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Abstract

We consider the question of how to store a value secretly on devices that continually leak information
about their internal state to an external attacker. If the secret value is stored on a single device from
which it is efficiently retrievable, and the attacker can leak even a single predicate of the internal
state of that device, then she may learn some information about the secret value itself. Therefore, we
consider a setting where the secret value is shared between multiple devices (or multiple components
of a single device), each of which continually leaks arbitrary adaptively chosen predicates its individual
state. Since leakage is continual, each device must also continually update its state so that an attacker
cannot just leak it entirely one bit at a time. In our model, the devices update their state individually
and asynchronously, without any communication between them. The update process is necessarily
randomized, and its randomness can leak as well.

As our main result, we construct a sharing scheme for two devices, where a constant fraction of the
internal state of each device can leak in between and during updates. Our scheme has the structure of
a public-key encryption, where one share is a secret key and the other is a ciphertext. As a contribution
of independent interest, we also get public-key encryption in the continual leakage model, introduced by
Brakerski et al. and Dodis et al. (FOCS ’10). This scheme tolerates continual leakage on the secret key
and the updates, and simplifies the recent construction of Lewko, Lewko and Waters (STOC ’11). For
our main result, we show how to update the ciphertexts of the encryption scheme so that the message
remains hidden even if an attacker interleaves leakage on secret key and ciphertext shares. The security
of our scheme is based on the linear assumption in prime-order bilinear groups.

We also provide an extension to general access structures realizable by linear secret sharing schemes
across many devices. The main advantage of this extension is that the state of some devices can be
compromised entirely, while that of the all remaining devices is susceptible to continual leakage.

Lastly, we show impossibility of information theoretic sharing schemes in our model, where continu-
ally leaky devices update their state individually.
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1 Introduction

One of the central tenets of theoretical computer science is that computation can be analyzed abstractly
and independently of the physical processes that ultimately implement it. This is the paradigm usually
followed in cryptography, where we analyze cryptographic algorithms as abstract computations that get
inputs and generate outputs with the help of some internal secret state. Unfortunately, this abstraction
may fail to properly model the real world where various physical attributes of a computational device (e.g.
timing, power-consumption, temperature, radiation, acoustics, etc.) can be measured and may leak useful
information about the internal state of the device. Attacks that use such information to break security are
called side-channel leakage attacks, and they have been analyzed and exploited in many recent works (see
e.g. [Koc96, KJJ99, QS01, AARR02, QK02, BE03, Rel, ECR] and the references therein). These attacks
pose a major challenge to the applicability of cryptographic theory to practice.

Modeling Leakage. In recent years, cryptographic theory has taken on the challenge of formally model-
ing leakage and constructing cryptographic primitives that remain provably secure even in the presence of
well defined classes of leakage attacks. Several different proposed models of leakage have emerged, with an
emphasis on capturing large general classes of attacks. In this work, we will focus on the continual-leakage
model, which came as an extension of the earlier bounded-leakage model, both of which are discussed below.1

The bounded-leakage model was introduced by Akavia, Goldwasser and Vaikuntanathan [AGV09] and
it allows the attacker to learn arbitrary information about the internal secret state of a device, as long
as the total amount of leaked information (measured in bits) is bounded by some parameter `, called the
leakage bound. In other words, the attacker can learn up to ` arbitrary (efficiently computable) predicates
of the internal state of a device, throughout its lifetime. Unfortunately, by bounding the overall amount
of observable leakage, this model does not seem to adequately capture an attacker with prolonged access
to a device and the ability to make many side-channel measurements over time.

The continual-leakage model, introduced concurrently by Brakerski et al. [BKKV10] and Dodis et al.
[DHLW10], addresses exactly this issue and allows the attacker to continually leak information about the
internal state of a device over time, as long as only the rate of leakage is bounded. More specifically, the
device has some internal notion of time periods and, at the end of each period, it updates its internal
state, using some fresh local randomness. The attacker is allowed to learn up to ` predicates of the
internal state (including the random coins of the update process) in each time period, but can do so for
as many time periods as desired, and there is no bound on the total amount of information learned. Prior
work in the bounded leakage model [AGV09, NS09, ADW09a, KV09] and the continual-leakage model
[BKKV10, DHLW10, LRW11, LLW11] construct encryption, signature and related primitives.

We also briefly mention an alternative model called the only computation leaks information model,
which was introduced by Micali and Reyzin [MR04] and studied in [DP08, Pie09, FKPR10, JV10, GR10].
This model also considers continual leakage but, in each time period, the attacker is limited to only leaking
information about the portion of the state accessed by the “computation” during that period (and never
on the full state of a device). There are several variants of this model depending on how one breaks up a
computation into distinct time periods.

Storing Secrets on Leaky Devices. In this work, we ask a basic question of how to store a secret
value (message) on continually leaky devices while preserving its secrecy. Unfortunately, in the bounded
and continual leakage models, it is impossible to store a message secretly on a single leaky device from
which it is efficiently retrievable, because a single leaked predicate of the internal state of such device can
reveal (say) the first bit of the message. There are two natural alternatives to overcoming this difficulty:

1For brevity, we do not discuss many prior models of leakage and other related results, but wish to emphasize that this area
has a long and rich history beyond just the results in the last few years. See e.g. the survey of [ADW09b] for an overview.
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1. We can weaken the leakage model and restrict the attacker to only learning some limited class of
predicates of the internal state of the device. This class should capture realistic attacks but cannot be
powerful enough to recover the stored secret, even though there is an efficient method for doing so.

2. We can consider a model where the secret is shared between two or more devices, each of which leaks
individually in the continual leakage model. The attacker can continually learn arbitrary predicates of
the internal state of each individual device (but not of the combined joint state of all the devices).

In the rest of the paper, we will frame our discussion in terms of the second approach. However, this can
also be naturally viewed as a concrete instantiation of the first approach, where we think of the state of a
single device as divided into multiple components, and leakage is restricted to the limited class of predicates
that each depend on only a single component. This may be a natural and realistic class of leakage attacks
if the components of the state are e.g. stored in different areas of memory and accessed separately by
the device. In particular, this can be seen as a strengthening of the “only computation leaks information”
(OCLI) model. In the OCLI model, the various components leak individually but only when accessed by
a computation, while here they leak individually but all the time. We note that this strengthening was
explicitly considered by prior works in the OCLI model, starting with Dziembowski and Pietrzak [DP08]
in the case of stream ciphers. Although prior results in various models of continual leakage construct
many basic and advanced cryptographic primitives, they do not address the simple question of storing a
consistent value secretly on leaky devices. Indeed, they rely on the fact that one does not need to store a
consistent secret key over time to e.g. decrypt, sign, or generate a random stream.

Let us now describe our concrete model in more detail. We assume that each device has its own individ-
ual notion of time periods, but these notions can differ across devices and they need not be synchronized.
At the end of each time period, a device updates its share using some local fresh randomness. This update
is conducted individually, and the devices do not communicate during the update process. At any point
in time, no matter how many updates occurred on each device, the shares of the devices can be efficiently
combined to reconstruct the shared secret message.

For security, we allow the attacker to continually learn arbitrary (efficiently computable) predicates
of the internal state of each device. The attacker can choose the predicates adaptively and can alternate
leakage between the devices. The internal state of each device in each time period consists of the current
version of its share and the randomness of the update process used to derive the next share.2 This models
the state of the device even during the update process, which we assume can leak as well. The attacker can
arbitrarily schedule the updates on different devices. We only restrict it to leaking at most ` predicates from
each device during each time period. The shared message should remain semantically secure throughout
the game.3 We call a scheme satisfying these criteria an `-continual-leakage-resilient sharing (`-CLRS).

We mention that a solution with just two continually leaky devices is optimal, and that adding more
devices only makes the problem easier. However, we will also consider an extension where the state of
some devices can be fully compromised, in which case having more devices will be useful.

Our Results. Our main result is to construct an `-CLRS scheme between two devices, for any polynomial
leakage-bound `. The size of the shares necessarily depends on and exceeds the leakage bound `. However,
we guarantee that ` is a constant fraction of the share size (albeit a small constant), and hence we can
interpret our results as saying that a constant fraction of each share can leak in each time period. The
security of our scheme is based on the well-studied linear assumption in prime-order bilinear groups. We
show that computational assumptions are necessary and that this primitive cannot be realized information
theoretically, even for ` = 1 bit of leakage.

2 We implicitly assume that the devices can perfectly delete/overwrite past values during an update.
3 The definition also implies security if one share is fully revealed at the end of the game (but no more leakage afterward).

A distinguishing strategy that uses the fully revealed share to break security could also be encoded into a predicate, which we
can just leak from said share to break security.
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We also extend our result to general access structures realizable by linear secret sharing schemes over
many devices. The main advantage is that the attacker can even fully corrupt some subset of the devices
and continually leak from all others. We only require that the corrupted subset is unauthorized and remains
unauthorized with the addition of any other single device.4 Our main scheme for two devices becomes a
special case, where we apply the above to a two-out-of-two linear sharing scheme.

Lastly, our `-CLRS scheme has special structure where one share is a secret key and the other share is
a ciphertext of a public key encryption scheme. This immediately gives continual-leakage-resilient public-
key encryption (CLR-PKE) [BKKV10, LRW11, LLW11], where continual leakage on the secret key does
not allow an attacker to decrypt future ciphertexts. Moreover, our scheme also allows for significant
leakage during the updates. This property was recently achieved by a scheme of Lewko, Lewko and Waters
[LLW11] under a strong assumption called the generalized subgroup decisional assumption in composite-
order bilinear groups. As a result of independent interest, we substantially simplify the scheme and the
proof of [LLW11], converting it into a scheme over the more common prime-order bilinear groups, with a
proof of security under the more common linear assumption. We get other benefits along the way, including
shorter public keys and improved efficiency by directly encrypting group elements rather than bits.

Our Techniques. Our construction begins with the idea of using an encryption scheme, and making one
share a secret key and the other share a ciphertext. Taking any of the recent results on CLR-PKE, we get a
method for updating (just) the key share. We also get the guarantee that the message remains hidden even
if the attacker continually leaks on the key share and later gets the ciphertext share in full. Unfortunately,
this does not suffice for three reasons. Firstly, we need a method for updating the ciphertext, which is not a
property of CLR-PKE. Secondly, we need a new security property to guarantee that, even if the ciphertext
and secret-key shares are both continually leaking at the same time, the shared message stays hidden. This
property is strictly stronger, and significantly harder to analyze, than the security of CLR-PKE. Thirdly,
the proof strategy of [BKKV10, LRW11] does not deal with leakage on key updates directly, but instead
uses a generic “guessing” argument to allow for some small (logarithmic) leakage. Unfortunately, this
argument does not apply to the case of sharing. In particular, security without leakage on updates does
not seem to imply any guarantees if even 1 bit can leak during the update.

Therefore, our starting point will be the recent CLR-PKE scheme of [LLW11], which provides a new
proof strategy to argue about leakage of key updates directly. Although we borrow many high level
ideas from this proof strategy, our first result is to significantly simplify the construction and the proof
of [LLW11], getting several other benefits along the way (mentioned above). Next, we show a natural
method for updating the ciphertexts of the new scheme, analogously to the way that the secret keys are
updated. Lastly, we carefully lay out a new proof strategy to argue that continual leakage on secret keys
and ciphertexts keeps the message hidden. This proof strategy is significantly more involved then arguing
CLR-PKE security alone, and involves moving from a game where every secret key correctly decrypts every
ciphertext in every time period, to a game where this is never the case.

Relation to Other Primitives. It is useful to compare CLRS schemes to other primitives from the
literature. Most obviously, standard secret sharing schemes [Sha79] provide security when some subset
of the shares are fully compromised while others are fully secure. In CLRS schemes, all shares leak and
hence none are fully secure. The idea of updating shares to protect them against continual compromise
was also considered in the context of proactive secret sharing [HJKY95]. However, the motivation there
was to protect against a mobile adversary that corrupts different subsets of the shares in different time
periods, while in our case all shares leak in all time periods. Another important connection is to the
leakage-resilient storage scheme of [DDV10]. This gives an information-theoretic solution for sharing a
secret securely on two leaky devices/components in the bounded leakage model, where the overall amount

4This is optimal as otherwise the leaked predicate of an uncorrupted device could run the reconstruction procedure using
the shares of all the corrupted devices and leak (say) the first bit of the shared message.
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of leakage on each share is bounded. The work of [DF11] extends this information theoretic solution to the
continual leakage model, but requires that devices have access to some correlated randomness generated
in a leak-free way (e.g. using leak-free hardware) and update their shares interactively. In contrast, we do
not assume any leak-free hardware. Also, our updates are performed individually and we show that this
comes at the necessary expense of having computational assumptions.

Lastly, we mention the prior works [JV10, GR10], which consider general compilers for executing ar-
bitrary computations privately on leaky devices. Both works provide solutions in variants of the “only
computation leaks information model”, but require some additional leak-free hardware. Implicitly, these
works also address the question of storing a value secretly on leaky devices, since the state of the com-
putation must be somehow stored consistently. However, the use of leak-free hardware in these solutions
greatly simplifies the problem of storage and avoids virtually all of the challenges that we address in the
current work. We believe that our work provides an important first step in the direction of building general
compilers without any leak-free hardware, since the question of (just) securing storage must be addressed
as a part of any solution to the larger question of securing computation.

Organization. We define our notation and hardness assumptions in Section 2. In Section 3 we define
CLRS schemes and in Section 4 we describe our (simplest) construction under a fairly strong assumption
known as 1-linear or SXDH. In Section 5 we give an overview of the proof. The full proof is deferred
to Appendix C. In Appendix D we present a generalized (but more complicated) construction under
progressively weaker assumptions, known as the k-linear assumptions, for arbitrary k ≥ 1. In Appendix E,
we define and construct an extension to general access structures realizable by linear secret sharing schemes
over many devices. Lastly, in Appendix F, we show impossibility for information-theoretic CLRS schemes.

2 Notation and Preliminaries

Linear Algebra. Let F be a field. We denote row vectors with ~v ∈ Fn. If ~v1, . . . , ~vm ∈ Fn are m vectors
we let span(~v1, . . . , ~vm) ⊆ Fn denote the linear space spanned by these vectors. We let 〈~v, ~w〉 def

= ~v · ~w> be
the dot product of ~v, ~w ∈ Fnq . If A ∈ Fn×m is a n × m matrix of scalars, we let colspan(A), rowspan(A)
denote the subspaces spanned by the columns and rows of A respectively. If V ⊆ Fn is a subspace, we
let V⊥ denote the orthogonal space of V, defined by V⊥ def

= { ~w ∈ Fnq | 〈~w,~v〉 = 0 ∀~v ∈ V }. We write

(~v1, . . . , ~vm)⊥ as shorthand for span(~v1, . . . , ~vm)⊥. We write V ⊥ W if V ⊆ W⊥ and therefore alsoW ⊆ V⊥.

We define the kernel of a matrix A to be ker(A)
def
= rowspan(A)⊥.

For integers d, n,m with 1 ≤ d ≤ min(n,m), we use the notation Rkd(Fn×mq ) to denote the set of all
rank d matrices in Fn×mq . When W ⊆ Fmq is a subspace, we also use the notation Rkd(Fn×mq | row ∈ W) to
denote the set of rank d matrices in Fn×mq whose rows come from the subspace W.

Matrix-in-the-Exponent Notation. Let G be a group of prime order q generated by an element g ∈ G
and let A ∈ Fn×mq be a matrix. Then we use the notation gA ∈ Gn×m to denote the matrix

(
gA
)
i,j

def
= g(A)i,j

of group elements. Note that, given a matrix of group elements gA ∈ Gn×m and a matrix B ∈ Fm×kq of

“exponents”, one can efficiently compute gAB. However, given gA and gB it is (generally) not feasible
to efficiently compute gAB. On the other hand, if G1,G2,GT are three groups of prime order q and
e : G1 × G2 → GT is an efficient bilinear map, then, given gA and hB for generators g ∈ G1,h ∈ G2,
one can efficiently compute e(g,h)AB via (e(g,h)AB)i,j =

∏m
k=1 e

(
gAi,k ,hBk,j

)
. We abuse notation and

let e(gA,hB) = e(g,h)AB denote this operation.

Hardness Assumptions. Let G be a pairing generation algorithm (G1,G2,GT , q, e,g,h) ← G(1λ),
where G1,G2,GT are descriptions of cyclic group of prime order q with generators g ∈ G1,h ∈ G2 and e
is a description of an efficient bilinear map e : G1 × G2 → GT . We say that the pairing is symmetric
if G1 = G2 and asymmetric otherwise. We will rely on an assumption that we call the k-rank hiding
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assumption. This assumption was introduced by [NS09] and shown to be implied by the more common
k-linear assumption [BBS04, HK07, Sha07]. The k-rank hiding assumption on the left group G1 states
that for any k ≤ i < j ≤ min{m,n} we cannot distinguish rank i and j matrices in the exponent of g:(

prms,gX

∣∣∣∣∣ prms← G(1λ)

X
$← Rki(Fn×mq )

)
comp
≈

(
prms,gX

∣∣∣∣∣ prms← G(1λ)

X
$← Rkj(Fn×mq )

)

Similarly, we can make the k-rank hiding assumption on the right group G2, by replacing g with h in
the above. We say that the k-rank hiding assumption holds for G if it holds for both the left and right
groups. It is easy to see that the k-rank hiding assumption gets weaker as k increases. Therefore, the
k = 1 version of the assumption is the strongest. In fact, when k = 1, this assumption is equivalent to
1-linear which is just DDH. Unfortunately, it is known that DDH cannot hold in symmetric pairings where
G1 = G2. However, it is often reasonable to assume that DDH holds in asymmetric pairings, and this is
also called the external Diffie-Hellman assumption SXDH [Sco02, BBS04, GR04, Ver04]. Since the SXDH
assumption is fairly strong, it is sometimes preferable to use k ≥ 2. The (k = 2)-linear assumption, also
called decisional linear, is commonly believed to hold in many symmetric and asymmetric pairings.

3 Definitions

3.1 Continual-Leakage-Resilient Sharing (CLRS)

We now formally define the notion of a continual-leakage-resilient sharing (CLRS) scheme between two
devices. The scheme has the following syntax:

ShareGen(1λ,msg)→ (sh1, sh2) : The share generation algorithm takes as input the security parameter
λ and a secret message msg. It outputs two shares, sh1 and sh2 respectively.

Updateb(shb)→ sh′b : The randomized update algorithm takes the index b and the current version of the
share shb and outputs an updated version sh′b.

We use the notation Updateib(shb) to denote the operation of updating the share shb successively i

times in a row so that Update0
b(shb) := shb,Update

(i+1)
b (shb) := Updateb(Update

i
b(shb)).

Reconstruct(sh1, sh2)→msg : The reconstruction algorithm takes in some version of secret shares sh1, sh2

and it outputs the secret message msg.

Correctness. We say that the scheme is correct if for any shares (sh1, sh2) ← ShareGen(1λ,msg) and
any sequence of i ≥ 0, j ≥ 0 updates resulting in sh′1 ← Updatei1(sh1), sh′2 ← Updatej2(sh2), we get
Reconstruct(sh′1, sh

′
2) = msg. Note that i and j are arbitrary, and are not required to be equal.

Security. We define `-CLR security as an interactive game between an attacker A and a challenger. The
attacker chooses two messages: msg0,msg1 ∈ {0, 1}∗ with |msg0| = |msg1|. The challenger chooses a
bit b ← {0, 1} at random, runs (sh1, sh2) ← ShareGen(1λ,msgb). The challenger also chooses randomness
rand1, rand2 for the next update of the shares 1,2 respectively and sets state1 := (sh1, rand1), state2 :=
(sh2, rand2). It also initializes the counters L1 := 0, L2 := 0. The attacker A can adaptively make any
number of the following types of queries to the challenger in any order of its choosing:

Leakage Queries: The attacker specifies an efficient predicate Leak : {0, 1}∗ → {0, 1} and an index
i ∈ {1, 2}. If Li < ` then the challenger responds with the value Leak(statei) and increases the
counter Li := Li + 1. Else it responds with ⊥.
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Update Queries: The attacker specifies an index i ∈ {1, 2}. The challenger parses statei = (shi, randi)
and computes the updated share sh′i := Updatei(shi; randi) using randomness randi. It samples fresh
randomness rand′i and sets statei := (sh′i, rand

′
i), Li := 0.

At any point in the game, the attacker A can output a guess b̃ ∈ {0, 1}. We say that A wins if its guess
matches the choice of the challenger b̃ = b. We say that an `-CLRS scheme is secure if for any PPT attacker
A running in the above game, we have |Pr[A wins ]− 1

2 | ≤ negl(λ).

Remarks on the Definition. The inclusion of the update randomness randi in the state of the device
models leakage during the update process itself when this randomness is used. Note that we do not need
to explicitly include the next share sh′i = Updatei(shi; randi) in the state since it is already efficiently
computable from shi and randi.

The given definition also already implies that the message remain hidden even if one of the shares is
revealed fully at the end of the game (but no leakage on the other share is allowed afterwards). To see
this, assume that at some point in the game, there is a distinguishing strategy D that uses a fully revealed
share shi to break security. Then we could also just leak the single predicate D(shi) to break security.

3.2 CLRS-Friendly Encryption

We consider an approach of instantiating CLRS via a public key encryption scheme (KeyGen,Encrypt,Decrypt)
having the usual syntax. Given any such encryption scheme, we can define a sharing scheme where the
two shares are the secret key sh1 = sk and the ciphertext sh2 = ct respectively. Formally, we define:

ShareGen(1λ; msg) : Sample (pk, sk)← KeyGen(1λ), ct← Encryptpk(msg). Output sh1 := sk, sh2 := ct.

Reconstruct(sh1, sh2) : Parse sh1 = sk, sh2 = ct. Output msg = Decryptsk(ct).

We say that an encryption scheme is updatable if it comes with two additional (non-standard) procedures
sk′ ← SKUpdate(sk), ct′ ← CTUpdate(ct) for updating the secret keys and ciphertexts respectively. These
procedures can naturally be used to define updates for the corresponding sharing via Update1(sh1) :=
SKUpdate(sk), Update2(sh2) := CTUpdate(ct), where sh1 = sk, sh2 = ct. The above gives us a natural
syntactical transformation from an updatable encryption scheme to a corresponding CLRS scheme. We
say that an updatable encryption scheme is an `-CLRS-Friendly Encryption if:

• The corresponding CLRS scheme satisfies correctness.

• The corresponding CLRS scheme satisfies a strengthening of `-CLRS security where the attacker is first
given the public key pk and then adaptively chooses the messages msg1,msg2.
(i.e. The challenger first chooses (pk, sh1 = sk)← KeyGen(1λ) and gives pk to the attacker, who chooses
msg1,msg2. The challenger then generates sh2 ← Encryptpk(msgb) and the game continues as before.)

Remarks. We note that the additional functionality provided by CLRS-friendly encryption on top of a
plain CLRS may be useful even in the context of sharing a secret between leaky devices. For example,
we can imagine a system where one (continually leaky) master device stores a secret key share and we
publish the corresponding public key. Then other devices can enter the system in an ad-hoc manner by
just encrypting their data individually under the public key to establish a shared value with the master
device (i.e. no communication is necessary to establish the sharing). The same secret-key share on the
master device can be reused to share many different messages with many different devices.

As another advantage, CLRS-friendly encryption right away implies CLR-PKE schemes with continual
leakage on the secret key and the updates, in the sense of [BKKV10, LLW11].
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4 Scheme Description

We now describe our construction of CLRS going through CLRS-Friendly Encryption. We give two encryp-
tion algorithms – a simple one which is sufficient for CLR-PKE where we update keys but not ciphertexts,
and an updatable one which is needed for CLRS and CLRS-Friendly Encryption.

Let m,n, d be integer parameters with n ≥ d. The scheme is defined as follows.

KeyGen(1λ) → (pk, sk) : Sample (G1,G2,GT , e,g,h, q)← G(1λ) to be the description of a bilinear group
of prime order q, with an efficient pairing e : G1 ×G2 → GT , and generators g ∈ G1,h ∈ G2.

Choose ~p, ~w ∈ Fmq at random subject to 〈~p, ~w〉 = 0 and set prms = ((G1,G2,GT , e,g,h, q),g
~p,h~w)

to be the public parameters of the system. These parameters can then be re-used to create the
public/secret keys of all future users. For convenience, we implicitly think of prms as a part of each
public key pk and as an input to all of the other algorithms.

Choose ~t
$← Fmq and set pk := e( g~p , h~t

>
) = e(g,h)α where α = 〈~p,~t〉. Choose ~r = (r1, . . . , rn)

$← Fnq
and set sk := hS , where S is the n×m matrix given by

S :=

 r1 ~w + ~t
· · ·

rn ~w + ~t

 =

 ~r>

 [ ~w
]

+

 ~1>

 [ ~t
]
.

In other words, each row of S is chosen at random from the 1-dimensional affine subspace ~t+span(~w).
(Note that hS can be computed from the components h~w, ~t, ~r without knowing ~w.)

(Simple) SimplEncryptpk(msg)→ ct : To encrypt msg ∈ GT under pk = f = e(g,h)α ,
choose u ∈ Fq and output: ct = (gu~p, fu ·msg).

(Updatable) Encryptpk(msg)→ ct : To encrypt msg ∈ GT under pk = f = e(g,h)α,

choose ~u = (u1, . . . , un)
$← Fnq and output ct = (ct(1), ct(2)) where:

ct(1) =

 gu1~p

. . .

gun~p

 , ct(2) =

 fu1 ·msg
. . .

fun ·msg


Each row is an independent encryption of the (same) message msg using the simple encryption

process. Equivalently, we can write the ciphertext as ct(1) = gC , ct(2) = e(g,h)~z
>

for:

C =

 ~u>

 [ ~p
]

, ~z> =

 ~u>

α+

 ~1>

µ =

 C

 t>

+

 ~1>

µ
where µ is given by msg = e(g,h)µ and α = 〈~p,~t〉.

Decryptsk(ct)→msg: To decrypt, we only need to look at the first rows of the secret key and the
ciphertext matrices. Given the first row h~s of the secret key sk = hS , the first row g~c of the
ciphertext component ct(1) = gC , and the first scalar component e(g,h)z of ct(2) = e(g,h)~z

>
, the

decryption algorithm outputs: msg = e(g,h)z/e( g~c , h~s
>

).

SKUpdate(sk)→ sk′ : Choose a random matrix A′
$← Rkd(Fn×nq ). Derive A by “rescaling” each row of A′

so that its components sum up to 1. That is, set (A)i,j := (A′)i,j/(
∑n

k=1(A′)i,k), so that A~1> = ~1>.

If the current secret key is sk = hS , output the updated key sk′ := hAS .
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CTUpdate(ct)→ ct′ : Choose a random matrix B′
$← Rkd(Fn×nq ). Derive B by “rescaling” each row of

B′ so that its components sum up to 1. That is, set (B)i,j := (B′)i,j/(
∑n

k=1(B′)i,k), so B~1> = ~1>.

If the current ciphertext is ct = (gC , e(g,h)~z
>

), output the updated ciphertext ct′ := (gBC , e(g,h)B~z
>

).

Theorem 4.1. For any integers m ≥ 6, n ≥ 3m−6, d := n−m+3 the above scheme is an `-CLRS-friendly
encryption scheme under the SXDH assumption for ` = min(m/6− 1, n− 3m+ 6) log(q)− ω(log(λ)).

In the above theorem, the absolute leakage (`) scales linearly as min(m,n− 3m) or log(q) grow.
The ratio of leakage to share size is `/(nm log(q)), and is maximized at m = 7, n = 16 to roughly 1/672.

Corollary 4.2. For any polynomial ` = `(λ), there exist `-CLRS schemes under the SXDH assumption.
Furthermore, ` is a constant fraction of the share size.

Lastly, if we only care about encryption with continual leakage on the secret key and update randomness,
then there is no need to update ciphertexts and we can use the “simple” encryption strategy.

Corollary 4.3. For any m,n, d as above, the scheme (KeyGen, SimplEncrypt, Decrypt, SKUpdate) is an
`-CLR-Encryption with leakage-of-updates, under the SXDH assumption and for the same ` as above.

Correctness. Let (prms, pk, sk) ← KeyGen(1λ) and let ct = (ct(1), ct(2)) ← Encryptpk(msg). Then we

can write sk = gS , ct(1) = hC , ct(2) = e(g,h)~z for some values S,C, ~z and W,~t satisfying:

S = W +~1>~t , ~z> = C~t> +~1>µ : rowspan(W ) ⊥ rowspan(C) (1)

with µ given by msg = e(g,h)µ.
First, we show that for any sk and ct satisfying equation (1), we get Decryptsk(ct) = msg. This is

because decryption looks at the first row of sk, ct(1), ct(2) respectively, which are of the form h~s,g~c, e(g,h)z

where ~s = ~w + ~t, z = 〈~c,~t〉 + µ for some vectors ~w,~c,~t with 〈~c, ~w〉 = 0. Therefore decryption correctly
recovers:

e(g,h)z/e( g~c , hs
>

) = e(g,h)〈~c,
~t〉+µ/e(g,h)〈~c, ~w+~t〉 = e(g,h)µ = msg

Next we show, that updates preserve the key/ciphertext structure of equation (1). Assume that we
update the secret key with the matrices A1, A2, . . . , Ai and the ciphertext with the matrices B1, B2, . . . , Bj .
Define Ā = AiAi−1 · · ·A1, B̄ = BjBj−1 · · ·B1. Since the update matrices are “rescaled” we know that

Ā~1> = B̄~1> = ~1>. Therefore we can write the updated values as ski = gĀS , ct
(1)
j = hB̄C , ct

(2)
j = e(g,h)B̄~z

>

satisfying:

(ĀS) = (ĀW ) +~1>~t , (B̄~z>) = (B̄C)~t> +~1>µ : rowspan(ĀW ) ⊥ rowspan(B̄C).

So equation (1) is satisfied by the updated keys and ciphertexts and we get Decryptski(ctj) = msg.

5 Security Proof Overview

Our proof of security will follow by a hybrid argument. In the real security game, the original secret key
and every updated version of it correctly decrypts the original ciphertext and every updated version of it.
Our goal is to move to a modified game where none of the secret keys can correctly decrypt any of the
ciphertexts, and in fact the message remains hidden even given these modified keys/ciphertexts in full. We
do so by slowly modifying how the challenger chooses the initial key, ciphertext and the update matrices.
In Section 5.1, we first introduce several alternate distributions for selecting keys and ciphertexts, some
of which decrypt correctly and some don’t. We also show how to select update matrices to modify the
key/ciphertext type. In Section 5.2, we then lay out a careful hybrid argument proof strategy for moving
between the various distributions.
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5.1 Alternate Distributions for Keys, Ciphertexts and Updates

Assume that the vectors ~p, ~w,~t are fixed, defining the public values g~p,h~w, pk = e(g,h)〈~p,~t〉. Fix ~w1 := ~w,
and let (~w1, . . . , ~wm−1) be some basis of (~p)⊥ and (~c1, . . . ,~cm−1) be some basis of (~w)⊥. We define various
distributions of keys and ciphertexts relative to these bases.

Key Distributions. The secret key is always set to hS for some n×m matrix S of the form

S =

 | |
~r>1 · · · ~r>i
| |

 − ~w1 −
· · ·

− ~wi −

+

 ~1>

 [ ~t
]

(2)

where ~r1, . . . , ~ri ∈ Fnq are chosen randomly. Equivalently, each of the n rows of S is chosen randomly

from the affine space: span(~w1, . . . , ~wi) + ~t. The honest key generation algorithm uses i = 1 and we call
these honest keys. In addition, we define mid keys which are chosen with i = 2 and high keys which
are chosen with i = m − 1. Notice that honest/mid/high keys all correctly decrypt honestly generated
ciphertexts since span(~w1, . . . , ~wm−1) ⊥ span(~p).

Ciphertext Distributions. The encryption of the message msg = e(g,h)µ ∈ GT is always set to

ct = (ct(1), ct(2)) where ct(1) = gC and ct(2) = e(g,h)~z
>

with ~z> = C~t> + ~1>µ. The second component
ct(2) can always be efficiently and deterministically computed from gC , given ~t and msg, without knowing
the exponents C, µ. The different ciphertext distributions only differ in how ct(1) = gC is chosen.

For the honest ciphertexts, we set C = ~u>~p for a uniformly random ~u ∈ Fnq . That is, every row of C
is chosen at random from the space span(~p). In addition to the honest way of choosing C, we define three
additional distributions on C given by:

C =

 | |
~u>1 · · · ~u>j
| |

 − ~c1 −
· · ·

− ~cj −

 (3)

where ~u1, . . . , ~uj ∈ Fnq are chosen randomly. Equivalently the rows of the C are chosen randomly from the
subspace: span(~c1, . . . ,~cj). When j = 1, we call these low ciphertexts, when j = 2 we call these mid
ciphertexts and when j = (m − 1), we call these high ciphertexts. Notice that honest/low/mid/high
ciphertexts are all correctly decrypted by honest secret keys since span(~w) ⊥ span(~c1, . . . ,~cm−1).

Bases Correlations. By default, we choose the basis (~w1, . . . , ~wm−1) of the space (~p)⊥ and the basis
(~c1, . . . ,~cm−1) of the space (~w)⊥ uniformly at random and independently subject to fixing ~w1 := ~w. This

is statistically close to choosing ~w2, . . . , ~wm−1
$← (~p)⊥ and ~c1, . . . ,~cm−1

$← (~w)⊥ (Lemma B.1, part II).
We call this choice of bases uncorrelated . We will also consider two alternate distributions. We say

that the bases are correlated if we instead choose ~c1
$← (~w1, ~w2)⊥ and all other vectors as before. We

say that the bases are super-correlated if we instead choose ~c1,~c2
$← (~w1, ~w2)⊥ and all other vectors as

before. If the key and ciphertext bases are correlated then mid keys correctly decrypt low ciphertexts and
if they are super-correlated then mid keys correctly decrypt low and mid ciphertexts. The table in Figure 1
summarizes which types of secret keys can correctly decrypt which types of ciphertexts.

Programmed Updates. Honest key updates in period i are performed by choosing A′i
$← Rkd(Fn×nq )

and rescaling its rows to get Ai. Let Di = AiAi−1 · · ·A1 be the product of all key-update matrices up to
and including period i (as a corner case, define D0 to be the identity matrix). We say that the update Ai

is programmed to annihilate the vectors ~v1, . . . , ~vj ∈ Fnq if we instead choose A′i
$← Rkd(Fn×nq | row ∈ V)
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keys →
↓ ciphertexts

honest mid high

honest Yes Yes Yes
low Yes If Correlated or Super-Correlated No
mid Yes If Super-Correlated No
high Yes No No

Figure 1: Do alternate keys correctly decrypt alternate ciphertexts?

where V = (Di−1~v
>
1 , . . . , Di−1~v

>
j )⊥. In other words, a programmed update Ai has the vectors {Di−1~vρ}jρ=1

in its kernel. We define programmed ciphertext updates analogously.
By programming the update matrices, we can have updates which reduce the rank of the key/ciphertext

matrices (e.g. reduce high keys to mid keys, or mid ciphetexts to low ciphertexts). Let us go through an
example. Assume the initial key is high with sk1 = gS for S given by equation (2), and the updates
A1, . . . , Ai−1 are chosen honestly, Ai is programmed to annihilate the vectors ~r3, . . . , ~rm−1 and Ai+1 is
programmed to annihilate ~r2. Then the corresponding secret keys sk1, . . . , ski in periods 1 to i will be high
keys, ski+1 will be a mid key and ski+2 will be an honest key. To see this, notice that the exponent of
(e.g.) the key ski+1 will follow equation (2) with ~r>j replaced by AiAi−1 · · ·A1~r

>
j . Since Ai is programmed

to annihilate the vectors ~rj for j ≥ 3, these values will be replaced by ~0 in period i+ 1.

5.2 The Hybrid Proof Strategy

We use a series of hybrids, where each step either takes advantage of the fact that the adversary is
computationally bounded and cannot distinguish the rank of various matrices in the exponent, or of the
fact that the adversary is leakage bounded and is only seing partial leakage on any key and ciphertext.
When we use computational steps, we can even assume that the attacker gets full leakage and so we cannot
modify any property of the game that could be efficiently tested given the keys and ciphertexts in full – in
particular, we cannot modify whether any secret key correctly decrypts any ciphertext in any time period.
When we use leakage steps, we can even assume that the attacker is computationally unbounded and hence
we cannot modify the distribution of any individual key/ciphertext/update – but we can modify various
correlations between them, which may not be testable given just partial leakage on the individual values.5

The main strategy is to move from a game where all keys/ciphertexts/updates are honest to a game
where the keys and ciphertexts no longer decrypt correctly. We can use computational steps to change the
distribution of the initial key (honest/mid/high) or ciphertext (honest/low/mid/high) but only if they still
decrypt correctly. For example, we can make the initial key and ciphertext both be mid, but only if the
bases are super-correlated. We then want to use a leakage step to argue that the attacker cannot notice
the correlation between the bases vectors ~w2 ⊥ ~c2. We rely on the fact (Lemma B.9) that given partial
independent leakage on two vectors, one cannot distinguish whether the vectors are orthogonal or not,
which follows from inner-product being a good two-source extractor. Unfortunately, since leakage on keys
and ciphertexts is continual, we cannot argue that leakage on the bases vectors ~w2,~c2 is partial. To get
around this, we carefully program our updates to reduce the rank of future keys/ciphertexts, so that the
leakage on the vectors ~w2,~c2 only occurs in a single key and ciphertext respectively. We carefully arrange
the hybrids so as to make this type of argument on each key/ciphertext pair, one at a time.

Hybrid Games. A helpful pictorial representation of the main hybrid games appears in Figure 2. Our
hybrid games, called Game (i, j) are all of the following type. For i ≥ 2, the challenger chooses the initial
key sk1 as a high key, the first i− 2 updates are honest (and hence the keys sk1, . . . , ski−1 are high keys),
the update Ai−1 is programmed to reduce the key to a mid key ski, and the update Ai is programmed to

5This is a good way of viewing essentially all prior results in leakage resilient cryptography. Since we do not have computa-
tional assumptions that allow us to reason about leakage directly, we alternate between using computational steps that work
even in the presence of unrestricted leakage and information theoretic steps that take advantage of the leakage being partial.
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reduce the key to a honest key ski+1. The rest of the updates are honest and hence the keys ski+1, ski+2, . . .
are honest. For the special case i = 1, the initial key sk1 already starts out as a mid key and the first
update A1 reduces it to an honest key. For the special case i = 0, the initial key sk1 is already an honest
key. This description is mirrored by the ciphertexts. When j ≥ 2, the initial ciphertext ct1 is a high
ciphertext, the first j−2 ciphertext updates are honest (and hence the ciphertexts ct1, . . . , ctj−1 are high),
the update Bj−1 is programmed to reduce the ciphertext to a mid ctj , and the update Bj is programmed
to reduce the ciphertext to a low ciphertext ctj+1. The rest of the updates are honest and hence the other
ciphertexts stay low. For the special case j = 1, the initial ciphertext ct1 is already mid and the first
update B1 reduces it to low. For the special case j = 0, the initial ciphertext ct1 is already low.

We write Game i as short for Game (i, j = 0). In Game (i, j) the ciphertext and key bases are
uncorrelated. We also define analogous games: GameCor (i, j) where the bases are correlated and Game-
SuperCor (i, j) where the bases are super-correlated.

Sequence of Steps. A helpful table describing the sequence of hybrid arguments appears in Figure 3.
Our first step is to move from Real Game to Game 0 (i.e. i = 0, j = 0). The only difference in this
step is that we change the initial ciphertext ct1 from an honest ciphertext to a low ciphertext. This is a
computational step and all secret keys still correctly decrypt all ciphertexts in the game.

Next, our goal is to keep moving from Game i to Game i + 1. We call this the outer loop where we
increment i. Unfortunately, we cannot just increment i in a single step since each such move changes ski+1

from an honest key to a mid key and hence changes it from decrypting all of the low ciphertexts in the
game to decrypting none of them. A single computational or leakage step cannot suffice.

Instead, we can move from Game i to GameCor i+ 1 in a single computational step. Even though the
key ski+1 changes from an honest key in Game i to a mid key in GameCor i + 1, by making the bases
correlated we ensure that it still correctly decrypts all of the low ciphertexts in the game. Therefore, these
games cannot be distinguished even given full leakage.

(Now, we might be tempted to make an information theoretic step that moves us from GameCor i+1 to
Game i+1, by arguing that a leakage-bounded attacker cannot tell if the key/ciphertext bases are correlated.
Indeed, the leakage on the secret-key basis vector ~w2 is bounded overall, as this vector only occurs in the
single mid key ski+1. Unfortunately, the leakage on the ciphertext basis vector ~c1 is not bounded overall as
it occurs in every single ciphertext, and so a computationally unbounded attacker can learn span(~c1) in full
and test if ~w2 ⊥ ~c1. On the other hand, if we only cared about CLR encryption and not secret sharing, then
the leakage on the secret key occurs before any information about the ciphertext is seen, and therefore the
above argument would be legitimate. Indeed, this matches the high-level structure of the proof of security
for the CLR Encryption scheme of [LLW11].)

To move from GameCor i + 1 to Game i + 1, we first introduce an inner loop in which we slowly
increment j. Starting with j = 0, we move from GameCor (i+ 1, j) to GameSuperCor (i+ 1, j + 1). This
is a single computational step. Even though we change ctj+1 from a low ciphertext to a mid ciphertext, it
is still correctly decrypted (only) by the mid and low keys in periods i + 1 and later, since the bases are
super-correlated. Therefore, these games cannot be distinguished even given full leakage. Finally, we use
an information theoretic step to move from GameSuperCor (i+ 1, j + 1) to GameCor (i+ 1, j + 1). Here
we are actually changing whether a single key ski+1 correctly decrypts a single ciphertext ctj+1 (it does
in GameSuperCor but not in GameCor). We use the fact that the adversary is leakage-bounded to argue
that it cannot notice whether the bases are correlated or super-correlated. In particular, because the bases
vectors ~w2 and ~c2 only occur in the single mid key ski+1 and the single mid ciphertext ctj+1 respectively,
the leakage on these vectors is bounded overall. We argue that such partial leakage hides whether ~w2 ⊥ ~c2,
which determines if the bases are correlated or super-correlated.

Assume that the attacker makes at most qct update queries on the ciphertext and at most qsk update
queries on the secret key. By repeatedly increasing j in the inner loop, we move from GameCor (i+ 1, 0)
to GameCor (i+ 1, qct + 1) where all of the ciphertexts that the attacker can leak on are high ciphertexts.
Therefore the mid key ski+1 does not decrypt any of them correctly (but all future honest keys still do). We
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now apply another computational step to move from GameCor (i+ 1, qct + 1) to Game i+ 1 and therefore
(finally) incrementing i in the outer loop. This step preserves all interactions between keys and ciphertexts
and therefore these games cannot be distinguished even given full leakage. Lastly, by repeatedly increasing
i in the outer loop, we can move from Game 0 to Game qsk+1 where all of the secret keys that the attacker
can leak on are high keys and all of the ciphertexts are low ciphertexts. Therefore, in Game qsk + 1 none
of the keys correctly decrypts any of the ciphertexts. Hence we can argue that even an attacker that has
full leakage in Game qsk + 1 cannot learn any information about the shared/encrypted message msg.

Under the Rug. The above discussion is slightly oversimplified. The main issue is that the compu-
tational transitions, e.g. from Game i to GameCor i + 1, are not computationally indistinguishable the
way we defined the games. This is because in Game i the update matrix Ai+1 is unlikely to annihilate
any vectors (i.e. its kernel is unlikely to contain non-zero vectors from the span of the previous updates)
while in GameCor i + 1 it is programmed to annihilate vectors so as to reduce the dimension of the key.
This can be efficiently tested given full leakage of the update matrices. Therefore, in the full proof, we
define the games Game, GameCor and GameSuperCor slightly differently with some updates programmed
to annihilate additional uniformly random vectors. With this modification, we can prove computational
indistinguishability. We also need extra information theoretic steps to argue that the attacker cannot tell
if updates are programmed to annihilate some random vectors, given limited leakage.

6 Conclusions

In this work, we show how to store secret values securely on device(s) that continually leak information
about their internal state. We can view of our result as applying to either many devices, each of which
is leaking individually in the continual leakage model, or to a single device which is continually leaking a
restricted class of predicates that can only access a single memory component at a time.

One interesting question, under the latter view, is to consider different restricted classes of predicates.
For example, we can look at predicates of the entire state that are computable in some fixed polynomial
time, smaller than the complexity of reconstructing the secret. The work of [DDV10] considers several
such classes in the bounded leakage model, where the overall number of leaked predicates is bounded.

Another interesting question is whether sharing schemes between two or more devices in the continual
leakage model can be achieved information theoretically, if the devices are allowed to run an interactive
protocol to update their shares. Our information-theoretic impossibility result only rules out the case
where updates are performed by each device individually without any communication.

Yet another question would be to improve the fraction of the share that can leak from a small constant
achieved in this work to larger constants, ideally approaching 1. At the very least, we would need to rely on
better two-source extractors than the inner product to beat 1

2 . This would seem to require fundamentally
new techniques.

Lastly, an important open question is to design methods for not only storing secrets securely but
also computing on secrets securely in the presence of continual leakage. This question was studied in
[ISW03, FRR+10, GR10, JV10], but solutions only exist in restrictive models and/or using some secure
leak-free hardware. One elegant solution would be to design secure computation protocols where two (or
more) continually leaky devices can securely compute functions of a secret value that is shared between
them under our CLRS scheme.
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A The Proof in Pictures

... 

... 
ski-1

ski

ski+1

ski+2

ski+3

…

ct1

…
….

…

…

…

…

... 

...  
ski-1

ski

ski+1

ski+2

ski+3

…

…
…

ctj-1

ctj

ctj+1

ctj+2

ctj+3

…

Game i GameCor i+1, j

...
... 

ski-1

ski

ski+1

ski+2

ski+3

…

…
…

ctj-1

ctj

ctj+1

ctj+2

ctj+3

…

GameSuperCor i+1, j+1

honest mid high mid high mid highhonest honest

low mid high low mid high low mid high

Correlated Bases Super-Correlated BasesUncorrelated Bases

The arrows ↓ indicate programmed updates.

Figure 2: An Overview of the Main Hybrid Games

Real
comp
≈ Game 0.

For i ∈ {0, . . . , qsk} :

Game i
comp
≈ GameCor (i+ 1, 0).

For j ∈ {0, . . . , qct} : GameCor (i+ 1, j)
comp
≈ GameSuperCor (i+ 1, j + 1)

stat
≈ GameCor (i+ 1, j + 1).

GameCor (i+ 1, qct + 1)
comp
≈ Game i+ 1.

Game qsk + 1
comp
≈ GameFinal.

Figure 3: Sequence of Hybrid Arguments Showing Real
comp
≈ GameFinal.
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B Background Lemmas

Random Matrices. We first prove two simple properties of random matrices.

Lemma B.1. Assume q is super-polynomial in the security parameter.
(I) For n ≥ m the uniform distributions over Rkm(Fn×mq ) and Fn×mq are statistically indistinguishable.
(II) For n ≥ d andW ⊆ Fmq a subspace of dimension d, the uniform distributions over Rkd(Fn×mq | row ∈ W)
and Wn (seen as n rows) are statistically indistinguishable.

Proof. Notice that (II) implies (I) with d = m and W = Fmq . The statistical distance between the uniform
distributions over Rkd(Fn×mq | row ∈ W) and Wn is just the probability that n samples from W span a
sub-space of dimension < d. Think of choosing the rows fromW one-by-one. Then the probability that the
ith sample falls into the subspace of the previous ones is at most qi−1/qd. By union-bound, the probability
of this happening in the first d samples is upper-bounded by

∑d
i=1 q

i−1/qd ≤ 2/q.

Lemma B.2. Let d, n,m be integers with min(n,m) ≥ d ≥ 1.

(I) The uniform distribution over Rkd(Fn×mq ) is equivalent to sampling C
$← Rkd(Fn×dq ), R

$← Rkd(Fd×mq )
and outputting A = CR. Notice colspan(A) = colspan(C), rowspan(A) = rowspan(R).
(II) If W ⊆ Fmq is a fixed subspace of dimension ≥ d, the uniform distribution over Rkd(Fn×mq | row ∈ W)

is equivalent to sampling C
$← Rkd(Fn×dq ), R

$← Rkd(Fd×mq | row ∈ W) and outputting A = CR.
(III) If W ⊆ Fmq a uniformly random subspace of a fixed dimension ≥ d, the uniform distribution over
Rkd(Fn×mq | row ∈ W) is equivalent to the uniform distribution over Rkd(Fn×mq ).

Proof. Notice that (II) implies (I) with W = Fmq . For (II), it suffices to show that number of ways of
writing A = CR as a product of some C and R is the same for every A (for appropriate domains of
A,C,R). In particular, it is equal the number of ways of choosing such R so that its rows form a basis
of rowspan(A), which is

∏d−1
i=0 (qd − qi). For (III), we notice that for every A ∈ Rkd(Fn×mq ) the number of

spaces W (of any fixed dimension) such that A ∈ Rkd(Fn×mq | row ∈ W) is just the number of spaces W
that rowspan(A) ⊆ W which is the same for every A.

Entropy, Statistical Distance, Leftover Hash. The statistical distance between two random variables
X,Y is defined by SD(X,Y ) = 1

2

∑
x |Pr[X = x]− Pr[Y = x]| . We write X ≈ε Y to denote SD(X,Y ) ≤ ε,

and X
stat
≈ Y to denote that the statistical distance is negligible. The min-entropy of a random variable

X is H∞(X)
def
= − log(maxx Pr[X = x]). This is a standard notion of entropy used in cryptography, since

it measures the worst-case predictability of X. We also review a generalization from [DORS08], called
average conditional min-entropy defined by

H̃∞(X|Z)
def
= − log

(
E

z←Z

[
max
x

Pr[X = x|Z = z]
])

= − log

(
E

z←Z

[
2−H∞(X|Z=z)

])
.

This measures the worst-case predictability of X by an adversary that may observe an average-case cor-
related variable Z.

Lemma B.3 ([DORS08]). Let X,Y, Z be random variables where Y takes on values in a set of size at most
2`. Then H̃∞(X|(Y,Z)) ≥ H̃∞((X,Y )|Z)−` ≥ H̃∞(X|Z)−` and, in particular, H̃∞(X|Y ) ≥ H∞(X)−`.

We now define the notion of an (average case) randomness extractor.

Definition B.4 (Extractor). A randomized function Ext : X → Y is an (k, ε)-extractor if for all r.v. X,Z

such that X is distributed over X and H̃∞(X|Z) ≥ k, we get (Z,R,Ext(X;R))
stat
≈ ε (Z,R, Y ) where R is a

random variable for the coins of Ext and Y is the uniform over Y.

Lemma B.5 (Leftover-Hash Lemma [NZ96, DORS08]). Assume that the family H of functions h : X →
Y, is a universal hash family so that for any x 6= x′ ∈ X we have Pr

h
$←H

[h(x) = h(x′)] ≤ 1/|Y|. Then the

randomized extractor Ext(x;h) = h(x) is a (k, ε)-extractor for any k, ε satisfying k ≥ log(|Y|) + 2 log (1/ε).

18



Two-Source Extractors. We crucially rely on the inner product being a good two-source extractor
[CG88]. Here we use an average case version of two-source extractors (analogous to the average case
version of seeded extractors defined by [DORS08])

Lemma B.6 (Inner Product Two-Source Extractor). Let X,Y, Z be correlated r.v. where X,Y have their

support in Fmq and are independent conditioned on Z. Then (Z, 〈X,Y 〉)
stat
≈ ε (Z,U) where U is uniform

over Fq and ε ≤ 2−s for s = 1 + 1
2(kX + kY − (m+ 1) log(q)) where kX := H̃∞(X | Z), kY := H̃∞(Y | Z).

The worst-case version of the lemma, where Z is empty or fixed, is proved in [CG88] (see [LLTT05]
for a very simple proof giving the above parameters). We now prove the average-case version, where Z is
random. The proof follows that of [DORS08] showing that leftover-hash is a good average-case extractor.

Proof. Let (Xz, Yz) = (X,Y |Z = z). Then

SD( (Z, 〈X,Y 〉) , (Z,U) ) = E
z

[SD( 〈Xz, Yz〉 , U )] ≤ 1

2
E
z

[√
2−(H∞(Xz)+H∞(Yz))qm+1

]
≤ 1

2

√
E
z

[
2−(H∞(Xz)+H∞(Yz))qm+1

]
≤ 1

2

√
2−(H̃∞(X|Z)+H̃∞(Y |Z))qm+1

where the first inequality follows from the worst-case version of the lemma and the second inequality is
Jensen’s inequality. This gives us the average case version of the lemma.

B.1 Statistical Indistinguishability: Hiding Subspaces and Orthogonality

Hiding Subspaces. The following lemma says that, given some leakage on a random matrix A, it is
hard to distinguish random vectors from colspan(A) from uniformly random vectors. A similar lemma was
shown in [BKKV10]. Here we give a significantly simpler proof using leftover-hash (Lemma B.5).

Lemma B.7 (Subspace Hiding with Leakage). Let the integers d, n, s, u be polynomial in the security
parameter λ. Let S ∈ Fd×sq be an arbitrary (fixed and public) matrix and Leak : {0, 1}∗ → {0, 1}`

be an arbitrary function with `-bit output (possibly depending on S). For randomly sampled A
$← Fn×dq ,

V
$← Fd×uq , U

$← Fn×uq , we have:

(Leak(A), AS, V,AV )
stat
≈ ( Leak(A), AS, V, U)

as long as (d− s− u) log(q)− ` = ω(log(λ)).

Proof. The lemma follows by applying leftover-hash (see Lemma B.5) to each row of A independently. In
particular, take any row ~ai of A and think of it as a random source (while all the other rows of A are
arbitrarily fixed) whose conditional min-entropy is

H̃∞(~ai | AS, Leak(A)) ≥ d log(q)− (s log(q) + `).

Think of V as the seed of the universal hash function hV (~ai) = ~ai · V whose output size is u log(q) bits.
The leftover-hash lemma tells us that the ith row of AV looks uniform. By using the hybrid argument
over all n rows, the first part of the lemma follows.

The following corollary can be interpreted as saying that, given leakage on a matrix A, one cannot
distinguish random vectors from colspan(A) from uniformly random vectors, even if A is a random matrix
of some (non-full) rank d and the row-space of A is fixed.
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Corollary B.8. Let the integers n, d, s, u be polynomial in the security parameter λ, with n ≥ d ≥ 1. Let
S ∈ Fn×sq be a fixed matrix, W ⊆ Fnq be some fixed subspace of dimension at least d, and Leak : {0, 1}∗ →
{0, 1}` be an arbitrary function (possibly depending on S,W). Then, for a random V

$← Fn×uq , U
$← Fn×uq

and A
$← Rkd(Fn×nq | row ∈ W) we have

(Leak(A), AS, V,AV )
stat
≈ ( Leak(A), AS, V, U)

as long as (d− s− u) log(q)− ` = ω(log(λ)) and q = ω(log(λ)).

Proof. SamplingA
$← Rkd(Fn×nq | row ∈ W) is equivalent to sampling C

$← Rkd(Fn×dq ), R
$← Rkd(Fd×nq | row ∈

W) and setting A = CR . The corollary then follows by applying Lemma B.7 to the matrix C while
thinking of R as public. In particular, `-bit leakage Leak(A) on the matrix A = CR is equivalent to
`-bit leakage Leak′(C) on the matrix C. Furthermore AS = CRS = CS′ for some S′ ∈ Fn×sq and
AV = CRV = CV ′ where V ′ is uniformly random over the choice of V since R is full rank. We only

use the fact that q is super-polynomial to switch from C
$← Rkd(Fn×dq ) to C

$← Fn×dq . So, by Lemma B.7,

we have (Leak′(C), AS′, V ′, AV ′)
stat
≈ (Leak′(C), AS′, V ′, U) which gives us our corollary.

Hiding Orthogonality. The following lemma can be interpreted as saying that if two random vectors
X,Y leak individually, and the total amount of leakage Z is sufficiently small, an attacker cannot distinguish
whether X,Y are random orthogonal vectors or uniformly random vectors. A slightly different but related
lemma with a related proof strategy appears in [DDV10].

Lemma B.9 (Orthogonality Hiding). Let X,Y, Z = Leak(X,Y ) be correlated r.v. where X,Y have
their support in Fmq and are independent conditioned on Z. Let E be the event that 〈X,Y 〉 = 0 and
let (X ′, Y ′, Z ′ = Leak(X ′, Y ′)) := (X,Y, Z | E) be the joint distribution conditioned on the event E. Then

Z
stat
≈ Z ′ as long as H̃∞(X | Z) + H̃∞(Y | Z)− (m+ 3) log(q) = ω(log(λ)).

Proof. We rely on the fact that the inner product is a good two source extractor (Lemma B.6). In particular,

let ε′ be the bound from Lemma B.6 such that (Z, 〈X,Y 〉)
stat
≈ ε′ (Z,U) where U is uniform over Fq. Assume

there is a statistical test D such that Pr[D(Z ′) = 1] − Pr[D(Z) = 1] = ε. Then we claim that there is
a statistical test D′ that distinguishes (Z, 〈X,Y 〉) from (Z,U) with advantage ε/q − ε′. This implies that
ε/q− ε′ ≤ ε′ ⇒ ε ≤ 2qε′ and, using the bound on ε′ from Lemma B.6, our lemma follows. Therefore we are
left to describe and analyze the statistical test D′.

The test D′(·, ·) just outputs 0 if the second component is non-zero and otherwise outputs the evaluation
of D on the first component. This gives

Pr[D′(Z, 〈X,Y 〉) = 1] = Pr[D′(Z, 〈X,Y 〉) = 1 | 〈X,Y 〉 = 0] Pr[〈X,Y 〉 = 0] ≥ Pr[D(Z ′) = 1](1/q − ε′)
Pr[D′(Z,U) = 1] = Pr[D′(Z,U) = 1 | U = 0] Pr[U = 0] = Pr[D(Z) = 1]/q

and so D′ has the claimed advantage ε/q − ε′.

B.2 Computational Indistinguishability: Extended Rank-Hiding Assumption

We define an extended rank hiding assumption which says that one cannot distinguish between matrices of
different ranks in the exponent, even given some additional vectors in the kernel of the matrix.

Definition B.10 (Extended Rank Hiding Assumption). The k extended rank hiding assumption for a
pairing generation algorithm (G1,G2,GT , q, e,g,h)← G(1λ) states that for any integer constants i, j, n,m
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satisfying k ≤ i < j ≤ min{n,m} and for t := m− j, we get the indistinguishability property:(
prms,gX , ~v1, . . . , ~vt

∣∣∣ prms← G(1λ), X
$← Rki(Fn×mq ), {~vρ}tρ=1

$← ker(X)
)

comp
≈(

prms,gX , ~v1, . . . , ~vt

∣∣∣ prms← G(1λ), X
$← Rkj(Fn×mq ), {~vρ}tρ=1

$← ker(X)
)

for the left group G1 and also for the right group G2 by substituting the generator h instead of g above.

Lemma B.11. The k extended rank hiding assumption is implied by the (regular) k rank hiding assumption
which is in-turn implied by the k-linear assumption.

Proof. The second part of the lemma (k-linear ⇒ k rank hiding) is shown in [NS09] and hence we skip
it. For the first part of the lemma we show a reduction that converts a rank hiding challenge into an
extended rank hiding challenge. In particular, the reduction is given the challenge (prms,gX

′
) where either

(I) X ′
$← Rki(Fn×jq ) or (II) X ′

$← Rkj(Fn×jq ) for some i, j, n satisfying i < j ≤ n. The reduction chooses a

random matrix R
$← Rkj(Fj×mq ) and sets gX = gX

′R (which can be computed efficiently without knowing

X ′). It also chooses ~v1, . . . , ~vt
$← ker(R) and outputs the challenge (prms,gX , ~v1, . . . , ~vt).

Assume that the received challenge if of type (II). Then, by Lemma B.2, we see that the distribution of
X = X ′R is the same as a random sample from Rkj(Fn×mq ). Furthermore since rowspan(X) = rowspan(R),

the vectors ~v1, . . . , ~vt are random over ker(R) = rowspan(R)⊥ = rowspan(X)⊥. Therefore the outputs of
the reduction is distributed the same as an extended rank-hiding assumption challenge with rank j.

Assume that the received challenge is of type (I). Then, by Lemma B.2, we can sample X ′ via X ′ =

X1X2 where X1
$← Rki(Fn×iq ) and X2

$← Rki(Fi×jq ). Applying Lemma B.2 once more, we get X2R is
uniformly random over Rki(Fi×mq ) and applying it once again we see that X = X ′R = X1(X2R) is uniformly
random over Rki(Fn×mq ). Furthermore rowspan(X) = rowspan(X2R) ⊆ rowspan(R) and so ker(R) ⊆ ker(X).
Moreover, ker(R) is a random t = (m− j) dimensional subspace of the (m− i) dimensional space ker(X).
Since sampling t random vectors from ker(X) is statistically close to first choosing a random t-dimensional
subspace ker(R) ⊆ ker(X) and then sampling t random vectors from that, we see the joint distribution
on gX , ~v1, . . . , ~vt produced by the reduction is (statistically close to) the extended rank hiding assumption
challenge with rank i.

B.3 (Re)Programming Updates

Here we show two useful results about the scenario where we continually update a key/ciphertext and the
attacker is continually leaking on the process. The first lemma (Lemma B.12) shows that after continually
updating a key/ciphertext of some rank (e.g. low, mid, high) honestly, we get a random key/ciphertext of
the same rank at end. If we program updates to reduce the rank, we get a random key/ciphertext of the
appropriate reduced rank at the end. This even holds if some of the updates are programmed to annihilate
random vectors unrelated to the key/ciphertext. The second lemma (Lemma B.13) says that an attacker
who is leaking sufficiently few bits of information on the update process cannot tell whether some updates
are programmed to annihilate random vectors unrelated to the key/ciphertext.

We consider a randomized process called the Programming Experiment, defined as follows. First, we

choose a random matrix R
$← Fn×lq and label its columns R = [~r>1 | · · · | ~r>l ]. Then we choose a series

of (some polynomial number) t update matrices A1, . . . , At ∈ Rkd(Fn×nq ) and iteratively set Ri+1 = AiRi
where R1 = R. The experiment is defined by an update regime R which specifies if/how the various
updates are programmed. Each update can be programmed to annihilate some of the columns of R and
some additional random vectors. That is, for each update i, the regime R specifies a (possibly empty)
subset Ji ⊆ {1, . . . , l} of column-indices to be annihilated and a number ui ≥ 0 of random vectors to be
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annihilated, subject to |Ji|+ ui ≤ n− d. The programming experiment then chooses update i so that Ai

is programmed to annihilate the vectors {~rj |j ∈ Ji} ∪ {~vi,1, . . . , ~vi,ui} for fresh and random ~vi,j
$← Fnq . The

update regime is fully specified by R = (J1, u1, . . . , Jt, ut).

Lemma B.12 (Program Correctness). Let R = (J1, u1, . . . , Jt, ut) be an update regime that annihilates the
columns with indices

⋃t
i=1 Ji = {ρ+ 1, . . . , l} along with u =

∑t
i=1 ui additional random vectors. Assume

(d− l − u− 1) log(q) = ω(log(λ)). Then the distribution of the final matrix Rt is statistically close to

Rt =

 | | . . .

~v>1 · · · ~v>ρ 0

| | . . .


for uniformly random and independent columns ~v1, . . . , ~vρ ∈ Fnq . 6

Let GameProgram(R) be a game between a challenger and an attacker, where the challenger runs
the programming experiment with the regime R. In each round i = 1, 2, . . . , t, the challenger gives the
attacker the matrix Ri in full and answers ` leakage queries on the update matrix Ai (the attacker can
choose leakage queries adaptively depending on its view thus far). The output of the game is the view of
the attacker at the end of the game.

Lemma B.13 (Reprogramming). Let R = (J1, u1, . . . , Jt, ut) and R′ = (J1, u
′
1, . . . , Jt, u

′
t) be two up-

date regimes that agree on which columns of R are annihilated and when (i.e. the sets Ji) but not
on how many additional random vectors are annihilated and when (i.e. the values ui, u

′
i). Let u∗ =

max
(∑t

i=1 ui,
∑t

i=1 u
′
i

)
be the maximum number of additional random vectors annihilated by either of the

regimes. If (d− l − u∗ − 1) log(q)− ` = ω(log(λ)) then GameProgram(R)
stat
≈ GameProgram(R′).

Both of the above lemmas (Lemma B.12, Lemma B.13) follow as special cases from the following lemma.

Lemma B.14. Let R = (J1, u1, . . . , Jt, ut) be an update regime and let u =
∑t

i=1 ui be the total number of
random vectors it annihilates. Let R∗ = (J1, 0, . . . , Jt, 0) be an update regime that agrees with R on which
columns of R are annihilated and when (i.e. the sets Ji) but does not annihilate any additional random
vectors (i.e. u∗i = 0). Let D = At · · ·A1 be the product of all the update matrices at the end of the game

and let ~µ1, . . . , ~µρ
$← Fnq be fresh random vectors. Then(

GameProgram(R), D~µ>1 , . . . , D~µ
>
ρ

)
stat
≈
(

GameProgram(R∗), ~µ>1 , . . . , ~µ
>
ρ

)
as long as (d− l − u− ρ− 1) log(q)− ` = ω(log(λ)).

Proof. For i ≥ j ≥ 0, we define D[i, j] := AiAi−1 · · ·Aj and Di := D[i, 1] to be products of update matrices
Ai (as a a corner case, D0, A0 are defined to be the identity matrix as is D[i, j] for i < j).

To prove the lemma, we slowly move from the distribution on the left to the one on the right. That is,
we define a series of hybrid games GameHybrid j where GameHybrid 0 is the left-hand distribution and
GameHybrid t+ 1 is the right-hand one. In GameHybrid j, the update matrices Ai for i ≤ j are chosen as
specified by the regime R∗. Moreover, the update matrices Ai for i > j are chosen by placing ui random
vectors from the span of D[i− 1, j] into their kernel (instead of the span of Di−1). More formally, for i > j

the update Ai in GameHybrid j is chosen by rescaling a randomly sampled A′i
$← Rkd(Fn×nq | W) where

W = ( { Di−1~rk | k ∈ Ji } , { D[i− 1, j]~vi,k | 1 ≤ k ≤ ui} )⊥

6Note: in this lemma, we do not condition on seing any information about the initial matrix R or the update matrices Ai.
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and ~vi,k ∈ Fnq are uniformly random. Lastly, at the end of GameHybrid j, we append the additional vectors

chosen as D[t, j]~µ1, . . . , D[t, j]~µρ for uniformly random {~µk
$← Fnq }

ρ
k=1.

We show that for each j ∈ {0, . . . , t} we have GameHybrid j
stat
≈ GameHybrid j + 1. We do this by

relying on the subspace hiding lemma (Corollary B.8) and showing a “reduction” which uses a distinguishing
strategy for the above two hybrids to get a distinguishing strategy for the two distributions in the subspace

hiding lemma. The reduction chooses the initial matrix R1
$← Fn×lq .

For updates i < j, the reduction chooses the update matrices Ai according to the regime R∗ and gives
the attacker the corresponding leakage. It also gives the attacker the values Ri+1 = AiRi in full.

For the update Aj , the reduction chooses its row space Wj honestly as specified by the regime R∗ so

that Aj should be sampled by rescaling a random sample A′j
$← Rkd(Fn×nq | row ∈ Wj). However, the

reduction does not choose Aj itself, but instead uses a subspace hiding challenge (Corollary B.8). That
is, let Leakj be the leakage function chosen by the attacker in round j (on matrix Aj) and let Leak′j be
a modified function which, given matrix A′j first rescales its rows to get Aj and then outputs Leakj(Aj).

Define the matrix S = [Rj |~1>]. The reduction specifies S,Wj , Leak
′
j and gets a subspace hiding challenge

of the form:
(Leak′j(A

′
j), A

′
jS, V

′)

where A′j ∈ Rkd(Fn×nq | row ∈ Wj) and V ′ is either of the form A′iU or just U for a random n × (u + ρ)
matrix U . We call the former distribution type I and the latter type II. The reduction gives the first
component of the challenge to the attacker as its leakage on Aj . It uses the value ~η> = A′j~1

> (from
the second component of the challenge) to compute an n× n rescaling-matrix N whose diagonals are the
entries of ~η so that Aj = NA′j is the rescaled version of A′j . It sets Rj+1 := N(A′jRj) (where A′jRj is in

the second component of the challenge) and gives Rj+1 to the attacker. It also sets V := NV ′ ∈ Fn×(u+ρ)
q

and interprets the columns of V as the u+ ρ vectors

{~vi,k | 1 ≤ i ≤ t, 1 ≤ k ≤ ui} , {~µk}ρk=1

For each update i > j, the reduction chooses the updates Ai iteratively by rescaling a random A′i
$←

Rkd(Fn×nq | row ∈ Wi) where

Wi = ( { Di−1~rk | k ∈ Ji } , { D[i− 1, j + 1]~vi,k | 1 ≤ k ≤ ui} )⊥

and the values Di−1~rk are derived from Rj+1 and Aj+1, Aj+2 . . . (without knowing Aj). Similarly, The
reduction also samples the final ρ vectors as { D[t, j+1]~µk}ρk=1. It gives the attacker leakage on the updates
Ai, the full values Ri, and finally the ρ vectors ~µk.

If the challenge is of type I and V ′ = A′iU for a uniform U then the reduction produces the distribution
GameHybrid j. This is because, for any columns ~v of V we can write D[i−1, j+1]~v = D[i−1, j+1]Aj~u =
D[i− 1, j]~u where ~u is uniformly random. So all of the spaces Wi and the final vectors ~µk are distributed
as in GameHybrid j. On the other hand, if the challenge is type II, then the reduction produces the
distribution GameHybrid j + 1. This is because V ′ = U is uniformly random and hence V = NU is also
uniformly random (since N is full-rank and U is independent of N).

Therefore the hybrids are indistinguishable from each other and hence the left and right hand distri-
butions of the lemma are indistinguishable.

Proof of Lemma B.13. We just apply Lemma B.14 twice with ρ = 0 to get

GameProgram(R)
stat
≈ GameProgram(R∗)

stat
≈ GameProgram(R′).

Proof of Lemma B.12. Let us write the initial matrix as R = [Rleft|Rright] where Rleft consists of the
first ρ columns. Then, the choice of the updates A1, . . . , At in the programming experiment is completely
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independent of Rleft. Therefore, we can think of playing the programming experiment with only Rright and
choosing the ρ columns of Rleft randomly afterwards. Therefore, applying Lemma B.14 to only the l′ = l−ρ
sub-matrix Rright (and setting ` = 0) we get statistical indistinguishability between the distributions on

the ρ columns given by Rleft
t = DtR

left stat
≈ V where V is uniformly random over Fn×ρq . It’s also clear that

Rright
t = DtR

right = 0, and so Rt = [Rleft
t |R

right
t ]

stat
≈ [V |0], as we wanted to show.

C Proof of Security (Theorem 4.1)

In Section C.1, we define the main hybrid games that are used in the proof. Then, in Section C.2, we
proceed to prove the indistinguishability of the various hybrid games.

C.1 Hybrid Game Definitions

We first define several hybrid games. The main part of the proof is to show computational/statistical
indistinguishability between these games. The output of each game consists of the view of the attacker A
as well as a bit b chosen by the challenger representing its choice of which message msg0,msg1 to encrypt.
We assume that the attacker A makes a maximum of qsk update queries on the secret-key share, and at
most qct update queries on the ciphertext share during the course of the game. We describe the games in
detail below, and also give a helpful pictorial representation in Figure 2.

Real Game : This is the original “`-CLRS-Friendly Encryption” security game between the adversary
and the challenger (see Section 3.2). The output of the game consists of the view of the attacker A and
the bit b chosen by the challenger.

Game’ 0 : In this game, the challenger chooses the initial ciphertext incorrectly as a low ciphertext
of the message msgb instead of encrypting it honestly (the key/ciphertext bases are chosen as random
uncorrelated bases). The initial secret key is chosen honestly and all ciphertext/key updates are chosen
honestly as before.

Game i : We define Game i for i = 0, . . . , qsk + 1. In all future game definitions, we will include two
additional “dummy keys” sk−1, sk0 and key-update matrices A−1, A0 chosen by the challenger (but not
observed or leaked on by the attacker). That is, the challenger (in its head) always initially chooses sk−1,
then updates it to sk0 using an update matrix A−1, then updates sk0 to sk1 using an update matrix A0

and so on. However, the values sk−1, A−1, sk0, A0 are then ignored, and the first key and update matrix
that the attacker can ask leakage queries on are sk1 and A1 respectively. In every Game i, the initial key
sk−1 is chosen as a high key with the exponent matrix:

S =

 | · · · |
~r>1 · · · ~r>m−1

| · · · |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

The first key update matrices A−1, . . . , Ai−2 are chosen honestly. The update Ai−1 is programmed to
annihilate the m − 3 vectors (~r3, . . . , ~rm−1) reducing the key to a mid. The update Ai is programmed to
annihilate ~r2 along with m − 4 random vectors, reducing the key to an honest key. The update Ai+1 is
programmed to annihilate a single random vector. All other key updates are chosen honestly. Note that, in
Game i, the keys sk−1, . . . , ski−1 are high keys, ski is a mid key, and ski+1, . . . are honest keys.7 The initial

7In particular, in Games 0 the initial observed (non-dummy) key sk1 is an honest key, in Game 1 it is a mid key, and in
all future games it is a high key. For the proof, it becomes easier to just pretend that there are some “dummy” mid and high
keys sk−1, sk0 even in Games 0,1 so as not to have to define special corner cases for these games.
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ciphertext ct1 is chosen as in Game’ 0 (a low ciphertext) and all ciphertext updates are performed honestly.
The ciphertext and key bases are random and uncorrelated. Notice that the secret keys sk−1, . . . , ski do
not decrypt the low ciphertexts correctly, but all future keys ski+1, . . . , skqsk+1 do.

GameCor’ (i + 1, 0) : We define GameCor’ (i + 1, 0) for i = 0, . . . , qsk + 1. In this game, the initial
secret key sk−1 is a high key and the initial ciphertext ct1 is a low ciphertext as in Game i. However, the
ciphertext and key bases are now correlated. Also, the regime of key updates is modified from Game i.
The first updates A−1, . . . , Ai−2 are chosen honestly. The update Ai−1 is programmed to annihilate m− 3
random vectors, the update Ai is programmed to annihilate the vectors (~r3, . . . , ~rm−1) reducing the key to
a mid, the update Ai+1 is programmed to annihilate ~r2 along with m− 4 random vectors reducing the key
to honest. All future key updates are then chosen honestly. All ciphertext updates are also chosen honestly
(as in Game i). Note that, in GameCor’ (i+ 1, 0), the keys sk−1, . . . , ski are high keys and do not decrypt
the low ciphertexts correctly, ski+1 is a mid key but does decrypt the low ciphertexts since the bases are
correlated, and ski+2, . . . are honest keys which always decrypt correctly.

GameCor (i + 1, j) : We define GameCor’ (i + 1, j) for i = 0, . . . , qsk + 1 and j = 0, . . . , qct + 1. As in
GameCor’ (i+ 1, 0), the key and ciphertext bases are correlated. Also, the initial secret key sk−1 and the
regime of key updates is chosen the same way as in GameCor’ (i + 1, 0). In all future game definitions,
we will include two additional “dummy ciphertexts” ct−1, ct0 and ciphertext-update matrices B−1, B0

chosen by the challenger (but not observed or leaked on by the attacker). That is, the challenger initially
chooses ct−1, then updates it to ct0 using an update matrix B−1, then updates that to ct1 using an update
matrix B0 and so on. However, the values ct−1, B−1, ct0, B0 are then ignored, and the first ciphertext and
ciphertext-update matrix that the attacker can leak on are ct1 and B1 respectively. The initial ciphertext
ct−1 is chosen as a high ciphertext using the exponent matrix

C =

 | |
~u>1 · · · ~u>m−1

| |

 − ~c1 −
· · ·

− ~cm−1 −


The first ciphertext updates B−1, . . . , Bj−2 are chosen honestly, the update Bj−1 is programmed to an-
nihilate the m − 3 vectors (~u3, . . . , ~um−1) reducing the ciphertext to amid, the update Bj is programmed
to annihilate ~u2 along with m − 4 other random vectors reducing the ciphertext to a low, the update
matrix Bj+1 is programmed to annihilate a single random vector. All future ciphertext updates are chosen
honestly. Note that, in GameCor (i+ 1, j), the initial ciphertexts ct−1, . . . , ctj−1 are high, ctj is mid, and
ctj+1, . . . are low.8

GameSuperCor (i + 1, j + 1) : We define GameSuperCor (i + 1, j + 1) for i = 0, . . . , qsk + 1 and
j = 0, . . . , qct + 1. In this game, the initial secret-key sk−1 is a high key and the initial ciphertext ct−1 is a
high ciphertext as in GameCor (i+ 1, j). However, the key and ciphertext bases are now super-correlated.
Also, the regime of ciphertext updates is modified from GameCor (i+1, j). The first updates B−1, . . . , Bj−2

are chosen honestly, the update Bj−1 is programmed to annihilate m − 3 uniformly random vectors, the
update matrix Bj is programmed to annihilate the vectors (~u3, . . . , ~um−1) reducing the ciphertext to a mid,
the update Bj+1 is programmed to annihilate ~u2 reducing the ciphertext to a low. All future ciphertext
updates are then chosen honestly. The regime of key updates is the same way as in GameCor (i + 1, j).
Note that the ciphertexts ct−1, . . . , ctj are high, ctj+1 is mid, and ctj+2, . . . are low.

8In particular, in GamesCor i + 1, 0 the initial observed (non-dummy) ciphertext ct1 is low, in GameCor i + 1, 1 it is mid,
and in all future games it is high. For the proof, it becomes easier to just pretend that there are some “dummy” mid and high
ciphertexts ct−1, ct0 even when j = 0, 1 so as not to have to define special corner cases for these games.
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GameFinal : This game is defined the same way as Game qsk + 1, except that instead of using the
message msgb in the (low) ciphertext, we just use message 1GT

. More specifically, in GameFinal, the
secret key is a random high key and all of the key updates are honest. The ciphertext is a random low
ciphertext of the message 1GT

and all of the ciphertext updates are honest as well. In particular, the view
of the attacker in GameFinal is independent of the challenger’s bit b.

C.2 Hybrid Indistinguishability Arguments

In Figure 3, we show the sequence of hybrid arguments that is used to derive the indistinguishability:

Real
comp
≈ GameFinal. In this section, we prove each of the necessary sub-steps in separate lemmas.

Lemma C.1. Real
comp
≈ Game’ 0.

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption (Definition B.10, Lemma B.11).

The reduction is given a challenge gP , ~w where P
$← Rkx(F2×m

q ) is either of rank x = 1 or x = 2 and

~w
$← ker(P ). Let us denote the two rows of P by ~p,~c1 respectively. The reduction puts the values g~p,h~w in

prms and chooses its own random ~t to set up the initial public/secret key pk, sk. To create the encryption
of msgb, the reduction sets ct = (gC , e(g,h)~z) where it uses the challenge g~c1 to compute gC for C = ~u>~c1

where ~u
$← Fnq is random. The matching second component e(g,h)~z can then be computed efficiently as

a deterministic function of gC ,~t and the message msgb. The reduction chooses all of the key/ciphertext
update matrices honestly and answers all update/leakage queries honestly.

If the challenge has x = 1 then ~c1 = u′~p for some scalar u′ and hence the ciphertext is a correctly
distributed honest encryption of msgb, so the reduction produces the distribution of the Real Game. If
x = 2 then ~c1 is a random and independent vector in the space (~w)⊥ and hence the ciphertext is a correctly
distributed low encryption of msgb, so the reduction produces the distribution of Game’ 0. Therefore the
two are computationally indistinguishable.

Lemma C.2. If ` ≤ (n− 3m+ 6) log(q)− ω(log(λ)) then Game’ 0
stat
≈ Game 0.

Proof. The only difference between Game’ 0 and Game 0 is the joint distribution on the initial secret key
sk1 and the update matrix A1. Conditioned on sk1, A1, all other values are sampled the same way in the
two games. In Game’ 0, the key sk1 is a randomly chosen honest key, and A1 is an honest update. In Game
0 the distribution on sk1, A1 is slightly more complicated. First we choose a random high key sk−1 = hS−1

with exponent

S−1 =

 | · · · |
~r>1 · · · ~r>m−1

| · · · |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

Then we choose the updates: A−1 programmed to annihilate ~r3, . . . , ~rm−1 yielding a mid-key sk0, A0 is
programmed to annihilate ~r2 along with m − 4 random vectors yielding an honest key sk1, and A1 is
programmed to annihilate a single random vector.

We claim this joint distribution on A1 and sk1 in Game 0 is statistically indistinguishable from that
of Game’ 0. To see this, we first apply the reprogramming lemma (Lemma B.13 with u∗ = m − 3, d =
n − m + 3, l = m − 1) to switch from A1 being programmed to annihilate a single vector to just being
honest. Next we just use program correctness lemma (Lemma B.12; with l = m − 1, ρ = 1, u = m − 4,
d = n−m+ 3) to argue that the distribution of the key sk1 in Game 0 is statistically close to choosing a

fresh honest key. In particular, the lemma tells us that A0A−1[~r>1 | · · · |~r>m−1]
stat
≈ [~r>|0 · · · ] for a uniformly

random ~r ∈ Fnq . So the exponent of the key sk1 in Game 0 is

A0A−1S−1 = A0A−1~r
>
1 ~w1 +~1>~t

stat
≈ ~r> ~w +~1>~t
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and hence statistically indistinguishable from that of a random honest key as in Game’ 0.
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Figure 4: Intermediate Hybrids for Lemma C.3: From Game i to GameCor’ i+ 1

Lemma C.3. For i ∈ {0, . . . , qsk}: Game i
comp
≈ GameCor’ i+ 1.

Proof. For the proof of the lemma, we introduce two additional intermediate games (see Figure 4). Firstly,
we define GameAlt i. In this game, the initial secret key sk−1 is a random mid key with exponent matrix

S
def
=

 | |
~r>1 ~r>2
| |

[ − ~w1 −
− ~w2 −

]
+

 ~1>

 [ ~t
]

The key update matrices A1, . . . , Ai−2 are chosen honestly, the update Ai−1 is programmed to annihilate
m − 3 random vectors, the update Ai is programmed to annihilate ~r2 along with m − 4 random vectors,
and the update matrix Ai+1 is programmed to annihilate a single random vector. The initial ciphertext
and ciphertext update matrices are chosen as in Game i.

Claim C.4. Game i
comp
≈ GameAlt i

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption (Definition B.10,

Lemma B.11). The challenger gets a challenge hW
′

and ~p, where W ′
$← Rkx(F(m−2)×m

q ) is either
of rank x = 1 or of rank x = m − 2 and ~p ∈ ker(W ′). Let us label the rows of W ′ by ~w2, . . . , ~wm−1.

Choose ~w1
$← (~p)⊥ and ~t

$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p and sk−1 = hS where

S =

 | |
~r>1 · · · ~r>m−1

| |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]
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for uniformly random ~r1, . . . , ~rm−1 (note: the challenger can do this efficiently given hW
′

without

knowing W ′). Create a “low” ciphertext by choosing a random vector ~c
$← (~w1)⊥. Run the rest of

Game i correctly as a challenger, where the key-update Ai−1 is programmed to annihilate ~r3, . . . , ~rm−1,
the key-update Ai is programmed to annihilate ~r2 and m− 4 random vectors and the key update Ai+1

update is programmed to annihilate a single random vector.

If W ′ is of rank x = m− 2, then it is easy to see that the above distribution is that of Game i.

If W ′ is of rank x = 1 then we claim that the above is distribution is that of GameAlt i. Firstly,
we can write ~w3 = µ3 ~w2, . . . , ~wm−1 = µm−1 ~w2 for some scalars µ3, . . . , µm−1 in Fq. Letting ~µ =
(1, µ3, . . . , µm−1) ∈ Fm−2

q , we can write

S =

 | |
~r>1 ~r2

′>

| |

[ − ~w1 −
− ~w2 −

]
+

 ~1>

 [ ~t
]

for

 ~r2
′>

 =

 | |
~r>2 · · · ~r>m−1

| |

 ~µ>


So sk−1 is a random mid key as in GameAlt i. Moreover, the vectors ~r3, . . . , ~rm−1 are random and
independent of S, ~w1, ~w2, ~r1, ~r2

′. Therefore, the update matrix Ai−1 is programmed to annihilate m−3
random and independent vectors ~r3, . . . , ~rm−1 as in GameAlt i. Finally, the update Ai is programmed
to annihilates ~r2 (along with m − 4 random vectors), which is equivalent to being programmed to
annihilate ~r′2 since span(Di−1~r2

′) = span(Di−1~r2) where Di−1 is the product of all update matrices
prior to Ai. So we see that the, when W ′ is of rank 1 then the choice of ski−1 and all the update
matrices is distributed correctly as in GameAlt i. Hence an attacker that distinguishes Game i and
GameAlt i breaks rank-hiding.

We now introduce a second intermediate game called Game2Alt i where the initial secret key sk−1 has an
exponent of the form

S−1
def
=

 | · · · |
~r>1 · · · ~r>m−2

| · · · |

 − ~w1 −
· · ·

− ~wm−2 −

+

 ~1>

 [ ~t
]

so that the rows are chosen randomly from the m − 2 dimensional affine space ~t + span(~w1, . . . , ~wm−2).
The key update matrices A1, . . . , Ai−2 are chosen honestly, the update Ai−1 is programmed to annihilate
m−3 random vectors, the update Ai is programmed to annihilate the vectors ~r2, . . . , ~rm−2, and the update
matrix Ai+1 is programmed to annihilate a single random vector. The initial ciphertext and ciphertext
update matrices are chosen as in Game i.

We now show (in 2 steps) that Game2Alt i is computationally indistinguishable from GameAlt i and
from GameCor (i+ 1, 0), which completes the proof of Lemma C.3

Claim C.5. GameAlt i
comp
≈ Game2Alt i.

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption (Definition B.10,

Lemma B.11). The challenger gets a challenge hW
′

and ~p, where W ′
$← Rkx(F(m−3)×m

q ) is either
rank x = 1 or rank x = (m−3) and ~p ∈ ker(W ′). Let us label the rows of W ′ by ~w2, . . . , ~wm−2. Choose

~w1
$← (~p)⊥ and ~t

$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p and sk−1 = hS where

S =

 | |
~r>1 · · · ~r>m−2

| |

 − ~w1 −
· · ·

− ~wm−2 −

+

 ~1>

 [ ~t
]
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for uniformly random ~r1, . . . , ~rm−2 (note: the challenger can do this efficiently given hW
′

without

knowing W ′). Create a “low” ciphertext by choosing a random vector ~c
$← (~w1)⊥. The key-update

Ai−1 is programmed to annihilate m−3 random vectors, the key-update Ai is programmed to annihilate
~r2, . . . , ~rm−2 and the key update Ai+1 update is programmed to annihilate a single random vector.

If W ′ is of rank x = m− 3, then it is easy to see that the above distribution is that of Game2Alt i.

If W ′ is of rank x = 1 then we claim that the above distribution is that of GameAlt i. This follows
since we can write

S =

 | |
~r>1 ~r2

′>

| |

[ − ~w1 −
− ~w2 −

]
+

 ~1>

 [ ~t
]

for

 ~r2
′>

 =

 | |
~r>2 · · · ~r>m−2

| |

 ~µ>


and some vector ~µ> ∈ Fm−3

q . So sk−1 is a random mid key as in GameAlt i. Moreover, an update Ai
which is programmed to annihilate ~r2, . . . , ~rm−2 is equivalent to being programmed to annihilate ~r2

′

along with m− 4 random vectors since span(~r2, . . . , ~rm−2) = span(~r2
′, ~r3, . . . , ~rm−2) where ~r3, . . . , ~rm−2

are random an independent of sk−1 or any of the previous updates. Therefore sk−1 and all of the update
matrices are distributed as in GameAlt i.

Claim C.6. Game2Alt i
comp
≈ GameCor’ i+ 1.

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption (Definition B.10,

Lemma B.11). The reduction gets a challenge hW
′

and ~p,~c, where W ′
$← Rkx(F2×m

q ) is either rank
x = 1 or rank x = 2 and ~p,~c ∈ ker(W ′). Let us label the rows of W ′ by ~w1, ~w2. The reduction chooses

~w3, . . . , ~wm−1
$← (~p)⊥, ~t

$← Fmq and sets prms = (g~p,h~w1), pk = e(g,h)~t·~p and sk−1 = hS where

S =

 | |
~r>1 · · · ~r>m−1

| |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

for uniformly random ~r1, . . . , ~rm−1. (Note: the reduction can do this efficiently given hW
′

without
knowing W ′). Lastly, the reduction creates a “low” ciphertext using the vector ~c that comes from
the challenge. The reduction does everything else as in GameCor’ i + 1 where the key-update Ai−1

is programmed to annihilate m − 3 random vectors, the key-update Ai is programmed to annihilate
~r3, . . . , ~rm−1 and the key update Ai+1 update is programmed to annihilate ~r2.

If W ′ is of rank x = 2, then it is easy to see that the above distribution is that of GameCor’ i + 1.
Notice that the key and ciphertext basis are random correlated basis with ~c ∈ (~w1, ~w2)⊥.

If W ′ is of rank x = 1 then we claim that the above distribution is that of Gam2Alt i. This follows
since the exponent of sk−1 can be written as

S =

 | | |
~r1
′> ~r>3 · · · ~r>m−1

| | |



− ~w1 −
− ~w3 −

· · ·
− ~wm−1 −

+

 ~1>

 [ ~t
]

where ~r1
′> = µ1~r

>
1 + µ2~r

>
2 for some scalars µ1, µ2. Note that ~r1

′ is therefore uniformly random
and independent of ~r2. By relabeling, this has the same distribution as the initial key in Game2Alt
i. Moreover, the update Ai is programmed to annihilate the m − 3 vectors ~r3, . . . , ~rm−1 in the initial
secret key, while the update Ai+1 annihilates the vector ~r2 which is random and independent of the
initial secret key. Therefore the initial secret key and all of the secret key updates are distributed as in
Game2Alt i.
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Putting Claim C.4, Claim C.5 and Claim C.6 together, we complete the proof of the lemma.

Lemma C.7. If ` ≤ (n− 3m+ 6) log(q)− ω(log(λ)) then GameCor’ i+ 1
stat
≈ GameCor (i+ 1, 0).

Proof. The only difference between the two games is the joint distribution on the initial ciphertext ct1 and
ciphertext-update matrix B1. In GameCor’ i+ 1 the ciphertext ct1 is chosen as a low ciphertext and the
update B1 is honest. In GameCor (i+ 1, 0), we first choose a high ciphertext ct−1 with the exponent

C−1
def
=

 | · · · |
~u>1 · · · ~u>m−1

| · · · |

 − ~c1 −
· · ·

− ~cm−1 −


We then choose updates: B−1 programmed to annihilate (~u3, . . . , ~um−1) yielding a mid ciphertext ct0, B0

programmed to annihilate ~u2 and m− 4 random vectors yielding a low ciphertext ct1, and the update B1

programmed to annihilate a single random vector. We claim that ct1, B1 are distributed the same way in
the two games. The proof exactly follows that of Lemma C.2.
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Figure 5: Intermediate Hybrids for Lemma C.8: From GameCor (i+ 1, j) to GameSuperCor (i+ 1, j + 1)

Lemma C.8. GameCor (i+ 1, j)
comp
≈ GameSuperCor (i+ 1, j + 1).

Proof. The proof of this lemma is analogous to the proof of Lemma C.3. We introduce two additional
intermediate games (see Figure 5) called GameCorAlt (i + 1, j) and GameCor2Alt (i + 1, j). In all these
games the key basis (~w1, . . . , ~wm−1) ∈ (~p)⊥ and the ciphertext basis (~c1, . . . ,~cm−1) ∈ (~w1)⊥ are correlated
with ~w2 ∈ (~c1)⊥.

Firstly, we define GameCorAlt (i + 1, j) where the initial ciphertext ct−1 is a random mid ciphertext
using exponent matrix

C
def
=

 | |
~u>1 ~u>2
| |

[ − ~c1 −
− ~c2 −

]

30



for uniformly random ~u1, ~u2. The initial ciphertext-update matrices . . . , Bj−2 are chosen honestly, the
update Bj−1 is programmed to annihilate m−3 random vectors, the update Bj is programmed to annihilate
~u2 along with m − 4 random vectors, and the update matrix Bj+1 is programmed to annihilate a single
random vector. The initial secret key and all key update matrices are chosen as in GameCor (i+ 1, j).

Claim C.9. GameCor (i+ 1, j)
comp
≈ GameCorAlt (i+ 1, j).

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption (Definition B.10,

Lemma B.11). The challenge gets a challenge gC
′

and ~w1, where C ′
$← Rkx(F(m−2)×m

q ) is either of
rank x = 1 or x = m − 2 and ~w1 ∈ ker(C ′). Let us label the rows of C ′ by ~c2, . . . ,~cm−1. Choose

~c1, ~p
$← (~w1)⊥ and ~t

$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p. The initial ciphertext ct−1is chosen

so that the exponent matrix in the first component gC is

C =

 | |
~u>1 · · · ~u>m−1

| |

 − ~c1 −
· · ·

− ~cm−1 −


for uniformly random ~u1, . . . , ~um−1 (note: the challenger can do this efficiently given gC

′
without

knowing C ′). The ciphertext-update matrices are chosen as in GameCor (i + 1, j) where Bj−1 is
programmed to annihilate ~u3, . . . , ~um−1 , Bj is programmed to annihilate ~u2 and m−4 random vectors
and Bj+1 is programmed to annihilate a single random vector.

The initial secret key is chosen by first sampling ~w2, . . . , ~wm−1 so that, along with ~w1, they form a
random correlated basis of (~p)⊥, having ~w2 ∈ (~c1)⊥. This basis is then used to sample the initial high
secret key sk−1. The secret key updates are chosen as in GameCor (i+ 1, j).

If C ′ is of rank x = m− 2, then the above distribution is just that of GameCor (i+ 1, j). On the other
hand, if C ′ is of rank x = 1, we argue that the above distribution is that of GameCorAlt (i+ 1, j). The
argument mirrors that of Claim C.4.

We now introduce a second intermediate game called GameCor2Alt (i + 1, j) where the initial ciphertext
ct−1 is chosen so that the exponent in the first component gC is

C =

 | · · · |
~u>1 · · · ~u>m−2

| · · · |

 − ~c1 −
· · ·

− ~cm−2 −


for uniformly random ~u1, . . . , ~um−2. The initial ciphertext-update matrices . . . , Bj−2 are chosen honestly,
the update Bj−1 is programmed to annihilate m − 3 random vectors, the update Bj is programmed to
annihilate the m−3 vectors ~u2, . . . , ~um−2, and the update matrix Bj+1 is programmed to annihilate a single
random vector. The initial secret key and all key update matrices are chosen as in GameCor (i+ 1, j).

We now show (in 2 steps) that GameCor2Alt (i + 1, j) is computationally indistinguishable from
GameAlt (i+ 1, j) and from GameSuperCor (i+ 1, j + 1), which completes the proof of Lemma C.8.

Claim C.10. GameCorAlt (i+ 1, j)
comp
≈ GameCor2Alt (i+ 1, j).
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Proof. We show a reduction from the (k = 1)-extended rank hiding assumption (Definition B.10,

Lemma B.11). The challenger gets a challenge gC
′

and ~w1, where C ′
$← Rkx(F(m−3×m

q ) is either
rank x = 1 or rank x = m − 3 and ~w1 ∈ ker(C ′). Let us label the rows of C ′ by ~c2, . . . ,~cm−2. Choose

~c1, ~p
$← (~w1)⊥ and ~t

$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p. The initial ciphertext ct−1 is chosen

so that the exponent in the first component gC is

C =

 | |
~u>1 · · · ~u>m−2

| |

 − ~c1 −
· · ·

− ~cm−2 −


for random ~u1, . . . , ~um−2 ∈ Fmq (note: the challenger can do this efficiently given gC

′
without knowing

C ′). The ciphertext-update Bj−1 is programmed to annihilate m−3 random vectors, Bj is programmed
to annihilate ~u2, . . . , ~um−2 , and Bj+1 is programmed to annihilate a single random vector.

The initial secret key is chosen by first sampling ~w2, . . . , ~wm−1 so that, along with ~w1, they form a
random correlated basis of (~p)⊥, having ~w2 ∈ (~c1)⊥. This basis is then used to sample the initial high
secret key sk−1. The secret key updates are chosen as in GameCor (i+ 1, j).

If C ′ is of rank x = m− 3, then the above distribution is just that of GameCor2Alt (i+ 1, j). On the
other hand, if C ′ is of rank x = 1, we argue that the above distribution is that of GameCorAlt (i+1, j).
The argument mirrors that of Claim C.5.

Claim C.11. GameCor2Alt (i+ 1, j)
comp
≈ GameSuperCor (i+ 1, j + 1).

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption (Definition B.10,

Lemma B.11). The challenger gets a challenge gC
′

and ~w1, ~w2, where C ′
$← Rkx(F2×m

q ) is either
rank x = 1 or rank x = 2 and ~w1, ~w2 ∈ ker(C ′). Let us label the rows of C ′ by ~c1,~c2. Choose

~p,~c3, . . . ,~cm−1
$← (~w1)⊥ and ~t

$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p. The initial ciphertext ct−1

is chosen so that the exponent in the first component gC is

C =

 | |
~u>1 · · · ~u>m−1

| |

 − ~c1 −
· · ·

− ~wc−1 −


for random ~u1, . . . , ~um−2 ∈ Fmq (note: the challenger can do this efficiently given gC

′
without knowing

C ′). The ciphertext-update Bj−1 is programmed to annihilate m−3 random vectors, Bj is programmed
to annihilate ~u3, . . . , ~um−1 , and Bj+1 is programmed to annihilate ~u2.

The initial secret key is chosen by sampling ~w3, . . . , ~wm−1 so that, along with ~w1, ~w2, they form a basis
of (~p)⊥. This basis is then used to sample the initial high secret key sk−1. The secret key updates are
chosen as in GameCor (i+ 1, j).

If C ′ is of rank x = 2, then the above distribution is just that of GameSuperCor (i+ 1, j + 1). Notice
that, in this case, the key and ciphertext bases are super-correlated with ~c1,~c2 ∈ (~w1, ~w2)⊥. On the
other hand, if C ′ is of rank x = 1, we argue that the above distribution is that of GameCor2Alt (i+1, j).
The argument mirrors that of Claim C.6.

Putting Claim C.9, Claim C.10 and Claim C.11 together, we complete the proof of the lemma.

Lemma C.12. If ` ≤ min(m/6− 1, n− 3m+ 6) log(q)− ω(log(λ)) then

GameSuperCor(i+ 1, j + 1)
stat
≈ GameCor(i+ 1, j + 1).
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Proof. There are two differences between GameSuperCor and GameCor. The first difference lies in wether
the ciphertext and key bases are correlated or super-correlated. The second difference lies in the regime of
ciphertext updates. We define an intermediate game, GameCorInter (i+ 1, j+ 1), in which the ciphertext
bases are (only) correlated, but the regime of ciphertext updates follows that of GameSuperCor (i+1, j+1).

Claim C.13. If ` ≤ (m/6− 1) log(q)− ω(log(λ)), then

GameSuperCor(i+ 1, j + 1)
stat
≈ GameCorInter(i+ 1, j + 1).

Proof. This follows by the orthogonality hiding lemma (Lemma B.9). Notice that, once we fix ~p, ~w1

and ~c1 in GamrCor’, we can think of ~w2
$← (~c1, ~p)

⊥ and ~c2
$← (~w1)⊥ as two independent sources.

Moreover, we claim that the only leaked-upon values in the two games above that are related to ~w2 are
the key updates Ai, Ai+1 and the secret key ski+1. Therefore only three time periods contain relevant
information about ~w2 This is because the initial high key sk−1 has rows from the full space (~p)⊥ (and
hence does not depend on ~w2) and the updates A−1, . . . , Ai−1 do not depend on the key at all. (On
the other hand the secret key ski+1 has the span of ~w1, ~w2 in the exponent, and the updates Ai, Ai+1

annihilate vectors that are correlated to ski+1 and hence also to ~w2). Lastly the keys ski+2, . . . are
random low keys and the update Ai+2, . . . are chosen honestly and hence have no information about
~w2. Therefore, the leakage on ~w2 is bounded by 3`. Similarly, the only leaked-upon values in the
two games above that are related to ~c2 are the ciphertext updates Bj , Bj+1 and the ciphertext ctj+1.
Hence the leakage on ~c2 is bounded by 3` as well. Lastly, since the secret key and ciphertext leak
independently, if we condition on the leakage Z observed by the attacker, the distributions of ~c2 and
~w2 are independent. We get H̃∞(~w2 | Z) ≥ (m−2) log(q)−3`, H̃∞(~c2 | Z) ≥ (m−1) log(q)−3`. Since
GameSuperCor is equivalent to GameCorInter is we condition on the event 〈~w2,~c2〉 = 0, we can apply
the orthogonality hiding lemma (Lemma B.9) to bound the statistical distance between these games.
In particular, the games GameSuperCor and GameCorInter are statistically indistinguishable as long
as ` ≤ (m/6− 1) log(q)− ω(log(λ)).

We now turn to changing the regime of ciphertext updates from GameCorInter to GameCor. But for
this we just use the reprogramming lemma (Lemma B.13) on the ciphertext updates. In particular, we rely
on the fact that the regime of ciphertext updates between GameCorInter and GameCor only differs in
which updates annihilate additional random vectors (but not in how they annihilate the ciphertext exponent
vectors ~ui). Therefore, using the reprogramming lemma, we see that the two games are indistinguishable
as long as ` ≤ (n− 3m+ 6) log(q)− ω(log(λ)).

Lemma C.14. If ` ≤ (n− 3m+ 6) log(q)− ω(log(λ)) then GameCor (i+ 1, qct + 1)
comp
≈ Game i+ 1.

Proof. There are three differences between the above games: (I) in GameCor (i+ 1, qct + 1) the ciphertext
and key bases are correlated (〈~c2, ~w1〉 = 0) whereas in Game i + 1 they are uncorrelated, (II) the regime
of programmed key updates differs between the two games in when and how many random vectors the
updates are programmed to annihilate, (III) in GameCor (i+ 1, qct + 1) the initial ciphertext is high while
in Game i+ 1 it is low (all ciphertext updates are honest in both games).

Firstly, we can ignore (I) since both games are completely independent of the choice of the basis vector
~c2 as there are no mid ciphertexts in either game. In particular, the distribution of the initial low/high
ciphertext in the two games does not depend at all on whether the bases are correlated or not.

Secondly, we use the reprogramming lemma (Lemma B.13) to change the regime of key updates from
that of GameCor (i + 1, qct + 1) to that of Game i + 1. The total number of random vectors that
are programmed to be annihilated in either game is u = m − 3. Therefore, the change is statistically
indistinguishable as long as ` ≤ (n− 3m+ 6) log(q)− ω(log(λ)).
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Lastly, we provide a simple reduction from the (k = 1)-extended rank hiding assumption (Defini-
tion B.10, Lemma B.11) to distinguishing whether the initial ciphertext is low or high. The reduction gets

a challenge gC and ~w where C
$← Rkx(Fn×mq ) is a random matrix of either rank x = m− 1 or rank x = 1,

and ~w ∈ ker(C). The reduction samples a random ~t
$← Fnq , ~p

$← (~w)⊥ and ~w2, . . . , ~wm−1
$← (~p)⊥. It uses

these to create the public parameters g~p,h~w, public key pk = e(g,h)〈~p,~t〉 and the initial high secret key
hS . For the initial ciphertext, it just uses ct(1) = gC and creates the matching second component ct(2)

efficiently using ct(1),msgb,~t. It runs the rest of the game by choosing the key updates as specified in
Game i + 1 and all the ciphertext updates honestly. It’s easy to see that if the challenge gC is of rank
x = m− 1 then this the same as GameCor (i+ 1, qct + 1) with the modified key updates as above, while
if the challenge is of rank x = 1 then this is just Game i+ 1.

Lemma C.15. Game qsk + 1
comp
≈ GameFinal.

Proof. We define several hybrid distributions for choosing the initial ciphertext ct. Recall that we can think
of ct as consisting of n rows where each row is a ciphertext under the “simple” (un-updatable) encryption
scheme. We will consider the following distributions on the ciphertext-rows:

1. Low Encryptions of msg : The ciphertext-row is of the form (g~c, e(g,h)〈~c,~t〉msg) where ~c = u~c1 for

a random u
$← Fq and the ciphertext-basis vector ~c1.

2. Mid Encryptions of msg: The ciphertext-row is of the form (g~c, e(g,h)〈~c,~t〉msg) where ~c = u1~c1+u2~c2

for random u1, u2
$← Fq and the ciphertext-basis vectors ~c1,~c2.

In Game qsk + 1, the initial ciphertext ct has all of its n rows chosen as random low encryptions of msgb.
In GameFinal, the initial ciphertext ct has all of its n rows chosen as random low encryptions of 1GT

.
We define hybrid games GameHyb i = 0, . . . , n, where the first i rows of the initial ciphertext ct are

chosen as random low encryptions of 1GT
and the rest are random low encryptions of msgb. Note that

GameHyb 0 is really just Game qsk + 1 and GameHyb n is really just GameFinal.
We also define the hybrid game GameHybMid i = 0, . . . , n − 1 where the first i rows of the initial

ciphertext ct are random low encryptions of 1GT
, the row i+ 1 is a random mid encryption of msgb, and

the rest of the rows are random low encryptions of msgb.
In all these games, the ciphertext updates are all honest, the secret key is a high key and the key

updates are all honest (as in Game qsk + 1).

Claim C.16. For i = 0, . . . , n− 1: GameHyb i
comp
≈ GameHybMid i.

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption (Definition B.10,
Lemma B.11) to distinguishing whether the (i + 1) row is a low or mid encryption of msgb. The

reduction gets a challenge gC
′

and ~w where C ′
$← Rkx(F2×m

q ) is a random matrix of either rank x = 2
or rank x = 1, and ~w ∈ ker(C). Let us label the rows of C ′ by ~c1,~c2 The reduction samples a random
~t

$← Fnq , ~p
$← (~w)⊥ and ~w2, . . . , ~wm−1

$← (~p)⊥. It uses these to create the public parameters g~p,h~w,

public key e(g,h)〈~p,~t〉 and the initial high secret key hS .

For the initial ciphertext, it sets ct(1) = gC where C = ~uT~c1 + ~e>~c2 for uniformly random ~u ∈ Fnq and
the vector ~e ∈ Fnq being it i+ 1 standard basis vector whose i+ 1 coordinate is 1 and all others are 0.
In other words each row j of the matrix C can be written as uj~c1 + ej~c2 where uj are random, ei+1 = 1
and ej = 0 for j 6= i+ 1. The reduction creates the matching second component ct(2) efficiently using
ct(1),msgb,~t as either an encryption of 1GT

(for rows j ≤ i) or the message msgb (for rows j > i). It
runs the rest of the game by choosing the key updates the ciphertext updates honestly. It’s easy to
see that if the challenge is of rank x = 1 then this the same distribution as GameHyb i while if the
challenge is of rank x = 2 then this is the same distribution as GameHybMid i.
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Claim C.17. For i = 0, . . . , n− 1: GameHybMid i
stat
≈ GameHyb i+ 1.

Proof. In GameHybMid i, the (i+ 1) row of the initial ciphertext ct is of the form

(gu1~c1+u2~c2 , e(g,h)u1β+u2γmsgb)

where β = 〈~c1,~t〉, γ = 〈~c2,~t〉. We claim that γ information theoretically “blinds” the message m. That
is, we claim that given everything else in the game other than e(g,h)u1β+u2γmsgb, the value γ looks
uniformly random. This is because the only information that’s available in the entire game about ~t is
the value α = 〈~t, ~p〉 given in the public key and the value β which is revealed by the other rows of the
ciphertext ct. Since the secret key is a high key, the rows of the secret key are chosen uniformly at
random from the space

span(~w1, . . . , ~wm−1) + ~t = (~p)⊥ + ~t = {~s ∈ Fmq | 〈~s, ~p〉 = α}

which does not depend on ~t beyond its dependence on α. If m ≥ 3 then the value ~c2 is linearly
independent of ~p,~c1 (w.o.p.) and hence the value γ is a random and independent of α, β and everything
else observed in the game. Therefore, the message msgb contained in the (i+1)st row of the ciphertext
is statistically hidden in GameHybMid i. So we may as well replace the (i + 1) row from containing
msgb to just containing 1GT

.

We now repeat the same argument as in the proof of Claim C.16 to change the (i+ 1) row from being
a mid encryption of 1GT

to being a low encryption of 1GT
, which gets us to GameHyb i+ 1.

Combining these hybrids, we get the statement of the lemma.

C.3 Putting It All Together

Using Lemmata C.1 - C.15 in the sequence of hybrids given by Figure 3, we get the indistinguishability:

Real
comp
≈ GameFinal. Recall that the output of each game includes the view of the attacker A at the

end of the experiment along with the challenger’s selection bit b. Since the attacker’s guess b̃ at the end
of the game can be efficiently computed from the view of the attacker, the predicate (A wins) ⇔ (b̃

?
= b)

can be efficiently computed from the output of each game. In GameFinal the view of the attacker is
independent of the random bit b and hence we have Pr[A wins ] = 1

2 . Therefore, in the Real game, we
must have |Pr[A wins ]− 1

2 | ≤ negl(λ) since the two games are indistinguishable. This concludes the proof
of Theorem 4.1.

D Generalization to k-Linear

In this section, we provide a generalized scheme which we can prove secure under the k-linear assumption
for arbitrary choices of k. When k = 1, the scheme description and proof coincide exactly with the original.

D.1 Scheme Description

Let k, n,m, d be integer parameters of the system with n ≥ d.

KeyGen(1λ) → (pk, sk) : Sample (G1,G2,GT , e,g,h, q)← G(1λ) to be the description of a bilinear group
of prime order q, with an efficient pairing e : G1 ×G2 → GT , and generators g ∈ G1,h ∈ G2.

Choose matrices P,W ∈ Fk×mq at random subject to rowspan(P ) ⊥ rowspan(W ) and set

prms = ((G1,G2,GT , e,g,h, q),g
P ,hW )
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to be the public parameters of the system.9

Choose ~t
$← Fmq and set pk := e( gP , h~t

>
) = e(g,h)~α where ~α> = P~t>. Choose R

$← Fn×kq and set

sk := hS , where S is the n×m matrix given by

S :=

 R

 [ W
]

+

 ~1>

 [ ~t
]
.

In other words, each row of S is chosen at random from the affine subspace ~t+ rowspan(W ).
(Note that hS can be computed from the components hW , ~t, R without knowing W .)

(Simple) SimplEncryptpk(msg)→ ct : To encrypt msg ∈ GT under pk = e(g,h)~α ,

choose ~u ∈ Fkq and output: ct = (g~uP , e(g,h)~u·~α
>

msg ).

(Updatable) Encryptpk(msg)→ ct : To encrypt msg ∈ GT under pk = e(g,h)~α,

choose U
$← Fn×kq and label its rows ~u1, . . . , ~un. Output ct = (ct(1), ct(2)) where:

ct(1) =

 g~u1P

. . .

g~unP

 , ct(2) =

 e(g,h)~u1·~α
> ·msg

. . .

e(g,h)~un·~α
> ·msg


Each row is an independent encryption of the (same) message msg using the simple encryption

process. Equivalently, we can write the ciphertext as ct(1) = gC , ct(2) = e(g,h)~z
>

for:

C =

 U

 [ P
]

, ~z> =

 U

 ~α> +

 ~1>

µ =

 C

 t>

+

 ~1>

µ
where µ is given by msg = e(g,h)µ and ~α> = P~t>.

Decryptsk(ct)→msg: To decrypt, we only need to look at the first rows of the secret key and the
ciphertext matrices. Given the first row h~s of the secret key sk = hS , the first row g~c of the
ciphertext component ct(1) = gC , and the first scalar component e(g,h)z of ct(2) = e(g,h)~z

>
, the

decryption algorithm outputs: msg = e(g,h)z/e( g~c , h~s
>

).

SKUpdate(sk)→ sk′ : Choose a random matrix A′
$← Rkd(Fn×nq ). Derive A by “rescaling” each row of

A′ so that its components sum up to 1. That is, set (A)i,j := (A′)i,j/(
∑n

l=1(A′)i,l).

If the current secret key is sk = hS , output the updated key sk′ := hAS .

CTUpdate(ct)→ ct′ : Choose a random matrix B′
$← Rkd(Fn×nq ). Derive B by “rescaling” each row of

B′ so that its components sum up to 1. That is, set (B)i,j := (B′)i,j/(
∑n

l=1(B′)i,l).

If the current ciphertext is ct = (gC , e(g,h)~z), output the updated ciphertext ct′ := (gBC , e(g,h)B~z).

Theorem D.1. For any integers m ≥ 7k, n ≥ 3m − 7k + 1 and d := n −m + 3k the scheme (KeyGen,
Encrypt, Decrypt, SKUpdate, CTUpdate) is an `-CLRS-Friendly Encryption scheme under the k-linear
assumption for any ` ≤ min ((m− 5k − 1)/6, n− 3m+ 7k − 1) log(q)− ω(log(λ)).

The argument for correctness is the same as for the original scheme in Section 4 and we sketch the
modifications needed to make the proof of security go through below.

9We can interpret the above as choosing W at random and choosing each row of P at random from ker(W ).
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D.2 The Generalized Proof (Sketch)

We now give an overview of the modifications to the previous proof necessary to generalize it to the k-linear
assumption. The overall structure of the proof and the hybrid games is exactly the same, except that we
modify how low/mid/high keys and ciphertexts are defined.

Alternate Key and Ciphertext Distributions. Assume the matrices P,W and the vector ~t are fixed
defining gP ,hW and pk = e(g,h)P~t

>
. Let us label the rows of W by ~w1, . . . , ~wk and let (~w1, . . . , ~w(m−k))

be a basis of ker(P ) = rowspan(P )⊥ and let (~c1, . . . ,~c(m−k)) be a basis of ker(W ) = rowspan(W )⊥. We

define the various key distributions on sk = hS the same way as before with

S =

 | |
~r>1 · · · ~r>i
| |

 − ~w1 −
· · ·

− ~wi −

+

 ~1>

 [ ~t
]

(4)

but now we have i = k for honest , i = 2k for mid and i = (m − k) for high keys. Similarly, we define
the low/mid/high ciphertext distributions the same as before with ct(1) = gC where

C =

 | |
~u>1 · · · ~u>j
| |

 − ~c1 −
· · ·

− ~cj −

 (5)

but now we have j = k for low , j = 2k for mid and j = (m− k) for high ciphertexts.

By default, we choose the ciphertext and keys basses uncorrelated with ~wk+1, . . . , ~wm−k
$← ker(P )

and ~c1, . . . ,~cm−k
$← ker(W ). We say that the bases are correlated if we instead choose ~c1, . . . ,~ck

$←
(~w1, . . . ~w2k)

⊥ and all other vectors as before. We say that the bases are super-correlated if we instead

choose ~c1, . . . ,~c2k
$← (~w1, . . . ~w2k)

⊥ and all other vectors as before. The table in Section 5, Figure 1 still
accurately summarizes interactions between keys and ciphertexts.

The Hybrids. We also define the various games Game i, GameCor (i, j), GameSuperCor (i, j) analo-
gously as before with appropriate modifications. For example, in Game i, the key updates . . . , Ai−2 are
honest, the update Ai (high to mid) is now programmed to annihilate the m− 3k vectors ~r2k+1, . . . , ~rm−k,
the update Ai+1 (mid to low) is programmed to annihilate the k vectors ~rk+1, . . . , ~r2k along with m − 4k
random vectors, and the update Ai+1 is now programmed to annihilate k random vectors. The other game
definitions are all analogous.

All of the computational steps are performed analogously, but now under the k-extended rank hiding
assumption which follows from k-linear. The information theoretic steps in Lemma C.2, Lemma C.7, are
also analogous and the new bound becomes: ` ≤ n− 3m+ 7k − 1.

The only tricky part becomes the information theoretic argument where we change from super-correlated
bases to just correlated bases (the analogue of Claim C.13). We want to switch the condition

(~wk+1, . . . , ~w2k) ⊥ (~ck+1, . . . ,~c2k)

from being true to being false. We do this by using an information theoretic argument on each pair
~wi,~cj separately (in any order). Whenever we do so, we think of all other basis components as fixed.
That is ~wi always comes from the space orthogonal to rowspan(P )∪ span(~c1, . . . ,~cj−1,~cj+1, . . . ,~c2k) and ~cj
always comes from the space orthogonal to rowspan(W )∪ span(~wk+1, . . . , ~wi−1, ~wi+1, . . . , ~w2k). We are only
changing the condition ~wi ⊥~cj by applying arguing that leakage on these vectors is bounded by 3` since
they only “occur” in three time periods, and then applying Lemma B.9. We then get indistinguishability
assuming the parameters ` ≤ ((m− 5k − 1)/6) log(q)− ω(log(λ)).
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E CLRS for General Access Structures

We now present a construction of CLRS schemes for general access structures over N devices. We only
require that the access structure is realizable by some underlying linear secret sharing scheme (LSSS). The
main advantage is that the attacker can fully corrupt some subset of devices, getting their shares in full,
and continually leak on all other shares.

Linear Secret Sharing Scheme (LSSS). We follow the terminology and definition of [Bei96]. A linear
secret sharing scheme can be expressed in terms of a share-generating matrix M ∈ FL×Kq and a map ρ

which associates each row of M with a party (i.e. ρ(i) denotes the party associated with the ith row
of M). To share a secret s ∈ Fq, we choose random values s2, . . . , sK ∈ Fq, and we define the vector

~s := (s, s2, . . . , sK). Letting ~Mi denote the ith row of M , we produce the share 〈 ~Mi, ~s〉 ∈ Fq for each i,
which is given to the party ρ(i). A subset of the parties can reconstruct the secret if and only if the vector
(1, 0, . . . , 0) ∈ FKq is in the span of the rows ~Mi such that party ρ(i) is in the subset (when this occurs, the
secret s will be a linear combination of the shares belonging to these parties, and the coefficients of this
combination are efficiently computable). We say a set of parties/shares is authorized if they can reconstruct
the secret, and otherwise we say a set of parties/shares is unauthorized. See [Bei96] for various alternate
characterizations of the access structures that are achievable using LSSS.

Threshold Encryption. As a stepping stone to achieving CLRS for general access structures, we first
observe that we can build an updatable threshold encryption scheme for general access structures realizable
by LSSS over N parties. This scheme allows us to convert a single secret key into N secret-key shares
and achieves the following security guarantee. Suppose an attacker initially specifies a set of secret-key
shares that it wishes to corrupt (this is a static corruption model). The attacker is given the key shares
belonging to these parties, and gets continual leakage on all the remaining uncorrupted key shares and the
ciphertext (individually). As long as the set of corrupted shares is not authorized by the underlying LSSS,
the message remains hidden from the attacker. Notice that the attacker cannot corrupt the ciphertext and
then leak on the key shares afterward (but w.l.o.g. can get the ciphertext in full at the end).

To achieve this, we essentially use our basic scheme but share the vector ~t in the exponent of the secret
keys according to the share-generating matrix (M,ρ). More precisely, we share each coordinate of ~t (each
coordinate is an element of Fq, and can be shared as described above). This means that each party will be
given secret key shares which are of the same form as secret keys in our basic updatable encryption scheme,
except that in the ith share, the vector ~t has been replaced by the vector ~ti, where each coordinate of ~ti is a
share of the corresponding coordinate of ~t generated by the row ~Mi of the share-generating matrix. Since
each secret key share and the ciphertext retain the structure of our core updatable encryption scheme,
updates can be done the same as before. To decrypt, parties will reconstruct the vector ~t in the exponent
from their secret key shares, and then apply the decryption algorithm for the base scheme.

Security follows from a hybrid argument in which we essentially apply our proof for the basic scheme
to change each honestly distributed secret key to a high key. Observe that in the steps of our proof which
are used to change a key from honest to high (once the ciphertext is low), the vector ~p is always known to
the simulator. This allows the simulator to sample uniformly from (~p)⊥ in order to produce high keys.

General CLRS. To get CLRS for general access structures, we additionally observe that we can also
split the message to be encrypted into shares by again using the share-generating matrix in the exponent.
Each resulting share will be an element of GT , and can be separately encrypted in the form of a ciphertext
for our base scheme. Combining this with the threshold encryption idea, we get a scheme where each
party is given a total share containing both a secret-key share and a ciphertext share that correspond to
its shares of ~t and msg under the LSSS. All of these keys and ciphertexts will be of the same form as keys
and ciphertexts in the base scheme, and so can be updated in the same way.
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We prove the following security property. We again consider an attacker who can corrupt some parties
at the outset of the game, and is given all their shares. However, we now require something a bit stronger
than simply insisting that the set of corrupted parties be unauthorized. We now also require that adding
any one additional party to the set would still result in an unauthorized set. After fully corrupting this
set of parties, the attacker can get continual leakage from all the remaining uncorrupted parties. We note
that this requirement on corruptions is optimal – otherwise the attacker could pool the shares of all the
corrupted parties and use them to define a predicate (of some remaining uncorrupted share) which runs
the reconstruction procedure and outputs (say) the first bit of the message.

Security is proven via a hybrid argument that changes each uncorrupted ciphertext from an honest
encryption of the proper message share to an honest encryption of the identity element. To accomplish
this transformation for each ciphertext, we use an inner hybrid over the uncorrupted keys that belong
parties other than the party who holds the ciphertext that we are currently changing. Each step of this
inner hybrid closely follows the proof for the base scheme. We first change the ciphertext to being a low
encryption (still encrypting the proper message share). We then proceed to change the key to be a high
key. Once this is accomplished, we move on to change the next key to high. Once all of the uncorrupted
keys belonging to other parties are distributed as high keys, we argue (similarly to the final lemma for
the base scheme) that the message encrypted by the low ciphertext can be changed to the identity. We
then rewind the process, returning the keys to honest encryptions and the ciphertext in question to an
honest encryption of the identity element. Once we have treated all of the ciphertexts in this way, they are
all encryptions of the identity element, and the original message is information-theoretically hidden. One
additional subtlety encountered in this proof is that the information-theoretic argument used to change
the encrypted message must now be executed in a setting where the corrupted keys as well as the shares
belonging to the same party as the ciphertext are not high keys, and are given to the attacker. However,
since these keys are insufficient to reconstruct the secret, they do not reveal any information about the
underlying secret vector ~t.

E.1 Definition

We now give a formal definition of CLRS for general access structures realizable by some LSSS. We consider
sharing a secret among N parties, and we let (M,ρ) denote a share-generating matrix of the LSSS, where
M ∈ FL×Kq and ρ : [L] → [N ] is the map associating rows of M with parties. The syntax of the CLRS is
as follows:

ShareGen(1λ,msg,M, ρ)→ (sh1, sh2, . . . , shL) : The share generation algorithm takes as input the secu-
rity parameter λ, a secret message msg, and the share generating matrix (M,ρ). It outputs L secret
shares, sh1, . . ., shL, where each share shl is given to party ρ(l).

Updatel(shl)→ sh′l : The randomized update algorithm takes in the current version of the share shl and
outputs an updated version sh′l. We use the notation Updateil(shl) to denote the operation of updating
the share shl successively i times in a row. That is, sample:

sh
(1)
l := shl, sh

(2)
l ← Updatel

(
sh

(1)
l

)
, . . . , sh

(i+1)
l ← Updatel

(
sh

(i)
l

)
and output sh

(i+1)
l . (Note: the above definition implies Update0

l (shl) = shl).

Reconstruct(shl1 , . . . , shlP )→msg : The reconstruction algorithm takes in some version of some autho-
rized subset of the secret shares shl1 , . . . , shlP and it outputs the secret message msg.

Correctness. We say that the scheme is correct if for any authorized set of shares (shl1 , . . . , shlp) ←
ShareGen(1λ,msg,M, ρ) and any sequence of i1 ≥ 0, . . . , iP ≥ 0 updates on these shares respectively result-
ing in updated shares sh′l1 ← Updatei1l1 (shl1), . . ., sh′lP ← UpdateiPlP (shlP ), we get Reconstruct(sh′l1 , . . . , sh

′
lP

) =
msg. Note that i1, . . . , iP are arbitrary, and are not required to be equal.

39



Security. We define `-CLR security for linear secret sharing schemes as an interactive game between an
attacker A and a challenger. The attacker chooses two messages: msg0,msg1 ∈ {0, 1}∗ with |msg0| =
|msg1|. The challenger chooses a bit b← {0, 1} at random, runs (sh1, . . . , shL)← ShareGen(1λ,msgb,M, ρ).
The attacker then chooses a subset C ⊂ [N ] of corrupted parties. This subset must satisfy the restriction
that for any z ∈ [N ], the set of shares belonging to parties C ∪ {z} is an unauthorized set. In other words,
adding any single other party to C would be insufficient to form an authorized set of shares. The challenger
gives the attacker the shares belonging to the parties in C. We let N ′ denote the number of remaining,
uncorrupted parties, and we let L′ denote the number of uncorrupted shares (i.e. the shares held by these
parties). For convenience of notation, we will assume these parties are indexed by 1 through N ′ and their
shares are sh1, . . . , shL′ .

The challenger then chooses randomness rand1, rand2, . . . , randL′ for the next updates of the shares 1,
2, . . ., L′ respectively and sets

state1 := ∪l s.t. ρ(l)=1(shl, randl), . . . stateN ′ := ∪l s.t. ρ(l)=N ′(shl, randl)

(here we have abused the union symbol to denote concatenation). It also initializes counters L1 :=
0, . . . ,LN ′ := 0. The attacker A can adaptively make any number of the following types of queries to
the challenger in any order of its choosing:

Leakage Queries: The attacker specifies an efficient predicate Leak : {0, 1}∗ → {0, 1} and an index
σ ∈ {1, . . . , N ′}. If Lσ < `, then the challenger responds with the value Leak(stateσ) and increases
the counter Lσ := Lσ + 1. Else it responds with ⊥.

Update Queries: The attacker specifies an index σ ∈ {1, . . . , N ′}. The challenger parses

stateσ = ∪l s.t. ρ(l)=σ(shl, randl)

and computes the updated shares sh′l := Updatel(shl; randl) using randomness randl. It samples fresh
randomness rand′l and sets statel := (sh′l, rand

′
l), Lσ := 0.

At any point in the game, the attacker A can output a guess b̃ ∈ {0, 1}. We say that A wins if its guess
matches the choice of the challenger b̃ = b. We say that an `-CLRS scheme is secure if for any PPT attacker
A running in the above game, we have |Pr[A wins ]− 1

2 | ≤ negl(λ).

Remark 1: Final Corruption. We note that the above definition also generically implies security if
one additional party is (adaptively) fully corrupted at the end of the game, but then there is no more
leakage on any other shares afterwards. The reasoning is the same as in the two party case. Assume
that at some point in the game, there is a distinguishing strategy D that would use the additional fully
corrupted share shi to break security. Then we could also just leak the predicate D(shi) to break security.

Remark 2: Comparison to Basic CLRS Definition. If we instantiate the above definition with
N = 2 and a simple two-out-of-two LSSS where the only authorized set includes both parties, then we get
the original basic definition of CLRS from Section 3.1. That is, the attacker cannot fully corrupt either
share, but can continually leak on both shares.

Remark 3: Adaptivity. The above definition only considers static corruptions, where the attacker
decides which parties to corrupt ahead of time before seing any leakage. When the number of parties N is
small (constant or logarithmic) then this also automatically implies security against adaptive corruptions
via a “guessing argument” where we just guess the set of parties the attacker will corrupt ahead of time.
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Remark 4: Updates. We note that there is no compelling reason to require that a party update all of
the shares belonging to it at the same time. We could alternatively define update queries to act on a single
index l ∈ L′ at a time instead if we preferred (though in this case, we would wait for every share belonging
to the party to be updated at least once before resetting the leakage counter Lσ). This distinction makes
no difference in the proof of security for our system.

E.2 Scheme Description

Let G1,G2,GT be groups of prime order q, with pairing e : G1 × G2 → GT and let g ∈ G1,h ∈ G2 be
generators. Let n,m, d be integers with n ≥ d.

Key Generation(msg, (M,ρ)): To share a secret msg ∈ GT according to the share-generating matrix

(M,ρ), we first choose ~p, ~w ∈ Fmq at random subject to 〈~p, ~w〉 = 0. We also choose ~t
$← Fmq and define

α = 〈~p,~t〉. We also define f := e(g,h)α. We let L×K denote the dimensions of the matrix M , and
we choose a matrix T ∈ FK×mq whose first row is ~t and whose remaining rows are chosen randomly.

For each i from 1 to L, we let ~Mi denote the ith row of the matrix M . Then ~MiT is a 1×m vector
of shares of the coordinates of ~t. We denote this vector by ~ti (we emphasize that this is a vector, and

should not be confused with the ith coordinate of the vector ~t). We choose ~ri = (ri1, . . . , r
i
n)

$← Fnq
and define ski := hSi , where Si is the n×m matrix given by:

Si :=

 ri1 ~w + ~ti
· · ·

rin ~w + ~ti

 =

 (~ri)
>

 [ ~w
]

+

 ~1>

 [ ~ti
]
.

In other words, each row of Si is chosen at random from the 1-dimensional affine subspace ~ti+span(~w).
(Note that hSi can be computed from the components h~w, ~ti, ~ri without knowing ~w.)

We additionally choose random values v2, . . . , vK ∈ Fq and implicitly define ~v ∈ FKq by setting

e(g,h)~v := (msg, e(g,h)v2 , . . . , e(g,h)vK ) ∈ GK
T . For each i from 1 to L, we define msgi :=

e(g,h)
~Mi·~v, which can be computed from e(g,h)~v and ~Mi. We choose ~ui = (ui1, . . . , u

i
n)

$← Fnq
and define:

ct
(1)
i =

 gu
i
1~p

. . .

gu
i
n~p

 , ct
(2)
i =

 fu
i
1 ·msgi
. . .

fu
i
n ·msgi



Equivalently, we can write the ciphertext as ct
(1)
i = gCi , ct

(2)
i = e(g,h)~z

>
i for:

Ci =

 ~u>i

 [ ~p
]

, ~z>i =

 ~u>i

α+

 ~1>

µi
where µi is given by msgi = e(g,h)µi and α = 〈~p,~t〉. In the language of our updatable encryption

scheme, ct(1), ct
(2)
i are encryptions of msgi.

Each party is given the values ski, ct
(1)
i , ct

(2)
i for the i’s which ρ maps to that party, and these values

comprise the share belonging to the party.
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Share Updates: To update an ski in its share, a party chooses A′
$← Rkd(Fn×nq ) and derives a matrix A

by rescaling each row of A′ so that its entries sum to 1. Denoting the current value of ski by hSi , the
updated value is hASi .

To update a pair ct
(1)
i , ct

(2)
i in its share, a party chooses B′

$← Rkd(Fn×nq ) and derives B by rescaling

each row of B′ so that its entries sum to 1. Denoting the current values by gCi , e(g,h)~zi , the updated
values are gBCi , e(g,h)B~zi .

Reconstruction: We let P denote a set of parties who are authorized to reconstruct the shared value
msg. This means that the rows ~Mi of M such that ρ(i) ∈ P include the vector (1, 0, . . . , 0) ∈ FKq in
their span. We let P ′ denote the set of these indices i such that ρ(i) ∈ P . The parties first compute
coefficients {βi}i∈P ′ such that

∑
i∈P ′ βi

~Mi = (1, 0, . . . , 0). For each ski where i ∈ P ′, the party takes
the first row of this and raises it to the power βi. Taking the product of these over i ∈ P ′, the parties
obtain h~t+~w′ for some ~w′ which is orthogonal to ~p. (To see this, note that

∑
i∈P ′ βi~ti = ~t.)

For each ct
(1)
i , ct(2)i where i ∈ P ′, the party takes the first entry of ct

(2)
i and raises it to the power βi.

Taking the product of these values over i ∈ P ′, the parties obtain

f
∑

i∈P ′ u
i
1βimsg = fu

′
msg,

where we define u′ =
∑

i∈P ′ u
i
1βi. Similarly, the parties take the first row of each ct

(1)
i , raise it to the

power βi, and multiply the results together to obtain: gu
′~p.

The process is now completed by decryption. The parties compute:

e(gu
′~p,h

~t+~w′) = e(g,h)u
′α = fu

′
,

since ~p · ~w′ = 0. The value fu
′

can now be divided from fu
′
msg to obtain msg.

E.3 Security

We prove security in a non-adaptive corruption model where we suppose the attacker initially corrupts a
subset P of the parties (meaning the attacker is given the shares of these parties). We further assume that
adding any one additional party to the set P would still not produce an authorized set. The attacker is
then allowed to make continual leakage queries on the uncorrupted shares. We let Game Real denote the
real security game, formally defined in the subsection E.1.

We will prove security via a hybrid argument over a sequence of games. To index these games, we
let U denote the number of rows of the share-generating matrix (M,ρ) which correspond to uncorrupted
parties. For convenience of notation, we will assume (without loss of generality) that these rows are the
first U rows of M . We let Uj ≤ U for each j from 1 to U denote the number of rows of M which belong to
uncorrupted parties other than party ρ(j). We define the following games (for 0 ≤ j ≤ U , 0 ≤ k ≤ Uj). In
all of these games, all updates are chosen honestly. For convenience of notation, we will drop the subscript
b from the shares of msgb and interpret msgj as the jth share of the message msgb.

GameCT j : In GameCT j, the values ct
(1)
i , ct

(2)
i for i ≤ j are honest ciphertexts encrypting the identity

in GT (i.e. each msgi for i ≤ j has been replaced by the identity element of GT ). The values ct
(1)
i , ct

(2)
i for

j < i ≤ U are distributed as in GameReal. The keys ski for all i ≤ U are also distributed as in Game Real.

GameCTSK (j, k) : (for j ≥ 1) In GameCTSK (j, k), the values ct
(1)
i , ct

(2)
i are distributed as in Game

CT j for all i 6= j, and ct
(1)
j , ct

(2)
j are distributed as a low ciphertext encrypting msgj . The keys ski for the

first the first k values of i such that ρ(i) 6= ρ(j) are distributed as high keys, while the remaining keys are
distributed as honest keys.
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GameCT′ j : In GameCT′ j, all ski for i ≤ U such that ρ(i) 6= j are high keys (while ski for i ≤ U where

ρ(i) = ρ(j) are honest keys), and the ciphertexts are distributed as follows. The ciphertexts ct
(1)
i , ct

(2)
i for

i < j are honest ciphertexts encrypting the identity, ct
(1)
j , ct

(2)
j is is a low ciphertext encrypting the identity

element, and ct
(1)
i , ct

(2)
i for i > j are honest ciphertexts encrypting the proper values msgi.

GameCTSK′ (j, k) : In GameCTSK′ (j, k) (for j ≥ 1), the ciphertexts are distributed as in GameCT′

j, and the secret keys are distributed as in GameCTSK (j, k). We note that GameCTSK′ (j, Uj) is equal
to GameCT′ j, and in GameCTSK′ (j, 0), all the keys are distributed as honest keys.

We transition from Game Real (which is equal to GameCT 0) to GameCTSK (1, 0), then to GameCTSK
(1, 1), and so on, until we reach GameCTSK (1, U). (At this point, the first ciphertext is low and all of
the keys are high). We next move to GameCT′ 1, then to GameCT′′ 1, and next to GameCT 1, and so on.
(In general, we move from GameCT j − 1 to GameCTSK (j, 0), from GameCTSK (j, k) to GameCTSK
(j, k + 1), from GameCTSK (j, Uj) to Game CT′ j = GameCTSK′ (j, Uj), from GameCTSK′ (j, k) to
GameCTSK′ (j, k − 1), and from GameCTSK′ (j, 0) to GameCT j, until we arrive at Game U , where all
of the ciphertexts are encryptions of the identity element. At this point, msg is information-theoretically
hidden, and it is clear that security holds.

Lemma E.1. GameCT j − 1
comp
≈ GameCTSK (j, 0) for all j from 1 to U .

Proof. This is essentially the same proof as Lemma C.1. We show a reduction to the (k = 1)-extended rank

hiding problem, where the reduction is given a challenge g~p, g~c and ~w
$← (~p,~c)⊥ such that either (I) ~p,~c

span a random 1-dimensional space or (II) ~p,~c span a random 2-dimensional space. The honest secret keys

will be created using ~w, and the initial ciphertext ct
(1)
j , ct

(2)
j will be created using g~c. To make the honest

ciphertexts ct
(1)
i , ct

(2)
i for i 6= j, g~p is used. If the challenge is of type (I), then the game is distributed

just as GameCT j − 1, while if it is of type (II) then the game is distributed just as GameCTSK (j, 0).
Therefore, the two are computationally indistinguishable under the 1-linear (SXDH) assumption.

Lemma E.2. GameCTSK (j, k)
comp
≈ GameCTSK (j, k + 1) for all j from 1 to U and all k from 0 to

Uj − 1.

Proof. This is essentially the same proof as the transitions from Game’ 0 to Game qsk + 1 for the updat-
able encryption scheme (a.k.a 2-out-of-2 sharing). We note that as these transitions are accomplished in
Lemma C.2, Lemma C.3, Lemma C.7, Lemma C.8, Lemma C.12, Lemma C.14, in all computational steps,
the simulator knows the vector ~p and chooses ~t for itself. Thus, we can apply these same arguments to move
from GameCTSK (j, k) to GameCTSK (j, k+ 1). Now our simulator will pick the vector ~t to be shared for
itself, so it will know all of the vectors ~ti for the secret key pieces belonging to all parties, and it can easily
create the high keys because it knows the vector ~p (and hence can sample from the m − 1 dimensional

space (~p)⊥). It can easily make the honest ciphertexts ct
(1)
i , ct

(2)
i for i 6= j, also because ~p is known. It can

create the low ciphertext ct
(1)
j , ct

(2)
j in the same way as in the previous proofs. The information-theoretic

arguments employed before also apply here without modification, since the secret key and ciphertext pieces
which are changing form belong to different uncorrupted parties. (Recall that secret keys ski which belong

to the same party who holds ct
(1)
j , ct

(2)
j remain honest and unchanged throughout.)

Lemma E.3. GameCTSK (j, Uj)
comp
≈ GameCT′ j for all j from 1 to U .

Proof. This proof is very similar to the proof of Lemma C.15. We define subgames GameCTHyb (j, i) for i

from 0 to n (recall that n is the number of rows in the ciphertext piece ct
(1)
j , ct

(2)
j ). GameCTHyb (j, i) only

differs from GameCTSK (j, U) and GameCT′ j in the distribution of ct
(1)
j , ct

(2)
j - all other aspects of the
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games are identical. In GameCTHyb (j, i), the first i rows of ct
(1)
j , ct

(2)
j are low encryptions of the identity

element, while the rest are low encryptions of the proper shares of msgb. We note that GameCTHyb (j, 0)
is identical to GameCTSK (j, U), and GameCTHyb (j, n) is identical to GameCT′ j. We additionally
define GameCTHybMid (j, i) for i from 0 to n − 1 as being the same as GameCTHyb (j, i + 1), except

that row i+ 1 of ct
(1)
j , ct

(2)
j is a mid encryption of msgj .

We transition from GameCTHyb (j, i) to GameCTHyb (j, i) as in the proof of Claim C.16. We note
that the simulator here knows ~t and ~p, so it can easily generate all of the appropriately distributed ski
values and the honest ciphertexts for ct

(1)
i , ct

(2)
i where i 6= j. It makes ct

(1)
j and ct

(2)
j as in the proof of

Claim C.16.
We transition from GameCTHybMid (j, i) to GameCTHyb (j, i + 1) in a similar way to the proof of

Claim C.17, but we must now consider also the corrupted shares in our information-theoretic argument.
We consider the information about ~t that is revealed in the attacker’s view. As in the proof of Claim C.17,

the (i+ 1) row of the initial ciphertext ct
(1)
j , ct

(2)
j is of the form

(gu1~c1+u2~c2 , e(g,h)u1β+u2γmsgj)

where β = 〈~c1,~t〉, γ = 〈~c2,~t〉.
We claim that the only information about ~t that is available in the attacker’s view elsewhere are the

values of β and α = 〈~t, ~p〉. We note that the value β is the only information about ~t that is revealed by
the other rows of this ciphertext, and no information is revealed by the other honest ciphertexts. We then
claim that α is the only information about ~t that is revealed by the secret keys. To prove this claim, we
first observe that the corrupted keys in addition to the honest keys ski for i ≤ U such that ρ(i) = ρ(j) are
insufficient to reconstruct the secret vector ~t. This is because we have limited the attacker to corrupting a
set of parties such that adding any one additional party (e.g. the party ρ(j)) does not make the set become
authorized.

We next claim that the shares ~ti for this (unauthorized) set of keys reveals no information about ~t. To
see this, consider the set R of rows of M that ρ maps to corrupted parties or to ρ(j). The vector (1, 0, . . . , 0)
is not in the span of these rows. Therefore, there exists some vector ~y ∈ FKq such that ~y · ~Mi = 0 for all

rows ~Mi ∈ R, and 〈~y, (1, 0, . . . , 0)〉 6= 0. Without loss of generality, we can assume that the first coordinate
of ~y is 1. We consider the first coordinate of ~t, denoted by t1. The shares of this coordinate are computed
as 〈 ~Mi, ~v〉, where ~v is a vector ∈ FKq whose first coordinate is t1 and the other coordinates are chosen
uniformly at random. We can achieve the exact same distribution for ~v by setting ~v = t1~y + ~z, where
~z ∈ FKq has its first coordinate equal to 0 and its other coordinates chosen randomly. Now, for rows ~Mi in

R, 〈 ~Mi, ~v〉 = 〈~z,~v〉, since ~Mi is orthogonal to ~y. Since these values have no dependence on ~t1, it is clear
that they reveal nothing about the value t1. The same holds for all other coordinates of ~t. Therefore, the
attacker can learn nothing about ~t from the keys of the corrupted parties and the keys held by party ρ(j).
All other keys are high keys, whose distribution only depends on α = 〈~t, ~p〉. Hence, the only information
about ~t that is revealed by the secret keys is α = 〈~t, ~p〉.

Putting this all together, we see that the value of γ appearing the i+1 row of the ciphertext is distributed
as a uniformly random element, conditioned on the view of the attacker. This information-theoretically
hides the message msgj .

Lemma E.4. GameCTSK′ (j, k + 1)
comp
≈ GameCTSK′ (j, k) for all j from 1 to U and all k from 0 to

Uj − 1.

Proof. This follows from the same proof as Lemma E.2, with the transitions applied in reverse. In other
words, we can simply rewind our arguments to revert the relevant secret key to its original state as an

honest key while the ciphertext ct
(1)
j , ct

(2)
j remains a low encryption of the identity element.

Lemma E.5. GameCTSK′ (j, 0)
comp
≈ GameCT j for all j from 1 to U .
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Proof. This follows from the same proof as Lemma E.1. (Here we are rewinding the ciphertext back to an
honest encryption, with the underlying message now being the identity element.)

F Impossibility of Information-Theoretic Security

We notice that, unlike public-key encryption and digital signatures, traditional secret sharing schemes
(including 2-out-2 secret sharing) can achieve information-theoretic security. Namely, the secret message
remains perfectly hidden even against a computationally unbounded attacker. Unfortunately, we show that
the same cannot be true for CLRS schemes, which must withstand continuous leakage of shares. Namely,
by specifying arbitrary (as opposed to efficient) leakage predicates, the attacker can reconstruct the hidden
secret with probability arbitrarily close to 1. In fact, the result holds even when the following additional
restrictions are placed on the attacker:

• The leakage bound ` = 1. Namely, at most one bit can leak in between successive share updates.

• Each leakage predicate can only depend on the current share value, but not on the randomness for
the next update. Namely, we can assume leak-free updates.

• If s1 is the bit size of the first share and s2 is the bit size of the second share, the attacker will use
only s1 Leakage queries on the first share and only s2 Leakage queries on the second share.10

• The sequence of Leakage and Update queries is specified non-adaptively.11

• The attacker can even break one-wayness of the CLRS scheme, and not just semantic security.
Namely, the shared message msg can be chosen at random (as opposed to being either msg0 or
msg1 chosen by the attacker) and will be recovered in full with probability 1− ε (for any ε > 0).

As it turns out, all these properties will easily follow from the following more general attack, which we
call Continuous Leakage of Consistent Value (CLCV) attack. The attack, parameterized by an arbitrary
key refreshing procedure Update, shows how to leak a value “Update-consistent” with an s-bit initial secret,
using at most s non-adaptive (but computationally unbounded) Leakage queries. After specifying this
attack below, the attack on the CLRS scheme will simply perform a separate CLCV attack on each share,
and then run the honest reconstruction algorithm to recover the secret.

CLCV Attack. Assume Update : {0, 1}s → {0, 1}s is an arbitrary randomized procedure. Given such
a procedure, we say that a value x′ is consistent with x if either x = x′ or there exists some i ≥ 1 and
a sequence of randomness strings r1, . . . , ri such that x′ = Update(. . .Update(x; r1) . . . ; ri). We let C(x)
denote the set of all strings x′ consistent with x.

We define the following CLRV game between a (computationally unbounded) attacker A and a chal-
lenger C. The challenger C gets an input x ∈ {0, 1}s and sets x0 = x, i = 0. The attacker A can adaptively
make any number of the following two queries:

Update Queries: C picks a random string ri+1, sets xi+1 = Update(xi; ri+1), and increments i.

Leakage Queries: A specifies a predicate Leak : {0, 1}s → {0, 1} and gets back the value Leak(xi)
from C. (Notice, the leakage predicate does not take the update randomness as its input.) C then
automatically makes an Update query described above, updating xi to xi+1 and incrementing i.12

10This is essentially optimal, since otherwise both shares still have some entropy left after leakage, and the results of [DDV10]
give an information-theoretic CLRS scheme in this setting.

11Alternatively, one can use s1 non-adaptive queries on the first share, and a single adaptive query on the second share.
12This corresponds to the leakage bound ` = 1, meaning that at most 1 bit can leak in between the updates.
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At the end of the game the attacker outputs a value x′ and wins if x′ is consistent with x: x′ ∈ C(x).

Lemma F.1. For any randomized procedure Update : {0, 1}s → {0, 1}s and any ε > 0 there exist an
(inefficient) attacker A∗ such that, for all x ∈ {0, 1}s, A∗ wins the CLCV game against C(x) with probability
1− ε. Moreover, A∗ is non-adaptive and makes only s Leakage queries.

We prove the lemma below, but, as an immediate corollary, we get the attack on the CLRS mentioned
at the beginning of the section. Namely, we set the failure parameter to ε/2 and run the CLCV attacker
from the Lemma above on both shares sh1 and sh2. Then, with probability 1 − ε we get correct share
values sh′1 and sh′2 consistent with sh1 and sh2. By perfect correctness of CLRS, running the reconstruction
procedure on sh′1 and sh′2 will return the correct message msg.

In fact, we notice that the CLCV attack essentially rules out information-theoretic security for any
cryptographic primitive in the continuous leakage model enjoying perfect correctness. As we mentioned,
however, this is primarily interesting for cryptographic primitives which permit information-theoretic so-
lutions (without leakage) in the first place, such as secret sharing, one-time pad, one-time MACs, etc.

Proof of Lemma F.1. We start with some notation before we describe our CLCV attacker A∗. Given
a permutation π : {0, 1}s → {0, 1}s and a non-empty set X ⊆ {0, 1}s, we let smallestπ(X) denote the
(unique) string x ∈ X having the lexicographically smallest value π(x) among {π(x′) | x′ ∈ X}. Notice, if
π is a random permutation, then smallestπ(X) is simply a random element of X. More generally, for any
sequence Xi ⊇ Xi+1 ⊇ . . . ⊇ Xi+s−1 of s non-empty “shrinking” sets, if π is a random permutation, the
probability that all s values smallestπ(Xi+j) are the same only depends on the ratio between the sizes of
the smallest and the largest sets:

Pr
π

[smallestπ(Xi) = smallestπ(Xi+1) = . . . = smallestπ(Xi+s−1)] =
|Xi+s−1|
|Xi|

(6)

Indeed, since the sets are contained in each other, all the values smallestπ(Xi+j) are equal if and only if
smallestπ(Xi) ∈ Xi+s−1. However, since π is a random permutation, the latter happens with probability
precisely |Xi+s−1|/|Xi|.

For i ≥ 0, let Xi = C(xi) be the (non-empty) set of values consistent with the i-th secret xi. The
non-adaptive strategy of A∗ is the following (recall, ε is the maximum allowed failure probability):

• Pick a random permutation π : {0, 1}s → {0, 1}s, and a random integer t ∈ {1, . . . , N def
= 4s

ε2 log e
}.

• Perform the sequence of i
def
= (t− 1)s Update queries, so that the current secret is xi.

• Perform s Leakage queries, where query j ∈ [s] will leak the j-th bit of smallestπ(Xi+j−1). (Formally,
the j-th leakage predicate Leakj(y) returns the j-th bit of smallestπ(C(y)).)

• Let x′ = b1, . . . , bs be the concatenation of s answers to the Leakage queries above. Output x′ as a
candidate secret consistent with x = x0.

It remains to argue that the probability that x′ is consistent with x is at least 1 − ε. For that, let
yj

def
= smallestπ(Xi+j−1) be the value whose j-th bit we leak in the j-th Leakage query. Let us call these

s values y1, . . . , ys critical. Notice, each critical value is consistent with x, by definition. Thus, it suffices
to argue that the probability all the critical values are the same is at least 1− ε. Indeed, in this case the
leaked value x′ is actually equal to all the critical values, and, hence, consistent with x. This also gives the
intuition behind our construction of A∗. Essentially, A∗ choose a “random” index i hoping that the set
of consistent values Xi = C(xi) will not shrink too much during the next s updates. If this is so (which
we prove below happens with high probability), A∗ wants to choose a “consistent representative” from
the slowly shrinking sets Xi, Xi+1, . . . , Xi+s−1. Since this “shrinkage” might be adversarial, A∗ randomly
permutes the elements of the “slowly shrinking” sets, and hopes that the smallest element of these permuted

46



sets does not “disappear” as the sets slowly shrink. Luckily, Equation (6) tells us precisely this, as long as
the smallest set Xi+s−1 is almost as big as the original set Xi. The formal details are given below.

Let us call a sequence of s consecutive updates an epoch, and let us examine the consistent sets
X0, Xs, X2s, . . . at the end of each epoch. We say that epoch t ≥ 1 is “bad” if |Xts| < (1 − ε

2) · |X(t−1)s|;
namely, the set of consistent values shrunk by more than a factor (1− ε

2). Notice, since the set of consistent
values has size at most 2s and at least 1, we know that the maximal number n of bad epochs must satisfy
the relation 2s(1− ε

2)n ≥ 1. Solving for n, we get the number of bad epochs n ≤ 2s/(ε log e).

Recall now that A∗ choose a random epoch t in the range {1, . . . , N def
= 4s

ε2 log e
}. Since there are at most

n ≤ 2s/(ε log e) bad epochs, we get that the probability A∗ chose a bad epoch is at most n/N ≤ ε/2.
Otherwise, if A∗ chose a “good” epoch, we know that |Xts| ≥ (1 − ε

2) · |X(t−1)s|. Since π was random
and epoch t is good, Equation (6) then tells us that s critical values yj = smallestπ(Xi+j−1) are all the
same with probability 1 − ε/2, meaning they are not the same with probability at most ε/2. Hence, we
see that A∗ fails either it chose a bad epoch t (probability at most ε/2), or the epoch was good but the
critical values were inconsistent (again, probability at most ε/2). Summing these, we get that A∗ fails with
probability at most ε, completing the proof.
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