because of our proof technique. Without it, the
extractor in the proof of of the soundness of the new shuffle argument can extract µ only if µ is small.
Thus, security would not be guaranteed against an adversary who chooses u3 without actually knowing
the element µ.

It is easy to see that the knowledge BBS cryptosystem, like the original BBS cryptosystem, is CPA-
secure under the DLIN assumption (see Sect. A for the definition of the latter).

PRA1-Security. Under a knowledge (KE, that is, ∅-PKE) assumption the encrypting party knows the
tuple (µ, σ, τ): there exists an extractor that returns σ (resp., τ or µ), given access to (u1, ũ1) (resp.,
(u2, ũ2) or (u3, ũ3)) and the encrypter’s random coins. For this it is required that values α̃1, α̃2 and α̃3

are chosen independently at random. Thus, under the KE assumption in group Gt, the knowledge-BBS
cryptosystem satisfies PRA1-security, a version of plaintext-awareness (more precisely, PA1-security as
defined in [BP04]), where the extractor extracts both the plaintext and the randomizer.
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5 New Shuffle Argument

Let Π = (Gpkc, Enc,Dec) be an additively homomorphic cryptosystem. Assume that ui and u′i are valid
ciphertexts of Π. We say that (u′1, . . . , u

′
n) is a shuffle of (u1, . . . , un) iff there exists a permutation ψ ∈ Sn

and randomizers r1, . . . , rn such that u′i = uψ(i) · Encpk(0; ri) for i ∈ [n]. (In the case of the knowledge
BBS cryptosystem, ri = (σi, τi).) In a shuffle argument, the prover aims to convince the verifier in zero-
knowledge that given (pk, (ui, u

′
i)i∈[n]), he knows a permutation ψ ∈ Sn and randomizers ri such that

u′i = uψ(i) ·Encpk(0; ri) for i ∈ [n]. More precisely, we define the group-specific binary relation Rsh exactly
as in [GL07]:

Rsh :=
{

((p,G1,G2,GT , ê, g1, g2), (pk, {ui} , {u′i}), (ψ, {ri})) : ψ ∈ Sn ∧
(
∀i : u′i = uψ(i) · Encpk(0; ri)

)}
Note that both according to the corresponding computational soundness definition and the Groth-Lu
co-soundness definition (see App. B), the adversary picks not only the final ciphertexts u′i but also the
initial ciphertexts ui.

In a real life application of the shuffle argument, the adversary (e.g., a malicious mix server) usually
gets the ciphertexts ui from a third party (from voters, or from another mix server), and thus does not
know their discrete logarithms. However, in such a case we can still prove soundness of the full e-voting
system (including the voters and all mix servers) if we give the adversary access to secret coins of all
relevant parties. The use of knowledge BBS guarantees that the encrypters (voters) know the plaintexts
and the randomizers, and thus the use of knowledge BBS can be seen as a white-box non-interactive
knowledge argument. This corresponds to the case in several interactive (or Fiat-Shamir heuristic based)
shuffles, where the ballots are accompanied by a proof of knowledge of the actual vote, from what
the (black-box) simulator obtains the actual plaintexts necessary to complete the simulation. We thus
think that soundness in our model is relevant, and corresponds to the established cryptographic practice
with a twist. We leave the question of whether this model is necessary in applications like e-voting
(where initial ciphertexts are not provided by the mixservers), and when co-soundness is undesired, as
an interesting open problem. Using the Groth-Lu co-soundness definition avoids this issue, since in that
case the adversary does not have access to the random coins of the participants.

We note that Groth and Lu made in addition a similar assumption in [GL07] where they prove co-
soundness against adversaries who also output and thus know the secret key of the cryptosystem. (See
App. B for a precise definition.) Thus, the adversary can decrypt all the ciphertexts, and thus knows
the plaintexts (but does not have to know the randomizers). As argued in [GL07], this is reasonable in
the setting of mixnet where the servers can usually threshold-decrypt all the results. Their approach is
however not applicable in our case, since the knowledge of the secret key enables the adversary to obtain
the plaintexts and the randomizers in exponents, while to prove the soundness in Thm. 5 the adversary
has to know the plaintexts and the randomizers themselves.

Next, we construct an efficient shuffle argument that works with the knowledge BBS cryptosystem
of Sect. 4. Assume that the ciphertexts (ui1, ui2, ui3, ũi1, ũi2, ũi3), where i ∈ [n], are created as in Sect. 4.
The shuffled ciphertexts with permutation ψ ∈ Sn and randomizers (σ′i, τ

′
i)i∈[n] are

u′i = (u′i1, u
′
i2, u

′
i3, ũ

′
i1, ũ

′
i2, ũ

′
i3) = uψ(i) · Encpk(0;σ′i, τ

′
i) = Encpk(µψ(i);σψ(i) + σ′i, τψ(i) + τ ′i) .

Let P = Pψ−1 denote the permutation matrix corresponding to the permutation ψ−1.
The new shuffle argument is described in Prot. 4. Here, the prover first constructs a permutation

matrix and a permutation matrix argument πpm. After that, he shows that the plaintext vector of
u′i is equal to the product of this permutation matrix and the plaintext vector of ui. Importantly, we
can prove the adaptive computational soundness of the shuffle argument. This is since while in the
previous arguments one only relied on (perfectly hiding) knowledge commitment scheme and thus any
commitment could commit at the same time to the correct value (for example, to a permutation matrix)
and to an incorrect value (for example, to an all-zero matrix), here the group-dependent language contains
statements about a public-key cryptosystem where any ciphertext can be uniquely decrypted. Thus, it
makes sense to state that (pk, (ui, u

′
i)i∈[n]) is not a shuffle. To prove computational soundness, we need to

rely on the PKE assumption. It is also nice to have a shuffle argument that satisfies a standard security
notion.

Theorem 5. Prot. 4 is a non-interactive perfectly complete and perfectly zero-knowledge shuffle ar-
gument of the knowledge BBS ciphertexts. Assume that µ is sufficiently small so that logg1

gµ1 can be
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Common reference string: Similarly to the permutation matrix argument, let ᾱ, α̊, x← Zp, ḡt ← gᾱt , g̊t ← gα̊t ,

gt` ← gx
`

t , and ḡt` ← ḡx
`

t . Let D ←
∏n
i=1 g2,λi . In addition, let sk1, sk2 ← Z∗p and α̃1, α̃2, α̃3 ← Zp. Let

f ← g
1/sk1
1 , h← g

1/sk2
1 , f̃ ← f α̃1 , h̃← hα̃2 , g̃1 ← gα̃3

1 , g̃
(1)
2 ← gα̃1

2 , g̃
(2)
2 ← gα̃2

2 , and g̃
(3)
2 ← gα̃3

2 .
The CRS is

crs := (ḡ1, ḡ2, g̊1, g̊2, (g1`, ḡ1`)`∈Λ, (g2`, ḡ2`)`∈Λ∪(2·Λ), D) .

The commitment keys are ckt ← (gk; ḡt, (gt`, ḡt`)`∈Λ) and c̊k2 ← (gk; g̊2). The public key is pk =

(gk; g̃1, g̃
(1)
2 , g̃

(2)
2 , g̃

(3)
2 , f, f̃ , h, h̃), and the secret key is sk = (sk1, sk2).

Common input: (pk, (ui, u
′
i)i∈[n]), where ui = Encpk(µi;σi, τi) ∈ G3

1 and u′i = Encpk(µψ(i);σψ(i)+σ′i, τψ(i)+τ ′i) ∈
G3

1.
Argument Psh(gk, crs; (pk, (ui, u

′
i)i∈[n]), (ψ, (σ

′
i, τ
′
i)i∈[n])): the prover does the following.

1. Let P = Pψ−1 be the n× n permutation matrix corresponding to the permutation ψ−1.
2. For i ∈ [n], let ri ← Zp and (c2i, c̄2i)← Com2(ck2;Pi; ri) = (gri2 · g2,λ

ψ−1(i)
, ḡri2 · ḡ2,λ

ψ−1(i)
).

3. Generate a permutation matrix argument πpm for inputs (c2, c̄2).
4. Set (Rσ, Rτ )← Z2

p, (cσ, c̄σ)← Com2(ck2;σ′1, . . . , σ
′
n;Rσ), and (cτ , c̄τ )← Com2(ck2; τ ′1, . . . , τ

′
n;Rτ ).

5. Compute (uσ, ũσ)← (fRσ ·
∏n
i=1 u

ri
i1 , f̃

Rσ ·
∏n
i=1 ũ

ri
i1), (uτ , ũτ )← (hRτ ·

∏n
i=1 u

ri
i2 , h̃

Rτ ·
∏n
i=1 ũ

ri
i2), (uµ, ũµ)←

(gRσ+Rτ
1 ·

∏n
i=1 u

ri
i3 , g̃

Rσ+Rτ
1 ·

∏n
i=1 ũ

ri
i3).

6. The argument is
πsh ← ((c2i, c̄2i)i∈[n], π

pm, cσ, c̄σ, cτ , c̄τ , uσ, ũσ, uτ , ũτ , uµ, ũµ) . (2)

Verification Vsh(gk, crs; (pk, (ui, u
′
i)i∈[n]), π

sh): the verifier does the following.
1. Check that ê(ḡ1, cσ) = ê(g1, c̄σ) and ê(ḡ1, cτ ) = ê(g1, c̄τ ). // (cσ, c̄σ) and (cτ , c̄τ ) are correct.

2. Check that ê(uσ, g̃
(1)
2 ) = ê(ũσ, g2), ê(uτ , g̃

(2)
2 ) = ê(ũτ , g2), and ê(uµ, g̃

(3)
2 ) = ê(ũµ, g2).

3. For i ∈ [n], check that ê(ui1, g̃
(1)
2 ) = ê(ũi1, g2), ê(ui2, g̃

(2)
2 ) = ê(ũi2, g2), ê(ui3, g̃

(3)
2 ) = ê(ũi3, g2),

ê(u′i1, g̃
(1)
2 ) = ê(ũ′i1, g2), ê(u′i2, g̃

(2)
2 ) = ê(ũ′i2, g2), and ê(u′i3, g̃

(3)
2 ) = ê(ũ′i3, g2). // Ciphertexts are correct.

4. Check the permutation matrix argument πpm.
5. Check that the following three equations hold:

(a) ê(f, cσ) ·
∏n
i=1 ê(ui1, c2i) = ê(uσ, g2) ·

∏n
i=1 ê(u

′
i1, g2,λi),

(b) ê(h, cτ ) ·
∏n
i=1 ê(ui2, c2i) = ê(uτ , g2) ·

∏n
i=1 ê(u

′
i2, g2,λi), and

(c) ê(g1, cσcτ ) ·
∏n
i=1 ê(ui3, c2i) = ê(uµ, g2) ·

∏n
i=1 ê(u

′
i3, g2,λi).

Protocol 4: New shuffle argument

computed in polynomial time. If the Λ-PSDL, the DLIN, the KE (in group G1), and the Λ̄-PKE (in
group G2) assumptions hold, then the argument is also adaptively computationally sound.

We recall that ∅-PKE is equal to the KE assumption (in the same bilinear group). Thus, if Λ̄-PKE is
hard then also Λ-PKE and KE are hard (in the same group).

Proof. Perfect completeness: To verify the proof, the verifier first checks the consistency of the
commitments, ciphertexts and the permutation matrix argument; here one needs that the permutation
matrix argument is perfectly complete. Assume that the prover is honest. The verification equation in
step 5a holds since

ê(f, cσ) ·
n∏
i=1

ê(ui1, c2i) =ê(f, gRσ2 ·
n∏
i=1

g
σ′i
2,λi

) ·
n∏
i=1

(ê(ui1, g
ri
2 ) · ê(fσi , g2,λψ−1(i)

))

=ê(fRσ ·
n∏
i=1

urii1, g2) ·
n∏
i=1

ê(fσψ(i)+σ
′
i , g2,λi)

=ê(uσ, g2) ·
n∏
i=1

ê(u′i1, g2,λi) .

The equations in steps 5b and 5c can be verified similarly.

Adaptive computational soundness: Let A be a non-uniform PPT adversary that, given gk

and a crs, creates a statement (pk = (gk; g̃1, g̃
(1)
2 , g̃

(2)
2 , g̃

(3)
2 , f, f̃ , h, h̃), (ui, u

′
i)i∈[n]) and an accepting NIZK

argument πsh (as in Eq. (2) in Prot. 4), such that the plaintext vector (u′i)i∈[n] is not a permutation
of the plaintext vector (ui)i∈[n]. Assume that the DLIN assumption holds in G1, the KE assumption
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holds in G1 and Λ̄-PKE (and thus also Λ-PKE and KE) assumption holds in G2. We now construct an
adversary A′ that breaks the Λ-PSDL assumption.

Recall that πpm contains values π0 and πspai = (c1i, c̄1i, Fi, F̄i). By applying the relevant knowledge
assumption, we can postulate the existence of the following non-uniform PPT knowledge extractors that,
with all but a negligible probability, return certain values:

– By the KE assumption in group G1, there exists a knowledge extractor that, given
(uij , ũij , u

′
ij , ũ

′
ij)j∈[3] and access to A’s random coins, returns the values µi, σi, τi, µ

′
i, σ
′
i and τ ′i , such

that ui = Encpk(µi;σi, τi) and u′i = Encpk(µ′i;σ′i, τ ′i). Note that it might be the case that µ′i 6= µ%(i).

– By the Λ-PKE assumption in group G2, there exists a knowledge extractor that, given (cσ, c̄σ, cτ , c̄τ )
and access to A’s random coins, returns openings (σ∗, Rσ) and (τ∗, Rτ ), such that (cσ, c̄σ) =
Com2(ck2;σ∗;Rσ) and (cτ , c̄τ ) = Com2(ck2; τ∗;Rτ ). It does not have to hold that σ′i = σψ(i) + σ∗i
and τ ′i = τψ(i) + τ∗i for i ∈ [n].

– By the KE assumption in group G1, there exists a knowledge extractor that, given
(uσ, ũσ, uτ , ũτ , uµ, ũµ) and access to A’s random coins, returns openings (vσ, vτ , vµ), such that

(uσ, ũσ) = (fvσ , f̃vσ ), (uτ , ũτ ) = (hvτ , h̃vτ ), and (uµ, ũµ) = (g
vµ
1 , g̃

vµ
1 ). (Thus, it is not necessary

that the adversary created the values uσ, uτ and uµ correctly, it is just needed that she knows their
discrete logarithms.)

– By the KE assumption in group G2, there exists a knowledge extractor that, given ((
∏n
i=1 c2i)/D, π

0)
and access to A’s random coins, returns an opening ((ai)i∈[n], ra), such that ((

∏n
i=1 c2i)/D, π

0) =

Com2(c̊k2;a; ra).

– By the Λ-PKE assumption in group G2, for every i ∈ [n] there exists a knowledge extractor that,
given (c2i, c̄21) and access toA’s random coins, returns an opening ((Pij)j∈[n], ri) such that (c2i, c̄2i) =
Com2(ck2;Pi; ri).

– By the Λ̄-PKE assumption in group G2, for every i there exists a knowledge extractor that, given
(Fi, F̄i) and access to A’s random coins, returns openings (f ′ij)j∈Λ̄ such that logg2

Fi =
∑
j∈Λ̄ f

′
ijx

j .

The probability that any of these extractors fails is negligible, in this case we can abort. In the following,
we will assume that all extractors succeeded.

Let a be A’s output. Based on A and the last three type of extractors, we can build an adversary A′
that returns a together with ((ai)i∈[n], ra, (Pi, ri, (f

′
ij)j∈Λ̄)i∈[n]). Since the permutation matrix argument

is (weakly) sound (as defined in the last statement of Thm. 4) and πpm verifies, we have that c2 =
(c2i)i∈[n] commits to a permutation matrix. Thus, there exists ψ ∈ Sn such that for every i ∈ [n],

c2i = exp(g2, ri + xλ(ψ−1(i))).

Assume now that the equation in step 5a holds. Then

ê(uσ, g2) =ê(f, cσ) ·
n∏
i=1

ê(ui1, c2i)/

n∏
i=1

ê(u′i1, g2,λi)

=ê(f, g
Rσ+

∑n
i=1 σ

∗
i x
λi

2 ) ·
n∏
i=1

ê(fσi , gri+x
λ
ψ−1(i)

2 )/

n∏
i=1

ê(fσ
′
i , gx

λi

2 )

=ê(fRσ+
∑n
i=1 σiri+

∑n
i=1(σψ(i)+σ

∗
i−σ

′
i)x

λi
, g2) .

Since uσ = fvσ ,
∑n
i=1(σψ(i) +σ∗i −σ′i)xλi +Rσ+

∑n
i=1 σiri−vσ = 0. If σ′i 6= σψ(i) +σ∗i for some i ∈ [n],

then the adversary has succeeded in creating a non-trivial polynomial f∗(X) =
∑n
i=1 f

∗
i X

λi + f∗0 , with
f∗i = σψ(i) +σ∗i −σ′i and f∗0 = Rσ+

∑n
i=1 σiri−vσ, such that f∗(x) = 0. By using an efficient polynomial

factorization algorithm, one can now find all λn + 1 roots of f∗(X). For one of those roots, say y, we

have gy2 = gx2 . A′ can now return y = x. Since (gk, crs) only contains fx
`

for ` = 0, the adversary has
thus broken the ∅-PSDL assumption, an assumption that is true unconditionally since the adversary’s
input does not depend on x at all. Thus, σ′i = σψ(i) + σ∗i for i ∈ [n].

Analogously, by the verification in step 5b,
∑n
i=1(τψ(i) + τ∗i − τ ′i)xλi +Rτ +

∑n
i=1 τiri − vτ = 0, and

thus, τ ′i = τψ(i) + τ∗i for all i ∈ [n].
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Finally, by the verification in step 5c,

ê(uµ, g2) =ê(g1, cσcτ ) ·
n∏
i=1

ê(ui3, c2i)/

n∏
i=1

ê(u′i3, g2,λi)

=ê(g1, g
Rσ+Rτ+

∑n
i=1(σ∗i +τ∗i )xλi

2 )·
n∏
i=1

ê(gµi+σi+τi1 , exp(g2, ri + xλψ−1(i)))/

n∏
i=1

ê(g
µ′i+σ

′
i+τ

′
i

1 , gx
λi

2 ) .

Thus,

logg1
uµ =Rσ +Rτ +

n∑
i=1

(σ∗i + τ∗i )xλi +

n∑
i=1

(µi + σi + τi)(ri + xλψ−1(i))−
n∑
i=1

(µ′i + σ′i + τ ′i)x
λi

=Rσ +Rτ +

n∑
i=1

(µi + σi + τi)ri +

n∑
i=1

(µψ(i) − µ′i + σψ(i) + σ∗i − σ′i + τψ(i) + τ∗i − τ ′i)xλi

=Rσ +Rτ +

n∑
i=1

(µi + σi + τi)ri +

n∑
i=1

(µψ(i) − µ′i)xλi .

If µ′i 6= µψ(i) for some i ∈ [n], then the adversary has succeeded in creating a non-trivial polynomial

f∗(X) =
∑n
i=1 f

∗
i X

λi + f∗0 , with f∗i =
∑n
i=1(µψ(i) − µ′i) and f∗0 = Rσ +Rτ +

∑n
i=1(µi + σi + τi)ri − vµ,

such that f∗(x) = 0. By using an efficient polynomial factorization algorithm, one can now find all λn+1

roots of f∗. For one of those roots, say y, we have gy2 = gx2 . Since (gk, crs) only contains gx
`

1 for ` ∈ Λ,
the adversary has thus broken the Λ-PSDL assumption. Therefore, due to the Λ-PSDL assumption,
µ′i = µψ(i) for i ∈ [n].3

Thus, u′i1 = fσψ(i)+σ
∗
i , u′i2 = hτψ(i)+τ

∗
i , u′i3 = g

µψ(i)+σψ(i)+σ
∗
i +τψ(i)+τ

∗
i

1 and similarly for elements ũ′ij ,
and therefore, {u′i} is indeed a correct shuffle of {ui}.

Perfect zero-knowledge: We construct a simulator S = (S1,S2) as follows. First, S1 generates
random å, ᾱ, x ← Zq, and sets td ← (̊a, ᾱ, x). He then creates crs as in Prot. 4, and stores td. The
construction of S2 is given in Prot. 5. Next, we give an analysis of the simulated proof. Note that cσ,
cτ and c2i are independent and random variables in G, exactly as in the real run of the protocol. With
respect to those variables, we define uσ, uτ and uµ so that they satisfy the verification equations. Thus,
we are now only left to show that the verification equations in steps 5a, 5b and 5c hold.

Clearly, πpm is simulated correctly, since ê (̊g1, (
∏n
i=1 c2i)/D) = ê(g1, π

0), ê(c1i, g2) = ê(g1, c2i),
ê(c̄1i, g2) = ê(c1i, ḡ2), ê(g1, c̄2i) = ê(ḡ1, c2i), ê

(
g1, F̄i

)
= ê(ḡ1, Fi), and ê(c1i, c2i) = ê(gzi1 , g

zi
2 ) =

ê
(
g1, g

z2
i

2

)
= ê(g1, Fi).

Finally, we have

ê(f, cσ) ·
n∏
i=1

ê(ui1, c2i) =ê(f,

n∏
i=1

gri12 ) ·
n∏
i=1

ê(ui1, g
zi
2 ) = ê(

n∏
i=1

fri1 ·
n∏
i=1

uzii1, g2)

=ê(

n∏
i=1

(fri1uzii1(u′i1)−x
λi

), g2) ·
n∏
i=1

ê(u′i1, g2,λi) = ê(uσ, g2) ·
n∏
i=1

ê(u′i1, g2,λi) .

Similarly, ê(h, cτ ) ·
∏n
i=1 ê(ui2, c2i) = ê(uτ , g2) ·

∏n
i=1 ê(u

′
i2, g2,λi) and ê(g1, cσcτ ) ·

∏n
i=1 ê(ui3, c2i) =

ê(uµ, g2) ·
∏n
i=1 ê(u

′
i3, g2,λi). Thus all three verification equations hold, and therefore the simulator has

succeeded in generating an argument that has the same distribution as the real argument. ut

Theorem 6. Consider Prot. 4. The CRS consists of 2n+ 2 elements of G1 and 5n+ 4 elements of G2,
in total 7n + 6 group elements. The communication complexity is 2n + 6 elements of G1 and 4n + 5
elements of G2, in total 6n+ 11 group elements. The prover’s computational complexity is dominated by
17n+ 16 exponentiations. The verifier’s computational complexity is dominated by 28n+ 18 pairings.

3 For the argument in this paragraph to go through, we need the knowledge BBS cryptosystem to be lifted and
the plaintexts to be small. Otherwise, the adversary will not know the coefficients of f ′(X), and thus one could
not use a polynomial factorization algorithm to break the Λ-PSDL assumption. Thus, a crafty adversary might
be able to break soundness by choosing gµ1 from which she cannot compute µ.
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Inputs: gk and CRS as in Prot. 4, trapdoor td = (α̊, ᾱ, x), and (pk, (ui, u
′
i)i∈[n])

Output: πsh

Simulation:
1. Pick random zi, ri1, ri2 ← Zp for i ∈ [n].
2. Set cσ ←

∏n
i=1 g

ri1
2 , cτ ←

∏n
i=1 g

ri2
2 , c2i ← gzi2 and c̄2i ← ḡzi2 for i ∈ [n].

3. Set (uσ, ũσ) ← (
∏n
i=1(fri1 · uzii1 · (u′i1)−x

λi
),
∏n
i=1(f̃ri1 · ũzii1 · (ũ′i1)−x

λi
)), (uτ , ũτ ) ← (

∏n
i=1(hri2 · uzii2 ·

(u′i2)−x
λi

),
∏n
i=1(h̃ri2 · ũzii2 · (ũ′i2)−x

λi
)), (uµ, ũµ) ← (

∏n
i=1(gri1+ri2

1 · uzii3 · (u′i3)−x
λi

),
∏n
i=1(g̃ri1+ri2

1 · ũzii3 ·
(ũ′i3)−x

λi
)).

4. Complete the remaining part of the proof.
5. Simulate πpm by using the trapdoor opening of commitments as follows:

(a) Let π0 ← ((
∏n
i=1 c2i)/D)α̊.

(b) Let πspai be a 1-sparsity argument that (c2i, c̄2i) commits to a 1-sparse vector. That is, πspai =

(c1i, c̄1i, Fi, F̄i) for c1i ← gzi1 , c̄1i ← ḡzi1 , Fi ← g
z2
i

2 , F̄i ← ḡ
z2
i

2 .
(c) Let πpm ← (π0,πspa).

6. Set πsh ← ((c2i, c̄2i)i∈[n], π
pm, cσ, c̄σ, cτ , c̄τ , uσ, ũσ, uτ , ũτ , uµ, ũµ).

Protocol 5: Simulator S2: construction

Proof. The communication complexity: |πpm|; in addition, 6 elements from G1 and 2n+ 4 elements from
G2. The prover’s computational complexity follows from that of the permutation matrix argument, to
which the shuffle argument proper adds 7n + 15 exponentiations. Finally, the shuffle argument proper
adds 18n + 16 bilinear pairings to the verifier’s computational complexity of the permutation matrix
argument. The rest is straightforward. ut

We note that in a mix server-like application where several shuffles are done sequentially, one can get
somewhat smaller amortized cost. Namely, the output ciphertext u′i of one shuffle is equal to the input
ciphertext ui of the following shuffle. Therefore, in step 3, one only has to check the correctness of the
ciphertexts u′i in the case of the very last shuffle. This means that the verifier’s amortized computational
complexity is dominated by 22n+ 18 pairings (that is, one has thus saved 6n pairings).
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PSNB11. C. C. F. Pereira Geovandro, Marcos A. Simpĺıcio Jr., Michael Naehrig, and Paulo S. L. M. Barreto. A
Family of Implementation-Friendly BN Elliptic Curves. Journal of Systems and Software, 84(8):1319–
1326, 2011.

RKP09. Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally Composable Adaptive Priced Oblivious
Transfer. In Hovav Shacham and Brent Waters, editors, Pairing 2009, volume 5671 of LNCS, pages
231–247, Palo Alto, CA, USA, August 12–14, 2009. Springer, Heidelberg.

San11. Tom Sanders. On Roth’s Theorem on Progressions. Annals of Mathematics, 174(1):619–636, July 2011.
Sch80. Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. Journal of

the ACM, 27(4):701–717, 1980.
SV12. Alessandra Scafuro and Ivan Visconti. On Round-Optimal Zero Knowledge in the Bare Public-Key

Model. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 153–171, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg.

TV06. Terrence Tao and Van Vu. Additive Combinatorics. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 2006.

TW10. Björn Terelius and Douglas Wikström. Proofs of Restricted Shuffles. In Daniel J. Bernstein and Tanja
Lange, editors, AFRICACRYPT 2010, volume 6055 of LNCS, pages 100–113, Stellenbosch, South
Africa, May 3–6, 2010. Springer, Heidelberg.

vHN10. Mark van Hoeij and Andrew Novocin. Gradual Sub-lattice Reduction and a New Complexity for
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A Decisional Linear Assumption

We say that a bilinear group generator Gbp is DLIN (decisional linear) secure [BBS04] in group Gt, for
t ∈ {1, 2}, if for all non-uniform polynomial time adversaries A, the following probability is negligible in
κ: ∣∣∣∣∣∣∣Pr

 gk← Gbp(1κ),

(f, h)← (G∗t )2, (σ, τ)← Z2
p :

A(gk; f, h, fσ, hτ , gσ+τ
t ) = 1

− Pr

 gk← Gbp(1κ),

(f, h)← (G∗t )2, (σ, τ, z)← Z3
p :

A(gk; f, h, fσ, hτ , gzt ) = 1


∣∣∣∣∣∣∣ .

B Groth-Lu Co-Soundness Definition

The Groth-Lu shuffle argument is proven to be Rshco -sound with respect to the next language [GL07]
(here, as in [GL07], we assume the setting of symmetric pairings ê : G × G → GT , and like [GL07] we
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give the definition with respect to the BBS cryptosystem only):

Rshco :=

{
((p,G,GT , ê, g) , (f, h, {ui} , {u′i}) , sk = (sk1, sk2)) : (x, y) ∈ (Z∗p)2∧
f = gsk1 ∧ h = gsk2 ∧

(
∀ψ ∈ Sn∃i : Decsk(u′i) 6= Decsk(uψ(i))

) }
.

That is, the adversary is required to return not only a non-shuffle ({ui} , {u′i}), but also a secret key sk
that makes it possible to verify efficiently that ({ui} , {u′i}) is really not a shuffle. As argued in [GL07],
this definition of Rshco makes sense in practice, since there is always some coalition of the parties who
knows the secret key. See [GL07] for more.

C PPA Assumption from [GL07]

Mostly for comparison reasons, we will state next the definition of the permutation pairing assumption
from [GL07]. Since the original definition was given in the symmetric setting, we assume here that
G = G1 = G2, and g = g1 = g2.

Definition 1 (PPA Assumption [GL07]). The permutation pairing assumption holds for Gbp, if for
all non-uniform PPT adversaries, the following probability is negligible in κ:

Pr



gk := (p,G,G,GT , g, g)← Gbp(1κ), (x1, . . . , xn)← Znp ,

(ai, bi)i∈[n] ← A(gk, (gxi , gx
2
i )i∈[n]) :

n∏
i=1

aig
−xi = 1 ∧

n∏
i=1

big
−x2

i = 1 ∧ (∀i ∈ [n]) ê(ai, ai) = ê(g, bi)∧

(ai)i∈[n] is not a permutation of (gxi)i∈[n]


.

D Shortening the CRS

Preliminaries on Clos network. An (n2, n1, r)-Clos network [Clo53,DT04] for permutation π ∈ Sn1r

is a three-stage network to implement π, in which each stage is composed in a number of smaller
permutations. The first stage has r small permutations (input switches, each from Sn1

), the second
stage has n2 small permutations (middle stage switches, each from Sr), and the third stage has r small
permutations (output switches, each from Sn1

). Each input switch is connected to each middle stage
switch, and each middle stage switch is connected to each output switch, see Fig. 1.

To implement an arbitrary permutation from Sn1r it suffices to use a so called rearrangeably non-
blocking network [Clo53,DT04], for which one can choose an (n2 = n1, n1, r)-Clos network. For this one
just has to choose the 2r + n1 small permutations accordingly.

Shortening the CRS by using a Clos network. Consider an arbitrary permutation ψ ∈ Sn for
some large n. Instead of implementing directly a shuffle argument for ψ, one can instead construct an
(n1, n1, r = n/n1)-Clos network for ψ, as follows (we assume, w.l.o.g., that n divides by n1):

1. Divide n input ciphertexts ui, i ∈ [n], between n/n1 input switches, where each input switch imple-
ments a permutation on n1 elements.

2. Construct a shuffle argument for each input switch. That is, each input switch outputs a permuted
and rerandomized list of its n1 input ciphertexts together with a corresponding shuffle argument
πshinp:i, i ∈ [n/n1].

3. The n output ciphertexts u′i of the first stage are sent to the middle stage switches according to the
Clos network connections.

4. Construct a shuffle argument for each middle stage switch. That is, each middle stage switch outputs
a permuted and rerandomized list of its n/n1 input ciphertexts together with a corresponding shuffle
argument πshmid:i, i ∈ [n1].

5. The n output ciphertexts u′′i of the middle stage are sent to the output switches according to the
Clos network connections.
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Fig. 1. A (4, 4, 4)-Clos network for implementing any permutation from S16

6. Construct a shuffle argument for each output switch. That is, each output switch outputs a permuted
and rerandomized list of its n1 input ciphertexts together with a corresponding shuffle argument
πshout:i, i ∈ [n/n1].

7. Let u′′′i be the n output ciphertexts of the third stage.

The whole shuffle argument for ψ is equal to

πsh =
(
{u′i : i ∈ [n]} , {u′′i : i ∈ [n]} ,

{
πshinp:i : i ∈ [n/n1]

}
,
{
πshmid:i : i ∈ [n1]

}
,
{
πshout:i : i ∈ [n1]

})
(note that u′′′i are the output ciphertexts and thus not formally part of the shuffle argument itself).

Now, assuming that the length of the CRS, prover’s computation, verifier’s computation and the
argument size in the case of a shuffle argument on n′ elements are respectively cl(n′), pc(n′), vc(n′),
and com(n′) in corresponding units respectively, and that ciphertext length is ul units, we get that
com(n) = 2n · ul+ 2n/n1 · com(n1) + n1 · com(n/n1). This is clearly minimized when n1 =

√
n, in which

case com(n) = 2n ·ul+3
√
n ·com(

√
n). In this case, pc(n) is dominated by 3

√
n ·pc(

√
n) (plus 2 ·6n = 12n

exponentiations to form intermediate ciphertexts), and vc(n) is dominated by 3
√
n · vc(

√
n).

Since, according to Tbl. 1, in the case of the shuffle of this paper, com(
√
n) = 6

√
n + 11, pc(

√
n) =

17
√
n + 16 and vc(

√
n) = 28

√
n + 18 are linear (in

√
n), we get that the Clos-networked version of the

shuffle argument has com(n) = 2 · 6n+ 3
√
n · (6

√
n+ 11) = 30n+ 33

√
n, pc(n) = 12n+ 3

√
n · (17

√
n+

16) = 63n + 48
√
n, vc(n) = 3

√
n · (28

√
n + 18) = 84n + 54

√
n. Therefore, all those parameters become

approximately 3 to 5 times more expensive. On the other hand, all small permutations can share the
same CRS of length 7

√
n + 6 of group elements, and therefore the Clos-networked version of the new

shuffle arguments has quadratically shorter CRS.
Applying Clos networks recursively t times (where t can but does not have to be a constant), we

arrive to a shuffle argument where the communication and computation are dominated by Θ(ctn) (for

c ∈ [3, 5]) while the CRS length is n1/2t . One can alternatively apply the Beneš network [DT04] to reduce
the CRS to a constant while increasing the computation or communication to Θ(n log n).

The same techniques can also clearly be applied to the Groth-Lu argument.
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