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Abstract

Each member of a team consisting of n person has a secret. The k out
of n simultaneous threshold secret sharing requires that any group of k
members should be able to recover the secret of the other n−k members,
while any group of k − 1 or less members should have no information
on the secret of other team members. We show that when all secrets
are independent and have size s then each team member must receive a
share of size at least (n − k)s, and we present a scheme which achieves
this bound. This result shows a significant saving over n independent
applications of the k out of n− 1 threshold schemes which assigns shares
of size (n− 1)s to each team member independently of k.
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1 Introduction

A team has n members, and each member of the team has a secret about the
same size, say a password. As a safety caution, they want each secret to be
distributed among the other members of the group so that it could be recovered
in the case any of them forgets it. Also, none of them trusts the others, thus
they want their secret to be independent of the information held by any group
n − 1 or less team members. This goal can be achieved by distributing all
secrets using Shamir’s n − 1 out of n − 1 threshold secret sharing method, see
[3]. Assuming that all secrets have the same size s bit, the total size of the
shares each team member receives will be (n − 1)s times the secret size. This
holds as in any perfect secret sharing scheme, any share size is at least as large
as that of the secret, see [1]. Can we do better if the secrets are distributed not
independently but simultaneously? We show that the answer is yes: there is a
way to distribute the secrets so that
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Academy of Sciences and by the grant NKTH OM-00289/2008

1



1. every team member receives an s bit share;

2. any member’s secret can be recovered using the shares and the secrets of
the other n− 1 members;

3. even putting together all information n−2 team members received during
the distribution phase, they will have no information on the secret of the
other two team members.

We also show that in all schemes satisfying properties 2. and 3. above the size
of every share must be at least s, thus our scheme is optimal.

The problem sketched above is a special case of the k out of n simultaneous
secret sharing. The team has n members as above, and each of them has a secret.
In this case we require that any participant’s secret should be recoverable by
any k out of the remaining n − 1 participants, while no k − 1 or less coalition
should have any information on the other members’ secrets.

Theorem 1 a) Suppose each secret has the same size s, and the secrets are
totally independent (knowing some of them does not help guessing the others
beyond guessing them randomly and independently). Then any scheme realizing
k out of n simultaneous secret sharing assigns shares of size at least (n− k)s.

b) There is an optimal k out of n simultaneous secret sharing scheme which
assigns (n− k)s size shares.

In Section 2 we prove part a) of this theorem, while in Section 3 we present
an optimal k out of n simultaneous secret sharing scheme proving part b). An
interesting property of the presented scheme is that the recovery of a secret can
be done in such a way that repeating it not more than n−k times the unaffected
secrets are not compromised, i.e., they are (statistically) independent from all
published information.

2 Lower bound

To prove the lower bound we use the so-called entropy method, see [1, 2]. First
of all, we consider the secrets and shares as random variables. The size of
the secret ξp belonging to participant p is its Shannon entropy H(ξp), which is
roughly the number of necessary bits to defined the value of ξp uniquely. For
any collection {ξi : i ∈ I} of random variables we define the real-valued function

f(I) = H({ξi : i ∈ I})

where the entropy is taken for the joint distribution of all indicated variables.
For example, if p is (the index of) any of the secrets, then f({p}) is the size of
the secret ξp, and similarly for shares.

The function f is defined on all subset of some finite set, and satisfies certain
linear inequalities which follow from the so-called Shannon inequalities for the
entropy function H. The following claim collects those properties which will be
used in this paper. As usual, we write f(XY ) instead of f(X ∪ Y ), and f(x)
and f(xX) instead of f({x}) and f({x} ∪X).
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Claim 2 For any subsets X and Y

1. f(X) ≥ 0 (positivity),

2. f(X) ≤ f(Y ) if X ⊆ Y (monotonicity),

3. f(X) + f(Y ) ≥ f(XY ) (additivity),

4. f(XY ) = f(X) if (the variables in) X determines the values of (the vari-
ables in) Y ;

5. f(XY ) = f(X) + f(Y ) if X and Y are statistically independent.

The entropy method can be rephrased in a few words as follows. Let A
be the (index) of any share. Suppose for any function f satisfying properties
enlisted in Claim 2 there are (indices) a1, . . ., a` of secrets such that

f(A) ≥ f(a1) + · · · f(a`).

The the size of share A must be at least ` times the size of the secrets.

Lemma 3 Suppose G is a group of participant with k − 1 members, and a,
b̄ = 〈b1, . . . , bn−k〉 are the secrets of participants not in G and their share are A
and B̄ = 〈B1, . . . , Bn−k〉, respectively. Then

f(a) + f(A) ≥ f(ab̄).

Proof Let us denote the total data (secret plus share) held by G by G as well.
By assumption, G together with a and A should determine all the secrets bi,
that is f(aAG) = f(ab̄AG). Also, G should have no information on the secrets
a and bi or on their combinations, thus f(ab̄G) = f(ab̄) + f(G). Using these
and the additivity and monotonicity property of f , we have

f(a) + f(A) + f(G) ≥ f(aAG) = f(ab̄AG) ≥ f(ab̄G) = f(ab̄) + f(G).

Comparing the first and last tag gives the claim of the Lemma. �

From this lemma we can deduct a lower bound on the size of the share each
participant receives.

Proof (of part a) of Theorem 1) Use notations from Lemma 3, in particular
let a and A respectively be the secret and the share of participant a. All secrets
have the same size, thus

f(a) = f(b1) = · · · = f(bn−k).

Secrets are totally independent by assumption, which means

f(ab̄) = f(ab1 . . . bn−k) = f(a) + f(b1) + · · ·+ f(bn−k) = (n− k + 1)f(a).

From Lemma 3 we know that f(A) ≥ f(ab̄)− f(a) = (n− k)f(a), which proves
part a) of Theorem 1. �
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3 An optimal construction

In the rest of this paper we give a construction which matches the bound in part
a) of Theorem 1. Let us denote the participants by pi for 1 ≤ i ≤ n, and let F
be a finite field with more than n(n − k + 1) elements. Choose different field
elements xi,j for 1 ≤ i ≤ n and 0 ≤ j ≤ n − k, and pick a random polynomial
r(x) of degree less than k(n− k + 1).

The secret of participant pi will be the value of r at xi,0. This can also be
achieved by simply choosing r from among those polynomials which satisfy the
condition that r(xi,0) is the secret of pi. As for the share, we give participant
pi all field elements r(xi,1) up to r(xi,n−k). Observe that all secrets are uniform
random elements from the field, thus the “size” of all secrets are the same,
namely log2(|F|). Similarly, all participants received (n − k) field elements as
share, therefore the size of the share is exactly (n− k) times that of the secret.

We claim that any k participants can determine the secret value of the
remaining n−k participants. This is clear, as the k participants know the value
of r at k(n − k + 1) different places, while r has smaller degree, thus they can
determine r, and its value at xp,0 for any participant p.

Next, we claim that the total information of k−1 participants is statistically
independent of the secrets of the other n−k+1 participants. This is true as r is
a random polynomial of degree below k(n− k+ 1), and k− 1 participants know
the value of this polynomial at (k−1)(n−k+1) places, thus the polynomial can
take all the possibilities with equal probability at any n− k + 1 predetermined
places – in particular at xp,0 where p runs over the missing n−k+1 participants.

The method outlined above to recover one of the secrets has the drawback
that it not only recovers the secret but it also recovers the polynomial r, conse-
quently all the secrets are also revealed. The participants, however, should only
recover the value of r at xp,0 and not the whole r. Let B ⊆ {1, . . . , n} be the
subset of size k which wants to recover the secret of p /∈ B. As the values xi,j

are public, members of B can publicly compute the constants λi,j ∈ F using the
Lagrange interpolation formula such that

r(xp,0 =
∑
i∈B

n−k∑
j=0

λi,jr(xi,j)

whatever the values r(xi,j) are. Consequently to recover p’s secret, participant
i ∈ B should only publish the sum

n−k∑
j=0

λi,jr(xi,j) (1)

rather than all the values r(xi,j). The sum of published values (1) will give the
secret, while even the totality of all revealed values give no information on the
secret values of members in B. The same remains true when they repeat the
recovery process at most n− k times as the sum in (1) has n− k + 1 terms.
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