
Improved Generalized Birthday Attack

Paul Kirchner

July 11, 2011

Abstract

Let r, B and w be positive integers. Let C be a linear code of length
Bw and subspace of Fr2. The k-regular-decoding problem is to find
a nonzero codeword consisting of w length-B blocks with Hamming
weight k. This problem was mainly studied after 2002. Not being
able to solve this problem is critical for cryptography as it gives a
fast attack against FSB, SWIFFT and learning parity with noise. In
this paper, the classical methods are used in the same algorithm and
improved.

Keywords: Generalized Birthday Attack, Linearization, Information-Set
Decoding, Wagner, Low memory requirement, SWIFFT, FSB, LPN

1 Introduction

The linear code is considered to be random. Logarithm are base 2 logarithm.
We can first remark that the problem can be reduced to 1-regular-decoding
problem with B′ =

(
B
k

)
. The first 1-regular-decoding algorithm better than

applying birthday attack was found in 1991[7] for w = 4 and independently
generalized in 2002[16] for B as large as we want. Finally, Wagner’s al-
gorithm was generalized by Minder et al in [13]. This class of attack is
named Generalized Birthday Attack and is fast when the largest a such that
Bbw/ac > 2r/(1+loga) is large. It is based on merging lists and removing bits.

The second class of attack is named Linearization. It was firstly intro-
duced in addition of GBA by Wagner[16] and allowed to reduce with a gaus-
sian elimination the problem to r′ = r− l and w′ = w− l. Saarinen[16] used

1



linearization to break some FSB parameters. With r ≤ 2w and k = 1, the al-
gorithm uses Θ((4/3)(r−w)) gaussian eliminations. With r ≤ 4w and search-
ing for sums of two 1-regular codewords, the algorithm uses Θ((4/3)r−2w).
His algorithm was generalized in[1] for every r. This attack is efficient when
r/w is low.

The third class of attack is a generalization of information-set decod-
ing. This attack first appeared in [4] and was in fact linearization using
information-set decoding words. [5] applied classical information-set decod-
ing methods in order to improve [4].

The new attack combines linearization and generalized birthday attacks
and thus, is faster than all these attacks. Furthermore, both algorithms are
slightly improved. This leads to practical attacks against the cryptosystems.
The algorithm was implemented and allowed to find a collision in FSB-48 in
far less ressources than previously in [3].

We will describe the algorithm by different reductions of the parameters
of the problem. The goal is to have l differents k-regular non-zero codewords
in the subspace Fr2 with w lists. This approach directly leads to dynamic
programming in order to have the fastest algorithm.

2 Generalized birthday attack

2.1 Time efficient solution

Let m be an integer. If l ≤ 2m, we reduce to solving two problems with
w′ = bw/2c, l′ = 2m, r′ = r − 2m + dlog(l)e. Then, sort the numbers
according to the last m bits. For each pair of numbers, if their 2m − l last
bits are identical, output the sum. The time and memory complexity are
Θ(r2m + rl) using counting sort.

Or, we reduce to solving n problems with w′ = bw/nc, l′ = n
√
l, r′ = r.

For each n tuple of numbers, output the sum. Time complexity is Θ(r(l+n)).
Memory complexity is Θ(rn n

√
l).

Wagner proposed to have m = r/(1+blog(w)c). Thus, with B = m, k = 1
and l = 1, the algorithm has a time complexity of Θ(rw2r/(1+blog(w)c)). Using
postfix evaluation, we can only keep in memory one list for each level and
have a memory complexity of Θ(r log(w)2r/(1+blog(w)c)). We propose on level
i (level 0 being top of the tree) to have m′(i) = m+ logw/2− i+O(1). The
algorithm works, because m′(i) bits are cleared on level i > 0, 2m(0) bits are

2



cleared on level 0, and
∑blog(w)c

i=1 m′(i) = (blogwc − 1)m + O(log(w)) Thus,
time complexity is Θ(r log(w)

√
w2r/(1+blog(w)c)) and memory complexity is

Θ(r
√
w2r/(1+blog(w)c)). So, this algorithm is Θ(

√
w log(w)) faster but uses

Θ(
√
w log(w)) more memory. Using w = 2

√
2r, we have a time complexity of

Θ(r
3
2 2
√

2r).
For B ≤ 2m, this algorithm is the extended k-tree algorithm of Minder

and Sinclair [13].

2.2 Memory efficient solution

As previously remarked in many papers, generalized birthday attack takes
many memory compared to the time of the attack. This is a problem when
this attack is implemented as we cannot afford such a large memory in prac-
tice [3].

2.2.1 Clamping through precomputation

This method was discovered in [3]. When w = 1 and B ≥ l2r, we can take
all numbers with their last r bits equal to 0. On average, after having tested
l2r numbers, we have generated l numbers as the numbers are random. Time
complexity is Θ(l2r) and memory complexity is Θ(r).

2.2.2 Repeating the attack

This method was discovered in [2] and used in [3]. It consists in changing the
lists and repeating the attack. Bernstein remarked that instead to choose
only numbers with their last r bits equal to 0, we can choose w constants
with a sum equal to 0, and choose for each list numbers with their last bits
equal to the constant. So, the problem is reduced to r′ = r − a but must
be repeated Θ(2a) times for an integer a. Thus, when memory is halved, the
attack need to be repeated Θ(21+blog(w)c) times more.

2.2.3 Asymmetric tree

This method was discovered in [9]. They remarked that, when we merge two
lists, having one list in memory is enough. Indeed, for each number in the
other one, we can search in the first list what numbers start with the same
m + u bits in O(1) by using a table. Thus, we reduce the problem to one

3



problem with r′ = r−2m−u+log l, l′ = 2m, w′ = bw/2c and to one problem
with r′′ = r′, l′′ = 2m+u, w′′ = w′. Time complexity is Θ(r2m+u) and memory
complexity is Θ(r2m+u).

When we apply this technique on a times, halving the memory required
multiply the time complexity by Θ(2a). Also, the size of the list on the last
level is multiplied by Θ(2a) which is a problem when B is not as large as we
want. This drawback can be diminished by not splitting the list in 2 parts
of nearly the same size. However, as the following algorithms are faster, we
will not thoroughly analyzed this algorithm.

2.2.4 Four lists

Let u and m′ be integers such that u ≤ 2m′−m ≤ m and 2m′ ≥ m. Reduce
the problem to 4 problems with r′ = r − 2m−m′ − u+ log(l), l′ = 2m

′
and

w′ = bw/4c. We now have 4 lists of size 2m
′
. Generate 2u m′-bits different

integers. For each of these integers, add it to each number of the lists 1 and
3. Then, merge lists 1 and 2 into list 5 and clamp 2m′ −m bits, merge list
3 and 4 into list 6, clamp 2m′ − m bits. Finally, merge lists 5 and 6 and
output all the numbers with 2m + m′ + u − log(l) bits equal to zero. Time
complexity is Θ(r2m+u), memory complexity is Θ(r2m). So, when memory is
halved, we need to increase u by two and time is multiplied by two. This is
also true when only the four lists algorithm is applied. As long as u ≤ m′, the
product time memory is constant. Interestingly, the devices that maximizes
this product are hard disks and graphic cards. This attack can be parallelized
: Θ(r(2m

′
+ l)) bits need to be exchanged and the Θ(r2m+u) operations can

be executed on 2p devices with Θ(r2m) memory in time Θ(r2m+u−p) with
p ≤ u. There are m′ free clamping bits.

2.2.5 Eight lists

Let u and v be integers such that u ≤ 2m′−m and v ≤ 2m′+u. Reduce the
problem to 8 problems with r′ = r − 3m−m′ − u− v + log(l), l′ = 2m

′
and

w′ = bw/8c. Generate 2v different 2m′ + u-bits numbers. For each number,
add it to lists 1 and 5. Then, apply the four lists algorithm using u on lists
1 to 4 and 5 to 8. Finally, merge the two lists and keep the numbers with
3m+m′+ u+ v− log(l) zeros. Time complexity is Θ(r2m+u+v) and memory
complexity is Θ(r2m). There are 3m′ + u free clamping bits.

4



2.2.6 Sixteen lists

Let u, v and w be integers such that u ≤ 2m′ − m, v ≤ 6m′ + 3u and
u ≤ w ≤ m. Reduce the problem to 16 problems with r′ = r − 4m −m′ −
u − v − w + log(l), l′ = 2m

′
and w′ = bw/16c. Generate 2v different 3-uple

of 2m′ + u-bits numbers. For each 3-uple, add the first number to list 1,
the second to list 5, the third to list 9 and the sum of the three to list 14.
Then, apply the four lists algorithm using u on the lists grouped by four.
Finally, apply the four lists algorithms using w and keep the numbers with
4m + m′ + u + v + w − log(l) zeros. Time complexity is Θ(r2m+w+v) and
memory complexity is Θ(r2m). There are 6m′ + 3u + m + w free clamping
bits.

Generalization of this idea is left to the reader. In general, we can say
that for some a, we can reduce the problem to r′ = r− am−m′− u+ log(l),
l′ = 2m

′
and w′ = bw/2ac with u ≤ (2a−2 − a + 2)m + (2a−2 − 1)(2m−m′).

Time complexity is O(ra2m+u+a/2) and memory complexity Θ(r2m+a/2).

2.2.7 Parallel collision search

[3] introduced the idea of using Pollard iteration when the amount of memory
is low and k is even. We generalize the idea and give the limit to it. Let 2a+1

be the number of lists, u inferior or equal to the number of free clamping
bits, v + log(l) ≤ u, b the number of bits cleared by the 2a lists algorithm,
w ≤ b. Reduce the problem to 2a problems with r′ = r − b − u − v − w,
l′ = 2m

′
and w′ = bw/2ac. Generate 2w different b-bits numbers. For each of

these numbers, add it to lists 1 and 2a. We define f(x) with x an integer such
that x ≤ 2u. x corresponds to the different clamping constants at each merge
of the tree. Merge the 2a first lists, there should be Θ(1) number starting
with b zeros. Then, f(x) is the u next bits of the smallest of these. g(x)
is the same but with the 2a lasts lists. Thus, each x such that f(x) = g(x)
gives one collision on (a−1)m+m′+u bits. With the Van Oorschot-Wiener
algorithm [14], we can find l2v collisions in Θ(2u/2+v/2

√
l) calls to the 2a lists

algorithms. Finally, we need a total of Θ(2u/2+v/2+w
√

(l)) calls, each of these
taking time O(r2b−(a−2)m−2m′

).

5



3 Linearization

Let λi, σi and n be integers such that 0 ≤ i < n and k =
∑n

i=0 σi. Let
λ =

∑n
i=0 λi. Then, the algorithm generates λi vectors from one list. We

concatenate these vectors and the vectors from the w′ = w−1 lists and change
the basis such that the first λ rows and columns are the identity matrix and
the r − λ last rows are zero. Let f(x, s) be the number of codewords of x
bits with parameter s such that we can recover from the codeword in the
new matrix a codeword in the old matrix. Then, we reduce the problem to
r′ = r − λ, l′ = l 2λ

Πni=0f(λi,σi)
and w′ = w − 1. So, the larger the product of

f(x, s) is, the faster is the algorithm. The gaussian elimination can be done
in polynomial time and will be neglected. Also, the memory required is Θ(r)
and time required is Θ(rnkl′).

3.1 Saarinen method

Saarinen proposed[15] to take n = k and σi = 1. We partitioned the B
vectors in n blocks, the ith one being of size λi+ 1. The ith vector generated
of a block is the sum of the first vector and the i + 1th vector of the block.
Also, we add the sum of the first vector of each block to all the vectors of
the last list.

So, for each block, if the Hamming weight is 1 and the one is present in
the jth column, we can recover the codeword in the old matrix by adding the
jth vector of the block. If the Hamming weight is 0 in the ith block, we can
recover the codeword by adding the ith vector. Thus, f(x, s) =

(
x
1

)
+
(
x
0

)
=

x+ 1.

3.2 Augot method

Augot proposed in [4] to take n = 1 and σ0 = k. The ith vector generated is
exactly the ith vector of the list.

To recover, if the Hamming weight of the codeword is k, then for each
position where there is a 1 in the codeword, we add the corresponding vector.
Thus, f(x, s) =

(
x
k

)
.

6



3.3 Improved method

We partitioned the B vectors in n blocks, the ith block being of size λi + 1.
The ith vector generated of a block is the sum of the first vector and the
i+ 1th vector of the block. If σi is odd, we add the first vector of the block
to all vector of the last list.

To recover, for each position where there is a 1 in the codeword, we add
the corresponding vector. If the Hamming weight is σi, then the method
is successful. If the Hamming weight is σi − 1 in the ith block, we can
recover the codeword by adding the first vector of the ith block. Thus,
f(x, s) =

(
x
s

)
+
(
x
s−1

)
. For k = 2, we use n = 1 and σ0 = 2. So f(x, s) =(

x
2

)
+
(
x
1

)
= x(x + 1)/2. Also, we can check that this method is better than

the two others.

4 Applications

4.1 Fast Syndrome-Based Hash

FSB was first introduced in [4]. The compression function used is a multi-
plication of a matrix which we will consider random by a 1-regular vector.

Finding a collision is equivalent to finding a codeword which is the sum
of two differents 1-regular vectors using the matrix given as the parity check
matrix of the code. A sum of two 1-regular vectors means that each block
has either a Hamming weight of 2 or a Hamming weight of 0. So, we can
use the previous algorithm for searching a 2-regular codeword. As a block
of Hamming weight 0 is allowed, f(x, s) may be higher. For the improved
method, f(x, s) = x(x+ 1)/2 + 1. If we use only linearization and 2w ≤ r ≤
3w, the algorithm selects r−2w lists with λ = 3 and 3w− r lists with λ = 2.
The number of iteration is thus (8/7)r−2w. When r = 4w, the algorithm
selects w lists with λ = 4 and needs (16/11)w iterations or approximately
20.14r instead of 20.21r for the Saarinen method.

Finding first pre-image can be done by adding the given hash to all vectors
from one list and then searching for 1-regular codeword. Finding second pre-
image can be done by searching a first pre-image. In order not to find the
same message, we remove only one column. If we use linearization, then
generally λ < B, so we can remove one column is this list and finding a
second pre-image is exactly as difficult as finding a first pre-image.

7



We have managed to find a collision in the compression function of FSB
48 (r = 192, w = 24, B = 214) using m = 25 in 6 hours. The program used 3
GB of RAM, about the same quantity of memory on hard disk and one core
at 2 GHz. [3] used only Wagner’s algorithm and their attack took 8 days, on
32 cores at 2.4 GHz, 5376 GB of memory and m = 37.

RFSB[1] (r = 509, w = 112, B = 28) can be attacked with a cost of 279

using m = 45.
FSB-384[8] (r = 1472, w = 184, B = 213) can be attacked with a bit

complexity of about 2369 using m = 60 instead of 2622 given in [3].

4.2 SWIFFT

SWIFFT was introduced in [12]. The compression function used is a mul-
tiplication of a matrix which we will consider as random on Frq by a vector
in 0, 1n with q = 257, r = 64 and n = 1024. So, to find a collision, it is
sufficient to find two vectors in 0, 1r with an identical product with the ma-
trix. Linearization can be used : if we select k columns, we have l′ = l(q/3)k,
r′ = r − k and B′ = B − k.

We choose m = 98, k = 14. We built 16 lists, each using 63 vectors. By
merging using Wagner’s algorithm and Minder’s trick[13], we can remove a
non-integer number of coordinates. We merge until we have one list of size
292which contains the messages which we will take. Finally, duplicate the list,
merge it with itself and for the vectors which have their last 14 coordinates
in −1, 0, 1, we can recover a collision. Thus, we can find collisions with 2109

bit operations which is faster than the 2120 bit operations of the algorithm
given in [12].

4.3 Parity learning with noise

Parity learning with noise has numerous applications in cryptography. The
private key is a random vector s in Fr2. We are given access to an oracle
which gives v, s · v with probability ε < 1

2
with a random v. Let d = 1− 2ε.

4.3.1 Leviel algorithm

This algorithm was discovered in [11] and was an improvement over the BKW
algorithm [6].

8



Let a and m be integers such that r ≤ am. We build a list of size
Θ(a2m +md−2a) by using the oracle Θ(a2m +md−2a) times. We merge a− 1
times the list with itself : we grouped the values with the same m bits and for
each group, we take one value, add it to the others and remove it. We now
have reduced the problem to r′ = r− (a− 1)m, d′ = d2a/2 and we can access
the oracle Θ(m/d′2) times. Use a fast Walsh transform to recover the r′ last
bits with high probability. Then, we can reduce the problem to r′′ = r − r′
which is much easier.

4.3.2 Improved algorithm

Ask Θ(r) vectors, and find r linearly independent vectors. Let Mi be the ith
vector, and M be the concatenation of these vectors in an inversible matrix.
Let c, e ∈ Fr2 such that Ms = c + e and ei unknown and equal to 1 with
probability ε and ci the number returned by the oracle.

Now, we can generate an oracle which has the same properties that the
former, but with s′ = e. An algorithm which can solve the new problem can
solve the original problem with a polynomial overhead.

Proof : Ask the former oracle a vector v and C+E = s·v with E unknown
and equal to 1 with probability ε. Return v′ = M−1v and C + c ·M−1v. We
have Mv′ = (MM−1)v = v and

∑r
i=0 v

′
iMi = Mv′ by definition. So,

s · v = s ·
r∑
i=0

v′iMi =
r∑
i=0

v′i(s ·Mi) =
r∑
i=0

v′i(ci + ei) = v′ · (c+ e) = v′ · c+ v′ · e

And finally, v′ · e = s · v + v′ · c and v′ · e + E = C + v′ · c. Now, find s′ = e
using some algorithm. Ms = c+ e so s = M−1(c+ e).

If we use a naive algorithm, asking the oracle uses Θ(r2) bit operations.
However, if we want q questions, the problem can be solved in Θ(rq) bit
operations, plus the operations needed to multiply a r× r matrix by a r× q
matrix. Also, we need to compute M−1 which can be done in O(r3) bit oper-
ations. Finally, as the reduction to this new problem is not very expensive in
bit operations, the secret s can be choosen with si equal to 1 with probability
ε instead of 1

2
.

Let m′ = r−(a−1)m. We use the classical BKW algorithm to generate L
independent numbers of m′ bit with d′ = d2a/2 and their believed dot product
with s′. We define S(n,m, p) =

∑
i = 0m

(
n
i

)
pi(1 − p)n−i. The algorithm

consists in checking for every m′-bit number with a Hamming weight less

9



than W l = blog(L)c. We know that the secret is of this form with probability
S(m′,W, ε) and we will thus repeat the attack Θ(1/S(m′,W, ε)) by changing
the vectors used in the change of oracle. We can remark that the algorithm
do not use any property of the last r′ bits of the secret. Therefore, we can
ask in the first oracle only m′ vectors, and add r′ vectors of the canonical
basis. We can set the believed dot product for them as equal to 0, which
is true with probability 1

2
. Thus, if we need q queries, we must multiply a

m′ × r matrix by a r × q matrix. This can be done in O(m′rq/ log(q)) bit
operations.

Let N be the number of considered possible secrets. We have N =
2m

′
S(m′,W, 1

2
).

Let A1 =
(

1
)

and An =

(
An An
An −An

)
. Then, the Walsh transform of

the vector v is given by Am′v. The fast Walsh transform consists in computing
the fast Walsh transform of the two halves of v, and then use the structure
of Am′ to recover Am′v.

Our problem is to compute the Walsh transform of a sparse vector on a
sparse subset of points. We can also use the fast Walsh transform. In order
to recover the value of the Walsh transform, we need to recursively compute
the Walsh transforms on the same positions with the most significant bit
removed. We can remark that, if the most significant bit of a position is one,
then the same position with an opposite most significant bit is also in the
set. Thus, on level i < l, the algorithm takes time Θ(2m

′−iS(m′− i,W, 1
2
)) to

conquer. When we want to compute the Walsh transform of a vector with
Θ(1) non-zero values, we can stop the recursion. This occurs on level l as the
non-zero values are distributed uniformly. For each possible secret, we need
to know with probability Θ(S(m′,W, ε)/N) if it is the secret. Using Chernoff
bound, we can bound L to Θ(r/d2a).

So, the total number of operations is

Θ(
l∑

i=0

2i2m
′−iS(m′ − i,W, 1

2
)) = Θ(2m

′
l∑

i=0

S(m′ − i,W, 1

2
))

The BKW algorithm needs Θ(a(L+a2m)) operations and Θ(L+a2m) queries.
As an application, [11] proposed using r = 768 and ε = 0.05 for 80-bit

security. Their algorithm uses 290 bytes of memory. Using a = 3, m = 8,
m′ = 752, W = 1 and l = 8, we can solve the problem in 269 operations. As
our algorithm consists in about 250 independent iterations, it can easily be

10



massively parallelized and the memory requirement is much lower : about
216 bytes. Finally, the algorithm needs 260 queries.

When ε is too high, we cannot choose m′ much higher than m and the
benefit of this algorithm is destroyed by the cost of the matrix multiplication.

5 Conclusion

By combining two algorithms efficients on different parameters, and by im-
proving each one, we were able to create a new algorithm much faster that
the previous one. We have proven that this increased efficiency can be used
in practice for the cryptanalysis of the hash function FSB and SWIFFT, and
the LPN authentication method.

In many problems, lattice reduction and generalized birthday attack are
two differents approaches. Both algorithms can be used for solving inte-
ger subset-sums, shortest vector problem or closest vector problem which
are criticals to many cryptosystems, including SWIFFT and LPN. [10] has
developed an algorithm against NTRU combining lattice reduction and meet-
in-the-middle attack, which is close to GBA with two lists.

References

[1] Bernstein, Lange, Peters, and Schwabe. Really fast syndrome-based
hashing. 2011. http://cr.yp.to/codes/rfsb-20110214.pdf.

[2] D. J. Bernstein. Better price-performance ratios for generalized birthday
attacks, 2007. http://cr.yp.to/rumba20/genbday-20070719.pdf.

[3] D. J. Bernstein, T. Lange, R. Niederhagen, C. Peters, and P. Schwabe.
Implementing wagner’s generalized birthday attack against the sha-3
round-1 candidate fsb. Cryptology ePrint Archive, Report 2009/292,
2009. http://eprint.iacr.org/2009/292.

[4] D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe. A fast provably
secure cryptographic hash function. Cryptology ePrint Archive, Report
2003/230, 2003. http://eprint.iacr.org/2003/230.

[5] D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe. Faster 2-regular
information-set decoding. 2011. http://eprint.iacr.org/2011/120.

11

http://cr.yp.to/codes/rfsb-20110214.pdf
http://cr.yp.to/rumba20/genbday-20070719.pdf
http://eprint.iacr.org/2009/292
http://eprint.iacr.org/2003/230
http://eprint.iacr.org/2011/120


[6] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the
parity problem, and the statistical query model. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, STOC
’00, pages 435–440, New York, NY, USA, 2000. ACM.

[7] P. Camion and J. Patarin. The knapsack hash function proposed at
crypto’89 can be broken. In Proceedings of the 10th annual international
conference on Theory and application of cryptographic techniques, EU-
ROCRYPT’91, pages 39–53, Berlin, Heidelberg, 1991. Springer-Verlag.
http://hal.inria.fr/inria-00075097/en/.

[8] M. Finiasz, P. Gaborit, N. Sendrier, and S. Manuel. SHA-3 proposal:
FSB, Oct. 2008. Proposal of a hash function for the NIST SHA-3 com-
petition http://www-rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf.

[9] M. Finiasz and N. Sendrier. Security bounds for the design of code-based
cryptosystems. In Proceedings of the 15th International Conference on
the Theory and Application of Cryptology and Information Security: Ad-
vances in Cryptology, ASIACRYPT ’09, pages 88–105, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[10] N. Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-
middle attack against ntru. In Proceedings of the 27th annual inter-
national cryptology conference on Advances in cryptology, CRYPTO’07,
pages 150–169, Berlin, Heidelberg, 2007. Springer-Verlag.

[11] E. Levieil and P.-A. Fouque. An improved lpn algorithm. In R. De Prisco
and M. Yung, editors, Security and Cryptography for Networks, volume
4116 of Lecture Notes in Computer Science, pages 348–359. Springer
Berlin / Heidelberg, 2006. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.137.3510&rep=rep1&type=pdf.

[12] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Swifft: A
modest proposal for fft hashing. In K. Nyberg, editor, Fast Software
Encryption, volume 5086 of Lecture Notes in Computer Science, pages
54–72. Springer Berlin / Heidelberg, 2008. http://www.cc.gatech.

edu/~cpeikert/pubs/swifft.pdf.

[13] L. Minder and A. Sinclair. The extended k-tree algorithm. In Proceedings
of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,

12

http://hal.inria.fr/inria-00075097/en/
http://www-rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.3510&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.3510&rep=rep1&type=pdf
http://www.cc.gatech.edu/~cpeikert/pubs/swifft.pdf
http://www.cc.gatech.edu/~cpeikert/pubs/swifft.pdf


SODA ’09, pages 586–595, Philadelphia, PA, USA, 2009. Society for
Industrial and Applied Mathematics. http://www.cs.berkeley.edu/

~sinclair/ktree.pdf.

[14] M. J. W. Paul C. van Oorschot. Parallel collision search
with cryptanalytic applications. Journal of Cryptology, 12:1–
28, 1999. 10.1007/PL00003816 http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.59.9389&rep=rep1&type=pdf.

[15] M.-J. Saarinen. Linearization attacks against syndrome based hashes.
In K. Srinathan, C. Rangan, and M. Yung, editors, Progress
in Cryptology INDOCRYPT 2007, volume 4859 of Lecture Notes
in Computer Science, pages 1–9. Springer Berlin / Heidelberg,
2007. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.74.8468&rep=rep1&type=pdf.

[16] D. Wagner. A generalized birthday problem. 2442:288–304, 2002. http:
//www.cs.berkeley.edu/~daw/papers/genbday.html.

13

http://www.cs.berkeley.edu/~sinclair/ktree.pdf
http://www.cs.berkeley.edu/~sinclair/ktree.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.9389&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.9389&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.8468&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.8468&rep=rep1&type=pdf
http://www.cs.berkeley.edu/~daw/papers/genbday.html
http://www.cs.berkeley.edu/~daw/papers/genbday.html

	Introduction
	Generalized birthday attack
	Time efficient solution
	Memory efficient solution
	Clamping through precomputation
	Repeating the attack
	Asymmetric tree
	Four lists
	Eight lists
	Sixteen lists
	Parallel collision search


	Linearization
	Saarinen method
	Augot method
	Improved method

	Applications
	Fast Syndrome-Based Hash
	SWIFFT
	Parity learning with noise
	Leviel algorithm
	Improved algorithm


	Conclusion

