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Chapter 1

Introduction

1.1 Public-Key Cryptography

The goal of a data encryption system is for two parties, traditionally named Alice and

Bob, to communicate while assuring the secrecy and authenticity of their messages.

Early cryptographic systems required Alice and Bob to share a secret key before

encryption could take place. But this presented a problem: how are they to securely

agree on a secret key, if they cannot communicate secretly without one? They would

need another way to communicate, such as meeting in-person in a secure location.

Public-key encryption solves this problem. Each party generates a pair of keys:

a public key and a secret key. A message encrypted using a public key can only be

read using the corresponding secret key. Thus the keys live up to their names: the

secret key must remain secret, but the public key can be published for all to see.

Still, difficulties remain. Alice must acquire a copy of Bob’s public key before she can

send him a message, and she must confirm that it actually belongs to him, lest some

malicious eavesdropper (Eve) substitute her own public key for Bob’s.

1.2 Identity-Based Cryptography

Identity-based cryptography, proposed by Adi Shamir in 1984 [35], adds a twist to

public-key cryptography: it allows any string to be used as a public key. For example,

1



CHAPTER 1. INTRODUCTION 2

if Alice wants to send an email to Bob, she might encrypt it using his email address,

bob@microsoft.com, as the public key. She might just as well use any other piece of

uniquely identifying information; anything that can be encoded as a string will work.

A little thought will show that this model is oversimplified. How is Bob to decrypt

the message? For the encryption to be secure, he will need a secret key that nobody

else knows, but he has had no input into the encryption process. The answer is

that encryption also uses a master public key, called the public parameters. These

parameters are generated by an authority called the private key generator, or PKG,

together with a master secret key. After Bob proves his identity to the PKG, it uses

the master secret key to give him a secret key corresponding to that identity.

An important side effect of this process is that unlike traditional cryptosystems,

identity-based systems enforce key escrow. That is, the PKG can recreate Bob’s secret

key at any time, and so can read any messages sent to him – or to anybody else. In

some contexts, key escrow is unacceptable. This is especially the case on the internet

at large: why should some authority have the ability to read everyone’s encrypted

emails? But within an organization, key escrow may be desirable, both to recover

lost key material and to respond to legal inquiries.

In any case, ordinary identity-based cryptography has an all-or-nothing escrow

system: the single PKG has access to all secret keys, and each user has access to his

own secret key, but there is nothing in between. We would prefer to allow a middle

ground, where for example the PKG could delegate to Microsoft its power to make

secret keys for strings ending in @microsoft.com. This design, called hierarchical IBE

(HIBE), has the added convenience that Bob need not prove his identity to the PKG,

but can instead prove it to Microsoft. This is considerably easier, since Microsoft

created his account in the first place. Hierarchical IBE can also make escrow more

acceptable. For example, a coalition of companies could set up an HIBE system,

create delegated keys for themselves (covering only their own domains), and then

destroy the master secret key. They would thus achieve the convenience of identity-

based cryptography without centralized escrow.

In this paper, we will concern ourselves with such generalizations of identity-based

cryptography. To distinguish the original version from them, we will call it ordinary
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or vanilla IBE.

1.3 Related Work

Since the 2001 construction of IBE by Boneh and Franklin [8] and Cocks [16], many

variants of IBE have been defined.

A hierarchical IBE, first defined by Horwitz and Lynn [22] and constructed by

Gentry and Silverberg [20], allows some keys to be delegated to create other keys.

Canetti, Halevi and Katz showed in [13] how to use an HIBE to construct forward-

secure encryption, and in [14] how to use IBE or HIBE for chosen-ciphertext security.

Our work is heavily based on the constant-size-ciphertext HIBE of Boneh, Boyen and

Goh [7] and its subsequent extensions by Boneh and Hamburg [10] and by Lewko and

Waters [26].

Further developments included more complex hierarchies and more complex rules

for when a message could be decrypted. Yao, Fazio, Dodis and Lysyanskaya devel-

oped HIBE for complex hierarchies [38]. Additional flexibility comes from Sahai and

Waters’ fuzzy IBE [31], and the attribute-based encryption scheme of Goyal, Pandy,

Sahai and Waters [21]. Bethencourt, Sahai and Waters constructed attribute-based

encryption with policies attached to ciphertexts [5], and Ostrovsky, Sahai and Waters

added non-monotonic formulae [29].

Predicate encryption is closely related to attribute-based encryption. Many schemes

have been designed for inner product and similar predicates, including Okamoto and

Takashima’s hierarchical inner-product encryption [28]. This encryption system is

related to our spatial encryption system, and the two are equivalent under a quadrat-

ically expensive reduction. Inner-product schemes can be improved to add support

for boolean and polynomial equations, as shown by Katz, Sahai and Waters [23].

An anonymous IBE conceals not only the message but also the identity of the

recipient. Boneh and Franklin’s IBE is anonymous under suitable assumptions, and

several authors developed further anonymous IBE schemes, including Boyen [11];

Boneh, Gentry and Hamburg [9]; and Ducas [18]. Boyen and Waters also developed

an anonymous HIBE [12]. Shen, Shi and Waters developed an anonymous predicate
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encryption system [36]. Beyond traditional anonymity, Caro, Iovino and Persiano

show how to keep recipients’ identities secret from other recipients [17].

Proof techniques for IBE and similar systems have improved over the last few

years. Waters’ dual-system encryption [37] enables proofs of adaptive security. This

has been adapted by Lewko and Waters [26] and by Lewko, Okamoto, Sahai, Takashima

and Waters [25] to prove adaptive security of several of the above designs. Attra-

padung and Libert used dual-system technology to extend and further secure spatial

encryption [3].

Recent work has also built several of these primitives from lattices, beginning

with Gentry, Peikert and Vaikuntanathan [19]. It is harder to delegate lattice-based

secret keys than it is to delegate group-based ones, but recent work is beginning to

overcome this problem. This includes work by Agrawal, Boneh and Boyen on HIBE

and related delegation problems [1, 2], and by Cash, Hofheinz, Kiltz and Peikert, also

on delegation [15].

1.4 Motivation

The original motivating problem for our work was proposed by Adam Barth. Email

encryption is commonly cited as a useful application of IBE, and yet almost nobody

uses IBE to encrypt email. A major reason for this is the need to trust the PKG.

This problem would be mitigated, though not completely removed, if users were given

a choice of PKGs to trust. This is analogous to public-key infrastructures such as

X.509, where users can choose which certificate authorities they trust.

Suppose that Alice trusts n different PKGs, and wishes to encrypt a message to

u other users. That is, she wants for each of the u users to be able to decrypt the

message if he has a key, attesting his identity, which was generated by one of the n

trusted PKGs. She could encrypt once for each user, for each PKG, but this would

take n · u encryptions. Using identity-based multicast encryption [32], she could cut

this down to n encryptions, but would still need to do O(n · u) work. We would like

to do better, ideally doing O(n+ u) work and creating a ciphertext of constant size.

We can go further by adding more desiderata. We might hope for a HIBE-like
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design, where Microsoft can generate a key for bob@microsoft.com. Here Microsoft’s

key would have been generated by some PKG P , and Bob’s key would carry the

approval of the same P , as if P had generated the key itself. This implies a hierarchical

multicast IBE; no such scheme was known prior to this work.

We might also want keys to expire after some time, or conversely, for newer keys

to be unable to decrypt older messages. Then if Bob’s key is compromised, the

attacker will not be able to decrypt much of his email with it. Such forward-secure

constructions are known from hierarchical IBE [13], but no forward-secure multicast

scheme was known prior to this work.1

To address these desiderata, we will need to design a modular identity-based

encryption system, one which can be adapted to many different purposes. Such

schemes are already known, and include multiple-HIBE [38] and attribute-based en-

cryption [21]. We hope for our system to be more flexible than these prior systems,

and additionally to produce shorter ciphertexts.

1.5 Comparison to Public-Key Cryptosystems

It is well-known that most users, whether individuals or corporations, do not readily

adopt cutting-edge cryptographic technologies. Instead, they tend to build solutions

from a handful of well-established primitives: symmetric and public-key encryption,

message authentication codes, signatures and hash functions. This has several ad-

vantages: software for these primitives is more readily available on many platforms,

many programmers have experience with them, and compliance criteria may spec-

ify the use of specific ciphers. Therefore, it is important to consider the trade-offs

between identity-based cryptosystems and traditional ones.

Nearly any identity-based cryptosystem can be emulated using a “rights manage-

ment” server. This server holds the secret key for a public-key cryptosystem which

1We make a distinction between multicast and broadcast schemes, using the former term for
cryptosystems in which users are explicitly included, and the latter for those in which they are
explicitly excluded. Forward secure broadcast encryption was constructed in [38]. Note that [32] is,
in our terminology, a multicast design rather than a broadcast one.
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resists chosen-ciphertext attacks (that is, messages encrypted with that system can-

not be modified, only replaced entirely). To encrypt a message under some policy,

a sender simply concatenates the policy and the message, then encrypts both using

the server’s public key. Alternatively, the policy may be sent in the clear, with only

its hash present in the message. To decrypt, a recipient presents the server with the

encrypted message and with some credential which demonstrates his right to read the

message. The server decrypts the message, checks that the credential suffices under

the policy, and returns the decrypted message. By using a hybrid encryption mode,

in which a symmetric key is encrypted with a public-key cryptosystem, the server’s

load is kept reasonable and users retain some measure of privacy, as the server need

only decrypt that key.

Such a system has significant advantages over an identity-based encryption sys-

tem. The server can audit accesses, either to uncover employees who abuse their

power or to assess damage in the case of a compromise. It can also revoke access,

which is impossible in an identity-based cryptosystem. Perhaps more appealing is

a combination of the two: a tripwire system separate from the rights management

server can read the audit logs in real time; access to large amounts of sensitive data

could set off alarms, and the server could temporarily or permanently block access

from the suspect user. Furthermore, such a system meets the highest standards of

security for which identity-based systems strive: users cannot gain by collusion, poli-

cies may be kept secret even from recipients, revocation is absolute, and an attacker

cannot hope to find weak policies.

However, there are also significant disadvantages to the server-based approach.

The simplest is that for some users, auditing and revocation may be liabilities rather

than benefits, and they are difficult to remove from a rights-management system.

But even when these are desirable features, the rights management server is a single

point of failure both for service and for security. It must be online at all times, but

at the same time must resist all attacks. By contrast, the PKG in an identity-based

cryptosystem need not be online continuously (or at all), and it handles a much

lower volume of traffic, so its attack surface is much less. Thus, even when a rights-

management system is desirable, it can be shored up by additionally encrypting with
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an identity-based system.

1.6 Efficiency

Much of our work concerns algorithms which we hope to run on an actual computer.

As such, we require those algorithms to be efficient according to some measure of

efficiency. Formally, we require that each algorithm takes a security parameter, tra-

ditionally denoted by λ, and that all our algorithms take time which is polynomial in

λ. Furthermore, many of our algorithms are parameterized by a system complexity

parameter called n. This parameter is generally related to the maximum size of a set,

the maximum depth of a hierarchy, etc. We require algorithms which take an n to

run in time polynomial in both n and λ. Similarly, we require all the objects in the

system to be efficiently encoded in a computer memory, so that in particular they

take poly(n, λ) bits to represent.

In practice, polynomial time is not very specific. Users set λ as some number of

“estimated bits of security”, usually between 80 and 256. For any such λ and for rea-

sonable n (say, n < 1000), we want the algorithms that are part of our cryptographic

schemes to be fast, taking at most a few seconds to run on a modern computer but

preferably much less. We would like to achieve modest memory usage, perhaps tens

of kilobytes for secret keys, less than a kilobyte for ciphertexts, and a few megabytes

for computations. On the other hand, we allow the attacker a significantly longer

time, approximately on the order of 2λ, corresponding to years or longer on a large

supercomputer. We do not call such a large computation efficient, but rather feasible

– though once again, formally speaking a feasible computation is one which takes

time polynomial in λ and n. Similarly, we can define a reasonable number of queries

or a negligible probability.

This intuitive definition suffices because we prove security concretely. That is, we

show that an algorithm which breaks our cryptosystem can be adapted to solve some

(hopefully) difficult mathematical problem – though perhaps with a somewhat lower

probability – by performing only a few extra steps.
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1.7 Notation and Mathematical Background

We introduce most of our notation and mathematical background here, but leave a

few technical points to the sections in which they are used.

By Zp we mean the field of integers modulo a prime number p. We sincerely

apologize to any mathematically inclined readers who feel that this symbol should be

reserved for the p-adic integers. The symbol Z∗p denotes the nonzero integers modulo

p.

We use calligraphic symbols (G,S, T ) to identify sets and groups, and also to

define adversaries (A, B). The set of integers between a and b inclusive we denote

by [a, b]; to exclude b we write [a, b). We use capital fraktur symbols (A,B,C) for

cryptographic hierarchies (whose meaning we will describe shortly) and lower-case

fraktur symbols (a, b, c) for their elements.

We use the capital letters U, V and W for affine subspaces of a vector space, and

K,L and M for matrices. In a block matrix, written

(
A B

C D

)
, a blank entry

indicates a zero. We use overarrows (~v) to denote vectors. Vectors in this paper are

always column vectors, but to save space we write them as transposed row vectors,

for example: 〈1, 2, 3〉>. By ~u>~v we mean the inner product of the vectors ~u and ~v.

Essentially all our groups are abelian. We will write these groups in additive

notation (meaning that the group operation is + and the identity element is 0).

We use Greek letters to identify group elements, except for λ which is a security

parameter, χ which is a setup parameter, and ε which is a vanishingly small quantity.

By {0, 1}∗, we mean the set of all (binary-encoded) strings of arbitrary length.

We use H to denote cryptographic (collision-resistant) hash functions. By Pr(e) we

mean the probability that a given event e occurs.

We write algorithm names in small caps, and identifiers such as domain names

in teletype. We write data scrutures in ALL CAPS, and implementations of cryp-

tographic systems in bold.
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1.8 Random Oracles and Generic Groups

Cryptographic proofs strive to consider all possible attacks against a given system.

But in practice, most attacks share certain characteristics. Therefore, in places where

a complete security proof is too difficult, we will show security against attacks with

particular, common characteristics. This is especially useful for base assumptions. No

practical cryptosystem supports an unconditional proof of security, so we will need

to assume that certain problems are difficult in order to proceed. To substantiate our

belief that these problems are difficult, we will show that generic techniques cannot

solve them.

The two models we will use in this paper are the random oracle model and the

generic group model.

Random oracle model The random oracle model assumes that the adversary

treats a particular function as a black box, i.e. as a random function from its do-

main to its codomain. Most cryptographic hash functions are designed to behave as

similarly as possible to random oracles, so we will occasionally treat them as such.

This is an imperfect model of reality, however, because any real hash function has a

compact description and is efficiently computable.

The main advantage of the random oracle model is that if an attacker treats

the hash function as a random oracle, her attack will still work if it is replaced by

a different function that produces the same distribution. For example, if the hash

function H returns an element of a cyclic group G (generated by α), it could be

replaced by a function that chooses a random x ∈ [0, |G|) and returns x · α. An

attack against a system modified in this way might more easily reduce to a hard

mathematical problem than one which uses H.

A second use is to force the adversary’s choices. Suppose that we are interested

in the case when one of the adversary’s choices (say, a message to sign) is a certain

random number r. If the message is passed through a random oracle, we can rig that

oracle to return r for one of the adversary’s queries. Then if the adversary makes q

queries to the random oracle, she will choose the favored r with probability 1/q.
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A third use is to shorten randomly-generated parameters. Some systems’ setup

phases require generating and publishing several random parameters; it is more com-

pact to declare them to be the outputs H(1), H(2), . . . , H(n) for some hash H. If H

is modeled as a random oracle, then these procedures are effectively the same.

Most results in this work do not use the random oracle model. We use it only for

optional extensions and to strengthen certain security proofs for signature schemes.

Generic group model Much of the arithmetic in this paper is done over groups of

points on an elliptic curve. In practice, most known attacks on such systems do not

use the elliptic curve structure; they treat the group operation and the representation

of the elements as black boxes. Given multiple groups supporting a bilinear map, the

same is usually still true so long as the map’s output is large enough to avoid attacks

by index calculus. Therefore, it makes sense to consider what generic attacks can

accomplish. Because this model robs the attacker of much of her power, we will only

use it to defend our base assumptions.



Chapter 2

Generalized Identity-Based

Encryption

2.1 Examples

In this chapter, we will propose a model for variants of IBE. We begin by giving

examples of several such variants which have appeared in the literature.

Multicast IBE In multicast IBE, as in ordinary IBE, each user has an identity

and a corresponding secret key. However, when encrypting a message, the sender can

choose several identities to encrypt to, and a secret key corresponding to any of those

identities suffices to read the message. This is easily accomplished by encrypting the

message once for each user, but multicast IBE is more efficient in computation, space

usage or both.

This form of IBE is often called broadcast IBE. However, we wish to distinguish it

from another definition of broadcast encryption, in which the sender wishes to send

a message to every user except for those on a short list. Such a model is useful for

revoking compromised devices in a digital content distribution system. We will also

model broadcast IBE.

11
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Hierarchical IBE In HIBE, identities are arranged in a hierarchy, encoded as

sequences of strings. If s is an intial subsequence of a sequence t, then a key for s can

be delegated to create a key for t, and so can also be used to decrypt messages which

were encrypted to t. For example, a key for (com, microsoft) can be delegated to a

key for (com, microsoft,@, bob), which we might use as an encoding for Bob’s email

address bob@microsoft.com.

Predicate Encryption Secret keys in predicate encryption correspond to strings.

When encrypting a message, a sender chooses a function f : {0, 1}∗ → {0, 1}, possibly

from restricted set of such functions. The message can be decrypted with the key

for a string s where f(s) = 1. Alternatively, the string may be chosen at encryption

time, and predicate may be associated with the key.

Anonymous IBE In most IBE systems, anyone can determine (or at least verify)

the identities of the intended recipients simply by looking at the ciphertext. An

anonymous IBE system prevents this. For more advanced systems such as predicate

encryption, in which messages are not encrypted using individual identities, such a

system is often described as key-private, policy-private or something similar.

2.2 Overview of the Model

To study such systems, we first provide a model of what they accomplish, and of the

security guarantees we desire. We call this the Generalized Identity-Based Encryption

(GIBE) model.

Roles Users in a GIBE can take on various roles, chosen from some set R of allow-

able roles. We place no restrictions on R. For each role r, we assign a distribution

SKr of secret keys corresponding to that role. For example, in ordinary IBE and mul-

ticast IBE, users’ roles are their identities (which are simply strings). Additionally,

the PKG has a role, which we denote >, and holds the corresponding master secret

key SK>.
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Delegation Keys for certain roles can be delegated to create keys for other roles.

We say that a role r1 delegates to a role r2, and write r1 � r2, if a key for r1 can be used

(by an efficient algorithm Delegate) to create a key for r2. This relation is transitive,

meaning that if r1 � r2 and r2 � r3 then r1 � r3.1 What is more, if r1 � r2 � r1, then

r1 and r2 are essentially equivalent: a key for either one is as good as a key for the

other. Therefore we call such roles equal, meaning that � is antisymmetric. Thus �
defines a partial order on R (which makes R a partially-ordered set, or “poset”).

Policies Let P be a set of allowable policies. We place no restrictions on P. When a

user encrypts a message using a GIBE, she chooses a policy p ∈ P. The chosen policy

governs which users will be able to decrypt the message using the keys corresponding

to their roles. We say that r decrypts a policy p, and write r � p, if a key SKr for

r can be used to decrypt a message encrypted using p (using an efficient algorithm

Decrypt). This relation is transitive with delegation, so that (if we also say that

p � p) the sum R
∐

P is also a poset.

Notice that the decryption relation checks if a single role decrypts a single policy.

Our model implicitly requires collusion resistance: for a user holding the secret keys

to multiple roles r1, . . . , rm to decrypt a message under p, we must have ri � p for

some i ∈ [1,m]. In particular, we do not model threshold encryption schemes, in

which multiple keys are required to decrypt a message.

Together, we call the sets (R,P) and relation � a hierarchy, which we denote H.

Simplifications To simplify analysis, we will place a few additional requirements

on the model. We will require that the systems have a role >, corresponding to the

master PKG, such that > � r for all roles r ∈ R and > � p for all policies p ∈ P.

In practice, this requirement is generally vacuous. Most systems have such a role

already, and if they don’t, it can be defined even though nobody holds the key in real

life. A key SK> can generally be defined, at worst, by all the randomness used in

setting up the system.

1One can imagine a system in which r1 6� r3 because the requisite r2 is hard to find. We do not
model such systems.
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We assume that roles and policies can be efficiently encoded, and that the �
relation can be determined efficiently.

More onerously, we require that when Delegate creates a key SKr for a role r,

it must generate SKr uniformly from SKr. In other words, all keys for a given role

come from the same distribution, no matter how they were delegated. Similarly, we

require Decrypt for some policy p to return the same distribution of results for a

given ciphertext, no matter what role r � p and corresponding key SKr ∈ SKr are

used to decrypt it. These requirements make the security model considerably simpler.

In particular, this means that secret keys can be re-randomized, because every role

delegates to itself. In this special case the requirement is unnecessary, but the designs

discussed in this paper still satisfy it.

Finally, we will assume that all messages are fixed-length rather than arbitrary-

length, so that length cannot be used to distinguish between two ciphertexts. This

accurately reflects practice: asymmetric cryptosystems are used almost exclusively

to encrypt symmetric (e.g. AES) secret keys, so they act more as key encapsulation

mechanims (KEMs) than as encryption systems. Similarly, signature schemes are

used almost exclusively to sign the hashes of messages.

Parameters The hierarchy H = (R,P) is not necessarily fixed in a given cryptosys-

tem. For example, there may be a maximum multicast set size, maximum hierarchy

depth, or some similar complexity parameter, and the roles and policies may de-

pend on the security parameter. Such parameters we call χuser. Similarly, there may

be purely mechanical constraints on roles and policies. For example, roles in inner-

product encryption may incorporate numbers modulo a prime p which is generated at

system setup time. We call such parameters χsystem. To accomodate these variations,

H is indexed by χ := (λ, χuser, χsystem). For brevity, we will omit χ when possible.

2.3 Algorithms

A GIBE’s implementation consists of four efficient randomized algorithms.
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Setup To initialize the public parameters PP and the master secret key SK>, the

system’s creators run an algorithm

(PP, SK>)← Setup(λ, χuser)

For simplicity, we will assume that the system parameters χ = (λ, χuser, χsystem) are

included as part of PP.

Delegate To create a secret key SKr1 for a role r1, there is an algorithm

SKr1 ← Delegate(PP, r2, SKr2 , r1)

This algorithm requires that r2 � r1, and must choose SKr1 uniformly from SKr1 .

Note that SKr2 and r2 are passed in separately. This is done so that we may talk

about the size of secret key SKr independently of the size of the description of r.

Encrypt To encrypt a message m under a policy p, a sender runs

C ← Encrypt(PP, p,m)

Decrypt To decrypt a ciphertext C which was encrypted under a policy p, there is

an algorithm

m← Decrypt(PP, r, SKr, p, C)

As in Delegate, r and p are passed separately from the ciphertext, so that we

can talk about the size of the ciphertext independently from the size of its policy.

Decrypt can fail by returing a special symbol ⊥. For correctness, we require that if

C ← Encrypt(PP, p,m)

m′ ← Decrypt(PP, r, SKr, p, C)

where SKr ∈ SKr and r � p, then m′ = m (and in particular that decryption does not

fail). Ordinarily require total correctness, but in some cases a negligible probability
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of failure may be acceptable.

Although Decrypt requires that r � p, its output must be otherwise independent

of r and of SKr. If there is a minimum role r′ � p (meaning that for all r � p we also

have r � r′), then by running

SKr′ ← Delegate(PP, r, SKr, r
′)

C ← Decrypt(PP, r′, SKr′ , p, C)

we can achieve this property generically: r′ does not depend on r, and SKr′ is uniformly

random in SKr′ regardless of r and SKr.

2.4 Security Games

We follow the tradition of defining the security of a GIBE in terms of a game between

two players, a challenger and an adversary A. The challenger represents the function-

ality that the system provides, while the adversary is attempting to go beyond that

functionality by reading (or learning information about) a message that she2 is not

supposed to have access to. To show that she can learn information from ciphertexts,

the adversary attempts to pass an indistinguishability or semantic security test: to

determine from a ciphertext which of two chosen messages has been encrypted.

To support the several security models offered by IBE variants, we propose a

security game which itself has several variants. We begin with the strongest variant.

The game begins with a fixed λ and χuser. It proceeds in several stages:

Setup The challenger runs Setup to generate public parameters PP and a master

secret key SK>. It sends PP to the adversary.

First Query Phase The adversary can now make any (polynomial) number of

queries to the challenger. Two types of queries are allowed:

2Adversaries get a feminine pronoun because they follow in the footsteps of the eavesdropper
Eve. The challenger is more robotic, and so is given an undignified “it”.
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• Given a delegation query (“Delegate”, r) where r ∈ R, the challenger must run

SKr ← Delegate(PP,>, SK>, r)

and return SKr to the adversary. Because of our restriction on Delegate, the

returned SKr is simply a uniform element of SKr.

• Given a decryption query (“Decrypt”, p, C) where p ∈ P, the challenger must

run

m← Decrypt(PP,>, SK>, p, C)

and return m to the adversary. Because of our restriction on Decrypt, this

decryption might as well have been from any r � p and any secret key for that

role.

Challenge At some point, the adversary chooses two policies p0 and p1 and two

corresponding messages m0 and m1, and sends them to the challenger. She must not

have asked a delegation query to any role r such that r � p0 or r � p1. The challenger

chooses b
R← {0, 1}, runs

C∗ ← Encrypt(PP, pb,mb)

and returns the challenge ciphertext C∗ to the adversary. We hope that the encryption

so completely hides the features of the message mb that the adversary cannot guess

which b was chosen with probability significantly greater than 1
2
.

Second Query Phase The second query phase is nearly the same as the first. To

prevent trivial “attacks”, the adversary cannot ask a delegation query to any role r

where either r � p0 or r � p1, nor may she ask the challenger to decrypt C∗ using

any policy.

Guess The adversary outputs a guess b′ ∈ {0, 1}. We say that the adversary wins

the game if b′ = b, and loses otherwise. We define the advantage Adv(A ↔ G) of the
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adversary A against the GIBE G by

Adv(A ↔ G) = |Pr(b′ = b)− Pr(b′ 6= b)|

Advantage is defined this way so that it will be between 0 and 1, with 0 representing no

break and 1 representing a complete break. Since we will use advantages extensively

in this paper, we will also note that

Adv(A ↔ G) = |Pr(A outputs 1 when b = 0)− Pr(A outputs 1 when b = 1)|

and that

Adv(A ↔ G) = |2 Pr(A wins)− 1|

We would like to say that no feasible adversary A has a non-negligible advantage

against G, for suitable definitions of “feasible” and “negligible”.

There are several variants of this game, corresponding to weaker notions of secu-

rity.

Selective vs. Adaptive Security The adversary in this game can select her target

adaptively. A real-life adversary might only be interested in a single target, or more

likely a small list of targets. We can formalize this notion of selective security by

requiring the adversary to choose p0 and p1 before the game begins. To deal with

a system parameter χsystem (upon which the policies depend), the challenger runs

Setup but only tells the adversary χsystem. The adversary chooses p0 and p1, then

the challenger reveals the full PP and the game proceeds as normal.

We have a proof of adaptive security for one variant of our spatial encryption

system. For another variant, we only have a proof of selective security.

Additionally, we can define a co-selective security game, in which the adversary

chooses which roles she will query ahead of time. We will not use co-selective security

in this paper, but it is used, for example, in [3].
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Anonymity The above game enforces anonymity: not only is the adversary unable

to determine any properties of the message mb based on the ciphertext, she is also

unable to determine any properties of the policy pb. Most GIBEs in practice do not

have this property. To model their non-anonymous security, we can add the constraint

that p0 = p1.

We also note that a GIBE which is secure in the anonymous version of our game

may still lack some aspects of anonymity. First, Decrypt takes as input the policy p,

which means that the recipient must know p. If Decrypt uses p, we call the system

weakly anonymous, and otherwise strongly anonymous.

Furthermore, our model does not cover systems which keep the recipients anony-

mous from each other. That is, the adversary is never allowed to be a recipient of

the message, so our system makes no claims about what such an adversary can learn

about the other recipients. We can model such a recipient-anonymous system with

respect to a set R of roles by additionally allowing the adversary to make delegation

queries for roles r ∈ R where r � p0 and r � p1, so long as m0 = m1. The roles in R

cannot be meaningfully delegated: if r � r′, where r′ � p0 but r′ 6� p1, then testing

decryption with r′ will break anonymity.

CPA-Only Security Our system allows decryption queries at any time, so it en-

forces full security against chosen ciphertext attacks (CCA2). We can weaken this

notion to CCA1 security by disallowing decryption queries during the second query

phase. CCA1 models systems in which the ciphertext can be modified slightly without

destroying its meaning. We can weaken this notion even further to chosen plaintext

attacks (CPA) by disallowing decryption queries entirely.

We will show that for sufficiently powerful classes of GIBE, we can add CCA2

security without making significant changes to the system.

2.5 Properties of GIBEs

GIBEs and their hierarchies have many useful properties and relations which we will

use throughout the paper. This section will explore several of them. Readers who are
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familiar with category theory will notice that, using the definitions in this section,

hierarchies form a category, meaning that there are maps between hierarchies, as well

as products and sums (coproducts) which interact with maps in intuitive ways.

Embedding It is clear that some GIBEs can be used as building blocks to create

other GIBEs. For example, HIBE and multicast IBE can clearly be used to implement

vanilla IBE. This is done by encoding the roles and policies for one GIBE into the

other. To encode a hierarchy H = (R,P) into another hierarchy H′ = (R′,P′), we

need:

• A function f : R→ R′. This function must preserve the partial order, meaning

that

f(r1) � f(r2) if and only if r1 � r2

(f is thus a poset embedding)

• A function g : P → P′. This function must preserve decryptability, meaning

that

f(r) � g(p) if and only if r � p

We call such a pair (f, g) a hierarchy embedding, and we say that it embeds H into H′.

Now, if (f, g) embeds H into H′, then given a GIBE G′ implementing H′, we can

construct a GIBE G implementing H. We simply apply f (resp. g) to all roles (resp.

policies) in H before calling any of Delegate, Encrypt or Decrypt. Also, if H

and H′ are parameterized, we need efficient functions to translate χuser to χ′user before

calling Setup, and to translate χ′system to χsystem afterwards. In this case, (f, g) will

need to be an embedding from Hχ to H′χ′ .

Lemma (Embedding Lemma). If G is implemented as above, then for any adversary

A against G (in any variant of the security game), there is an adversary A′ against

G′, running in about the same time as A, such that

Adv(A ↔ G) = Adv(A′ ↔ G′)
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Proof. The algorithms of G are simply translated into calls to the algorithms of G′.

An algorithm A′ which translates the queries of A in the same way constitutes an

adversary against G′. Since f and g preserve the partial order, the same restrictions

apply to A and to A′, and their win conditions are also the same, so their advantages

are the same.

For category theorists, embeddings are the morphisms in the category of hierarchies,

and implementation is a contravariant functor.

Note that our definition is stronger than what is required for a secure implementa-

tion. For that, we can allow e(r1) � e(r2) even when r1 6� r2, so long as the same does

not happen for policies. However, in most cases there will be a policy p which can be

decrypted by r2 but not by r1, so a secure implementation will require an embedding.

Hashed Embedding At a high level, many GIBEs are defined to work with strings,

but their implementations hash the strings to fixed-size numbers. Therefore we would

like an anolog of the Embedding Lemma where f and g make use of collision-resistant

hash functions. In this case (f, g) is not an embedding, because the partial order will

not be preserved if a hash collision occurs. Therefore some correctness and some

security may be lost, but we hope that only a little will be lost.

Suppose that H(S) is a hierarchy whose roles and policies contain elements of some

set S (e.g. strings) in their descriptions, but these elements are used only in equality

comparisons. (This makes H a covariant functor for suitably chosen categories.) Let

H be a hash function from S to some other set T . Then we can implement a GIBE

G for H(S) using an implementation G′ of H(T ) by applying H to all the S-elements

(i.e. by applying the functor).

If the function to decide � in H(S) is monotone with respect to the string equality

comparisons, then G will always be a correct implementation. If not, then G may

occasionally fail, but only if a hash collision occurs. The security properties are

analogous:

Lemma (Hashed Embedding Lemma). If G is implemented in this way, then for any

adversary A against G (in any variant of the security game), there is an adversary
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A′ against G′ and a collision-resistance adversary B against H, both running in about

the same time as A, such that

Adv(A ↔ G) ≤ Adv(A′ ↔ G′) + CR Adv(B ↔ H)

Proof. The algorithm B runs A, hashing all the strings used in its H(S) policies. If

a hash collision occurs, then B successfully finds a collision in H. Otherwise, the

partial order in the part of H(S) that was actually used is the same as that in H(T ).

In this case, if A wins against G then the adversary A′ from the Embedding Lemma

will also win against G′.

Products of Hierarchies Hierarchies support a natural notion of products. For

two hierarchies H1 = (R1,P1) and H2 = (R2,P2), define their product H1 × H2 as

follows:

• Its roles are elements of R1 ×R2, i.e. pairs (r1, r2) where r1 ∈ R1 and r2 ∈ R2.

Their order is according to the product poset:

(r1, r2) � (r′1, r
′
2) if and only if r1 � r′1 and r2 � r′2

• Likewise, its policies are elements of P1 ×P2, where

(r1, r2) � (p1, p2) if and only if r1 � p1 and r2 � p2

By extension, we can define the product of any number of hierarchies. It is clear that

products of hierarchies respect embeddings, so that this notion is natural.

A product of two hierarchies enforces both hierarchies simultaneously. It is com-

parable to double encryption, i.e. encrypting a message twice, using one policy from

each hierarchy. However, double encryption is not collusion resistant. For example,

suppose we wish to send a message to members of Lab 1 who have top secret clear-

ances. We could encrypt the message under the policy “top secret”, and then encrypt

the resulting ciphertext to “members of Lab 1”. But then two users, one with a top
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secret clearance and one who is a member of Lab 1, could collude to decrypt it. In

contrast, a GIBE implementing the product hierarchy would not allow this.

Coproducts of Hierarchies We can also define the coproduct of any number of

hierarchies H1 = (R1,P1), . . . ,Hk = (Rk,Pk). The roles of the coproduct
∐k

i=1 Hi

are either >, or (i, ri) where ri ∈ Ri\{>}. Its policies are (i, pi) where pi ∈ Pi. Roles

and policies are compared normally, but only when they have the same i.

While this notion of coproduct is natural, sometimes we want to give each hi-

erarchy in the coproduct its own, separate >. For example, the Hi may represent

divisions within a company, so that each division has its own hierarchy of power. We

might then want to give each division head a master secret key, but only for that one

division. For this case, we allow ri to be > in the above definition, and call the result

an extended coproduct, which we write
∐k

i=1 Hi.

Extended coproducts (and thus ordinary coproducts as well) can be efficiently

constructed using a product GIBE.

Lemma (Extended Coproduct Embedding). Let I denote the hierarchy of vanilla

IBE. Given hierarchies H1, . . . ,Hk, all of which support embeddings ei into another

hierarchy H∗, there is an embedding from
∐k

i=1 Hi into I× H∗.

This embedding is evident in the definition of coproducts: it simply maps (i, ri) to

(i, ei(ri)), which is a valid member of I × H∗, and likewise with the policies. The

coproduct’s > maps to (>,>). Because this embedding is so efficient, it enables the

main use of coproducts: to support many different schemes using the same set of

public parameters.

There is a notable similarity between extended coproducts and HIBE schemes:

in either one, there is a tag (or first path component) i, and several hierarchies

underneath, one for each value of i.

2.6 Generic CCA2 security

Product schemes give us a simple way to make schemes secure against chosen-ciphertext

attacks. The approach is essentially the same as in [14]. We can use either a one-time
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signature scheme, or a weak commitment scheme and a one-time message authentica-

tion code. The former approach is simpler, but the latter is more efficient, so we will

show it here.

Weak Commitments A weak commitment scheme (or encapsulation scheme in

the language of [14]) is a pair of algorithms: a randomized algorithm Commit which

takes some object (say, a string) and outputs a pair (c, d) – a “commitment” and a

“decommitment” – and a deterministic algorithm Decommit which takes (c, d) and

outputs either an object or ⊥. For correctness, we require Decommit ◦Commit to

be the identity.

There are two security properties. For the binding property, we require that if

an honest committer generates a commitment to s, it should be hard to generate a

decommitment to any s′ 6= s. In other words, the adversary A plays the following

game:

s ← random object

(c, d) ← Commit(s)

d′ ← A(c, d)

and wins if Decommit(c, d′) /∈ {⊥, s}; its advantage Adv(A ↔ bind) is its probability

of winning.

For the hiding property, we require that it is hard to learn anything about s given

c. The adversary A plays the following game:

s0, s1 ← random objects

b
R← {0, 1}

(c, d) ← Commit(sb)

b′ ← A(s0, s1, c)

and wins if b′ = b; its advantage Adv(A ↔ bind) is |Pr(b = b′)− Pr(b 6= b′)|.
We call a weak commitment scheme secure if Adv(A ↔ bind) and Adv(B ↔ hide)
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are negligible for all feasible adversariesA and B. As usual, the definition of “feasible”

and “negligible” may include an implicit security parameter λ.

One-Time MAC A one-time MAC scheme is an efficient deterministic function

MAC which takes a random secret key s and an object x, and outputs a tag t. It

should be difficult, given the tag for a chosen x, to compute the tag for any x′ 6= x.

Its security game is as follows:

• The adversary chooses an object x.

• The challenger chooses a random secret key s and sends t = MACs(x) to the

challenger.

• The adversary computes an object x′ and a tag t′.

The adversary wins if t′ = MACs(x
′), and its advantage is its probability of winning.

Construction We now have the tools to construct a CCA2 encryption scheme. Let

H be any hierarchy, and suppose we have a CPA-secure implementation G of H’s

product H×I with the vanilla IBE I. To implement a GIBE for H in a CCA2-secure

way, we will MAC all ciphertexts. Checking the MAC requires its secret key; this we

place in the message before encrypting. To enforce the consistency of the system, we

include a weak commitment to the MAC secret key in the encryption policy. The

entire implementation is as follows:

• The Setup algorithm is the same as in G.

• The secret key for a role r ∈ H is G’s secret key for (r,>). To Delegate,

simply append this > to the source and destination role, and pass through to

G’s Delegate algorithm.
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• To implement Encrypt(PP, p,m), we use the following procedure:

s ← random MAC secret key

(c, d) ← Commit(s)

e ← EncryptG(PP, (p, c), (d,m))

a ← MACs(c, e)

return(c, e, t)

• The Decrypt algorithm reverses this procedure, checking the commitment

and the MAC along the way. To implement Decrypt(PP, r, SKr, p, (c, e, t)),

we perform the following procedure:

(d,m) ← DecryptG(PP, (r,>), SKr, (p, c), e)

s ← Decommit(c, d)

t′ ← MACs(c, e)

if t′ = t then return m else return ⊥

Of course, if either DecryptG or Decommit returns ⊥, then Decrypt also

returns ⊥.

If the GIBE and the commitment scheme are correct, then this algorithm is also

clearly correct. The following theorem establishes its security.

Theorem 1 (Generic CCA2 Security). Let G′ be the GIBE defined as above. If G is

CPA-secure, and the MAC and commitment schemes are secure, then G′ is CCA2-

secure. If G enjoys anonymous security, then so does G′, and if G enjoys adaptive

security, then so does G′.

Proof. Our proof follows [14]. In addition to winning, we give the adversary two new

objectives. One we call bluffing. Let the challenge ciphertext have commitment com-

ponent c∗, a commitment to the MAC key s∗. We say that the adversary successfully

bluffs if it makes a decryption query to (c∗, e, t), where either e or t is different from
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the challenge ciphertext, but which decrypts to something other than ⊥. (For consis-

tency, the challenger can pick c∗ ahead of time, so that bluffing has a meaning even

before the adversary sees c∗.) We say that the adversary forges if it queries (c∗, e, t)

where t = MACs∗(c∗, e), i.e. if the adversary successfully passes a MAC check on

such a ciphertext. It is important to note that while detecting a bluff requires the

ability to decrypt, detecting a forgery does not: it only requires knowledge of s∗.

Sequence of Games Our proof now proceeds by a sequence of games. In this

proof technique, we will alter the security game, one piece at a time, until we reach

a game which the adversary cannot win (or, in this case, bluff or forge). We will also

argue that the adversary must perform the same way in each successive game, or else

she has broken one of the primitives. Define wi, bi and fi as the probability that the

adversary wins, bluffs and forges, respectively, in Game i.

Game 0 Game 0 is the normal GIBE security game.

Game 1 Game 1 is the same as Game 0, except that the challenger rejects bluffs;

that is, it returns ⊥ for any decryption query whose c = c∗. This differs from Game 0

if and only if the adversary bluffs, so |w1 −w0| ≤ b0. But b1 = b0, because the games

diverge only after A bluffs. Now, consider one of the bluffs. Either it is also a forgery,

or else it produces a different MAC key s 6= s∗. In this second case, A has broken the

commitment scheme. This creates an adversary B1 against the commitment scheme’s

binding property, where

Adv(B1 ↔ bind) ≥ b1 − f1

There is another way to play Game 1, namely to emulate an attack on the un-

derlying implementation G. A simulator for the challenger in Game 1 can translate

delegation queries on G′ to those on G. It can translate the challenge (creating the

MAC key, the commitment and the MAC itself). The simulator can also translate de-

cryption queries to (c, e, t) under a policy p, by creating a delegation query to (>, c),
which can decrypt (p, c) in the GIBE G. Since in Game 1 decryption query is rejected

if c = c∗, this role (>, c) is not above the policy (p∗, c∗) used in the challenge, and so
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is a legal query. This alternate way to play is identical as far as A is concerned.

Game 2 We define Game 2 to be the same as Game 1, except that EncryptG is

called with the message (0, 0) instead of (d,m). Furthermore, for anonymous versions

of the game, we encrypt both challenge messages to p0. Since the two challenges are

identical, w2 = 1
2
. But if the adversary performs differently in Game 2 and Game 1,

then it has broken G. In particular, there are adversaries B2 and B3 such that

|w1 − w2| ≤ Adv(B2 ↔ G) and |f1 − f2| ≤ Adv(B3 ↔ G)

Game 3 While A has no advantage in Game 2, we still need to bound her forgery

abilities, to which end we define Game 3. In this game, the commitment c∗ is replaced

by a commitment to a random key (note that the decommitment d is no longer

used). Then if A performs differently, it has broken the commitment scheme’s hiding

property. But if it does not, it has broken the MAC. This gives adversaries B4 and

B5 against the commitment scheme and the MAC, where

f2 ≤ Adv(B4 ↔ hide) + Adv(B5 ↔MAC)

Summing up,

1

2
Adv(A ↔ G′) =

∣∣∣∣w0 −
1

2

∣∣∣∣
≤ Adv(B1 ↔ bind) + Adv(B2 ↔ G) + Adv(B3 ↔ G)

+ Adv(B4 ↔ hide) + Adv(B5 ↔MAC)

Because the various games respect our possible restrictions on the security game of

G′, the anonymity and adaptive security properties of G′ are the same as those of G.

This completes the proof.
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Signatures

The previous chapter concerned itself with generalized identity-based encryption. We

can apply the same terminology to signatures, and use the same technology to build

them. We call such schemes generalized identity-based signature (GIBS) schemes.

3.1 Algorithms

Like a GIBE, a GIBS operates on a hierarchy H = (R,P) and consists of four algo-

rithms.

Setup and Delegate The Setup and Delegate algorithms work the same as

their GIBE counterparts.

Sign A user can sign a message m under a policy p by calling

s← Sign(PP, r, SKr, p,m)

where r � p. Analogously to Decrypt, we require the output of Sign to be inde-

pendent of r and of SKr.

29
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Verify To verify the signature, any user can call

v ← Verify(PP, p,m, s)

which returns 0 (for failure) or 1 (for success). For correctness, we demand that if

s ← Sign(PP, r, SKr, p,m)

v ← Verify(PP, p,m, s)

where r � p and SKr ∈ SKr, then v = 1. As with decryption, a negligible loss of

correctness may be acceptable.

3.2 Security Games

The security game for signatures is much simpler, containing only 3 phases.

Setup The challenger runs Setup to generate public parameters PP and a master

secret key SK>. It sends PP to the adversary.

Query Phase The adversary can now make any (polynomial) number of queries to

the challenger. Two types of queries are allowed:

• Delegation queries work exactly the same as in a GIBE. Given a query (“Delegate”, r)

where r ∈ R, the challenger must run

SKr ← Delegate(PP,>, SK>, r)

and return SKr to the adversary.

• Given a signature query (“Sign”, p,m) where p ∈ P, the challenger must run

s← Sign(PP,>, SK>, p,m)
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and return s to the adversary. Because of our restriction on Sign, it does not

matter that the role used was >; the same distribution of signatures would arise

from any role and any secret key for that role.

Forgery The adversary outputs a policy p, a message m and a signature s. The

adversary must not have queried (“Delegate”, r) for any r � p, nor (“Sign”, p,m).

The challenger then runs

v ← Verify(PP, p,m)

The adversary wins if v = 1, and its advantage Adv(A ↔ G) is defined as

Adv(A ↔ G) = Pr[v = 1]

As with GIBE, there are a number of weaker variants of the signature game.

Selective-Policy Security We can define a selective version of the game, in which

the adversary must choose the policy p to attack beforehand.

Selective-Message Security Similarly, we can require the adversary to choose

the message beforehand. This corresponds to a more traditional notion of “selective

forgery” (as compared to “existential forgery”). If the message is hashed before

signing and the hash is modeled as a random oracle, then selective-message security

is equivalent to adaptive-message security.

We could define other weaker notions, for example by preventing the adversary

from making signature queries, but we see no profit in doing so.

Embedding and Hashed Embedding The Embedding Lemma and Hashed Em-

bedding Lemma also apply to signature schemes, and it is clear that applying a

collision-resistant hash to the message before signing is also secure.
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3.3 Signatures from Encryption

It is often possible to build a signature scheme from an encryption scheme. Let

H = (R,R) be a hierarchy whose roles are the same as its policies. Let G be an

implementation of H× I. Then we can use G to implement a signature scheme S on

H. Secret keys for a role r in the signature scheme will correspond to secret keys for

(r,>), with delegation working in the natural way.

To implement Sign(PP, r, SKr, p,m), we set an identity i as an injective string

encoding of the pair (p,m), and run

s← Delegate(PP, (r,>), SKr, (p, i))

Note that p is also a role in H, because H’s policies are the same as its roles. The

signature s is a secret key for (p, i).

To implement Verify(PP, r, SKr, p,m, s), we compute i, choose a random mes-

sage v and run:

c ← Encrypt(PP, (p, i), v)

v′ ← Decrypt(PP, (p, i), s, (p, i), c)

if v′ = v then return 1; otherwise return 0

The correctness of this verification algorithm follows from the correctness of Decrypt.

Likewise, the security of S follows from that of G:

Theorem 2. Suppose that G supports a large message spaceM. If G is an adaptively

CPA-secure GIBE then S is an adaptively, existentially unforgeable signature scheme.

Likewise, if G is a selectively CPA-secure GIBE, then S is a selectively unforgeable

signature scheme. In either case, G need not be anonymous.

Proof. Let A be an adversary against S. We will construct an adversary B against G,

by simulatingA’s interaction with S. By construction, we can translateA’s delegation

and signature queries against S to delegation queries against G. Eventually, A will

output an attempted forgery (p,m, s), where s is a purported secret key for a role

(p, (p,m)). For this to be a valid forgery, p must not be under any role used in a

delegation query, and the pair (p,m) must not have been used in any signature query.
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As a result, the simulation will not have generated any delegation queries for roles

above (p, (p,m)).

The simulator B then challenges G on the policy (p,m) with two different random

messages v0 and v1, receiving a ciphertext c. It runs

v′ ← Decrypt(PP, (p, i), s, (p, i), c)

If v′ = v0, it guesses b = 0, and if v′ = v1 it guesses b = 1; otherwise it guesses at

random. The probability of either causal case occurring is Adv(A ↔ S). Since v0 and

v1 are random, the probability that v′ = v0 but that b = 1, or vice versa, is negligible

(at most 1
|M|−1

). Thus the probability of a correct guess is Adv(A ↔ S) due to the

causal case, and at least 1
2
(1 − Adv(A ↔ S) − 1

|M|−1
) due to a random guess being

correct. So

Adv(B ↔ G) ≥ Adv(A ↔ S)− 1

|M| − 1

Since the space of possible messages is generally extremely large, 1
|M|−1

is almost

always negligible. This completes the proof in the adaptive case. For the selective

case, note that if S is given p and m ahead of time, it can pass this information to

G, so if A is a selective adversary, then B is, too.

Notice that this extra dimension is already present in a CCA2-secure GIBE con-

structed according to Theorem 1. Thus a user with a key for a role r can sign messages

using another role r′ � r as a policy. Furthermore, if the encodings of (p, c) and (p,m)

(or the functions used to hash them when implementing I) are chosen correctly, the

use of this signature will not impact the security of G. Such a system is called an

anonymous ring signature [30]: it signs a message with proof of a role r � r′ without

revealing any information about r. As in [30], this can be done by taking advantage

of an existing cryptosystem, without any additional setup.



Chapter 4

Spatial and Doubly-Spatial

Encryption

Our main contribution is a pair of GIBEs, called spatial encryption and doubly-spatial

encryption. The hierarchies for these GIBEs are very rich, but also quite abstract.

Their usefulness lies in our ability to embed other GIBEs inside them.

4.1 Spatial Encryption

Affine spaces Let p be a prime number, and let Zp done the field of integers modulo

p. For some positive integer n, let Znp denote an n-dimensional vector space over the

field Zp. For any vector ~x ∈ Znp and any matrix M ∈ Zn×mp (i.e. one with n rows and

m columns, for some integer m ≥ 0), we define the affine subspace Aff (M,~x) by

Aff (M,~x) := {~x+M · ~y : ~y ∈ Zmp }

If these elements ~x+M ·~y are all unique, we say that Aff (M,~x) is an m-dimensional

affine subspace. It is a basic theorem from linear algebra that every affine space has

a well-defined dimension.

34
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The spatial hierarchy The roles for spatial encryption are all the affine subspaces

of Znp . They are ordered by containment: we say that r1 � r2 if and only if r1 ⊇ r2.

The policies for spatial encryption are all the points of Znp , and we say that r � p if

and only if p ∈ r. This is the extent of the n-dimensional spatial encryption hierarchy

over Zp, which we call Sn
p (but we omit the p most of the time due to laziness). But in

the interest of transparently supporting signatures (implemented using Theorem 2),

we will define a slight extension of this hierarchy. In the extension, the policies,

like the roles, are all the affine subspaces of Znp , with the same ordering. Ordinary

spatial encryption embeds into this extension: the points are simply zero-dimensional

subspaces.

In order to write down the roles, we will need a compact, unique encoding of each

subspace. Just M and ~x will not suffice, because there are many choices of M and

~x that describe the same affine space. Fortunately, linear algebra provides canonical

choices of M and ~x, along with efficient ways to compute on them. For example, we

may require M to be in reduced column-echelon form, and for ~x to be reduced by the

columns of M .

In our implementations of spatial encryption, ciphertexts have a constant size

regardless of n and regardless of the complexity of the policy (but proportional to the

security parameter λ). This will enable us to perform efficient multicast encryption,

among other applications. Secret keys have size O(d · λ), where d is the dimension of

the affine space. This is not as small as we would like, but it is still not enormous.

4.2 Applications of Spatial Encryption

Spatial encryption has many applications, and because it is efficient in terms of com-

putation time and ciphertext size, these applications often have efficiency comparable

to solutions specifically tailored to a given problem.

Vanilla IBE Spatial encryption supports vanilla IBE using only one dimension.

Each identity i is encoded as the singleton vector 〈i〉. The PKG’s role, >, is encoded

as the entirety of S1. Here the identities are elements of Zp, but we can extend the
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result to strings (or any other hashable type) using the hashed embedding lemma.

Hierarchical IBE Similarly, we can implement a HIBE hierarchy with maximum

depth n using Sn. Here the path components are elements of Z∗p. To a role (a, b, c),

we associate the affine space of vectors which begin with 〈a, b, c〉>, namely

{〈a, b, c, x4, x5, . . . , xn〉> : xi ∈ Zp}

Thus the subspace for > is Znp (a common feature in GIBEs that embed into spatial).

Then to the policy (a, b, c), we associate the vector

〈a, b, c, 0, 0, . . . , 0〉>

Because 0 is disallowed as a path component, only roles which are prefixes of (a, b, c)

decrypt this policy.

Once again, we can use the hashed embedding lemma to make a HIBE which uses

strings as path components.

Product and coproduct schemes Spatial encryption naturally supports product

schemes: it is clear how to embed Sm ×Sn into Sm+n. As a result, spatial encryp-

tion supports extended coproducts as well, via the extended coproduct embedding

lemma. In other words, given several hierarchies which embed into n-dimensional spa-

tial encryption, we can implement their extended coproduct using n+ 1-dimensional

spatial encryption, simply by using the first coordinate to encode which hierarchy

we’re using. Furthermore, any implementation of spatial encryption can be made

CCA2-secure using Theorem 1, and can be turned into an anonymous ring signature

scheme using Theorem 2, in either case at the cost of a single dimension.

Whitelists We can use spatial encryption to implement a GIBE in which the roles

and policies are multi-sets of at most n numbers in Z∗p (or, via the hashed embedding

lemma, in some other set). The policies function as whitelists: a role r matches a

policy p if and only if r ⊆ p, i.e. if each string appearing in r appears at least as
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many times in p. We can define delegation in the same way, with r1 � r2 if and only

if r1 ⊆ r2. We denote such a whitelist scheme Wn

We can implement Wn using an n+1-dimensional space in a straightforward way.

To each policy p, we associate the polynomial

Pp(t) :=
∏
x∈p

(1 + tx)

We encode this polynomial as the n+1 coefficients on tn, tn−1, . . . , t, 1. The polynomial

has degree |p| ≤ n (exactly, because we have disallowed x = 0), so this encoding

completely describes Pp(t). Similarly, to each role r, we associate the polynomial

Pr(t) :=
∏
x∈r

(1 + tx)

We encode the role r as the subspace of coefficients of all polynomials (with degree

at most n) that are divisible by Pr(t). It is easily seen that this is a vector subspace

(i.e. an affine subspace passing through ~0) of Zn+1
p : it is closed under addition and

under multiplication by elements of Zp.
Furthermore, notice that all the policies have a final coefficient of 1. Therefore,

we can restrict the roles to only those polynomials which are divisible by Pr(t) and

whose final coefficient is 1; these are affine subspaces of Zn+1
p . Of course, once we have

done this, we can simply throw away that final coefficient, giving us an embedding

into Sn.

Because Zp[t] is a unique factorization domain, Pr(t) divides Pp(t) only if r is a

subset of p. The same statement is true of pairs of roles, so that this description is

indeed a valid embedding.

Multicast IBE Whitelists provide a natural way to implement multicast IBE.

Recall that in multicast IBE, the each role is either > or a single identity, and each

policy is a set of identities. A non-> role decrypts a policy if it is a member of the

set. If we restrict policies to have at most n identities, then multicast IBE embeds

naturally into whitelist IBE.
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For a system to be called “multicast” (or, more traditionally, “broadcast”), its

ciphertexts should have size o(r), where r is the number of recipients. In our imple-

mentation of spatial encryption, ciphertexts have constant size irrespective of n and

r, so this embedding qualifies as a multicast IBE.

Multicast HIBE Whitelists provide an alternate implementation of hierarchical

IBE. Consider a whitelist IBE where (via hashed embedding) the identities are se-

quences of strings. Then we can encode the role or policy for a given path (a, b, c) as

the set {(a), (a, b), (a, b, c)}, that is, the set of nonempty prefixes of the path.

But unlike our other embedding of HIBE, this technique allows multicast. To

encode a policy which is a set S of paths, we can simply encode the set of all nonempty

prefixes, namely ⋃
p∈S

{ p′ : p′ is a prefix of p, p′ 6= () }

When embedded in a space of dimension n, this multicast HIBE allows us to encrypt

to any collection of paths containing at most n different prefixes. For example, when

applied to email, it is more efficient at sending a message to many users in a single

domain than to many users in different domains. Ciphertexts still have a constant

size.

This is the first, and to our knowledge, the only existing construction of multicast

HIBE.

Flexible and sparse products Whitelists admit efficient constructions of prod-

ucts and coproducts. If H1 and H2 support embeddings e1 and e2 into Wm and Wn,

respectively, then their product embeds into Wm+n. We simply set

e(r1, r2) = {(1, x) : x ∈ e1(r1)} ∪ {(2, y) : y ∈ e2(r2)}

and likewise for policies. The same formulation of e embeds e1

∐
e2 into Wmax(m,n).

More generally, whitelists support a form of flexible product. Consider a hierarchy

H with an embedding e into Wm, where m > n. Now, some of the roles and policies

of H may map to lists of length at most n. These define an n-sparse sub-hierarchy
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H|n of H which can be embedded in Wn. Note that we implicitly used this restriction

in our constructions of multicast IBE and HIBE above.

In many cases, the length of e(r) or e(p) corresponds to some intuitive notion of

the “complexity” of the role or policy. In multicast IBE, for example, |e(p)| is the

number of recipients of a message. Thus, a sparse sub-hierarchy is one which supports

limited complexity.

Sparsity is especially useful in product schemes, in which it becomes a limit on

the total complexity of roles and policies in the product. For each i in some index

set I, let Hi be a hierarchy supporting an embedding into Wni
. Then instead of

implementing
∏

i∈I Hi by embedding it into W∑
ni

, we might instead implement an

n-sparse version (
∏

i∈I Hi)|n using Wn for some n <
∑
ni. Note that this can work

even if the index set I is enormous, so long as most of the roles and policies in the

product map to the empty set.

The same technique has benefits even if we do not wish to create additional re-

strictions. For example, let Mn denote a multicast IBE supporting up to n recipients,

and suppose that we wish to implement a product of two multicast IBE schemes. We

could embed Mm ×Mn in Wm+n. But a more flexible design would be to embed

(Mm+n ×Mm+n)|m+n in Wm+n. Instead of allowing the first component to have up

to m recipients and the second to have up to n, we would the allow any combination

which sums to less than m+ n.

Spatial sparse products We have seen the utility of sparse products of whitelist

encryption schemes; can we accomplish the same for spatial encryption itself? It

turns out that we can, but not quite as efficiently. To do this, we will make use of

Vandermonde vectors. The Vandermonde vector ~vx is defined as

~vx :=
〈
1, x, x2, . . . , xn−1

〉>
These vectors are useful because any n different Vandermonde vectors are linearly

independent, and so span Znp . If this were not the case, then there would be some

vector ~w orthogonal to all of them. The coefficients of ~w would define a polynomial
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P~w of degree n− 1, where ~vx
> ~w = P~w(x). But then P~w would have n different roots,

one for each of the Vandermonde vectors, which is impossible since its degree is only

n− 1.

Continuing, let H be a hierarchy with an embedding e into spatial encryption

over Zmp where m < p. Further suppose that each policy has at most n nonzero

coordinates, and that in each role, all but n coordinates are fixed to 0. Then H can

be embedded in Z2n
p by an embedding e′. To do this, let M be the 2n × m matrix

whose ith column is ~vi, and set

e′(r) = M · e(r) and e′(p) = M · e(p)

It is clear that if e(r1) ⊇ e(r2) then e′(r1) ⊇ e′(r2). To show the converse, note that

together, the points of e(a) and e(b) are nonzero on at most 2n different coordinates.

But any collection of at most 2n columns of M are linearly independent, so that

the restriction of M to these coordinates is invertible. This establishes the desired

converse.

Note that we do not need to actually compute M in order to compute e′; we can

instead find the nonzero entries of e(p) and compute only those columns of M . As a

result, m can be extremely large. In fact, using hashed embedding, we can assign a

dimension to every string.

More practically, suppose that we have many hierarchies Hi = (Ri,Pi), where i

is a description of Hi. Suppose that there is an embedding ei : Hi → Zni
p , with a

default role r̂i and a default policy p̂i, both of which map to ~0. Then we can compute

a sparse product
∏n

Hi, which embeds into Z2n
p . Its roles are (ri : ri ∈ Ri), subject to

the constraint that ∑
ri 6=r̂i

ni ≤ n

and likewise for policies.

In some cases, we might not want he maximum dimensions for roles and policies to

be the same. If the total dimension of non-default roles is a, and the total dimension

of non-default policies is b < a (a policy with b > a clearly cannot be decrypted
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except by >), then we might hope to encode the result in Za+b
p . In this case, the same

argument shows that our embedding preserves the decryption relation, but it might

create additional possibilities for delegation. That is, we could have e(r1) � e(r2) even

though r1 6� r2, but only in the case that for all (b-sparse) policies p � r2, we also have

p � r1. Since our definition of security says nothing about delegation, such a system

would still be secure, and suitable for encryption. However, the extra delegations

would render it unsuitable for ring signatures unless additional precautions are taken.

This is expected, because Theorem 2 only applies to GIBEs which have a policy for

every role, and this one does not when b < a.

Another way that we can reduce the number of dimensions required is if the

number of hierarchies in use can be bounded by a parameter ` < n/2, in addition

to their total dimension. In this case, we can use a 2`-dimensional sparse product

to determine which which hierarchies are in use, and another n-dimensional sparse

product to hold the data for those hierarchies.

It should be noted that spatial sparse products are different from whitelist sparse

products in one very important way. In a whitelist sparse product scheme, the default

role and policy is >. That is, if one of the product hierarchies Hi isn’t used in a role,

that role places no restrictions on the user. Conversely, if Hi is not mentioned in

a product, roles with a non-default Hi component can’t decrypt it. Spatial sparse

products are nearly the opposite: adding a non-default Hi component to a role may

give the bearer more power (or less, if that component does not contain ~0), and adding

such a component to a policy always requires a decryptor to have some non-default

Hi component in his role.

However, we can accomplish a “default->” sparse product as well, and we can

implement it in Z`p × Znp , where n is the maximum total dimension and ` is the

maximum number of hierarchies in use. We will first describe what spaces the roles

map to. As above, we use the first component as a whitelist of size ` to determine

which hierarchies are in use. We then consider the second component as coefficients

of a degree-(n− 1) polynomial Q. For each hierarchy Hi of dimension ni, set a linear
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transform Ti : Znp → Zni
p as

Ti(Q) = 〈Q(H(i, 1)), . . . , Q(H(i, n))〉>

where H is a collision-resistant hash function. The second component of a role r is

the affine space of polynomials

{Q : Ti(Q) ∈ ei(ri) for all non-> components ri of r}

which we can compute using Lagrange interpolation. The policy then has as its second

component a minimal-degree Q satisfying

Ti(Q) = ei(pi) for all non-> components pi of p

which once again we can compute by interpolation. It is clear that this is an em-

bedding: if Hi is used in r but not in p (which would mean that r 6� p) then the

first component prevents decryption. If ri 6� pi, then the second component prevents

decryption. If this is not the case for any ri or pi, then interpolation will succeed.

Simple attribute-based encryption Equipped with sparse products, we can

build simple variants of attribute-based encryption [21]. For example, we could build

the n-sparse product of all concisely describable hierarchies, indexed by a collision-

resistant hash of the description. As mentioned above, we need only consider the

dimensions which are actually used when encrypting or decrypting.

We can then attach attributes, such as “top-secret clearance”, to certain keys, and

require them to be set in products.

Forward-secure encryption In a forward-secure encryption system, each key and

each message has a timestamp. Keys’ timestamps can be incremented, and a message

can only be decrypted by a key with an earlier timestamp. This prevents an adversary

from decrypting old messages using a recently compromised key. Similarly, keys may

be given an expiration date, so that an adversary who steals a key unnoticed cannot
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use it forever. It is clear that this can be modeled as a GIBE, in which the roles are

intervals of timestamps, and the policies are timestamps. Furthermore, by taking a

product with this GIBE, we can add forward security to any scheme.

In [13], Canetti et al. show that these designs can be implemented for t timesteps

using O(log T ) HIBE keys, and without any ciphertext expansion. We can use their

construction with essentially no modification, but we would rather avoid the overhead

of having O(log T ) keys. When T is small – say, at most a few hundred timesteps per

key – forward security can be embedded in T -dimensional spatial encryption. The

key for [t1, t2] corresponds to the vector subspace in which xi = 0 for i < t1 and for

i > t2, and the policy t maps to the t-th basis vector.

Note that if keys are valid for some maximum period T ′ < T , then it will be more

efficient to use a sparse scheme. This can either be a sparse spatial scheme, as above

(which takes T ′ + 1 dimensions, or T ′ + 2 if signatures are supported), or a whitelist.

The whitelist version works by assigning an identity to each T ′-long interval. A secret

key for an interval I is written as the intersection of all T ′-long intervals that contain

I; there are at most T ′ of them. Similarly, the policy for a timestamp t is written as

all T ′-long intervals that contain t.

Encrypted email We are now ready to pose a solution to the motivating problem

of email encryption from Section 1.4. Recall that we wish to have many private

key generators. Each PKG can certify users by their email addresses, or may give

a company a key for its domain, which can then be used to certify its users. When

sending a message, a user encrypts to the email addresses of the intended recipients,

but also chooses which authorities she trusts to certify those recipients.

This is naturally seen as a product between a broadcast HIBE and a broadcast

IBE. The broadcast IBE is used for authorities. Each authority a holds a key to (>, a).

The user bob@microsoft.com, when certified by authority a, holds a key for rbob,a :=

((com, microsoft, @, bob), a). Since (>, a) � rbob,a, the authority can use Delegate

to produce this key for Bob. Furthermore, a can certify Microsoft to generate keys

for microsoft.com email addresses by giving them a key for ((com, microsoft, @), a);

or, to include subdomains, for ((com, microsoft), a).
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When Alice encrypts her message, she chooses a set R of recipients and A of

authorities, and sets the policy to (R,A). Bob can then decrypt the message if

(com, microsoft, @, bob) ∈ R (or if any extension of it is in R), and also a ∈ A. We

can embed this system in Wn, and thus in spatial encryption of dimension n, subject

to the restriction that the “complexity” of the policies — in this case the number of

authorities plus the total number of path components in R — is at most n.

Of course, if too many authorities and users are specified, all is not lost. We can

divide up the set R × A into smaller sets, each of which has complexity less than n,

and encrypt to each of those sets. The resulting ciphertexts will not be as compact,

but the system will still work.

Furthermore, using the designs shown above, we can add other powerful features

to our email encryption scheme. For example, we can make keys expire, or make

encryption forward-secure, or we can enforce conditions on other attributes to which

the PKG itself can assign meaning.

Zero-handshake TLS The same technology could be used to reduce the number

of round-trip communications in protocols such as Transport Layer Security (TLS).

In current designs, the server sends a public key certificate, which the client uses to

encrypt a session key. Instead, the client could use a multi-authority IBE to encrypt

the session key, saving a round-trip.

Upper and lower bounds We provide some very rough upper and lower bounds

on what hierarchies can be embedded in Sn. First, if H = (R,P) and |R∪P| = n+1,

then H can be embedded into Sn. To do this, assign each role or policy a to a different

vector ~xa in the set {~0, ~e1, . . . , ~en} where ~ei is the ith basis element. Each policy p

maps to ~xp, and each role r maps to the smallest subspace containing the points ~xp

where r � p and ~xr′ where r � r′. This is clearly an embedding. If we do not desire

an embedding, but merely a secure implementation, then the points for the roles can

be dropped. For most useful hierarchies, the result will be an embedding anyway.

For a first lower bound, note that if a hierarchy contains a chain of n policies,

each delegating to the next, then it cannot be embedded in Sm where m < n − 1,
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because each delegation loses a dimension. For a broader result, call a set of policies

S ⊆ P general if for all nonempty T ⊆ S, there is a role r ∈ R which decrypts all

but one of them, and say that a set of points X is in general position if all subspaces

containing them are at least (|X| − 1)-dimensional. The following lemma establishes

a lower bound on hierarchies with large general sets.

Lemma. A secure implementation (and thus an embedding) must map a general set

of policies to a set of points in general position.

Proof. If not, then there would be a minimal subset T ⊆ S which is not in general

position. If we were to remove any point ~x from T , then by minimality, the remaining

points would be in general position and so would define the same subspace. Thus any

role containing T\{~x} would contain ~x as well, and this would be true for all ~x ∈ T .

But then by definition, S would not be general, which is a contradiction.

As a corollary, if in a hierarchy H = (R,P) the policy set P contains a general set of

n policies, then H cannot be embedded into Sm where m < n− 1.

4.3 Doubly-Spatial Encryption

Spatial encryption is powerful, efficient and supports a strong proof of security, but it

is not always as expressive as we would like. To improve its expressiveness, we define

a variant called doubly-spatial encryption.

In doubly-spatial encryption, we allow policies, as well as roles, to be any affine

subspace of Znp . We say that r � p if r intersects p as subspaces of Znp . We call this

hierarchy Dn.

The reader will note that the roles and policies are not the same, but rather

opposites of each other. For example, Znp is the strongest role, but the weakest policy,

and points are the strictest policies, but the most restricted roles. We can, however,

extend this definition to allow for “role-like policies” and “policy-like roles”. We do

this for any role other than points, which already behave the same way for roles and

for policies.
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Concretely, consider the partially ordered set whose elements are affine subspaces

W of Znp , along with a sign + or −. For a point space {~v}, we say that +{~v} = −{~v}.
For the partial order, we say that

+V � +W iff V ⊇ W

−V � −W iff V ⊆ W

+V � −W iff V ∩W 6= {}
−V � +W iff V = W = {~v}

The roles of doubly-spatial encryption are “positive” spaces (or points) and the poli-

cies are “negative” spaces (or points), so when using it, we will write roles and policies

with no sign. Our construction supports positive policies and negative roles, but in

most cases we find them less useful, and they clutter the notation, so we will leave

them as an extension.

Our current construction of doubly-spatial encryption is not as efficient as for

spatial encryption. The ciphertexts for a policy W have size O(λ · dimW ) rather

than O(λ), but only one pairing is required so long as the role is positive and the

policy negative. More seriously, we have only been able to prove selective security

without invoking the generic group model.

4.4 Applications of Doubly-Spatial Encryption

Spatial encryption can be embedded in doubly-spatial encryption. Furthermore, like

spatial, doubly-spatial encryption is closed under products and coproducts.

Sparse products with defaults We defined sparse products of hierarchies for spa-

tial encryption. However, we were forced to choose between default roles and policies

being > in a particular hierarchy, or being {~0}. With doubly-spatial encryption, we

can eliminate this disadvantage.

For all i in some (large but hashable) index set I, let Hi be a hierarchy equipped

with a default role r̂i and a default policy p̂i � r̂i, and suppose that it supports an

embedding ei into Dni
.
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Choose integers ` and n, which will serve as limits on the roles and policies we

support: we must have

|{Hi : Hi used}| ≤ ` and
∑

Hi used

ni ≤ n

in both roles and policies. We will embed the resulting system in D2n+3`. We will

decompose this as a whitelist of length `, embedded in S`; a simplified attribute-based

encryption system supporting ` attributes, embedded in S2`; and a doubly-spatial

system D2n.

We will use the whitelist to prevent decryption when a policy p does not use a

hierarchy Hi (and is thus equal to the default policy in that hierarchy), but ri cannot

decrypt that default policy. Given a role r, consider each component ri which does

not intersect the default policy p̂i of its hierarchy. To ensure that r cannot decrypt a

policy p unless it mentions hierarchy i, we put i on the whitelist for r. Similarly, for

each component pi of p which is not contained in p̂i, we put i on the whitelist for p.

Notice that this construction respects delegation, because if ri does not intersect p̂i,

then neither do any roles that can be delegated from it.

In the same way, we will use the attribute-based system to prevent decryption

when a role r does not use Hi, but p does and pi is not decryptable by its default role

r̂i. To do this, give r access to the attribute i when ri is not contained in r̂i, and have

the policy require that attribute when pi does not intersect r̂i.

Finally we come to the doubly-spatial system D2n. This we use as in the default->
sparse spatial products. Choose a collision-resistant hash function H : I×[1, n]→ Zp,
and interpret each element of Z2n

p as a polynomial P of degree at most 2n − 1. For

each non-default role component ri, consider the linear transform Ti : Z2n
p → Zni

p

defined by

Ti(P ) = 〈P (H(i, 1)), . . . , P (H(i, ni))〉>

Then define the role’s subspace

Wr := {P ∈ Z2n
p : for all i such that ri 6= r̂i, Ti(P ) ∈ ei(ri)}
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and likewise for policies. Since the constraints are all affine, these are clearly affine

subspaces of Z2n
p . Delegation clearly works; to see that decryption works, note that

the intersection of Wr with Wp contains the space

{P ∈ Z2n
p : for all i such that ri 6= r̂i or pi 6= p̂i, Ti(P ) ∈ ei(ri) ∩ ei(pi)}

If ei(ri) and ei(pi) intersect in some set containing a point ~x, then barring a hash

collision, we can construct a preimage of ~x: we must simply find a polynomial P of

degree at most 2n− 1 with a given value at 2n or fewer distinct points (n for the role

and n for the policy), and we can find it easily by Lagrange interpolation. However,

if ri and pi do not intersect, and both are specified (rather than being the default role

or policy), then the constraint that Ti(P ) be in both ei(ri) and ei(pi) is unsatisfiable.

If they do not intersect and one is the default, then the whitelist or the simple ABE

scheme will prevent decryption.

We can save a small amount of space in the secret keys and ciphertexts by choosing

n dummy points which cannot be the output of the hash function H. Then in each

role or policy whose ni sum to n′ < n, we can specify that the first n − n′ dummy

points are roots of the polynomial P , so that the D2n component has dimension

exactly n.

It is easily seen that we cannot securely implement a comparable system using

spatial encryption, even if we restrict all policies to be points. Consider a product of

d copies of S1 with default role > and default policy 0, and suppose that we allow

only one component to differ from the default. Let pi be 1 in the ith position and 0

elsewhere. Let ri be {0} in the ith position and > elsewhere. Then ri � pj if and only

if i 6= j, so that the d policies {pi} are general. Thus this system cannot be securely

implemented in Sd−2 or less, whereas this application embeds it in D5.

Wide intervals We explained how to encode intervals into sparse spatial products,

so long as the intervals were guaranteed to be O(n) in width. We now explain how

to encode wider intervals. Of course, we can no longer support arbitrary delegation,

because even with doubly-spatial encryption no delegation chain can be more than
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n + 1 roles long. In particular, we want to make a flat poset of roles, one for each

integer in [0, k) for some k, plus >. Policies will also be integers in [0, k), and we

want r � p if and only if r ≥ p.

To do this, fix an integer d. We will write integers in [0, k) as d-digit integers in

base b := dk1/de, using up to ((b − 1)d)-dimensional roles and (d − 1)-dimensional

policies. For the roles, partition Z(b−1)d
p into d copies of Zb−1

p , and let Si ⊆ Zb−1
p be

the vector subspace spanned by the first i basis vectors of Zb−1
p (so that S0 = {~0} and

Sb−1 = Zb−1
p ). Then to the role whose digits are (r0, r1, . . . , rd−1) with rd−1 being the

most significant digit, we assign the subspace

Sr0 × Sr1 × . . .× Srd−1

For the policies, let ~ei be the ith basis vector of Zb−1
p when i > 0, and let ~e0 = ~0;

thus ~ei ∈ Si. To the policy whose digits are (p0, p1, . . . , pd−1), we assign the (d − 1)-

dimensional subspace which passes through the d points

(~ep0 , ~ep1 , . . . , ~epd−1
), (~e0, ~ep1+1, . . . , ~epd−1

), . . . , (~e0, ~e0, . . . , ~e0, ~epd−1+1)

If any of the pi is equal to b − 1 then we omit the ith vector, so the subspace may

actually have dimension less than d− 1.

Suppose that r � p. Then either r = p, or r is greater than p in the ith digit and

equal in every higher digit. In either case, decryption will succeed.

Suppose on the contrary that r 6� p. Then in particular rd−1 ≤ pd−1, so that

~epd−1+1 /∈ Sdd−1
. Since ~epd−1+1 does not appear in the last component in any of the

other defining points of the policy, this last vector is useless. The rest of the points

all have ~epd−1
as their last coordinate, so if rd−1 < pd−1 we certainly cannot decrypt.

But if rd−1 = pd−1, we can repeat this argument on the less significant digits, and we

will eventually have ri < pi because r < p.

Negated spatial encryption Attrapadung and Libert propose a negated spatial

encryption [3]. Here roles are affine subspaces of Znp , the policies are points and

r � p precisely when p /∈ r. The authors construct a special case, which we will
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translate roughly as follows: the subspace W for a role r must have n−1 dimensions,

must pass through ~0 (i.e. it must be a vector subspace rather than an affine one),

and must not contain 〈1, 0, . . . , 0〉>. To construct this special case with constant-size

ciphertexts, we give out keys for roles W as normal, and map the policy ~v to the

1-dimensional affine space 〈1, 0, . . . , 0〉> + span(~v). Then if ~v ∈ W , we know that

〈1, 0, . . . , 0〉> /∈ W = span(~v,W ), so decryption is impossible. On the other hand, if

~v /∈ W , then together they span the entirety of Znp , so decryption is possible.

As [3] points out, the roles in our identity-based multicast encryption (without

the trick that reduces the dimension by 1) have dimension one less than the ambient

space and pass through ~0 but not through 〈1, 0, . . . , 0〉>. Therefore we can negate that

system to build identity-based broadcast encryption with constant-size ciphertext.

If we are willing to sacrifice constant-size ciphertext, we can build the entirety

of negated spatial encryption. We will retain the restriction that roles must pass

through ~0, but this can be removed by adding another dimension. We map the role

for a subspace W to its orthogonal complement W⊥, and a policy ~v to ~x+~v⊥, where

~x is any vector not contained in the (n− 1)-dimensional space ~v⊥. This design allows

delegation from a role for W to a role for any W ′ ⊇ W . For decryption, if ~v ∈ W we

will have W⊥ ⊆ ~v⊥, so that ~x /∈ span(~v⊥,W⊥) = ~v⊥. Conversely, if ~v /∈ W we will

have W⊥ 6⊆ ~v⊥, so that together they span the entirety of Znp .

Monotone span programs Given a set S and a field F, a monotone span program

is a map m from S → Fn along with a vector ~v ∈ Fn. It is interpreted as a function

from 2S to {0, 1} as follows: a subset T ⊆ S is accepted if

~v ∈ span {m(t) : t ∈ T}

Goyal et al. show [21] that attribute-based encryption for monotone boolean formulas

can be reduced to monotone span programs. Therefore, it can be implemented using

spatial encryption over F|S| × Fn. The role for a subset T ⊆ S is encoded as

span {(~et, 0) : t ∈ T}
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where ~et is the tth basis vector of F|S|. The policy for a monotone span program is

(~0, ~v) + span {(~es,m(s)) : s ∈ S}

The ~es component only appears once in the policy and at most once in the role, so its

coefficients must be opposite in those places. Thus any multiple of m(s) can appear

if s ∈ T , but no multiple of it can appear if s /∈ T .

By using sparse products in place of F|S| we can support sets of arbitrary size, as

long as at most n elements are used in any role or policy.

Thresholds Although threshold gates are supported in [21], we will provide an

explicit instantiation in doubly spatial encryption with a fixed maximum set size of n.

Define the degree-d complete homogeneous function on variables S := {x1, . . . , x`} ⊂
Z∗p by

hd(S)←
∑

i1≤...≤id

xi1xi2 · · · xid

and note that for any x ∈ S and d > 0 we have

hd(S) = hd(S\{x}) + x · hd−1(S)

Likewise, define the vector

~hd(S)← 〈hd(S), hd+1(S), . . . , hd+2n−1(S)〉> ∈ Z2n
p

so that for any x ∈ S and d > 0,

~hd(S) = ~hd(S\{x}) + x · ~hd−1(S)
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and ~hd({x}) = xd · ~vx is a multiple of the xth Vandermonde vector. From this

recursion, we can efficiently compute ~hd(S). For 1 ≤ d ≤ |S|, define the (|S| − d)-

dimensional subspace1

Wd,S ← ~h|S|−d(S) + span {~h|S|−d−1(S), . . . ,~h0(S)}

and note that

Wd−1,S ⊃ Wd,S ⊃ Wd,S\{x} and W1,{x} = span(~vx)

Likewise, define the |S|-dimensional subspace

US ← span {~vx : x ∈ s}

and note that ~hd(S) ∈ US for all positive d.

We propose that the subspaces US and Wd,T can be used to implement a threshold

gate. Thus, we may set the roles to be sets S, and the policies pairs (d, T ), with

decryption allowed only if |S ∩ T | ≥ d. This allows delegation from S to its subsets.

Or, we can reverse roles and policies, with delegation allowed from (d, T ) to (d+1, T )

and to (d, T\{x}) but not, as [21] allows, to (d+ 1, T ∪ {x}).
Furthermore, because this scheme is naturally embedded in a sparse product, we

can replace the pairs (d, T ) with collections of pairs {(di, Ti)}, where the Ti are disjoint

and
∑
|Ti| ≤ n; here decryption is possible if and only if |S ∩ Ti| ≥ di for all i.

Claim. For subsets S, T ⊂ Z∗p with |S|, |T | ≤ n, we have US ∩Wd,T 6= {} if and only

if |S ∩ T | ≥ d.

Proof. We will handle the “if” direction first. We know that for all x ∈ T we must

have W1,T ⊇ W1,{x} = span(~vx), so that W1,T is the unique (|T | − 1)-dimensional

subspace passing through these |T | Vandermonde vectors, and Wd,T ⊆ W1,T ⊂ UT .

Likewise

US ⊇ US∩T ⊃ Wd,S∩T ⊆ Wd,T

1From this definition, Wd,S has at most |S| − d dimensions, but it is easily seen that the bound
is exact.
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so that US ∩Wd,T is nonempty.

Conversely, suppose that US∩Wd,T 6= {} and let W ← span(US,Wd,T ) be a vector

subspace of Z2n
p . We will show that

~vx ∈ W for all x ∈ S ∪ T

These |S ∪ T | vectors are linearly independent because |S ∪ T | ≤ 2n. Furthermore,

W is the span of |S| + |T | − d + 1 vectors: |S| from US, another |T | − d from the

vector component of Wd,T and another 1 from its affine component. There is at least

one linear dependence due to the intersection, so that dimW ≤ |S| + |T | − d. Thus

we will have

|S ∩ T | = |S|+ |T | − |S ∪ T | ≥ |S|+ |T | − (|S|+ |T | − d) = d

as desired. Certainly if x ∈ S then ~vx ∈ W , so it remains to show this when x ∈ T\S.

In that case, we know that

W ⊃ Wd,T ⊇ Wd,T∩S∪{x} 3 ~hd(T ∩ S ∪ {x})

Applying the above recursive formulas to ~hd(T ∩ S ∪ {x}), we see that

~hd′(T ∩ S ∪ {x}) ∈ span(~hd(T ∩ S ∪ {x}), UT∩S)

for all positive d′, so that

x · ~vx ∈ W1,T∩S∪{x} ⊂ W

and ~vx ∈ W as desired. This completes the proof.

Although this example is somewhat complex, it also demonstrates the utility of

doubly-spatial encryption: even a relatively complex construction requires only a

few pages of linear algebra to specify and to prove secure.
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All-but-one signatures We will show how to make a signature scheme in which

secret keys can sign any message except for one. We will use extended doubly-spatial

encryption for this. Messages are encoded in the hierarchy of this signature scheme,

so we won’t need the extra I component used in Theorem 2.

The messages in our scheme will be points of Znp , and we will use extended (n+2)-

dimensional doubly spatial encryption. Let H : Znp → Zp be a collision-resistant hash

function.

The roles in our scheme will be of the form W or (W,~v), where W is an affine

subspace of Znp and ~v is a point in Znp . The former role allows signatures of any

point in W , and the latter allows signatures of any point in W except for ~v (which,

formally speaking, need not be in W ). We say that W � W ′ and W � (W ′, ~v) if and

only if W ⊇ W ′. We also allow delegation once a point has been removed, such that

(W,~v) � (W ′, ~v) when W ⊇ W ′. But the removal cannot be undone (and replaced

with a different point ~v′) even when ~v /∈ W ′.

The key for a role W is a secret key for

+(W × Z2
p) ⊆ Zn+2

p

The key for (W,~v) is a secret key for

+(W × {(t, t ·H(~v)) : t ∈ Zp})

The signature on a message ~v is a secret key for the role

−{(~v, t, t ·H(~v) + 1) : t ∈ Zp} ⊂ Zn+2
p

which is a (negative) one-dimensional subspace. It is clear that this subspace does not

intersect the one for any role with ~v removed, but otherwise the two lines in the Znp
component intersect unless a hash collision has occurred. Signatures can be checked

using a test decryption with this subspace as the policy. By the same argument

as Theorem 2, if extended doubly-spatial encryption is selectively secure then this
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signature scheme is selectively unforgeable. Furthermore, because delegation is path-

independent, a signature on ~v does not reveal anything about the role used to sign

it. We will also see that the signatures are constant-size and can be verified quickly.

To see why this is useful, we consider an application inspired by secure DNS.

Suppose that an administrator sets up a secure DNS server, and wishes for all its

responses to be signed. Furthermore, the administrator wants to prevent the server

from signing false responses even if it is compromised. To prevent replay attacks,

the responses must be signed in a way that reflects the domain which was queried.

Because the server knows about only a limited number of domains, its administrator

can simply sign the information about each domain and upload this signature to the

server, which echos it when sending responses. This is how DNSSEC works.

But what if a resolver queries a domain name that the server does not know

about? There are infinitely many such names, so the administrator cannot pre-sign

all possible negative responses. The first proposal, NSEC [33], signs intervals in which

there are no positive responses. That is, if domains d1 and d2 are adjacent under some

ordering, then the administrator gives the server a signature on (d1, d2). For all d′

where d1 < d′ < d2, this signature will suffice to convince a resolver that the server

knows nothing about d′. However, this process reveals d1 and d2, so that an adversary

can discover all m domains for which the server has information using only m + 1

queries. While DNS is usually a public directory, many administrators do not consider

such an unauthorized zone transfer acceptable. To mitigate this problem, a variant

called NSEC3 [24] was proposed which hashes the domains first, using multiple hash

functions to increase the number of queries required. But as Bernstein pointed out [4],

the domain names can usually be recovered with a dictionary attack.

Suppose that we do not want responses to reveal any information about which

domains are present on the server (other than the one which was queried). This

already holds for positive responses, so we need only consider negative ones. The

server could use zero-knowledge sets [27], but these require significant computation

time and bandwidth for each signature. Zero-knowledge sets provide a property that

we do not need or even want, namely that the administrator cannot change the server’s

data without being noticed. Because they do not have this property, our all-but-one
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signatures can be more efficient.

Let H ′ : {0, 1}∗ → {0, 1}n be another collision-resistant hash function (where

n ≥ 2λ for security), and hash each of the m domains on the server with this H ′.2

Consider a binary decision digram (i.e. a trie) for the resulting hashes. It will have

m leaves, each containing exactly one domain d. On the path to each leaf, we will

have checked several bits B of the hashed domains, some set to 0 and others to 1.

Thus the set of domains which lead to each leaf d (those whose B-bits are the same

as those of d) form an affine subspace Wd of Znp . For each d, the administrator gives

the server a signing key for (Wd, d). Now,

⋃
d∈domains

Wd = Znp

so with these m keys, the server can sign a negative response to any query for an

unknown domain. However, since the Wd’s do not overlap, the server (or an adver-

sary who compromises it) cannot sign a negative response to a query for any known

domain. As we mentioned, the signatures are uniformly random among all valid

signatures, and so do not leak any information.

This system is only selectively secure in the standard model. However, as is usually

the case for signature schemes, we can recover adaptive security by modeling H ′ as a

random oracle.

2We assume that m > 0. Otherwise every query will be answered in the negative, so we can just
give the server a key for >.



Chapter 5

Construction

5.1 Preliminaries

Before we show how to construct spatial and doubly spatial encryption, we will need

some preliminaries on groups.

Recall that our groups are abelian, and written additively, so that the group opera-

tion is + and “exponentiation” is written x·α; we therefore call it scalar multiplication

instead of exponentiation.

The exponent of a group G is the smallest positive integer e such that e ·α = 0 for

all α ∈ G. Thus the operation x→ x · α makes sense as an operation from Ze × G to

G, where e is the exponent of G. Lagrange’s theorem states that e divides |G|, so this

also makes sense as an operation from Z|G| × G to G.

Notice that if the exponent e is prime (which we will now call p) then Zp is a field,

and this operation makes G (and thus Gk for any k) a vector space over Zp. Therefore

the order of G is pd for some integer d. Conversely, any nontrivial vector space over

Zp is a group of exponent p. We can also define an “inner product” Zkp × Gk → G by

~n>~α := n1 · α1 + n2 · α2 + . . .+ nk · αk

and, likewise, the product of a matrix over Zp with a vector or matrix over G.

While it is convenient for linear algebra, our additive notation is deceptive in one

57
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very important respect. Let β = n · α. Recovering α from n and β (“dividing by

n”) is easy if n invertible modulo the exponent e (and otherwise the answer is not

well-defined): we simply multiply by n−1 mod e. However, recovering n from α and β

(“dividing by α”) may be very difficult; this is known as the discrete logarithm problem

from the fact that it looks like a logarithm when groups are written multiplicatively.

Randomized groups The operations in a group are deterministic by definition,

but the algorithms to carry them out need not be. In particular, it might be that

each group element has more than one possible encoding in the computer’s memory,

and that group operations output a random encoding of their results. In this case,

we call it a randomized group, as opposed to a deterministic group.

For example, suppose that G has a subgroup H; then the quotient group G/H is

the group of equivalence classes of elements of G, where two elements α and β of G are

considered equivalent if α−β ∈ H. We might choose to encode an element of G/H by

a random element of this equivalence class. After each group operation, we could add

a random element ofH, so that the result would be a uniformly random representative

of its class, independent of the input elements. We call the resulting group G/RH. In

this case, comparing two group elements for equality might be infeasible even if the

group operations are efficient.

Bilinear maps A map ⊗ from G1 × G2 → GT , where G1,G2 and GT are groups, is

called bilinear if

(α + β)⊗ γ = α⊗ γ + β ⊗ γ and α⊗ (γ + δ) = α⊗ γ + α⊗ δ

for all α, β ∈ G1 and γ, δ ∈ G2. As a corollary, if ⊗ is bilinear, then

(n · α)⊗ γ = α⊗ (n · γ) = n · (α⊗ γ)

for all α ∈ G1 and γ ∈ G2, and all integers n. Here G1 and G2 are called the source

groups, and GT is called the target group. We will use one of the source groups for

keys and the other for ciphertexts, so we will call them Gkey and Gct instead of G1
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and G2. These groups may be the same or different, depending on implementation

considerations and how strong a security proof is desired, so we will be careful to

make a distinction between them.

There are some simple examples of bilinear maps: the degenerate map which takes

every element to 0 is bilinear, as are scalar products and inner products. These maps

are easily reversible in some directions but not in others, as previously mentioned.

However, in this paper, we will use more complex maps which are difficult to reverse

on both sides. For readers familiar with elliptic curves, we can use the Weil pairing,

or other pairings such as the Tate, ηt or R-ate pairings. Here Gkey and Gct are groups

of points on certain elliptic curves, and GT is the multiplicative group of roots of unity

in Zpk for some k. Despite this, we will still write GT additively.

Affine matrices The n-dimensional affine space Aff
(
Znp
)

is formally defined as

the subset of Zn+1
p whose first coordinate is 1. This definition affords a convenient

description of affine spaces. It is well-known that a d-dimensional vector subspace of

Znp can be described as

span(M) := {M · ~x : ~x ∈ Zdp}

and that span(M) ⊆ span(L) if and only if there is a matrix K such that M = LK.

Likewise, an affine subspace of Aff
(
Znp
)

can be described as

affspan(M) :=
{
M · ~x : ~x ∈ Aff

(
Zdp
)}

where M has the form

(
1

~y M ′

)
. We call a matrix of this form an affine matrix,

and note that its dimensions are (n+1)×(d+1). It is easy to show that affspan(M) ⊆
affspan(L) if and only if there is an affine matrix K such that M = LK, and that

such a K is easy to compute given M and L.
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5.2 Standard Constructions

We are now ready to describe the construction of spatial and doubly-spatial encryp-

tion. The construction for spatial encryption will emerge as a special case of the

construction for doubly-spatial encryption.

GroupGen In order to generate suitable groups for spatial encryption, we assume

that we have an efficient, randomized algorithm GroupGen. Given a security pa-

rameter λ, this algorithm computes descriptions of groups Gkey and Gct of prime

exponent p with non-zero elements αkey and αct, respectively, and of a bilinear map

⊗ : Gkey × Gct → GT such that αkey ⊗ αct 6= 0. It outputs

(p; Gkey,Gct,GT ; ⊗;αct, αkey)

Typically Gkey and Gct will be cyclic of order p and generated by αkey and αct, respec-

tively. However, our proof of adaptive security uses non-cyclic, randomized groups

Gkey and Gct.

Setup Setup is given parameters λ and n. It first runs

(p; Gkey,Gct,GT ; ⊗; αct, αkey)← GroupGen(λ)

and sets the group parameters

GP← (λ; p; Gct,Gkey,GT ; ⊗)

Setup chooses a blinding vector

~r
R← Zn+1

p

and sets

~γkey ← ~r · αkey ∈ Gn+1
key and ~γct ← ~r · αct ∈ Gn+1

ct
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Note that if Gkey = Gct is cyclic and αkey = αct, then ~γkey = ~γct will simply be a

random vector of group elements. Setup publishes the key-blinding parameters

KBP← (αkey, ~γkey)

It proceeds to choose a master secret

rδ
R← Z∗p; δkey ← rδ · αkey

It computes the encryption parameters:

τ ← δkey ⊗ αct

EP ← (αct, ~γct, τ)

The public parameters are then

PP← (GP,EP,KBP)

Before describing the master secret key, we will describe what a secret key looks like.

Each role W is an affine subspace of Znp , of some dimension d, so we can write it as

affspan(M) for some affine matrix M ∈ Z(n+1)×(d+1)
p . As noted before, we require M

to be chosen in some canonical way for each W , so that all secret keys for W will

have the same distribution. A secret key for W is then of the form

(r · αkey, r ·M> · ~γkey + 〈δkey, 0, . . . , 0〉>) ∈ Gd+2
key

for some random r
R← Zp. In particular, for the master key we may choose M = Idn+1,

so that Setup can compute

r
R← Zp

MSK ← (r · αkey, r · ~γkey + 〈δkey, 0, . . . , 0〉>)

Finally, Setup outputs (PP,MSK) as required.
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Delegate The algorithm Delegate(PP, r1, SKr1 , r2) should return a uniformly ran-

dom secret key for r2. Here r1 and r2 should be given as affine spans of matrices M1

and M2, respectively, so we can compute an affine matrix K such that M2 = M1K.

Then

SKr1 = (β, ~ζ) = (r · αkey, r ·M>
1 · ~γkey + 〈δkey, 0, . . . , 0〉>) ∈ Gd+2

key

Since K is an affine matrix, K> will map vectors of the form 〈δkey, 0, . . . , 0〉> to other

such vectors, so that

K> · (r ·M>
1 · ~γkey + 〈δkey, 0, . . . , 0〉>) = (r ·M>

2 · ~γkey + 〈δkey, 0, . . . , 0〉>)

and (β,K> · ~ζ) is a valid secret key for r2. However, it is not a random secret key for

r2 because it re-uses the same r. To randomize r, Delegate chooses r′
R← Zp, and

outputs

SKr2 ← (β + r′ · αkey, K
> · ~γ + r′ ·M>

2 · ~γkey)

Encrypt To implement Encrypt(PP, p,m), let p = affspan(M). In the case of

spatial encryption, p is a single point, so that M is an (n+ 1)× 1 matrix; for doubly-

spatial encryption it is an (n+ 1)× (d+ 1) matrix, where d ∈ [0, n] is the dimension

of p. Encrypt chooses a random s
R← Zp and computes

HDR ← (s · αct, s ·M> · ~γct) ∈ Gd+2
ct

MKEY ← s · τ = s · δkey ⊗ αct

It outputs HDR, and then encrypts the message using MKEY. For example, it may

compute m + MKEY, or it may hash MKEY into a secret key for some symmetric

cipher and then use that cipher to encrypt m. In other words, encryption acts as a

key encapsulation mechanism, or KEM. Note that the header contains d+2 group ele-

ments, so that in the case of spatial encryption its size is 2 group elements irrespective

of n.
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Decrypt The essence of Decrypt(PP, r, SKr, p, c) is to recover MKEY. To do this,

it finds an intersection point ~x ∈ p∩r ⊆ Aff
(
Znp
)

and runs Delegate(PP, r, SKr, {~x})
to find a secret key for p, which is of the form

(r · αkey, r · ~x> · ~γkey + δkey)

Likewise, let p = affspan(M) for some matrix M ; Decrypt finds the vector ~y for

which ~x = M · ~y. The ciphertext’s HDR is of the form

(β, ~ζ) = (s · αct, s ·M> · ~γct)

so that

(β, ~y>~ζ) = (s · αct, s · ~x> · ~γct)

Note that this amounts to a version of Delegate for ciphertexts, without the re-

randomization. From these two values, Decrypt can compute

(r · ~x>~γkey + δkey)⊗ (s · αct)− (r · αkey)⊗ (s · ~x>~γct) = δkey ⊗ (s · αkey)

= MKEY

by bilinearity of ⊗, and use MKEY to decrypt the message.

Now for doubly-spatial encryption, this algorithm does not quite match our def-

inition for Decrypt, because its output is not independent of the role r. It is inde-

pendent of the secret key SKr because of the use of Delegate, but the intersection

point ~x is not independent of r. To fix this problem, we need to check that the pur-

ported s ·M> · γct is actually a multiple of M> · γct. With high probability it suffices

to check that (s · αct, s · ~y ·M> · ~γct) is a multiple of (αct, ~y ·M> · ~γct) for a single

random ~y ∈ Zd+1
p , which can be done using two pairing operations. Alternatively, we

could force the sender to include a proof of knowledge for s, but this would increase

ciphertext size.
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5.3 Extended versions

Spatial encryption In the extended version of spatial encryption, we allow a policy

to be a “positive” affine subspace W = affspan(M) ⊆ Znp of dimension d, so that only

a role containing W (rather than intersecting it) can decrypt the message. To do this,

Encrypt chooses a random vector ~u
R← Aff

(
Zdp
)

in addition to s, and outputs the

header as

HDR← (s · ~u · αct, s · ~u> ·M> · ~γct) ∈ Gd+2
ct

with the same MKEY = s · τ .

To decrypt this, Decrypt runs Delegate(PP, r, SKr, p) to obtain a secret key

for the same subspace W ; this will be of the form

(r · αkey, r ·M> · ~γkey + 〈δkey, 0, . . . , 0〉>)

It then computes

(r ·M> · ~γkey + 〈δkey, 0, . . . , 0〉>)> ⊗ (s · ~u · αct)− (r · αkey)⊗ (s · ~u> ·M> · ~γct)

= rs · (~γ>key ·M · ~u)⊗ αct + δkey ⊗ (s · αct)− rs · αkey ⊗ (~u> ·M> · ~γct)

= s · δkey ⊗ αct

= MKEY

which completes the construction using d+ 2 pairing operations.

We will note that (CPA, non-anonymous) security of this system follows from

that of spatial encryption. To see this, first note that ~u can be re-randomized. In

the unlikely but testable case that s = 0, this does nothing. Otherwise, choose

~w
R← {0} × Zdp. Add ~w · αct to the first component, and ~w> ·M> · ~γct to the second;

this effectively adds ~w/s to ~u.

Now, consider what happens when the challenger is asked to produce a challenge

ciphertext for some such W = affspan(M). It can choose a random ~u itself, produce

a challenge ciphertext for M ·~u, and then fill in s ·~u ·αct from s ·αct because it knows

~u. Re-randomizing ~u then obliterates any trace of what ~u was chosen. Since the
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adversary’s delegation queries are prohibited from containing W , they do not contain

M · ~u (which is a random point in W ) except with negligible probability (≤ 1/p per

query). Thus the adversary’s attack against extended spatial encryption would work

against spatial encryption proper.

Doubly-spatial encryption The case of extended doubly-spatial encryption is

similar, except a role may now be a “negative” subspace W = affspan(M), and can

only decrypt policies on (negative) subspaces that contain W . The form of a secret

key is

(~r · αkey, ~r> ·M> · ~γkey + δkey) ∈ Gd+2
key

Decryption works as in extended spatial encryption, again using d+ 2 pairings, so it

remains to show how to delegate from r1 to r2 where r2 is negative. If r1 is positive,

then we can delegate through a random point in r1 ∩ r2, so it remains to solve the

case when r1 is negative.

Let r1 = affspan(M1) and r2 = affspan(M2); as before, we must have M1 = M2K

for some affine matrix K. We are given

(~r · αkey, ~r> ·M>
1 · ~γkey + δkey) ∈ Gd+2

key

Left-multiplying the first component by K gives

(K · ~r · αkey, ~r> ·M>
1 · ~γkey + δkey) = ((K · ~r ) · αkey, (K · ~r )> ·M>

2 · ~γkey + δkey)

This is a valid, but not uniformly random, key for r2: its ~r value is K · ~r. Re-

randomization works as in spatial encryption: Delegate chooses a random ~r ′, and

adds ~r ′ · αkey to the first element and ~r ′> ·M>
2 · ~γkey + δkey to the second.

Once again, the security of this system follows from that of doubly-spatial en-

cryption. When asked to create a key for a negative subspace W , the challenger

creates a key for a random point in that subspace, then delegates to create the final

key. The challenge ciphertext cannot contain W , so it contains the chosen point with

probability at most 1/p.
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Proofs of Security

We offer two proofs of security of spatial encryption, when instantiated in groups with

different properties. The first proves only selective security, and uses a complex (but

standard) assumption. However, it is relatively easy to follow, and the groups which

it uses are simple and fast. Furthermore, doubly-spatial encryption is shown to be

selectively secure assuming that spatial encryption is selectively secure.1

The second proof offers adaptive security. Our assumptions in this proof are in

some ways less complex than those in the first proof (in particular, they involve only

a constant number of terms), but they are less natural assumptions. Furthermore,

the second proof only works for spatial encryption; doubly-spatial encryption using

the same groups may still only be selectively secure.

Both proofs will show CPA, non-anonymous security. However, we can recover

CCA2 security via Theorem 1.

6.1 Master Theorem of Generic Groups

We will use several assumptions, some of them novel, as the basis for our security

proofs. We would like to argue that the problems we call “hard” in these assumptions

1It follows that doubly-spatial encryption is adaptively secure in the generic group model, simply
because in that model the adversary learns nothing from the keys she is given. However, we do not
take much stock in the generic group model, so we do not consider this worth proving formally.

66
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are indeed difficult, and for that we will appeal to the generic group model. We sketch

a “master theorem” of generic group security from Boneh and Boyen [6].

Suppose that an adversary is given a vector ~γ of k elements from a cyclic group G
of prime order p, generated by some element α (which we will take to be included in

~γ), and uses group operations to generate q more. These k+ q elements are all linear

combinations of the original k elements with known coefficients. By assumption, the

only information that the attacker uses about these k + q elements is which ones are

equal, i.e. which ones have zero difference. Thus the entire attack algorithm may be

treated as (k + q)(k + q − 1)/2 tests, each choosing a vector ~v of k elements from Zp
and asking whether ~v>~γ = 0.

Suppose that ~γ is generated by choosing random elements r1, . . . , rn
R← Zp, then

evaluating Pi(r1, . . . , rn) · α for each i ∈ [1, k], where Pi is a fixed polynomial over

Zp; together call these polynomials ~P and call the resulting distribution D~P . Then

~v>~γ = (~v> ~P )(r1, . . . , rn). Now if ~v> ~P = 0 then this is sure to be zero (and the

adversary learns nothing). Otherwise, it is easily seen to be zero with probability at

most d/p, where d is the maximum total degree of the polynomials Pi. Thus the group

elements will be unequal except with probability at most d(k + q)(k + q − 1)/2p =

dq2/2p+O(dkq/p). Here the first term dominates, so we may ignore the second.

Suppose that the adversary’s goal is to distinguish D~P from some other distribu-

tion D ~Q. This will be easy if some ~v exists with ~v> ~P = 0 but ~v> ~Q 6= 0 or vice versa.

Given ~P and ~Q, the existence of such a ~v can easily be checked by hand or by com-

puter. If no such ~v exists, then all non-tautological tests will come up unequal (and

thus the adversary cannot distinguish the two distributions) except with probability

about dq2/2p, where d is the maximum total degree of all the Pi and Qi. Therefore to

distinguish the distributions with advantage ε requires on the order of
√

2εp/d group

operations.

A similar theorem holds in the case of groups with a bilinear pairing, except that

the adversary’s queries have the form ~P>keyM
~Pct + ~v> ~PT for an arbitrary matrix M

and vector ~v, and the maximum total degrees of ~Pct and ~Pkey sum. Together, these

theorems comprise the master theorem of the generic group model.
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6.2 Selective Security

Assumption Our proof of selective security is based on that of the Boneh-Boyen-

Goh HIBE [7], and uses an asymmetric variant of the (n+ 1)-bilinear Diffie-Hellman

exponent (BDDHE) assumption from that work. In this assumption, we state that it

is difficult to verify a computation on xn+1 ·α given other powers of x times α. More

formally, we generate two distributions as follows:

(p; Gkey,Gct,GT ; ⊗; αct, αkey) ← GroupGen(λ)

GP ← (p; Gkey,Gct,GT ; ⊗)

x, y, z
R← Z∗p × Zp × Zp

~χct ← (1, x, x2, . . . , xn) · αct

~χkey ← (1, x, x2, . . . , xn) · αkey

~ηkey ← (xn+2, . . . , x2n+2) · αkey

D0 ← (GP; ~χct, ~χkey, ~ηkey; y · αct; x
n+1y · αkey ⊗ αct)

D1 ← (GP; ~χct, ~χkey, ~ηkey; y · αct; z · αkey ⊗ αct)

Note that the last two elements ofD1 are uniformly random. These distributions differ

from those in the original (n+1)-BDDHE assumption in that they allow Gct and Gkey to

be different. If Gct = Gkey and αct = αkey, then ~χct = ~χkey and we recover the original

(n+1)-BDDHE assumption. Thus spatial encryption is secure under this assumption

as well. Furthermore, we note that we have chosen a BDDHE-type assumption for

its relative simplicity; a weaker (n+ 1)-extended BDDH assumption [25] would have

worked as well.

Given an algorithm A which accepts these distributions and returns 0 or 1, we

define its (n+ 1)-optionally-asymmetric-BDDHE-advantage as

Adv(A ↔ (n+ 1)-OA-BDDHE) = |Pr[A(x) = 1 : x← D1]− Pr[A(x) = 1 : x← D0]|

We assume that for reasonable sizes of n (say, 10,000) and λ (say, 128), no feasible

algorithm A has a non-negligible (n+ 1)-OA-BDDHE advantage.
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The master theorem shows the (n+ 1)-OA-BDDHE assumption to be true in the

generic group model, requiring on the order of
√

2εp/3n time to break with advantage

ε. Alternatively, the (n+ 1)-extended BDDH assumption can be used, which requires

on the order of
√
εp/2 time to break with advantage ε.

We are now ready to prove the security of spatial encryption.

Theorem 3. Let A be a (selective, CPA, non-anonymous) adversary against n-

dimensional spatial encryption. Then there is an adversary B1 against the under-

lying symmetric encryption system E and an (n+ 1)-OA-BDDHE adversary B2, both

running in about the same time as A, such that

Adv(A ↔ Sp) ≤ Adv(B1 ↔ E) + 2 · Adv(B2 ↔ (n+ 1)−OA−BDDHE)

Proof. We will prove security in two stages. First, we will show that substituting

arbitrary parameters for random ones can only hurt security. Second, we will reduce

spatial encryption to the (n + 1)-OA-BDDHE assumption by setting up the system

from that assumption.

Rigged parameters We will use variants of ~χkey and ~χct as the ~γ components of

the system’s public parameters, even though they are not uniformly random. Here

we show that an algorithm which breaks spatial encryption with random parameters

can be adapted to break one with rigged parameters. To do this, choose ~r
R← Zn+1

p ,

and set

~γ ′key ← ~γkey + ~r · αkey and ~γ ′ct ← ~γct + ~r · αct

so that ~γ ′key and ~γ ′ct are each uniformly random (but are still proportional to each

other). Run the adversary with ~γ ′key and ~γ ′ct in the public parameters instead of ~γkey

and ~γct. When the adversary makes a delegation query, note that r · αkey is returned

along with r ·M> · ~γkey + 〈δkey, 0, . . . , 0〉> for some matrix M which is known to the

simulator. Thus adding M> ·~r ·αkey makes the result consistent with ~γ ′key. Likewise,

a challenge ciphertext can be made consistent with ~γ ′ct.

A similar argument shows that δkey can also be rigged. Choose a random t ∈ Z∗p
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and set δ′key ← t ·δkey, so that δ′key is uniformly random in Gkey\{0}. Adjust the public

parameters with τ ′ ← t · τ . Adjust every delegation query by multiplying by t, and

adjust the challenge ciphertext by dividing the header by t.

We are now ready to prove security of spatial encryption by a sequence of games.

Game 0 We call the real security game Game 0.

Game 1 This game is exactly the same as Game 0, but the challenger computes

its responses differently. It begins with rigged parameters sampled from D0, and

then re-randomizes them as described above to produce a game which is distributed

identically to Game 0. Setup samples

(GP; ~χct, ~χkey, ~ηkey; y · αct; x
n+1y · αkey ⊗ αct)← D0

It sends GP to the adversary, but waits to compute PP until it learns the challenge

policy p ∈ Aff
(
Znp
)
. It then chooses

~γct = ~χct −
〈
p>~χct, 0, . . . , 0

〉>
so that p>~γct = 0, and likewise

~γkey = ~χkey −
〈
p>~χkey, 0, . . . , 0

〉>
Setup does not produce a master key. It instead conceptually sets δkey = xn+1 ·αkey,

which is a value that it does not know.

When the adversary asks a delegation query for a role

r = W = affspan(M) where M =

(
1

~u L

)

the challenger will need to compute a response in some different way, since it does

not have the master secret key. Let ~v ∈ Znp be a vector which is normal to L, but

such that ~v>p 6= ~v>~u. Such a ~v is guaranteed to exist when p /∈ W , and can be
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computed by Gaussian elimination. Furthermore, by scaling ~v, we can arrange that

~v>p− ~v>~u = 1.

Now, conceptually let

r ← ~v> ·
〈
xn, xn−1, . . . , x

〉> ∈ Zp

The challenger will use this r to construct the secret key, despite not knowing its

value. Recall that the secret key has the form

(r · αkey, r ·M> · ~γkey + 〈δkey, 0, . . . , 0〉>)

= (r, r · (~u− p)> ·
〈
x, x2, . . . , xn

〉>
+ xn+1, r · L> ·

〈
x, x2, . . . , xn

〉>
) · αkey

We will now explain how to compute these terms. They are all αkey times polynomials

in x of degree at most 2n, so we can compute them if their xn+1 coefficients are 0.

The first term, r, has degree only n. For the second and third terms, note that the

xn+1 coefficient on r ·~z> · 〈x, x2, . . . , xn〉> is precisely ~z> ·~v. So in the second term, the

coefficient is −1 + 1 = 0, and on the third term it is 0 because ~v is orthogonal to L.

Thus the challenger can compute all these terms. To make r uniformly random, the

challenger then rerandomizes the secret key as in Delegate. Finally, the challenger

adjusts the secret key from the rigged parameters to the uniformly random ones.

To generate the challenge ciphertext, the challenger conceptually sets s = y, so

that the header is

(y · αct, y · p> · ~γct) = (y · αct, 0)

since ~γct was chosen to be orthogonal to p. The MKEY is then xn+1y · αkey ⊗ αct.

These values are available from the sample of D0. Once again, the challenger adjusts

from the rigged parameters to the random ones, and returns the challenge ciphertext

to the adversary.

Game 1 produces public parameters, secret keys and challenge ciphertexts accord-

ing to the same distribution as Game 0, so the adversary’s advantage in both cases

is the same.
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Game 2 Our final game is the same as Game 1, except that the challenger uses

D1 instead D0. In this case, everything will look the same except that the computed

MKEY will be uniformly random, so that the adversary’s advantage in Game 2 is the

same as her advantage against the underlying symmetric encryption system (which

is 0 in the case of that MKEY is simply added to m, but may be nonzero otherwise).

That is, there is an adversary B1 against the underlying encryption scheme E such

that

Adv(A ↔ Game 2) = Adv(B1 ↔ E)

However, distinguishing Game 1 and Game 2 breaks the (n+1)-OA-BDDHE problem.

That is, there is an (n+ 1)-OA-BDDHE adversary B2 such that

Adv(B2 ↔ (n+ 1)-OA-BDDHE) ≥ 1

2
(Adv(A ↔ Game 2)− Adv(A ↔ Sp))

Combining these, we get

Adv(A ↔ Sp) ≤ Adv(B1 ↔ E) + 2 · Adv(B2 ↔ (n+ 1)-OA-BDDHE)

as claimed.

Doubly-spatial encryption It is even easier to show that the selective security of

doubly spatial encryption and of spatial encryption are the same.

Theorem 4. Let A be a (selective, CPA, non-anonymous) adversary against n-

dimensional doubly-spatial encryption. Then there is another (selective, CPA, non-

anonymous) adversary B against n-dimensional spatial encryption, running in about

the same time as A, such that

Adv(A ↔ DblSp) = Adv(B ↔ Sp)

Proof. Doubly-spatial encryption is the same as spatial encryption, except that the

chosen policy may be a d-dimensional subspace p = affspan(M) instead of a single

point. At a high level, the simulator will project p down to a single point, reducing
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to spatial encryption in n − d dimensions. More formally, let K ∈ Z(n−d+1)×(n+1)
p be

a surjective affine matrix with KM = 〈1, 0, . . . , 0〉> ∈ Aff
(
Zn−dp

)
, so that the chosen

policy p (and nothing else) maps to the affine origin.

The simulator sets up spatial encryption in n− d dimensions, selecting the origin

as the policy, and receives ~γct and ~γkey in the public parameters. It then rigs its

own public parameters with K> · ~γct and K> · ~γkey. Note that for any affine matrix

L ∈ Z(n+1)×`
p , we have (KL)> ·~γkey = L> ·K> ·~γkey, so that a secret key for affspan(L)

in the “outer” system is the same as one for the its projection affspan(KL) in the

“inner” one. So the simulator for the outer system left-multiplies all queries by K,

then passes them to the inner system, adjusting the returned secret keys for rigged

parameters as usual. It does the same for the challenge ciphertext. The queries will

still be valid: in the outer system affspan(L) does not intersect p, so its image will

not contain 〈1, 0, . . . , 0〉>.

This completes the simulation of doubly-spatial encryption using spatial encryp-

tion in n − d dimensions. To complete the proof that the (selective, CPA, non-

anonymous) security of n-dimensional doubly-spatial encryption is the same as that

of n-dimensional spatial encryption, note that the inner (n − d)-dimensional spatial

encryption system can be emulated by fixing the last d dimensions of an n-dimensional

spatial encryption system to 0.

Multiple masters Since the only part of setup that is secret is the choice of δkey,

we can consider the case in which the remaining parameters, GP, αct, αkey, ~γct and ~γkey

are chosen by a trusted third party or, equivalently, as the output of a random-oracle

hash. In this case, anyone can set up a private copy of the system by generating a

random δkey and publishing δkey ⊗ αct. Each of these systems will then be selectively

secure, by the same argument.

Furthermore, suppose two systems are created in this way, with public parameters

PP and PP′. Then given a ciphertext for a policy p, it will not be possible to tell which

system created it without the ability to decrypt in either system. This is because only

MKEY depends on δkey, and it is indistinguishable from random without a key for a

role r � p.
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Thresholds for the master secret Alternatively, a coalition of k authorities can

generate k different shares of δkey, such that any t of them can recover δkey but t− 1

cannot. For example, following Shamir [34] they can generate a random polynomial

P of degree t − 1 and set σi ← P (i) · αkey for each i 6= 0. The master secret key is

then δkey ← P (0) · αkey, which can be recovered from t shares by interpolation, but

any t− 1 shares give no information about δkey.

Sharing commutes with delegation. That is, for any role r, each authority can

generate a secret key for r with σi replacing δkey, and performing interpolation term-

by-term on t these keys gives a secret key for r. This provides a convenient way for

users to obtain secret keys from the authorities. The shares of these secret keys can

even be verified if each authority publishes σi ⊗ αct.

Such a system is secure under selective authority compromise. That is, if the

adversary compromises t − 1 authorities before the game begins, she still has no

advantage. To prove this, we can simulate the scenario as follows:

• The simulator instantiates spatial encryption as usual.

• The simulator chooses σi for each compromised authority i and gives it to the

adversary. It uses interpolation on δkey ⊗ αct and the t − 1 compromised σi

values to compute σj ⊗ αct for each uncompromised authority j.

• When the adversary queries a compromised authority i for secret key share

to a role r, the simulator generates it directly from σi. When she queries an

uncompromised authority j, the simulator generates the real secret key for r,

and a share for each compromised authority i, then interpolates these t keys to

generate the secret key from authority j.

This simulation produces the same distribution of secret key shares as the real system.

Similarly, if the adversary is fully adaptive, we wish to show that she cannot decrypt

a message encrypted to p unless she has queried roles r � p from at least t different

authorities. We can do this with probability 1/
(
k
t−1

)
simply by guessing which t − 1

authorities will be used, then applying the above simulation.

Finally, note that the sharing need not be done at the level of the master secret.

Any key can be split into k shares, of which t are needed to use it, and those shares
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can be further delegated. However, if this is done many times, then the argument

above incurs an exponential loss of tightness unless the adversary chooses, at the time

the shares are created, which ones she will compromise.

6.3 Adaptive Security

The proof given above is relatively simple and is applicable both to spatial and to

doubly-spatial encryption. However, it only proves selective security. Here we will

show that, when instantiated with appropriate groups, spatial encryption is adap-

tively secure under a few compact assumptions. We will demonstrate compact as-

sumptions, Assumption 1 through Assumption 3, all of which are true in the generic

group model. We will then have the following theorem:

Theorem 5. For any (CPA, adaptive, non-anonymous) adversary A against spatial

encryption, there are four adversaries B1,B2,B3,BE against Assumption 1 through

Assumption 3 and the symmetric encryption scheme E, respectively, such that

Adv(A ↔ Sp) ≤ 2 · Adv(B1 ↔ Assumption 1) + 2q · Adv(B2 ↔ Assumption 2)

+2 · Adv(B3 ↔ Assumption 3) + Adv(BE ↔ E)

We will follow the “dual-system” technique presented in [26]. However, unlike that

work, we will use prime-order assumptions.

Proof outline The dual-system encryption technique, pioneered by Brent Waters

in [37], follows a completely different outline from the security proof given above. Un-

like in a selective-security proof, the simulated challenger knows the master secret key

and can answer any query. However, it subtly corrupts the challenge ciphertext and

some of the secret keys it produces, making them semi-functional. Semi-functional

keys can decrypt ordinary ciphertexts and vice-versa, but semi-functional keys cannot

usually decrypt semi-functional ciphertexts.

There is an exception, however. Each semi-functional key or ciphertext is given a

tag, which in our case is a random vector in Zn+1
p . Given a semi-functional ciphertext



CHAPTER 6. PROOFS OF SECURITY 76

for a policy p, and a semi-functional secret key for a role r � p, if the tags on the key

and ciphertext are the same then decryption will work as usual. However, if r 6� p,

then it is impossible to determine whether the tags match.

Group properties We require some additional properties from the groups Gkey and

Gct for this proof. Instead of being cyclic, we require Gkey to be generated by αkey and

a new, “pernicious” element πkey, and likewise, Gct should be generated by αct and

πct. These pernicious elements must be orthogonal to the ordinary ones, meaning

that

αkey ⊗ πct = πkey ⊗ αct = 0

even though

αkey ⊗ αct 6= 0 and πkey ⊗ πct 6= 0

The ordinary GroupGen does not output πkey and πct, and in fact they must be

difficult to compute from αkey and αct. However, we assume that an enhanced algo-

rithm, GroupGenSim, will output the same distribution as GroupGen with the

addition of πkey and πct.

To achieve this, let Gkey and Gct be generated as follows. Choose cyclic groups

Hkey and Hct of order p, generated by ηkey and ηct, respectively, supporting a bilinear

map ⊗ : Hkey ×Hct → GT . Hkey and Hct may be the same group or different groups.

We will set Gkey and Gct to be randomized subgroups of H4
key and H4

ct, respectively,

with their pairing to GT being an “inner product” as described in Section 5.1. Choose

matrices Mkey and Mct uniformly from GL4(Zp), the group of invertible 4×4 matrices

over Zp, with the constraint that M>
key ·Mct is diagonal. Set

αkey ← Mkey · 〈1, 0, 0, 0〉> · ηkey

πkey ← Mkey · 〈0, 1, 0, 0〉> · ηkey

βkey ← Mkey · 〈0, 0, 1, 0〉> · ηkey

αct ← Mct · 〈1, 0, 0, 0〉> · ηct

πct ← Mct · 〈0, 1, 0, 0〉> · ηct

βct ← Mct · 〈0, 0, 0, 1〉> · ηct



CHAPTER 6. PROOFS OF SECURITY 77

This gives the desired properties, with the additional property that the β elements

are orthogonal to everything, i.e.

βkey ⊗ αct = βkey ⊗ πct = βkey ⊗ βct = αkey ⊗ βct = πkey ⊗ βct = 0

Then set

Gkey ← H4
key /R span(βkey) and Gct ← H4

ct /R span(βct)

Because the β terms are orthogonal to everything, the inner-product pairing is still

well-defined. The randomizing factors βkey and βct are part of the descriptions of Gkey

and Gct respectively, and so will be output by GroupGen and GroupGenSim.

Before proceeding, we will note that Mkey and Mct can be “rigged”, meaning that

if the system is secure with a particular choice of Mkey and Mct, then it is secure with

a random choice of Mkey and Mct. To see this, choose a random L ∈ GL4(Zp) and a

random invertible diagonal matrix D, and let

M ′
key ← L ·Mkey and M ′

ct ← L−1 ·Mct ·D

Then M ′
key
> ·M ′

ct = M>
key ·Mct ·D is still diagonal (and invertible), and M ′

key and M ′
ct

are uniform in GL4(Zp) subject to this property. To rig the system, we must adjust

parameters, keys and ciphertexts which are already generated to use the new M ′
key

and M ′
ct. For keys, we will multiply each parameter by L, and for ciphertexts by

L−1 ·D11, where D11 is the upper-left corner of D. This correctly maps the old key

parameters to the new ones, and the old αct to the new one. It maps βct and πct to

multiples of the new ones; however, these terms are always scaled randomly before

being used, so the resulting distributions will be the same.

Semi-functional keys and ciphertexts To construct semi-functional keys and

ciphertexts, we add multiples of πkey and πct to ordinary keys and ciphertexts. A

semi-functional key for a role r = affspan(K) with tag (t0,~t) ∈ Zp × Zn+1
p has the
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form

(r · αkey + r′ · t0 · πkey, K> · (r · ~γkey + r′ · ~t · πkey) + 〈δkey, 0, . . . , 0〉>) ∈ Gd+2
key

where r, r′
R← Zp. Likewise, a semi-functional ciphertext for a policy p = ~v ∈ Aff

(
Znp
)

with tag (t0,~t) has the form

HDR ← (s · αct + s′ · t0 · πct, ~v
> · (s · ~γct + s′ · ~t · πct)) ∈ Gd+2

ct

MKEY ← s · τ = s · δkey ⊗ αct

When using an ordinary key to decrypt a semi-functional ciphertext, the ciphertext’s

πct terms are irrelevant because the key only has αkey components, and αkey⊗πct = 0;

thus decryption will work as normal. Similarly, a semi-functional key can decrypt an

ordinary ciphertext. Finally, if the tags on the key and the ciphertext are the same,

then decryption will work as normal.

Security assumptions Our assumptions all take the form of distinguishing certain

group elements from random, given other group elements. Let A be an algorithm

which can take as input either of two distributions. Its advantage in distinguishing

those distributions is

Adv(A ↔ (D0,D1) := |Pr(A(x) = 1 : x
R← D0)− Pr(A(x) = 1 : x

R← D1)|

Our assumptions are symmetric, meaning that our assumptions work even when

Hct = Hkey = H with generator η; when Hct and Hkey are different, we are given the

same terms multiplied by ηct and ηkey. We give two different versions of the first two

assumptions: one with multivariate polynomials but of degree 1 in each variable, and

one with fewer variables and fewer terms but of higher degree. This assumption is

formed by substitutions in the original assumption.
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Assumption 1 Let r, s, t, u, v
R← Zp. Then given

(1, r, s, rs, t, u, su, rsu, ru+ v) · η

it is hard to distinguish tv · η from random. Alternatively, given

(1, r, r2, r3 + rv, t) · η

it is hard to distinguish tv · η from random.

Assumption 2 Let r, s, t, u, v
R← Zp. Then given

(1, r, s, rs, u, ru+ t, su, rsu, st, tv) · η

it is hard to distinguish (ru+ v) · η from random. Alternatively, given

(1, r, r2, r3 + rt, t, tv) · η

it is hard to distinguish (r3 + v) · η from random.

Assumption 3 Let r, s, t, u
R← Zp. Then given

(1, r, s, t, rs, ru, u+ st) · η

it is hard to distinguish tu · η ⊗ η from random.

Using the master theorems and a simple computer program, we checked that these

assumptions are true in the generic group model, each requiring on the order of
√
εp/3

group operations to break with advantage ε.

Setup using security assumptions To apply our three security assumptions,

we use them to prove three lemmas. In each case, we emulate part of the Setup

algorithm, producing GP, KBP and (a partial version of) EP. But we also produce

other, tagged versions of the parameters, and the lemmas show that it is difficult to
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determine how the tagged parameters were generated.

The first lemma shows that under Assumption 1, it is difficult to distinguish a

scaled copy of the encryption parameters from a scaled and tagged copy.

Lemma. Let D10 and D11 be defined as follows:

(p; Gkey,Gct,GT ; ⊗; αct, αkey; πct, πkey) ← GroupGenSim(λ)

~r
R← Zn+1

p

(t0, ~t)
R← Z∗p × Zn+1

p

u
R← Zp

~γkey ← ~r · αkey

~γct ← ~r · αct

GP ← (p; Gkey,Gct,GT ; ⊗)

C ← (GP; αkey, ~γkey; αct, ~γct)

D10 ← (C, u · αct, u · ~γct)

D11 ← (C, u · αct + t0 · πct, u · ~γct + ~t · πct)

Then if an algorithm A distinguishes D10 from D11 with advantage ε, then another

algorithm B takes about the same time as A to break Assumption 1 with advantage ε.

The second lemma shows that under Assumption 2, given πkey and a copy of the

encryption parameters tagged with (t0,~t), it is difficult to distinguish a scaled copy

of KBP from a copy which is tagged with (t0,~t).
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Lemma. Let D20 and D21 be defined as follows:

(p; Gkey,Gct,GT ; ⊗; αct, αkey; πct, πkey) ← GroupGenSim(λ)

~r
R← Zn+1

p

(t0, ~t)
R← Z∗p × Zn+1

p

u1, u2, u3
R← Zp

~γkey ← ~r · αkey

~γct ← ~r · αct

GP ← (p; Gkey,Gct,GT ; ⊗)

C ← (GP; αkey, ~γkey; αct, ~γct; u1 · αct, u1 · ~γct + ~t · πct; πkey)

D20 ← (C, u2 · αkey, u2 · ~γkey)

D21 ← (C, u2 · αkey + u3 · t0 · πkey, u2 · ~γkey + u3 · ~t · πkey)

Then if an algorithm A distinguishes D20 from D21 with advantage ε, then another

algorithm B takes about the same time as A to break Assumption 2 with advantage ε.

The third lemma shows that under Assumption 3, given πkey and a randomly tagged

version MSK′ of the master secret key, it is difficult to distinguish tagged encryption

parameters from garbage.
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Lemma. Let D30 and D31 be defined as follows:

(p; Gkey,Gct,GT ; ⊗; αct, αkey; πct, πkey) ← GroupGenSim(λ)

~r
R← Zn+1

p

(t0, ~t)
R← Z∗p × Zn+1

p

u1, u2, rδ
R← Zp

τ ′
R← GT

~γkey ← ~r · αkey

~γct ← ~r · αct

δkey ← rδ · αkey

GP ← (p; Gkey,Gct,GT ; ⊗)

C ← (GP; αkey, ~γkey; αct, ~γct; πkey; δkey + u2 · πkey)

D30 ← (C, u1 · αct + t0 · πct, u1 · ~γct + ~t · πct, u1 · δkey ⊗ αct)

D31 ← (C, u1 · αct + t0 · πct, u1 · ~γct + ~t · πct, τ ′)

Then if an algorithm A distinguishes D30 from D31 with advantage ε, then another

algorithm B takes about the same time as A to break Assumption 3 with advantage ε.

Proof. We begin the proof of all 3 assumptions with the same few simplifications.

Rigged group parameters First, we will note that, as above, we can “rig” the

group parameters αkey, αct, βkey, βct, πkey and πct to whatever we want, so long as

they have the correct products. If the lemmas are true with thees rigged group

parameters, then by re-randomization we see that they are also true with random

group parameters.

Ignoring betas In each assumption we will need only one of βkey or βct. So when

rigging the group parameters we will set, eg, βkey = 〈0, 0, 0, 1〉> · η, and confine the

other parameters to the first 3 dimensions. The system will then behave as though
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βkey were completely unused: the 4th coordinate of any key-side element will be

uniformly, independently random, and the 4th coordinate of any ct-side element will

be 0.

Furthermore, even when we are not ignoring, say, βct, we can remove βct terms

from any element we wish, because those terms can easily be added back later.

Compression Parameters can be compressed to a few elements. Suppose that the

lemmas are true with n = 0, so that γ is a scalar rather than a vector. Then choose

f0, g0
R← Zp and ~f,~g

R← Zn+2
p , and set

α′key ← f0 · αkey + g0 · γkey

~γ′key ← ~f · αkey + ~g · γkey

u · α′ct ← f0 · u · αct + g0 · u · γct

u · α′ct + t′0 · π′ct ← f0 · (u · αct + t0 · πct) + g0 · (u · γct + t · πct)

u · ~γ′ct + ~t′ · π′ct ← ~f · (u · αct + t0 · πct) + ~g · (u · γct + t · πct)

and so on. It is easily seen that if (t0, t) · αkey is linearly independent of (αkey, γkey),

then the resulting distribution of u, t′0,~t
′, α′key, ~γ

′ will be uniformly random, and so the

resulting parameters will be correctly distributed. Since t0, t need not be random, we

can set t0 = 0.

Extending Assumption 1 Ignore βkey and remove βct terms from αct and γct, and

from u · αct. Set t0 = 0 and

αkey = (1, 0, 0) · η αct = (s, 1, 0) · η
πct = (0, 0, 1) · η βct = (0, 1, t) · η

We are then given

αkey = (1, 0, 0) · η γkey = (r, 0, 0) · η
αct = (s, 1, 0) · η γct = (rs, r, 0) · η
βct = (0, 1, t) · η u · αct = (su, u, 0) · η
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and either

ru · αct + v · βct = (rsu, ru+ v, tv) · η

or

ru · αct + v · βct + t1 · πct = (rsu, ru+ v, tv + t1) · η

where tv + t1 is uniformly random. Thus, given

(1, r, s, rs, t, u, su, rsu, ru+ v) · η

we must distinguish tv · η from random, which is difficult under Assumption 1. Al-

ternatively, set u = r, s = 1/r and adjust η and t by factors of r to clear denomi-

nators. This is legitimate because u can be re-randomized additively, and s can be

re-randomized multipliciatively. Then it suffices that given

(1, r, r2, r3 + rv, t) · η

it should be hard to distinguish tv · η from random.

Extending Assumption 2 Ignore βct, set t0 = 0 and remove βkey components of

αkey, γkey and u · αkey. Set

αkey = (s,−1, 0) · η αct = (1, 0, 0) · η
πkey = (0, 1, 0) · η πct = (1, s, v) · η
βkey = (0,−vt, st) · η
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where s, v
R← Zp. Furthermore, fix the coefficient of βkey on the ru · γkey or ru · γkey +

t · πkey to 1/t, and set u1 = u2 = u. We are then given

αkey = (s,−1, 0) · η γkey = (rs,−r, 0) · η
αct = (1, 0, 0) · η γct = (r, 0, 0) · η
βkey = (0,−vt, st) · η πkey = (0, 1, 0) · η

u · αct = (u, 0, 0) · η u · γct + t · πct = (ru+ t, st, vt) · η
u · αkey = (us,−u, 0) · η

and either

ur · αkey + βkey/t = (urs,−ur − v, s)

or

ur · αkey + βkey/t+ u3 · t · πkey = (urs,−ur − v + u3 · t, s)

where −ur−v+u3 ·t is uniformly random. Negating elements as needed for simplicity,

we are given

(1, r, s, rs, u, ru+ t, su, rsu, st, tv) · η

and wish to distinguish (ru + v) · η from random. Once again, if we set u = r and

s = 1/r and normalize η and v, we will need to distinguish (r3 + v) · η from random

given

(1, r, r2, r3 + rt, t, tv) · η

Extending Assumption 3 Ignore both βkey and βct, and set t = 0 (instead of

t0 = 0 as usual), and furthermore set rδ = t0. Set

αkey = (1, s) · η αct = (1, 0) · η
πkey = (0, 1) · η πct = (−s, 1) · η
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We are then given

αkey = (1, s) · η γkey = (r, rs) · η
αct = (1, 0) · η γct = (r, 0) · η
πkey = (0, 1) · η δkey + u2 · πkey = (t0, st0 + u2) · η

u1 · αct + t0 · πct = (u1 − st0, t0) · η u1 · γct = (ru1, 0) · η

and are asked to distinguish

u1 · δkey ⊗ αct = u1t0 · η ⊗ η

from random. Note that st0 +u2 is uniformly random and can be ignored. Collecting

terms and negating u1, we wish to distinguish u1t0 · η ⊗ η from random given

(1, r, s, t0, rs, ru1, u1 + st0)

which is difficult under Assumption 3.

This completes the proof of the lemmas.

We are now ready to dive into the security games. Let wi denote the probability that

the adversary wins Gamei, and let q be the number of queries the adversary makes.

Gamereal This is the real security game. By definition,

Adv(A ↔ Gamereal) = |2 · wi − 1|

Game0 For this game, the simulator replaces the challenge ciphertext with a semi-

functional one of tag (t0,~t). To do this, the simulator replaces the ordinary Setup

with one that samples from D11, and uses the resulting GP,KBP and EP (generating

δkey and τ itself). To construct the challenge ciphertext, the simulator uses the

“tagged encryption parameters”

(u · αct + t0 · πct, u · ~γct + ~t · πct, δkey ⊗ (u · αct + t0 · πct))
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in place of EP. Note that without the t0 and ~t terms, as would occur if we sampled

from D10 instead of D11, the result has the same distribution as in the real game.

Thus there is an algorithm B1, running in about the same time as A, such that

Adv(B1 ↔ Assumption 1) = |w0 − wreal|

Gamei This game is the same as Game0, except that the first i delegation queries

are answered with semi-functional keys, with uniformly independently random tags

(thus Game0 is Gamei with i = 0).

To move from Gamei to Gamei+1, we perform a simulation based on Assumption 2.

The simulator samples from either D20 or D21. Once again, it simulates Setup using

the given αkey, ~γkey, αct and ~γct, generating its own δkey and generates the challenge

ciphertext from u·αct +t0 ·πct, u·~γct +~t·πct, δkey⊗(u · αct + t0 · πct). It generates the

first i secret keys using the real KBP = (αkey, ~γkey), but then adds random multiples

of πkey to each element, thereby producing a random tag. It generates the last q−i−1

keys normally.

The simulator generates the i+ 1st key using either

(u2 · αkey, u2 · ~γkey)

in place of KBP if it sampled from D20, or

(u2 · αkey + t0 · πkey, u2 · ~γkey + ~t · πkey)

in place of KBP if it sampled from D21. Thus in the former case, the i + 1st key

is fully-functional, whereas in the latter case it is semi-functional with the same tag

(t0,~t) as the challenge ciphertext. However, note that the entire tag is not used for

the challenge ciphertext. Rather, the challenge ciphertext uses

u1 · t0 and u1 · ~v> · ~t
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and the i+ 1st secret key uses

u2 · t0 and u2 ·M> · ~t

We claim that these are distributed the same as

u1 · t0, u1 · ~v> · ~t; u3 · t′0, u3 ·M> · ~t′

where (t′0,~t
′)

R← Z∗p×Aff
(
Znp
)

is another uniformly random tag. Thus if the simulator

sampled from D21, the adversary will be playing Gamei+1. To see this, note that the

i + 1st secret key does not decrypt the challenge ciphertext (or else it would not

be a legal query), so ~v is linearly independent from the columns of M . Thus the

projection of (~v | M)> · (~t/t0) is uniformly random in Zd+2
p , where d is the dimension

of the subspace r, and so the two distributions are the same as claimed.

Thus there is an algorithm B2, running in about the same time as A, such that

Adv(B2 ↔ Assumption 2) = |wi+1 − wi|

Note that in Gameq, the adversary sees only semi-functional secret keys and semi-

functional ciphertexts, all with uniformly, independently random tags.

Gamefinal In the final game, the ciphertext’s MKEY is replaced with a random

element of GT . Thus the adversary is carrying out an attack on the underlying

symmetric encryption system E, so there is an adversary BE such that

Adv(BE ↔ E) = |2 · wfinal − 1|

To transition between Gameq and Gamefinal, we use Assumption 3. The simulator

samples from D30 or D31, and uses its EP and KBP as the public parameters, com-

puting δkey ⊗ αct = (δkey + u3 · πkey) ⊗ αct, and creating a master key MSK′ tagged

with (0, 〈u3, 0, . . . , 0〉>) from αkey, ~γkey and δkey +u3 ·πkey. To respond to a delegation

query, it passes the tagged MSK′ to Delegate, which produces a tagged secret key,
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then re-randomizes the tag using πkey. To produce the challenge ciphertext, the simu-

lator uses the last part of the sample, which is either a tagged copy of the encryption

parameters or complete garbage. In the former case, this is identical to Gameq; in

the latter case, it is Gamefinal. Thus there is an algorithm B3, running in about the

same time as A, such that

Adv(B3 ↔ Assumption 3) = |wfinal − wq|

Summing these equations, we find that

Adv(A ↔ Sp) ≤ 2 · Adv(B1 ↔ Assumption 1) + 2q · Adv(B2 ↔ Assumption 2)

+2 · Adv(B3 ↔ Assumption 3) + Adv(BE ↔ E)

as claimed. This completes the proof of Theorem 5.

Composite-order groups We can perform this same proof using composite-order

groups instead of prime-order ones, as in [26] and [3]. The three assumptions are the

same as in [26] and the lemmas are the same as the ones we proved.2

Composite-order groups make things more complicated because spatial encryption

requires p to be prime. However, the applications listed in Chapter 4 do not require

precise knowledge of p. In particular, consider instantiating each application mod

several primes {pi}. Then doing the same computations mod N =
∏

i pi will enforce

the delegation and decryption relations mod each prime pi, even though the primes

pi are unknown.

Multiple masters As before, spatial encryption with the groups used in this proof

can be instantiated with multiple masters. The resulting system has the same thresh-

old security properties as before, and it is still difficult to tell which master is being

used. However, the more complex groups prevent generation of the public parameters

using a random-oracle hash, so a trusted third party is required.

2Actually, the third assumption in [26] is slightly stronger than necessary, both for that work and
for this one.



Chapter 7

Conclusions and Future Work

We have presented a simple model, GIBE, which describes most variants of identity-

based encryption. We have formalized the process by which some GIBEs can be

implemented using other GIBEs, and by which signatures can be built from encryption

schemes.

Adding to the toolbox of flexible IBE variants, we have introduced two new GIBE

systems: spatial encryption and doubly-spatial encryption. The former is more effi-

cient and supports a stronger proof of security, but the latter is more flexible. We

have studied how to use these systems to build new encryption schemes, and how to

emulate already-known ones with efficiency comparable to single-purpose construc-

tions. By studying sparse products of such systems, we have laid the foundation for

an expressive language to describe their roles and policies.

Still, we have only scratched the surface in this paper, leaving plenty of room for

future work.

Incremental improvements We would like a proof of adaptive security for doubly-

spatial encryption, ideally one which uses more a more natural assumption such as

the Decision Linear or Decision Subgroup assumption. We would also like to see

variants of spatial encryption which are more than weakly anonymous.
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Tensors Doubly-spatial encryption hints at a more general form of spatial encryp-

tion in which roles and policies are tensor spaces. We are interested both in whether

such a system can be built securely and efficiently, and whether it will enable us to

implement encryption systems for new and important hierarchies. We are especially

hopeful given the similarities between spatial encryption and other identity-based

encryption technologies.

Similarly, we wonder what other GIBEs other than (doubly) spatial encryption

and attribute-based encryption could be used to form new and powerful hierarchies.

Implementation We have begun implementing spatial encryption, but did not

finish it for this paper due to time pressure. Perhaps the most interesting aspect

of such an implementation would be its policy language; this we have also laid the

foundation for, but not completed.

We hope that this work, and future work in the same direction, will make it easier to

design, build and deploy modern cryptographic systems.
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