
An Efficient Rational Secret Sharing Scheme

Based on the Chinese Remainder Theorem

Yun Zhang1,2, Christophe Tartary3, and Huaxiong Wang1

1 Division of Mathematical Sciences
School of Physical and Mathematical Sciences

Nanyang Technological University
Singapore

2 School of Mathematical Science
Yangzhou University
Yangzhou, 225002

People’s Republic of China
3 Institute for Interdisciplinary Information Sciences

Institute for Theoretical Computer Science
Tsinghua University

Beijing, 100084
People’s Republic of China

ZHAN0233@e.ntu.edu.sg

ctartary@mail.tsinghua.edu.cn

hxwang@ntu.edu.sg

Abstract. The design of rational cryptographic protocols is a recently
created research area at the intersection of cryptography and game the-
ory. At TCC’10, Fuchsbauer et al. introduced two equilibrium notions
(computational version of strict Nash equilibrium and stability with re-
spect to trembles) offering a computational relaxation of traditional game
theory equilibria. Using trapdoor permutations, they constructed a ra-
tional t-out-of n sharing technique satisfying these new security models.
Their construction only requires standard communication networks but
the share bitsize is 2n|s|+O(k) for security against a single deviation and
raises to (n−t+1)·(2n|s|+O(k)) to achieve (t−1)-resilience where k is a
security parameter. In this paper, we propose a new protocol for rational
t-out-of n secret sharing scheme based on the Chinese reminder theorem.
Under some computational assumptions related to the discrete logarithm
problem and RSA, this construction leads to a (t− 1)-resilient computa-
tional strict Nash equilibrium that is stable with respect to trembles with
share bitsize O(k). Our protocol does not rely on simultaneous channel.
Instead, it only requires synchronous broadcast channel and synchronous
pairwise private channels.

Keywords: rational cryptography, computational strict Nash equilib-
rium, stability with respect to trembles, Asmuth-Bloom sharing scheme.

1 Introduction

1.1 Preliminaries

In 1979, Shamir [14] and Blakley [4] independently introduced the con-
cept of secret sharing scheme (SSS) in order to facilitate the distributed
storage of private data in an unreliable environment. Since then, secret
sharing has become a major building block for cryptographic primitives
in particular in the area of multiparty computation (MPC). The goal of
a (perfect) SSS is to distribute a secret value s amongst a finite set of

participants P = {P1, . . . , Pn} in such a way that only specific subsets
of P can reconstruct s while the others have no information about this
secret element whatsoever.
Traditional cryptographic models assume that some parties are honest
(i.e. they faithfully follow a given protocol) while others are malicious par-
ticipants against whom the honest players must be protected. However,
in many real-world applications, a participant will choose to be dishon-
est if deviating from the protocol will provide him with some advantage.
Game theory can be used to model such a situation where players are
self-interested (i.e. rational). In this representation, each participant Pi

has a utility function Ui and the execution of the cryptographic protocol
is regarded as a game over P where the n players’ strategies σ1, . . . , σn
are dictated by their respective utilities U1, . . . , Un.

Halpern and Teague introduced the first general approach for rational
secret sharing in 2004 [9]. This opened new research directions and many
results appeared subsequently [6, 1, 7, 11, 12]. In game theory, a Nash equi-
librium (NE) captures the idea of stable solution for a given game. In-
deed, in a NE, no single player Pi can individually improve his welfare by
deviating from the strategy σi specified by the equilibrium (σ1, . . . , σn)
if all remaining participants stick to theirs. Most of the rational proto-
cols quoted above focus on achieving a NE surviving iterated deletion
of weakly dominated strategies. However, as pointed out in [11], some
bad strategies still survive this deletion process. As a remedy, Kol and
Naor proposed to use the notion of strict NE requiring that each player’s
strategy is his unique best response to the other players’ strategies. This
notion is more appealing than a NE in that, in a NE, there is no incen-
tive to deviate while, in a strict NE, there is an incentive not to deviate.
However, it is difficult to achieve a strict NE in many cases since this
notion rules out many cryptographic techniques. In order to balance this
tradeoff, Fuchsbauer et al. [7] proposed a computational version of strict
NE (which enables the use of cryptography) and the notion of NE stable
with respect to trembles. They also provided an efficient construction for
standard communication networks achieving such an equilibrium as long
as all the players are computationally bounded. However, the bitlength
of their shares is 2n|s| + O(k) which gets very large especially when n
(number of players) or k (security parameter) is large. While not a seri-
ous issue in its own right, this may be problematic when their rational
SSS is used as a subroutine for rational MPC.

1.2 Our results

In this paper, we present a protocol for rational t-out-of-n SSS. We only
need a synchronous (but non-simultaneous) broadcast channel along with

pairwise point-to-point channels. We do not assume any on-line dealer nor
do we apply any generic MPC protocol to redistribute the shares of the
secret. Instead, we borrow the idea from Joint Random Secret Sharing to
allow every player to form his ”one-time” share at the beginning of each
iteration by interactions among the group of m(m ≥ t) participants. The
main idea is described as follows.

In the share distribution phase, the dealer use the modified version
of Asmuth-Bloom SSS proposed by Kaya and Selçuk [10] to generate
n shares for the secret s. Suppose there are m players active in the
reconstruction phase, say P1, . . . , Pm. This phase proceeds with several
rounds. At the beginning of each iteration, the ”one-time” shares for
(s + d) mod m0 are generated (jointly by the active players) using the
technique from Joint Random Secret Sharing, where d = d(1) + · · ·+ d(m)

and each d(i) is chosen independently and uniformly at random from the
domain of the secret by Pi. If d ≡ 0 mod m0, then all the ”one-time”
shares are valid for recovering s and, in this sense, the current iteration is
called the valid iteration. Otherwise, the current iteration is invalid, which
is designed only for catching possible cheaters. Each communicated mes-
sage carries a commitment with perfect binding and computational hiding
(assuming the hardness of computing discrete logarithm). Thus, at every
point of our protocol, there is a unique legal message that each player
can send (except with negligible probability). This prevents a player from
outwardly appearing to follow the protocol while subliminally communi-
cating with other participants.

Then, all the active players are required to open their ”one-time”
shares. After each player Pi has received the ”one-time” shares from all the
other active players, he is required to open hy

(i)
mod Q, which provides

a unique way for the participants to jointly identify the valid iteration. If
the current iteration is invalid, all the players are asked to restart a new
iteration; otherwise, the secret s is recovered and the protocol terminates
immediately after this iteration. In this way, no player can identify the
valid iteration before he opens his ”one-time” share. Furthermore, each
player can identify the valid iteration only after it has occurred, that is,
once a player learns that the current iteration is valid, each player has
already got the real secret. Due to this, we do not need simultaneous
channels. Our protocol is efficient in that the round complexity and com-
putation complexity are both polynomial (in the security parameter k).
It induces a (t − 1)-resilient computational strict Nash equilibrium that
is stable with respect to trembles. However, our protocol relies on the
assumption that no player knows auxiliary information about the secret
s, which has been proved to be inherent in the non-simultaneous channels
model [2].

1.3 Comparison to Fuchsbauer et al.’s Scheme

The protocol from [7] provides good point of comparison to ours since
both techniques have similar features:
– Both of them induce a (t− 1)-resilient computational strict NE that

is stable with respect to trembles.
– Neither of them relies on simultaneous channels.
– Both of them assume that no player knows any auxiliary information

about the secret s. This property has been proved to be inherent to
the non-simultaneous channels model [2].

– Both protocols run in time polynomial in k (security parameter) and
they have almost the same round complexity.

However, our protocol has smaller share size even when (t− 1)-resilience
to coalitions is required. Our shares are O(k) bits long while those from
[7] need (n − t + 1) (2n|s| + O(k)) bits. The latter share length leads to
practical efficiency issues when n − t + 1 is large or when Fuchsbauer et
al.’s technique is used as a building block within more general rational
MPC protocols.

2 Definitions and Background

2.1 Secret Sharing

A t-out-of-n SSS with secret domain S is a two-phase protocol (share
distribution and secret reconstruction) executed by the dealer and a sub-
group of the n players P1, . . . , Pn respectively. During the share distri-
bution phase, the dealer chooses a secret s ∈ S and generates n shares
s1, . . . , sn based on a security parameter k. Each si is given to Pi secretly.
In the secret reconstruction phase, some collection of at least t players
jointly reconstruct s from their shares without any interaction with the
dealer. We require the following two properties to hold:

– Correctness. Any collection of t or more players can uniquely deter-
mine the secret by putting their shares together honestly.

– Privacy. Any collection of fewer than t players can not recover the
secret s.

In this paper, the security will be guaranteed under some computational
assumptions related to the discrete logarithm problem and RSA which
will be specified in Sect. 3.3. Thus, the security of our rational SSS will
be computational.

2.2 Notions of Game-Theoretic Equilibria

As said in Sect. 1.1, in the rational model, each player is self-interested:
he does what is in his interest. To formalize rationality, each player Pi is
associated to a real-valued utility function Ui modeling the gain that Pi

obtains when following his many strategies. For more details, we refer the
reader to [1].

We now present the game theoretic concepts our cryptographic con-
struction relies on. We are to design a rational SSS with the expectation
that, when rationally played, the secret is revealed to all the players par-
ticipating in the reconstruction. In the share distribution phase, all n
players are silent and the dealer is assumed to be honest. The reconstruc-
tion process is to be viewed as a game amongst m ≥ t players. We denote
σ = (σ1, . . . , σm) the strategy profile of these players where σi is P ′

i s
strategy for 1 ≤ i ≤ m. As usual, let σ−C denote the strategy profile of
all m players except the players in C and σC denote the strategy profile
constricted to the coalition C ⊆ {1, . . . ,m}. Given a strategy profile σ,
it induces the utility value Ui(σ) for each player Pi expressing his payoff
when σ is played by the m players.

In the following, we denote the security parameter by k and it is
assumed that the n utility functions are polynomials in k. The definitions
appearing in this subsection originate from [7].

Definition 1. Let ǫ : N → [0,∞) be a function. We say ǫ is negligible

if for every positive polynomial p(·) there exists an integer Np(·) > 0 such

that for all k > Np(·), it holds that ǫ(k) <
1

p(k) . We say that ǫ is noticeable

if there exists a positive polynomial p(·) and an integer Mp(·) such that

ǫ(k) > 1
p(k) for any k > Mp(·).

Definition 2. A strategy σ induces an r-resilient computational NE

if for any coalition C of at most r players and for any probabilistic poly-
nomial time strategy profile σ′, it holds:

Ui(k, σ
′

C , σ−C) ≤ Ui(k, σC , σ−C) + ǫ(k) for any i ∈ C,

where ǫ is a negligible function.

We need to define what it means for two strategies to be equivalent. Al-
though we could refer the reader to [7] for the details, for completeness
of our paper, we recall the corresponding notions below. As said before,
every player is to be considered as a polynomial-time probabilistic Turn-
ing (PPT) machine (as function of the security parameter k). We assume
that m players participate in the reconstruction phase. As often in MPC,
security will be demonstrated by simulating the views of the different
participants [8].

Definition 3. Denote PC := {Pi|i ∈ C}, P−C := {Pi|i /∈ C} and the
strategy vector of the m players by σ. Define the random variable Viewσ

−C

as follows:

Let Trans denote the messages sent by PC not including any message
sent by PC after they write to their output tapes. Viewσ

−C includes
the information given by the dealer to P−C , the random coins of P−C

and the (partial) transcript Trans.

Fix a strategy ρC and an algorithm T . Define the random variable ViewT,ρC
−C

as follows:

When the m players interact, PC follows ρC and P−C follows σ−C . Let
Trans denote the messages sent by PC . Algorithm T , given the entire
view of PC , outputs an arbitrary truncation Trans′ of Trans (defin-
ing a cut-off point and deleting any messages sent after that point).
View

T,ρC
−C includes the information given by the dealer to P−C , the ran-

dom coins of P−C , and the (partial) transcript Trans′.

Strategy ρC yields equivalent play with respect to σ, denoted ρC ≈ σ, if
there exists a PPT algorithm T such that for all PPT distinguishers D:∣∣∣Prob[D(1k,ViewT,ρC

−C) = 1]− Prob[D(1k,Viewσ
−C) = 1]

∣∣∣ ≤ ǫ(k)

where ǫ(·) is a negligible function.

Definition 4. A strategy σ is said to be an r-resilient computational

strict NE, if:
1. σ induces an r-resilient computational NE;
2. For any coalition C of at most r players and for any probabilistic

polynomial time strategy σ′

C with σ′

C 6≈ σ, there is a positive poly-
nomial p(·) such that for any i ∈ C, it holds that Ui(k, σC , σ−C) ≥
Ui(k, σ

′

C , σ−C) + 1
p(k) for infinitely many values of k, namely,

Ui(k, σC , σ−C)− Ui(k, σ
′

C , σ−C) is non-negligible.

Definition 5. For any coalition C, strategy ρC is δ-close to strategy σC
if ρC is as follows:

ρC : With probability 1− δ, players in C play according to σC .
With probability δ, players in C follow an arbitrary (possibly cor-
related) PPT strategy σ′

C (called the residual strategy of ρC).

Definition 6. σ induces an r-resilient computational NE that is

stable with respect to trembles if:
1. σ induces an r-resilient computational NE;
2. There is a noticeable function δ such that for any coalition C with

|C| ≤ r, and any vector of PPT strategies ρ−C that is δ-close to σ−C ,
any PPT strategy ρC , there exists a PPT strategy σ′

C ≈ σ such that
Ui(k, ρC , ρ−C) ≤ Ui(k, σ

′

C , ρ−C) + ǫ(k), where ǫ(·) is negligible.

Remark 1. Intuitively, the strategy vector (σC , σ−C) is stable with respect
to trembles if σC remains a best response even if P−C plays any PPT
strategies other than σ−C with some small but noticeable probability δ.

2.3 Assumptions on the Utility Functions

Following most previous works on this topic, we assume the following
properties of the utility functions:
– each player Pi first prefers outcomes in which he outputs the real

secret;
– each player Pi secondly prefers outcomes in which the fewest of the

other players output the real secret.
As in [7], the expected utility is also assumed to be a polynomial of the

security parameter k. We distinguish four cases as follows. For each i ∈
{1, . . . , n}, let Ui(k) (respectively, U+

i (k)) be the minimal (respectively,
maximal) payoff of Pi when he outputs the correct secret and let U−

i (k)
be his maximal payoff when Pi does not output s. As usually assumed, we
consider: U+

i (k) > Ui(k) > U−

i (k) for all i ∈ {1, . . . , n}. As in [7], define

U r
i (k) :=

1

|S|
· U+

i (k) + (1−
1

|S|
) · U−

i (k)

which is the expected utility of a player outputting a random guess for
the secret (assuming that the other players abort without any outputs,
or with wrong outputs). It is reasonable to assume that Ui(k) > U r

i (k),
since otherwise, players hardly have any incentive to execute the secret
reconstruction phase at all. Furthermore, it is still reasonable to assume
that the difference between Ui(k) and U r

i (k) is non-negligible for any
1 ≤ i ≤ n, that is, there exists a polynomial p(·) such that for infinitely
many k’s it holds that:

Ui(k) ≥ U r
i (k) +

1

p(k)
.

Note that, this assumption is not restrictive in that without it, it is hard
to guarantee the players have enough motivation to execute the share re-
construction phase rather than guess the secret locally, especially in the
computational setting, where no player cares about negligible difference
in utilities. In this paper, we consider coalitions of at most t− 1 players.
We assume for simplicity that during the whole process of share recon-
struction phase, there is at most one coalition which contains a subset of
active players and all the players in this coalition share all information
they jointly have. Thus, all the players in some coalition are assumed to
share a single output.

3 Our Protocol for t-out-of-n Rational Secret Sharing

Our protocol contains two phases: share distribution and secret recon-
struction. The first phase is executed by the dealer only while the second
phase is designed for all the active players who want to jointly recover the
secret without the dealer. Our share distribution phase is similar to the

revisited version of the Asmuth-Bloom’s non-interactive verifiable SSS
[10, 3] except with minor but necessary modifications for our needs. The
dealer is available only in the initial share distribution phase during which
he is assumed to be honest. We assume the existence of synchronous
broadcast channels (but non-simultaneous) for all participating players
and the presence of private channels between any pair of these players
and the dealer.
As said in the previous section, all n players are assumed to be compu-
tationally bounded. In the following, let k be a security parameter.

3.1 Initial Share Phase
This is the only phase where the dealer is active. His goal is to distribute
s over P := {P1, . . . , Pn} using the Asmuth-Bloom SSS with threshold
t. As mentioned above, we adopt the modified version of Asmuth-Bloom
SSS proposed by Kaya and Selçuk [10] and make further modifications
(mainly on the parameters settings) to meet our needs. This initial share
phase has two stages.

Initial Share Phase

1. Parameters Setup

To share a secret s, the dealer chooses m0(> s) and publish it. This value m0 should
also be lower bounded by a value depending on players’ utilities and discussed later
in this paper.

1. The dealer chooses and publishes a set of prime integers m1, . . . ,mn of bit
length k such that the following requirements are satisfied:
(a) m0 < m1 < . . . < mn ;
(b)

∏t

i=1 mi > (n+ 1)m2
0

∏t−1
i=1 mn−i+1;

(c) pj = 2mj + 1 is prime for any 1 ≤ j ≤ n.
2. For any 1 ≤ i ≤ n, let Gi be a subgroup of Z∗

pi
of order mi and denote gi a

generator of Gi. Let Q =
∏n

i=1 pi. He computes g = (
∑n

i=1 gi ·Q
′
i ·

Q

pi
) mod Q

along with x = (
∑t

i=1 gi · Q
′
i ·

Q

pi
) mod Q, where Q′

i is the inverse of Q

pi
in

Z
∗
pi
, for 1 ≤ i ≤ n. Let e be the order of x in Z

∗
Q. Then (

∏t

i=1 mi)|e. Let

h := x
e∏t

i=1
mi ∈ Z

∗
Q. Then the order of h is

∏t

i=1 mi. The dealer publishes g, h

along with a sorted list {hi·m0 mod Q|1 ≤ i ≤ ⌊
∏t

j=1 mj

m0
⌋}.

3. The dealer chooses and publishes an RSA modulus N of length at least k whose
factorization is unknown to any of the n players [13].

2. Share Distribution

To share a secret s ∈ Zm0 among a group of n players {P1, . . . , Pn}, the dealer
executes the following steps.

1. He sets M :=
⌊∏t

i=1 mi

n+1

⌋
. He computes y = s+A0 ·m0 for some positive integer

A0 generated randomly subject to the condition that 0 < y < M , calculates
yi = y mod mi and finally sends the share yi to player Pi secretly, for 1 ≤ i ≤ n.

2. He computes E(y) := gy mod QN and broadcasts E(y).

Remark 2. The value g is the unique integer in ZQ satisfying gi ≡ g mod
pi, for all 1 ≤ i ≤ n. Besides, the order of g in Z

∗

QN is at least
∏n

j=1mj

and for each 1 ≤ i ≤ n, we have:

E(y) mod pi = (gy mod QN) mod pi = gy mod pi = gyii mod pi

Hence, during the whole protocol, we use (E(y) mod pi) as a commitment
to yi, which is perfect binding but is computational hiding. That is, the
committer cannot commit himself to two values yi and y′i by the same
commitment value and, under the assumption that computing discrete
logarithm is intractable in Zpi , no PPT player learns yi from E(y) mod pi
except with negligible probability in k. This allows players to check the
consistency of the received data. Since the dealer is assumed to be honest,
E(y) is only used to detect the players’ possible malicious behavior during
the reconstruction process described in the next section.

3.2 Secret Reconstruction Phase

We assume that m(≥ t) players participate in the secret reconstruction
phase. For ease of description, we can assume without loss of generality
that those players are P1, . . . , Pm. The reconstruction phase proceeds in
a series of iterations, each of which consists of multiple communication
rounds among those players. First, we propose two subprotocols to be
called upon within the reconstruction phase.

3.2.1 Share Update Phase. This is done by the players participating
in the secret reconstruction process, namely, by P1, . . . , Pm. In this phase,
each participating Pi (sorted in index increasing order) plays a similar role
to the dealer’s (initial share phase) to share a random element d(i) ∈ Zm0

and to finally get his ”one-time” share for (s+ d(1)+ · · ·+ d(m)) mod m0.

In [10], in order to prevent the dealer from distributing inconsistent
shares, the range-proof technique proposed from [5] is used to allow the
dealer to convince each player that some committed integer lies in a par-
ticular interval. This range proof is statistically zero-knowledge in the
random-oracle model. Besides, provided that computing discrete loga-
rithm problems is intractable, a cheating dealer can only succeed with
negligible probability (in k). We refer to [10, 5] for further details.

Here, in order to prevent a player Pi from distributing inconsistent
shares for his random chosen d(i), we need to apply this range-proof tech-
nique. Throughout this section, we will use RngPrf(E(y),M) to denote
the Cao-Liu’s non-interactive range proof that a secret integer y commit-
ted with E(y) is in the interval [0,M) [5]. In the following share update
phase, we will use RngPrf(E(y),M) as a black box and we refer to [5] for
additional information.

Share Update Phase

1. Each Pi selects a random element d(i) ∈ Zm0 uniformly and independently. He
computes y(i) = Ai ·m0 + d(i), where Ai is a positive integer chosen randomly
conditioned on 0 < y(i) < M . Then, he computes y

(i)
j = y(i) mod mj along with

E(y(i)) := gy
(i)

mod QN , and he finally sends y
(i)
j to player Pj secretly through

a secure channel for each j 6= i. In addition, Pi broadcasts E(hy(i)

mod Q) :=

g(h
y(i) mod Q) mod QN , E(y(i)) and RngPrf(E(y(i)),M).

2. If player Pi only receives partial messages (hereinafter, partial messages in-
cluding the case of no message at all), then he outputs a random guess
of the secret and terminates the protocol. Otherwise, he checks whether

g
y
(j)
i

i ≡ E(y(j)) mod pi and he checks the correctness of RngPrf(E(yj),M)
for 1 ≤ j 6= i ≤ m. If all the checks are successful, then Pi computes
di =

∑m

l=1 y
(l)
i mod mi. Otherwise, he outputs a random guess of the secret

and stops the protocol.

Let d := d(1) + · · ·+ d(m). Note that {d1, . . . , dm} are the shares for d mod m0.

3. Each Pi computes ỹi := (yi+di) mod mi as his ”one-time” share for the current
iteration. The commitment for ỹi is E(ỹi) := E(y)

∏m

l=1 E(y(l)) mod pi, which
can be locally computed by each player.

Proposition 1. Let Y := y+y(1)+ · · ·+y(m) = (s+d)+(A0+ · · ·+Am) ·
m0. Then after the share update phase, {ỹ1, . . . , ỹm} are valid shares for
(s+ d) mod m0 as long as all the players follow the protocol honestly. In
addition, all the commitments are correctly checked.

This proposition means that every subset of at least t players uniquely
determines (s + d) mod m0 (Correctness), while for any subset of t − 1
players, every candidate for s or for each d(i) is (approximately) equally
likely, and so each candidate for each (s+ d) mod m0 is (approximately)
equally likely (Privacy).

Proposition 2 ([10]). During the share update phase, any player Pi can
not distribute inconsistent shares for d(i) without being detected except
with probability negligible in k. In other words, if all checks are success-

ful, then all the shares y
(i)
1 , . . . , y

(i)
m are residues of some integer less than

M except with negligible probability which is introduced by the error prob-
ability of RngPrf.

Remark 3. Let T := y(1)+· · ·+y(m). Since the ”one-time” shares {ỹ1, . . . , ỹm}
are the shares for (s + d) mod m0, they are the shares for s if and only
if d ≡ 0 mod m0. This is equivalent to T ≡ 0 mod m0. In this sense, the
iteration in which T ≡ 0 mod m0 is called a valid iteration. It is called
an invalid iteration otherwise.

Remark 4. The goals of the Share Update Phase are twofold. On one
hand, it makes our protocol proceed with several iterations: all except

the last one are invalid iterations, which are designed to catch possible
cheaters. During the valid iteration, all active players get the real secret.
In addition, no one will know in advance whether the current iteration
is going to be the last iteration. On the other hand, since during each
iteration all the ”one-time” shares are revealed, if the current round is
invalid, the players should proceed to the next round with totally new
shares, which are provided by the share updating phase. Hence, ”one-
time”shares are shares used only once (i.e. in the current iteration) and
they become meaningless in later iterations.

3.2.2 Combiner Phase. In this phase, each player Pi uses the recon-
struction algorithm from the Asmuth-Bloom SSS to recover (s+d) mod m0.

Combiner Phase

1. Let U be a collection of t shares that player Pi chooses in the reconstruction
phase and let V be the corresponding collection of the indices of the players to
whom those t shares belong. Let MV denote

∏
j∈V

mj .

2. Let MV −{j} denote
∏

ℓ∈V,ℓ 6=j mℓ and let M ′
V,j be the multiplicative inverse of

MV −{j} in Z
∗
mj

. Player Pi computes Y (i) :=
∑

j∈V ỹj ·M
′
V,j ·MV −{j} mod MV .

Finally, let S(i) := Y (i) mod m0.

3.2.3 Overview of the Reconstruction Phase. In order for the
reader to get an easier understanding of the reconstruction phase, we
first give its general view. The full description is in Sect. 3.2.4.

The reconstruction phase proceeds with a sequence of invalid/valid
iterations such that the last iteration is valid and each iteration has two
stages. During the first stage, players first interact to get their ”one-
time” shares for (s + d) mod m0 , where d = d(1) + · · · + d(m) and each
d(i) is chosen randomly by Pi. During the second stage, each player Pi

is required to open the value (hr)y
(i)

mod R, from which the players can
jointly identify the status of the current iteration: if d mod m0 6= 0, then
the current iteration is invalid and all the players are asked to restart
a new iteration; otherwise, it is valid, the secret s is recovered and the
protocol terminates immediately after this iteration.

The iterations have the following properties:

– invalid iteration: no information about s is revealed since all the re-
vealed shares are the shares for (s+ d) mod m0. At the beginning of
the subsequent iteration, all the shares are updated which guarantees
that the ”one-time”’shares revealed in the current iteration are useless
for the next iteration.

– valid iteration: every player recovers s on the assumption that every
participant follows the protocol (which will be demonstrated to be the
case since they are rational).

The key in this process is the fact that nobody knows before the open-
ing of the ”one-time” shares whether the current iteration will be valid.
Furthermore, when a given player realizes that the valid iteration occurs,
each other player can compute the secret as well. That is why we do not
need simultaneous channels.

3.2.4 Secret Reconstruction Phase. We assume that m(≥ t) play-
ers participate in the secret reconstruction. As before, we can assume that
they are P1, . . . , Pm. Our reconstruction protocol proceeds with multiple
iterations, each of which contains two stages for each of these m players.
It is assumed without lost of generality that in each step, each Pi executes
his strategy in index increasing order. For each of these m participants
Pi, his strategy σi is as follows.

Secret Reconstruction Phase

Stage 1

1. Player Pi executes the share update phase to get his ”one-time” share ỹi for
the value (s + d) mod m0, where d = d(1) + · · · + d(m) and each d(i) is chosen
independently and uniformly at random by Pi .

2. Player Pi broadcasts his ”one-time” share ỹi obtained at the previous step. If

Pi does not receive m shares (including his own), or if he detects that g
ỹj
j mod

pj 6= E(ỹj) mod pj for some j, he outputs a random guess of the secret and
aborts the protocol abruptly.

3. Otherwise, Pi chooses randomly t data from {ỹ1, . . . , ỹm} and executes the
Combiner Phase.

The second stage is used to identify the status (valid/invalid) of the current round
since {ỹ1, · · · , ỹm} are the shares for s if and only if T ≡ 0 mod m0 if and only if

hy(1)+···+y(m)

mod Q appears in the sorted list published by the dealer.

Stage 2

1. Player Pi broadcasts h
y(i)

mod R. If he does not receive m messages (including

his own), or if he detects that g(h
y(j) mod Q) mod QN 6= E(hy(j)

mod Q) for
some j, Pi outputs S

(i) he obtains in the Combiner Phase and aborts the whole
protocol.

2. Otherwise, Pi checks by binary search whether (
∏m

j=1(h
y(j)

mod Q)) mod Q =

hy(1)+···+y(m)

mod Q appears in the sorted list published by the dealer. If yes,
he outputs S(i) and stops the whole protocol; Otherwise, Pi goes back to Stage
1 and starts another iteration.

3.3 Security of our Rational SSS

The reconstruction phase is a game amongst the m active players. The
strategy profile is denoted σ = (σ1, . . . , σm) where σi is Pi’s strategy
described in the previous section. Let U∗

i (k) :=
1
m0

· U+
i (k) + (1 − 1

m0
) ·

U r
i (k), 1 ≤ i ≤ n. Based on the security requirements of [5], we make the

following assumption:

A: The discrete logarithm problem over finite fields is intractable.
The RSA modulus N is hard to factor; the resulting RSA encryp-
tion scheme and Schnorr signature is secure.

Theorem 1. Assuming that A holds. σ induces a (t − 1)-resilient com-
putational NE as long as Ui(k)− U∗

i (k) is non-negligible, for 1 ≤ i ≤ n.

Theorem 2. Assuming that A holds. σ induces a (t − 1)-resilient com-
putational strict NE provided that Ui(k) − U∗

i (k) is non-negligible, for
1 ≤ i ≤ n.

Theorem 3. Assuming that A holds. σ induces a computational NE that
is stable with respect to trembles provided that Ui(k) − U∗

i (k) is non-
negligible, for 1 ≤ i ≤ n.

Remark 5. The expected number of iterations of our protocol is m0. Note

that the requirements for m0 are that m0 >
2[U+

i (k)−Ur
i (k)]

Ui(k)−Ur
i (k)

, for 1 ≤ i ≤ n.

Since all the utility functions are polynomial in k and Ui(k) − U r
i (k) is

assumed to be non-negligible, m0 can be chosen to be a prime less than
some polynomial in k. Since all the computations are based on modular
arithmetic, they can be executed in polynomial time. Besides, RngPrf can
also be verified in polynomial time. All these considerations imply that
our protocol is efficient.

4 Conclusion

In this paper, we presented a new protocol for t-out-of-n rational secret
sharing based on the CRT in non-simultaneous channels. Our technique
leads to a (t − 1)-resilient computational strict NE that is stable with
respect to trembles while having much smaller share size than the protocol
proposed by Fuchsbauer et al. [7].

Acknowlegments

The authors would like to thanks the reviewers for their suggestions to
improve the quality of this paper. Christophe Tartary’s work was funded
by the National Natural Science Foundation of China grants 61033001,
61061130540, 61073174 and 61050110147 (International Young Scientists
program) as well as the National Basic Research Program of China grants
2007CB807900 and 2007CB807901. Christophe Tartary also acknowledges
support from the Danish National Research Foundation and the National
Natural Science Foundation of China (under the grant 61061130540)
for the Sino-Danish Center for the Theory of Interactive Computation
(CTIC) within which part of this work was performed. Huaxiong Wang’s
work was supported by the Singapore National Research Foundation un-
der Research Grant NRF-CRP2-2007-03.

References

1. I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets
game theory: Robust mechanisms for rational secret sharing and multiparty com-
putation. In 25th Annual ACM Symposium on Principles of Distributed Computing
(PODC’06), pages 53 – 62. ACM Press, 2006.

2. G. Asharov and Y. Lindell. Utility dependence in correct and fair rational secret
sharing. In Advances in Cryptology - Crypto’09, volume 5677 of LNCS, pages 559
– 576. Springer - Verlag, August 2009.

3. C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Trans-
actions on Information Theory, IT-29(2):208 – 210, March 1983.

4. G. R. Blakley. Safeguarding cryptographic keys. In AFIPS 1979 National Com-
puter Conference, pages 313 – 317. AFIPS Press, June 1979.

5. Z. Cao and L. Liu. Boudot’s range-bounded commitment scheme revisited.
In 9th International Conference on Information and Communications Security
(ICICS’07), volume 4861 of LNCS, pages 230 – 238. Springer - Verlag, Decem-
ber 2007.

6. S. Dov Gordon and J. Katz. Rational secret sharing, revisited. In 5th International
Conference on Security and Cryptography for Networks (SCN’06), volume 4116 of
LNCS, pages 229 – 241. Springer - Verlag, September 2006.

7. G. Fuchsbauer, J. Katz, and D. Naccache. Efficient rational secret sharing in
standard communication networks. In 7th Theory of Cryptography Conference
(TCC’10), volume 5978 of LNCS, pages 419 – 436. Springer - Verlag, February
2010.

8. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interac-
tive proof-systems. In 17th Annual ACM Symposium on Theory of Computing
(STOC’85), pages 291 – 304. ACM, May 1985.

9. J. Halpern and V. Teague. Rational secret sharing and multiparty computation:
Extended abstract. In 36th Annual ACM Symposium on Theory of Computing
(STOC’04), pages 623 – 632. ACM Press, June 2004.

10. K. Kaya and A. A. Selçuk. Secret sharing extensions based on the Chinese reminder
theorem. Cryptology ePrint Archive, Report 2010/096, 2010. http://eprint.

iacr.org/2010/096.
11. G. Kol and M. Naor. Games for exchanging information. In 40th Annual ACM

Symposium on Theory of Computing (STOC’08), pages 423 – 432. ACM Press,
May 2008.

12. S. Micali and abhi shelat. Purely rational secret sharing (extended abstract). In
6th Theory of Cryptography Conference (TCC’09), volume 5444 of LNCS, pages
54 – 71. Springer - Verlag, March 2009.

13. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public key cryptosystems. Communications of the ACM, 21(2):120
– 126, February 1978.

14. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612 – 613,
November 1979.

A Proof of Theorem 1

By Proposition 1, our protocol is a valid secret sharing scheme. All the ac-
tive players will be expected to recover the real secret in 1

Pr[d≡0 mod m0]
=

m0 iterations, as long as they stick to σ.
Now, we prove that σ induces a (t − 1)-resilient computational NE.

Let C be any coalition of size at most t− 1. Assume that all the players

not in C stick to their prescribed strategies. We focus on PPT deviations
from some players in C. There are several possible cases: (1) some player
Pi in C deviates during the share update phase; (2) some player Pi in C
lies about his ”one-time” share or only sends partial messages in Stage 1
- Step 2 ; (3) some player Pi in C either opens a fake y(i) or broadcasts
nothing in Stage 2.

Suppose (1) happens. There are two possible deviations. Case 1. Pi

only sends (or broadcasts) partial messages in Stage 2 of share update
phase. However, this will be detected and cause the protocol to terminate.
In this case, the only profitable thing he can do is to output a random
guess of the secret, which will earn him at most U r

i (k). Obviously, it is a
worse outcome to Pi, since U r

i (k) < Ui(k). Hence, Pi will send all data,
fake or real, as required. Case 2. Pi distributes inconsistent shares for his
randomly chosen d(i) to some player Pj not in C. Under assumption A,
no cheating Pi can convince any other Pj to accept RngPrf(E(y(i),M) ex-
cept with negligible probability ǫ′(k). Once RngPrf(E(y(i),M) is rejected,
which happens with probability 1− ǫ′(k), the protocol terminates imme-
diately and the best that player Pi can do is to output a random guess of
the secret. Thus, the expected utility Pi can get by distributing inconsis-
tent shares is at most ǫ′(k) ·U+

i (k)+ (1− ǫ′(k)) ·U r
i (k) = ǫ′(k) · (U+

i (k)−
U r
i (k)) + U r

i (k) < ǫ(k) + Ui(k), where ǫ(k) = ǫ′(k) (U+
i (k) − U r

i (k)) is a
negligible function in k, since we assumed that U1, . . . , Un were polyno-
mials in k. That is, using this type of deviation, Pi can only increase his
payoff by a negligible amount (if at all). Thus, given our computational
setting, no rational player Pi is to deviate by distributing inconsistent
shares.

Now, we consider the possible deviations in Step 2 of Stage 1. There
are two possible cases. Case 1. Pi does not broadcast anything at all.
Case 2. Pi cheats about his ”one-time” share. However, either of these
deviations will be detected and cause the protocol to terminate. Hence,
we do not distinguish between these two cases. If (d mod m0) = 0 (i.e.,
the current iteration is valid which happens with probability 1

m0
), then

all the players in C will output the real secret and hence Pi will get
at most U+

i (k). If (d mod m0) 6= 0 (i.e., the current iteration is invalid
which happens with probability 1− 1

m0
), then the best thing Pi can do is

to output a random guess of the secret earning at most U r
i (k). Thus, the

expected payoff of Pi with this type of deviation is at most 1
m0

·U+
i (k) +

(1− 1
m0

) ·U r
i (k) = U∗

i (k). It is less than Ui(k) by our assumption. Hence,
as a rational player, Pi will not deviate in Step 2 of Stage 1.

Finally, we study what happens if some player in C does not broadcast
anything at all or broadcast a fake value in Stage 2. Either deviation
will be detected and cause the protocol to terminate abruptly. Since we

assume players execute every step of the protocol in ascending order, we
can assume without loss of generality that C = {Pm−t+2, . . . , Pm}. Since
all the players in C share their information, for anym−t+2 ≤ i ≤ m, after
receives the message from the players not in C Pi can first check whether
hy

(1)+···+y(m)
mod Q appears in the sorted list published by the dealer

(from which he knows nothing about d except whether d mod m0 = 0) to
identify whether the current round is valid or not, then determines what
to do in this stage. Note that we have proved that, in the computational
and rational setting, any player will execute the reconstruction phase
honestly up to the end of Stage 1. Therefore, if the current iteration is
valid, each S(j) obtained by Pj in the Combiner Phase is indeed the real
secret. In this case, regardless of what Pi will do, each player will output
the real secret, which will earn Ui(k) to Pi. On the other hand, if the
current round is invalid, no one has recovered the real secret yet and
either type of deviations will cause the protocol to terminate abruptly
resulting in a payoff at most U r

i (k) to Pi. Hence, Pi is never better off by
this deviations.

B Proof of Theorem 2

Suppose C is any subset of {1, . . . ,m} of size at most t − 1. Let PC :=
{Pi|i ∈ C} and P−C := {Pi|i ∈ {1, . . . ,m} − C}. Since all the players
in PC acts in unison, we can regard PC as a whole. By Theorem 1, it is
sufficient to prove that for any PPT strategy ρC 6≈ σ, there is a positive
polynomial p(·) such that for any i ∈ C, Ui(k, σ) ≥ Ui(k, ρC , σ−C) +

1
p(k)

for infinitely many values of k, that is, Ui(k, σ)−Ui(k, ρC , σ−C) is positive
and non-negligible.

Let Deviate be the event that PC deviates from σC before he can
compute his output, that is, before entering the Stage 2 of the valid
iteration. Since ρC 6≈ σ, Prob[Deviate] is non-negligible by definition.
Now, consider the interaction of ρC with σ−C . Let Valid be the event that
PC deviates from σC before entering Stage 2 during the valid iteration
and let Invalid be the event that PC deviates from σC during an invalid
iteration. Let Caught be the event that PC is caught cheating. Then, for
each i ∈ C, we have:

Ui(k, ρC , σ−C)

≤ U
+
i (k) · Prob[Valid] + U

+
i (k) · Prob[Invalid ∧ Caught]

+U
r
i (k) · Prob[Invalid ∧ Caught] + Ui(k) · Prob[Deviate]

= U
+
i (k) · (Prob[Valid|Deviate] + Prob[Caught|Invalid] · Prob[Invalid|Deviate]) · Prob[Deviate]

+U
r
i (k) · Prob[Caught|Invalid] · Prob[Invalid|Deviate] · Prob[Deviate] + (1− Prob[Deviate])Ui(k)

= U
+
i (k) ·

[
1

m0
+ ǫ(k)(1−

1

m0
)

]
· Prob[Deviate]

+U
r
i (k) · (1− ǫ(k)) · (1−

1

m0
) · Prob[Deviate] + Ui(k)− Ui(k) · Prob[Deviate]

= Ui(k) + (U∗
i (k)− Ui(k)) · Prob[Deviate] + η(k)

where η(k) = ǫ(k) · (1− 1
m0

) · (U+
i (k)−U r

i (k)) ·Prob[Deviate] is negligible.
It follows

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C)+(Ui(k)−U∗

i (k)) ·Prob[Deviate]−η(k).

Since both Ui(k)−U∗

i (k) and Prob[Deviate] are positive and non-negligible,
Ui(k, σ) − Ui(k, ρC , σ−C) is positive and non-negligible, which completes
this proof.

Remark 6. In this proof, we actually show that, for any PPT strategy
ρC , we have:

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C)+ (Ui(k)−U∗

i (k)) ·Prob[Deviate]−η(k)

where η(·) is a negligible function.

C Proof of Theorem 3

This proof is based on [7]. Let δ be a parameter which we will specify at
the end of the proof. Note that δ may depend on k. Since we assumed
players execute every step of the protocol in an index increasing order,
we can assume without loss of generality that C = {m − t + 2, . . . ,m}.
It is sufficient to show that for any i ∈ C, any vector of PPT strategies
ρ−C that is δ-close to σ−C , and any PPT strategy ρC , there exists a PPT
strategy σ′

C ≈ σ such that Ui(k, ρC , ρ−C) ≤ Ui(k, σ
′

C , ρ−C) + ǫ(k), where
ǫ(·) is negligible. Let PC = {Pi|i ∈ C} and P−C = {Pi|i ∈ ({1, . . . ,m} −
C)}. First, we construct a strategy σ′

C for the players in PC as follows.

1. Set Detect:=0.
2. In each iteration:

(a) Receive the messages from P−C in each possible step. If PC

detects that some player Pj in P−C has deviated from σj , set
Detect:= 1.

(b) If Detect= 1, execute the remaining steps according to ρC ; oth-
erwise σC .

3. If Detect= 0, determine the output according to σC , otherwise,
output whatever ρC outputs.

Observe that when σ′

C interacts with σ−C , Detect is never set to be
1. Hence σ′

C ≈ σ and Ui(k, σ
′

C , σ−C) = Ui(k, σC , σ−C) = Ui(k) for any
i ∈ C. Now, we want to show that Ui(k, ρC , ρ−C) ≤ Ui(k, σ

′

C , ρ−C)+ η(k)
for any i ∈ C, where η(·) is negligible. Let ρ̃−C denote the residual strat-
egy of ρ−C . In an interaction where PC follows strategy ρC , let Detected
be the event that PC is detected deviating from σC before entering stage
2 of the valid iteration while no player in P−C is detected cheating so
far. Also, let ProbDetected(α) be the probability of Detected when P−C

follows strategy α. Since no player in P−C will be detected cheating when
P−C execute σ−C , ProbDetected(σ−C) equals the probability of PC being
detected deviating from σC before entering Stage 2 of the valid iteration.

Claim 1. Prob[Deviate]=ProbDetected(σ−C)+ǫ(k)·Prob[Deviate], for some
negligible function ǫ.

Claim 2. For any i ∈ C,

Ui(k, ρC , ρ̃−C)− Ui(k, σ
′
C , ρ̃−C) ≤ ProbDetected(ρ̃−C) · (U

+
i (k)− U

r
i (k)) + ǫ(k),

where ǫ(·) is negligible.

Claim 3. ProbDetected(ρ̃−C) ≤ ProbDetected(σ−C)+ ǫ(k) for some ǫ(·) neg-
ligible.

By Remark 6, we know that for any PPT strategy ρC ,

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C)+(Ui(k)−U∗

i (k)) ·Prob[Deviate]−η(k).

where η(·) is a negligible function. Now, we get:

Ui(k, ρC , ρ−C) = (1− δ) · Ui(k, ρC , σ−C) + δ · Ui(k, ρC , ρ̃−C)

≤ (1− δ) · [Ui(k) + (U∗
i (k)− Ui(k)) · Prob[Deviate] + η(k)]

+δ · Ui(k, ρC , ρ̃−C)

Also

Ui(k, σ
′
C , ρ−C) = (1− δ) · Ui(k, σ

′
C , σ−C) + δ · Ui(k, σ

′
C , ρ̃−C)

= (1− δ) · Ui(k) + δ · Ui(k, σ
′
C , ρ̃−C)

It follows:

Ui(k, ρC , ρ−C)− Ui(k, σ
′
C , ρ−C)

≤ (1− δ) · (U∗
i (k)− Ui(k)) · Prob[Deviate] + δ · [Ui(k, ρi, ρ̃−C)− Ui(k, σ

′
C , ρ̃−C] + η(k)

by Claim 2
≤ (1− δ) · (U∗

i (k)− Ui(k)) · Prob[Deviate]

+δ · ProbDetected(ρ̃−C) · (U
+
i (k)− U

r
i (k)) + δ · ǫ(k) + η(k)

by Claim 1
= (1− δ) · (U∗

i (k)− Ui(k)) · (ProbDetected(σ−C) + ǫ
′(k) · Prob[Deviate])

+δ · (U+
i (k)− U

r
i (k)) · ProbDetected(ρ̃−C) + δ · ǫ(k) + η(k)

by Claim 3
≤ (1− δ) · (U∗

i (k)− Ui(k)) · ProbDetected(ρ̃−C)

+δ · (U+
i (k)− U

r
i (k)) · ProbDetected(ρ̃−C) + η

′(k)

where η′(·) is some negligible function. Hence, there exists δ > 0 (may
depend on k) such that the above expression is negligible in k for each
i ∈ C.

