
The Exact Security of a Stateful IBE and New Compact Stateful
PKE Schemes

S. Sree Vivek, S. Sharmila Deva Selvi, C. Pandu Rangan⋆

Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras, India.
{sharmila,svivek,prangan}@cse.iitm.ac.in

Abstract. Recently, Baek et al. proposed a stateful identity based encryption scheme with compact
ciphertext and commented that the security of the scheme can be reduced to the Computational Bilinear
Diffie Hellman (CBDH) problem. In this paper, we formally prove that the security of the stateful
identity based encryption scheme by Baek et al. cannot be reduced to the CBDH problem. In fact, we
show that the challenger will confront the Y-Computational problem while providing the decryption
oracle access to the adversary. We provide the exact and formal security proof for the scheme, assuming
the hardness of the Gap Bilinear Diffie Hellman (GBDH) problem. We also propose two new stateful
public key encryption scheme with ciphertext verifiability. Our schemes offer more compact ciphertext
when compared to all existing stateful public key encryption schemes with ciphertext verifiability. We
have proved all the schemes in the random oracle model.

Keywords. Stateful Identity Based Encryption, Adaptive Chosen Ciphertext (CCA), Provable Security,
Compact Ciphertext with/without Ciphertext Verification, Random Oracle model.

1 Introduction

The constraints imposed by low-powered, small-memory computing devices such as sensors and PDAs should
be considered while proposing an encryption scheme. The encryption schemes for these kind of resource
constrained devices must address key issues such as limited battery life, low bandwidth, small memory etc
and should incur minimal computation and communication overhead. One way to reduce the computation
cost is to reuse certain (computed) values and this is the key idea behind the stateful encryption schemes
introduced by Bellare et al. [5]. In a stateful encryption scheme, the sender maintains state information
which can be reused across different sessions while encrypting a message to the same receiver several times
during a session. Typically a session can depend on the number of encryptions that can be done with the
same state information with reduced number of heavy computations.

For any public key encryption scheme, the difference between the size of the ciphertext and the size of
the message is referred to as its Ciphertext Overhead. An encryption scheme is said to generate compact
ciphertext if the overhead is utmost the size of one element in the underlying group. Needless to say, compact
ciphertexts are very useful in bandwidth-critical environments [3, 4]. In general, when we design encryption
schemes with stronger security properties, we tend to loose compactness and often arrive at ciphertexts that
have large overheads. However, in the recent past, several researchers have successfully designed CCA secure
encryption schemes (stronger notion of security for encryption schemes) that result in compact ciphertexts
[13, 6, 7, 3, 4]. While these schemes yield compact ciphertexts, they lack an important property which we refer
as Ciphertext Verifiability. We briefly describe about this property and its importance below.

For the public key encryption schemes that are used in important applications such as key transport,
electronic auction etc, the encryption scheme must provide a guarantee that the ciphertext (and thus the
message contained in the ciphertext) was not altered during transit. If such a guarantee is not available, it
may lead to unacceptable situations. For example, suppose a user A wishes to safely send a key value key
to user B and use key as ephemeral/session key for some further interaction with B. A may use the public
key of B and encrypt key and send the ciphertext c to B. If no verification mechanism is available and if c

⋆ Currently The Head, Indian Statistical Institute, Chennai, INDIA.

2 Vivek, Sharmila and Pandu

is altered to c′ (by the adversary or by transmission error) and if c′ is decrypted to key′, B would simply
assume that key′ is the key that A wished to send to him. This would cause further interactions between
A and B impossible and this is clearly undesirable. A similar scenario can be imagined in a KEM/DEM
scheme if modified ciphertexts are used to recover keys. It is not hard to imagine the possibility of change
of bid values in e-auctions/e-tendering, where the altered ciphertext getting decrypted to a value different
from the value actually meant by the sender.

Hence, it is important that the encryption schemes provide ‘ciphertext verifiability’ in addition to all
the other desirable properties such as compactness and CCA security. By ciphertext verifiability we mean a
testing process that is integrated in the decryption algorithm which identifies if the received ciphertext is a
tweaked one or not. If the test fails, the receiver infers that the ciphertext is corrupted during transmission
and rejects it. If the test passes, the receiver considers the message constructed by the decryption algorithm
as a valid message. The ability to distinguish a tweaked ciphertext from a genuine ciphertext is an important
property for decryption algorithm and see [15] by Pass et al. for a formal and rigorous treatment of the same.

Related Work: There are several CCA secure encryption schemes available in the literature. Some of them
are customized designs [1, 6], some are based on transforming a CPA secure system to a CCA secure system
[10, 9, 12], some are based on KEM/DEM (Key Encapsulation Mechanism/Data Encapsulation Mechanism)
[8, 11, 13] and some are based on Tag-KEM/DEM framework [2]. However, none of them produced compact
ciphertext and this prompted researchers to design afresh CCA secure encryption schemes outputting com-
pact ciphertexts. Several new and interesting ideas emerged in the past, resulting in schemes reported in [13,
6, 7, 3, 4]. Though these schemes output compact ciphertext and CCA security, none of them offer ciphertext
verifiability.

Our Contribution: There are four major contributions in this paper. First, we formally prove that the
security of the SIBE proposed in [4] cannot be reduced to the CBDH problem as indicated in the original
paper. We assume the hardness of the Y-Computational problem [12] to show this. Second, we provide the
exact and formal security proof for the same SIBE scheme proposed in [4] assuming the hardness of the
GBDH assumption. In the literature, there is one stateful identity based encryption scheme by Phong et al.
in [16], whose security is based on the GBDH problem and another scheme by Yang et al. in [17], whose
security is based on the CBDH problem. However, the SIBE in [4] offers more compact ciphertext but does
not offer ciphertext verifiability. Third, we design a new PKI based stateful public key encryption scheme
(N − SPKE1), whose security is based on the SDH problem. Our fourth contribution is a stateful public key
encryption scheme (N − SPKE2), whose security is based on CDH problem but with the same ciphertext
overhead as (N − SPKE1). The ciphertext overhead of these two schemes are slightly higher than that of
the SPKE scheme proposed in [4]. The ciphertext overhead of the SPKE scheme in [4] is one group element
and another element with λ bits, where λ is greater than 128-bits. In our schemes we include an integer
value called as index which represents the encryption number. That is, we index the encryptions performed
during a session using an integer counter. At the start of each session, the value of index is initialized to 1
and incremented each time an encryption is performed during the session. If we consider that one million
encryptions are to be done in a session, the index ranges from 1-bit to 20-bits utmost. This also contributes
to the ciphertext overhead of the scheme. Thus, the ciphertext overhead of our scheme is one group element,
one element of size 128-bits and an index. With this overhead, it is possible to offer ciphertext verifiability
and this is the highlighting difference of our scheme. The sender has to just increment the index after each
encryption and store only the incremented value (utmost 20-bits) and does not need to remember the indices
that are used previously across the session. Thus this will not lead to big storage overhead. It is possible to
use the folkloric construction of appending 80-bits of known value (usually 80-bits of 0’s) to the plaintext
while encrypting it and checking whether the decryption of the ciphertext produces a message with those
80-bits at the end to ensure ciphertext verifiability. However, the size of this value is lower bound by 80-bits,
where as in our construction, the index is upper bound by 20-bits (for 220 encryptions) and hence can take
a value starting from 1−bit, which is a considerable reduction for resource constrained devices. This makes
our construction more attractive.

2 Preliminaries, Frameworks and Security Models

We use Computational Diffie Hellman Problem (CDH), Strong Diffie Hellman Problem (SDH) [3] and Gap
Bilinear Diffie Hellman Problem (GBDH) [16] to establish the security of the schemes.

The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes 3

Definition 1. (Computational Diffie Hellman Problem (CDH)): Let κ be the security parameter
and G be a multiplicative group of order q, where |q| = κ. Given (g, ga, gb) ∈R G4, the computational Diffie
Hellman problem is to compute gab ∈ G.

The advantage of an adversary A in solving the computational Diffie Hellman problem is defined as the
probability with which A solves the above computational Diffie Hellman problem.

AdvCDH
A = Pr[A(g, ga, gb) = gab]

The computational Diffie Hellman assumption holds in G if for all polynomial time adversaries A, the
advantage AdvCDH

A is negligible.

Definition 2. (Strong Diffie Hellman Problem (SDH) as given in [3]): Let κ be the security pa-
rameter and G be a multiplicative group of order q, where |q| = κ. Given (g, ga, gb) ∈R G3 and access to a
Decision Diffie Hellman (DDH) oracle DDHg,a(., .) which on input gb and gc outputs True if and only if
gab = gc, the strong Diffie Hellman problem is to compute gab ∈ G.

The advantage of an adversaryA in solving the strong Diffie Hellman problem is defined as the probability
with which A solves the above strong Diffie Hellman problem.

AdvSDH
A = Pr[A(g, ga, gb) = gab|DDHg,a(., .)]

The strong Diffie Hellman assumption holds in G if for all polynomial time adversaries A, the advantage
AdvSDH

A is negligible.
Note: In pairing groups (also known as gap groups), the DDH oracle can be efficiently instantiated and
hence the strong Diffie Hellman problem is equivalent to the Gap Diffie Hellman problem [14].

Definition 3. (Gap Bilinear Diffie Hellman Problem (GBDH)): Given (P, aP, bP, cP) ∈ G4 for
unknown a, b, c ∈ Zq and access to a Decision Bilinear Diffie Hellman (DDH) oracle DBDHP,a(., ., .) which
on input bP, cP ∈ G2 and α ∈ GT outputs True if and only if ê(P, P)abc = α, the Gap Bilinear Diffie
Hellman problem in 〈G, GT 〉 is to compute ê(P, P)abc.

The advantage of any probabilistic polynomial time adversaryA in solving the GBDH problem in 〈G, GT 〉
is defined as:

AdvGBDH
A = Pr

[

A(P, aP, bP, cP) = ê(P, P)abc|DBDHP,a(., ., .))
]

The GBDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvGBDH
A

is negligibly small.

Definition 4. Stateful Identity Based Encryption Scheme (SIBE):

A stateful identity based encryption scheme SIBE is a tuple of five polynomial time algorithms Setup,Extract,New
State, Encryption and Decryption (all are randomized algorithms except the last) such that:

– The Setup algorithm is run by the Private Key Generator (PKG) to generate the system parameters
params.

– The Extract algorithm takes an identity of a user (say identity IDA of user A) and params as input, and
outputs the private key (DA) of the user. This algorithm can be denoted as DA ← Extract(params, IDA).

– The New State generation algorithm is run by any one who wants to encrypt the message to generate a
fresh state information st by taking params as input.

– The Encryption algorithm takes as input params, the state information st, the identity of the receiver
(say IDA) and a message m, and outputs the ciphertext c. This algorithm can be denoted as c ←
Encryption(params, st, IDA, m)

– The Decryption algorithm takes params, the private key IDA and a ciphertext c as input, and outputs a
message m or⊥ (denoting failure). This algorithm can be denoted as {m,⊥} ← Decryption(params, DA, c)

It is required that for a well-formed ciphertext, Pr [Decryption(params, DA, Encryption(params, st, IDA, m))] 6=
m ≤ negl(κ), where negl(.) is a negligible function.

4 Vivek, Sharmila and Pandu

Definition 5. Stateful Public Key Encryption (SPKE):

A stateful public key encryption scheme SPKE is a tuple of five polynomial time algorithms Setup, Key
Generation, New State, Encryption and Decryption (all are randomized algorithms except the last) such
that:

– The Setup algorithm is run by an authority to generate the system parameters params.
– The Key Generation algorithm takes the system parameters params as input and outputs a pair of

keys (sk, pk), namely the private key and the public key. This algorithm can be denoted as (sk, pk) ←
Key Generation(params).

– The New State generation algorithm is run by any one who wants to encrypt the message to generate a
fresh state information st by taking params as input.

– The Encryption algorithm takes as input params, the state information st, a public key pk and a message
m, and outputs the ciphertext c. This algorithm can be denoted as c← Encryption(params, st, pk, m)

– The Decryption algorithm takes the private key sk and a ciphertext c as input and outputs a message
m or ⊥ denoting failure. This algorithm can be denoted as {m,⊥} ← Decryption(params, sk, c)

Note: We omit the Public Key Check algorithm in our paper and hence our framework has one less
algorithm from the actual definition in [5]. This is because public key check is concerned with all Public Key
Infrastructure (PKI) based encryption schemes. It is mandatory for a sender to perform this check in order
to verify whether the components of public keys are elements of the underlying group and they comply with
the system. Few checks like this are sometimes required for the security of standard schemes.

Definition 6. Game for CCA Security of SIBE (SIBECCA
A (κ)): The game for CCA security of a

stateful identity based encryption scheme is between a challenger C and an adversary A. The game follows:

Setup: C generates the system parameters params and gives it to A.

Phase I: A is given oracle access to the following oracles:

– Extract(params, ID): A submits an identity ID and queries the private key corresponding to ID and
C provides A with the corresponding private key D.

– Encryption(params, sti, mj): Encryption queries for any number of messages (j = 1 to m̂) for a given
state sti (i = 1 to n̂), where m̂ and n̂ are the upper bounds for the number of messages that can be
encrypted in a state and total number of states respectively, for whose combination A can query this
oracle. Note that encryption with respect to the public keys those are valid and passes the public key
validity check alone are allowed.

– Decryption(params, sk, c): Decryption for any ciphertext c can be queried by A, irrespective of the
state information, C should be able to provide the decryption.

Challenge: A gives C two messages m0 and m1 of the same length and an identity ID∗. C chooses a random
bit β ← {0, 1} and generates the challenge ciphertext c∗ ← Encryption(params, st∗, ID∗, mβ) and gives it
to A.

Phase 2:A continues to get oracle access to the ciphertexts for any message including m0 and m1 for the state
information st∗ for any identity including ID∗, through the encryption oracle Encryption(params, st∗, ID, mj),
where j ≤ m̂. A also gets access to the Decryption oracle, where it is allowed to query the decryption of
any ciphertext c 6= c∗

Guess: A outputs a bit β′ finally and wins the game if β = β′.

A stateful identity based encryption scheme SIBE has indistinguishable encryptions under adaptive
chosen ciphertext attack (CCA) if for all probabilistic polynomial time adversariesA, there exists a negligible
function negl(.) such that:

Pr[SIBECCA
A (κ)→ (β = β′)] ≤

1

2
+ negl(κ)

Definition 7. Game for CCA Security of Stateful PKE (SPKECCA
A (κ)): The game for CCA security

of a stateful public key encryption scheme is between a challenger C and an adversary A. Note that with
out loss of generality we accept only the public keys that are valid, in the game. Public keys those are not
well-formed will be rejected by public key check algorithm which we do not make explicit in our proofs. The
game follows:

The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes 5

– C generates the system parameters params, generates a key pair (sk, pk) ← Key Generation(κ) and
prams, pk are given to A. (It should be noted that since A knows params, A could generate any number
of private key / public key pairs but A does not know sk which is the private key corresponding to pk).

– A is given oracle access to the following oracles:
• Encryption(params, sti, mj): Encryption queries for any number of messages (j = 1 to m̂) for a

given state sti (i = 1 to n̂), where m̂ and n̂ are the upper bounds for the number of messages that
can be encrypted in a state and total number of states respectively, for whose combination A can
query this oracle. Note that encryption with respect to the public keys those are valid and passes
the public key validity check alone are allowed.
• Decryption(params, sk, c): Decryption for any ciphertext c can be queried by A, irrespective of the

state information, C should be able to provide the decryption.
– A gives C two messages m0 and m1 of the same length.
– C chooses a random bit β ← {0, 1} and generates the challenge ciphertext c∗ ← Encryption(params, st∗, pk, mβ)

and gives it to A.
– A continues to get oracle access to all ciphertexts for any message including m0 and m1 for the state

information st∗ through the encryption oracle Encryption(params, st∗, pk, mj), where j ≤ m̂.
– A also gets access to the Decryption oracle, where it is allowed to query the decryption of any ciphertext

c 6= c∗ and outputs a bit β′ finally.
– C outputs 1, if β = β′ and 0 otherwise.

A stateful public key encryption scheme SPKE has indistinguishable encryptions under adaptive chosen
ciphertext attack (CCA) if for all probabilistic polynomial time adversaries A, there exists a negligible
function negl(.) such that:

Pr[SPKECCA
A (κ)→ 1] ≤

1

2
+ negl(κ)

3 Stateful Identity Based Encryption Scheme

In this section, we review the stateful identity based encryption scheme by Baek et al. [4]. We show that,
the security proof of the scheme cannot be proved under the CBDH assumption. We prove this assuming
the hardness of the Y-Computational problem. We provide the exact proof of the scheme by reducing it to
a slightly stronger assumption, namely the GBDH assumption.

3.1 Review of SIBE in [4]:

Setup(κ): Let G and GT be two groups with prime order p ≈ 22κ, where G is an additive group and GT is
a multiplicative group. Let ê : G × G → GT be an admissible pairing. Pick P ∈R G, x ∈R Z

∗
p and compute

Ppub = xP . Choose a length preserving symmetric key encryption scheme Πsym = (E, D) (eg: One-Time Pad)
and three cryptographic hash functions G : G×{0, 1}κ→ {0, 1}κk , where κk = 2κ, H1 : {0, 1}∗ → G and H2 :
G×G× {0, 1}∗ ×GT → {0, 1}κ. The system parameters are params = 〈G, GT , p, P, Ppub, Πsym, G, H1, H2〉
and the master secret key is msk = x.

Extract(params, msk, IDA): To extract the private key of a user with identity IDA, compute QA =
H1(IDA) and compute DA = xQA.

New State(params): The sender generates the state information as follows:

– Choose r ∈R Z∗
p

– Compute U = rP
– Compute T = rPpub

The state information st = 〈U, T 〉.

Encryption(params, st, IDA, m): To generate the ciphertext with params, state information, public key
and the message as input the sender computes QA = H1(IDA) and ω = ê(QA, T). Chooses s ∈R {0, 1}κ,
computes k = G(U, s), V = Ek(m) and W = H2(QA, U, V, ω)⊕ s. The ciphertext is c = 〈U, V, W 〉.

Decryption(params, DA, c) To decrypt the ciphertext with the private key DA the receiver with identity
IDA computes ω = ê(DA, U), s = H2(QA, U, V, ω) ⊕W , k = G(U, s) and m = Dk(V). Outputs m as the
corresponding message.

6 Vivek, Sharmila and Pandu

3.2 Comment on the Proof of SIBE in [4]:

The following is a slightly generalised version of the Y-Computational (YC) problem defined in [12].

Definition 8. An instance generator IY C(1κ) for the Y-Computation problem outputs a description of
(S1, S2, S3, f1, f2, t). Here, S1, S2 and S3 are sets with |S1| = |S2| = |S3| = κ; f1 : S1 → S2, f2 : S1 → S3

are functions and t : S2 → S3 is a trapdoor function such that for all x ∈ S1, t(f1(x)) = f2(x). The functions
f1, f2 and t should be easy to evaluate and it should be possible to sample efficiently from S1.

Let A be an adversary and define

AdvA,IY C(κ) = Pr





(S1, S2, S3, f1, f2, t)← IY C(κ);
x← S1;
f2(x)← A(S1, S2, S3, f1, f2, f1(x))





The advantage function is defined as:

AdvA,IY C
(κ, t) = max{AdvA,IY C

(κ)}

Where the maximum is taken over all adversaries that run for time t̂. We say that Y-Computation is hard
for IY C(κ) if t̂ being polynomial in κ implies that the advantage function AdvA,IY C

(κ, t̂) is negligible in κ.

A Hard Y-Computational Problem:

The instance generator IY C(κ) generates a random κ-bit prime p, an additive group G of order p, a multi-
plicative group GT of order p, chooses P ∈R G and an admissible bilinear map ê : G×G→ GT . The sets S1,
S2 and S3 are defined by Z∗

p, G and GT respectively. Choose a, b ∈R Z∗
p, compute aP , bP and α = ê(aP, bP).

The functions f1, f2 and t are defined as:

– f1(x) = xP
– f2(x) = αx and
– t(Y) = ê(Y, bP)a.

Obviously, t(f1(x)) = ê(f1(x), bP)a = ê(xP, bP)a = ê(aP, bP)x = αx = f2(x) holds and Y-Computation
is hard if the computational Bilinear Diffie Hellman (CBDH) assumption holds. This is because, computing
ê(aP, bP)x from P , aP , bP and xP is the CBDH problem, which is exactly the case here.

Fig. 1. A Hard Y-Computational Problem

Proof Sketch:

As mentioned by the authors, if the SIBE scheme in [4] should be reduced to the CBDH problem, the
reduction should be done as follows:

Let (P, aP, bP, cP) ∈R G4 be an instance of the CBDH problem. The aim of the challenger C is to
find ê(P, P)abc ∈ GT . C sets Ppub = aP , chooses a length preserving symmetric key encryption algorithm
Πsym : (E, D) and sends params = 〈G, GT , p, P, Ppub, Πsym〉 to the adversary A. Models the hash functions
G, H1, H2 as random oracles.

Let LG, LH1
and LH2

be the three lists that are used to store the input and the corresponding output to
the random oracle queries. A typical entry of the list LG will be of the form 〈U ∈ G, s ∈ {0, 1}κ, k〉, where
k is the output of the hash function corresponding to the input U and s. An entry of the list LH1

will be of
the form 〈IDi ∈ {0, 1}∗, Qi ∈ G〉, where Qi is the hash value corresponding to the identity IDi. The list LH2

will have entries of the form 〈Qi ∈ G, U ∈ G, V ∈ {0, 1}∗, ω ∈ GT , h2 ∈ {0, 1}κ〉, here h2 is the corresponding
output. Let ID∗ be the target identity and during the H1 query, H1(ID∗) will be set as bP by C.

Lemma 1. C has to solve the Y-Computational problem if he has to consistently answer the decryption
oracle queries.

The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes 7

Proof: Assume that A constructs a ciphertext in the following way:

– Choose r1, r2 ∈R Z∗
p.

– Compute U = r1P and T = r2Ppub.
– Compute Q = H1(ID∗) and ω = ê(Q, T).
– Choose s ∈R {0, 1}κ and queries the G oracle with (U, s) as input and obtain k as the corresponding

output.
– Compute V = Ek(m), query the H2 oracle with (Q, U, V, ω) as input, obtain h2 as output and compute

W = h2 ⊕ s.
– The ciphertext is c = 〈U, V, W 〉.

Now, A queries the decryption oracle with c = 〈U, V, W 〉 as input. In order to decrypt the ciphertext c, C
performs the following:

– Checks whether a tuple of the form 〈Q, U, V, ω, h2〉 is available in the list LH2
. If a tuple of this form is

available in the list, retrieves the corresponding ω and h2.
– Now, C has the values aP , bP , r1P , ê(aP, bP) and ω. With these values C has to compute ê(aP, bP)r1 .
– Then, C has to find out whether ω = ê(Q, r1Ppub) = ê(bP, r1aP) = ê(aP, bP)r1 . (Note that the ω values

retrieved in the above step is ê(Q, T) = ê(bP, r2aP) = ê(aP, bP)r2 .)
– C confronts the Y-Computational problem here, with the sets S1, S2 and S3 as Z∗

p, G and GT respectively,
and α = ê(aP, bP) for unknown a and b. Here, f1(r1) = r1P and f2(r1) = αr1 . The trapdoor function
is t(r1P) = ê(r1P, bP)a. To compute this C should know a. This is because, t(f1(r1)) = ê(f1(r1), bP)a =
ê(r1P, bP)a = ê(aP, bP)r1 = αr1 = f2(r1).

Thus, C has to solve the Y-Computational problem to consistently answer the decryption queries of A. �

This shows that the SIBE scheme from [4] is not provable in the random oracle model under the CBDH
assumption.

3.3 The Exact Security of SIBE from [4]:

In the previous section, we have argued why the security of the SIBE proposed in [4] cannot be reduced
to the CBDH problem. In this section, we show that the security of the SIBE can be related to the Gap
Bilinear Diffie Hellman Problem (GBDH).

Theorem 1. The stateful identity based encryption scheme SIBE is IND-CCA secure in the random oracle
model if the GBDH problem is hard in 〈G, GT 〉.

Let κ be the security parameter and G be a multiplicative group of order P . The challenger C is challenged
with an instance of the GBDH problem, say (P, aP, bP, cP) ∈R G4 and access to a Decision Bilinear Diffie
Hellman (DBDH) oracle DBDHP,a(., ., .) which on input bP, cP ∈ G2 and α ∈ GT outputs True if and only
if ê(P, P)abc = α. The aim of C is to find ê(P, P)abc. Consider an adversary A, who is capable of breaking the
IND-CCA security of SIBE . C can make use of A to compute ê(P, P)abc, by playing the following interactive
game with A.

Setup: C begins the game by setting up the system parameters as in the SIBE scheme by performing the
following:

– Sets the master public key Ppub = aP (where aP is taken from the GBDH instance).
– Hence, the master private key is a implicitly.
– Choose a length preserving symmetric key encryption scheme Πsym = (E, D).

C gives A the public parameters params = 〈G, GT , p, P, Ppub, Πsym〉 and designs the three cryptographic
hash functions G, H1, H2 as random oracles OG, OH1

and OH2
respectively. C maintains three lists LG, LH1

and LH2
in order to consistently respond to the queries to the random oracles. A typical entry in lists

will have the input parameters of hash functions followed by the corresponding hash value returned as the
response to the hash oracle query. In order to generate stateful encryptions, C generates n̂ tuples of state
informations and stores them in a state list Lst. Each tuple in the list corresponds to a state information.
This is done as follows.

8 Vivek, Sharmila and Pandu

– For i = 1 to n̂, C performs the following:
• Choose ri ∈R Z∗

p

• Compute Ui = riP
• Compute Ti = riPpub

– Store the tuple 〈ri, Ui, Ti〉 in the list Lst

The game proceeds as per the SIBECCA
A (κ) game.

Phase I: A performs a series of queries to the oracles provided by C. The descriptions of the oracles and
the responses given by C to the corresponding oracle queries by A are described below:

OH1
(IDi ∈ {0, 1}∗): We will make a simplifying assumption that A queries the OH1

oracle with distinct
identities in each query. Without loss of generality, if the oracle query is repeated with an already queried
identity, by definition the oracle consults the list LH1

and gives the same response. Thus, we assume that A
asks qH1

distinct queries for qH1
distinct identities. Among this qH1

identities, a random identity has to be
selected by C as target identity and it is done as follows (Note that A should also choose this identity in the
challenge phase).

C selects a random index γ, where 1 ≤ γ ≤ qH1
. C does not reveal γ to A. When A puts forth the γth

query on IDγ , C decides to fix IDγ as target identity for the challenge phase. Moreover, C responds to A as
follows:

– If it is the γth query, then C sets Qγ = bP and stores the tuple 〈IDγ , Qγ = bP,−〉 in the list LH1
. Here,

C does not know b. C is simply using the bP value given in the instance of the GBDH problem.
– For all other queries, C chooses bi ∈R Z∗

p and sets Qi = biP and stores 〈IDi, Qi, bi〉 in the list LH1
.

C returns Qi to A. (Note that as the identities are assumed to be distinct, for each query, we create distinct
entry and add in the list LH1

).

OH2
(Qi, U, V, ω): To respond to this query, C checks whether a tuple of the form 〈Qi, U, V, ω, h2〉 exists in

the list LH2
. If a tuple of this form exists, C returns the corresponding h2, else chooses h2 ∈R {0, 1}κ, adds

the tuple 〈Qi, U, V, ω, h2〉 to the list LH2
and returns h2 to A.

OG(U, s): To respond to this query, C checks whether a tuple of the form 〈U, s, g〉 exists in the list LG. If a
tuple of this form exists, C returns the corresponding g, else chooses g ∈R {0, 1}κk, adds the tuple 〈U, s, g〉
to the list LG and returns g to A.

OExtract(IDi): A submits an identity IDi and queries the corresponding private key. C responds as follows:

– If ID = IDγ then, C aborts the game.
– Else, retrieve the tuple of the form 〈IDi, biP, bi〉 and compute Di = biaP (Where. aP is the master

public key Ppub) and sends Di to A.

OEncryption(sti, mj, ID): A may perform encryption with respect to any state information sti, chosen by C.
C performs the following to encrypt the message mj with respect to the state information sti, where i = 1
to n̂ and n̂ is bound by the total number of states and j = 1 to m̂ where m̂ is bound by the total number of
messages that can be queried per state. C performs the following to encrypt mj:

– Retrieve the tuple sti = 〈ri, Ui, Ti〉 from the list Lst and set U = Ui.
– Retrieve the tuple of the form 〈IDi, Qi, bi〉 from the list LH1

, where IDi = ID and compute ω = ê(Qi, Ti).
– Choose s ∈R {0, 1}κ, g ∈R {0, 1}κk, add the tuple 〈Ui, s, g〉 in list LG and compute V = Eg(mj).
– Choose h2 ∈R {0, 1}κ, add the tuple 〈Qi, Ui, V, ω, h2〉 in the list LH2

and compute W = h2 ⊕ s.

The ciphertext c = 〈Ui, V, W 〉 is sent to A.

ODecryption(c, IDi): C performs the following to decrypt the ciphertext c = 〈U, V, W 〉:

If IDi 6= IDγ then C performs the decryption as per the decryption algorithm. If IDi = IDγ , C performs
the following:

– Qi corresponding to IDi is bP .
– Retrieve the tuple of the form 〈Qi, U, V, ω, h2〉 from the list LH2

and check whether DBDHP,a(Qi, U, ω) =
True. If so proceed; else, reject c.

The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes 9

– Compute s = W ⊕ h2.
– Retrieve the tuple of the form 〈U, s, g〉 from the list LG. If there is no tuple of this form, then reject the

ciphertext c; else, compute m = Dg(V) and output m.

Challenge: At the end of Phase I , A produces two messages m0 and m1 of equal length and an identity
ID∗. If ID∗ 6= IDγ , C aborts. Else, C randomly chooses a bit β ∈R {0, 1} and computes a ciphertext c∗ by
performing the following steps:

– Set U∗ = cP (cP taken from the GBDH instance),
– Choose s ∈R {0, 1}κ.
– Choose g ∈R {0, 1}κk , add the tuple 〈U∗, s, g〉 in the list LG and compute V ∗ = Eg(mβ).
– Add the tuple 〈Qi, U

∗, V ∗,−, h2〉 in the list LH2
and the tuple st∗ = 〈−, U∗,−〉 in the list Lst

– Compute W ∗ = h2 ⊕ s.

Now, c∗ = 〈U∗, V ∗, W ∗〉 is sent to A as the challenge ciphertext.

Phase II: A performs the second phase of interaction, where it makes polynomial number of queries to the
oracles provided by C with the following condition:

– A should not query the ODecryption oracle with c∗ as input.
– A continues to get oracle access to all ciphertexts for any message including m0 and m1 for the state

information st∗ through the encryption oracle Encryption(params, st∗, pk, m).

Note that the simulation of OH2
, encryption and decryption oracle with respect to the challenge state

information st∗ is not trivial because the adversary himself does not know the randomness used to generate
the state information st∗ because U∗ is set to be cP during the challenge phase and hence we describe them
below:

OH2
(Qi, U, V, ω): To respond to this query, C performs the following:

– If a tuple of the form 〈−, U,−〉 appears in the list Lst (i.e. U = U∗ = cP)
• If a tuple of the form 〈Qi, U, V, ω, h2〉 exists in the list LH2

.
∗ Return the corresponding h2,

• Else,
∗ If Qi = Qγ , check whether DBDHP,a(Qi, U, ω) = True. If so output ω as the output to the

GBDH Problem.
∗ If Qi 6= Qγ , choose h2 ∈R {0, 1}κ, add the tuple 〈Qi, U, V, ω, h2〉 to the list LH2

and return h2 to
A.

– Else, (There exists a tuple of the form 〈ri, Ui, Ti〉 in the list Lst such that Ui = U and Ui 6= cP)
• Check whether a tuple of the form 〈Qi, U, V, ω, h2〉 exists in the list LH2

. If a tuple of this form exists,
return the corresponding h2, else choose h2 ∈R {0, 1}κ, add the tuple 〈Qi, U, V, ω, h2〉 to the list LH2

and return h2 to A.

OEncryption(st∗, mj , ID): When A queries this oracle for the state information st∗ and when ID 6= IDγ , C
responds in the normal way as mentioned in Phase I. However, when ID = IDγ , C performs the following
to encrypt mj :

– Set U = U∗ = cP .
– Retrieve the tuple of the form 〈ID, Qγ ,−〉 from the list LH1

.
– Choose s ∈R {0, 1}κ, g ∈R {0, 1}κk, add the tuple 〈U, s, g〉 in list LG and compute V = Eg(mj).
– Choose h2 ∈R {0, 1}κ, add the tuple 〈Qγ , U, V,−, h2〉 in the list LH2

and compute W = h2 ⊕ s.

The ciphertext c = 〈U, V, W 〉 is sent to A.

ODecryption(c, ID): When ID 6= IDγ or ID = IDγ and U ∈ c = U∗ ∈ st∗ (i.e. the ciphertext c corresponds
to the state st∗), C performs the following to decrypt the ciphertext c = 〈U, V, W 〉:

– Retrieve Qi corresponding to ID from the list LH1
.

– Retrieve the tuple of the form 〈Qi, U, V,−, h2〉 from the list LH2
. If there is no tuple of this form in LH2

,
reject c.

10 Vivek, Sharmila and Pandu

– Compute s = W ⊕ h2.
– Retrieve the tuple of the form 〈U, s, g〉 from the list LG. If there is no tuple of this form, then reject the

ciphertext c; else, compute m = Dg(V) and output m.

Guess: At the end of Phase II , A produces a bit β′ to C, but C ignores the response and performs the
following to output the solution for the GBDH problem instance.

– Each time a query for the OH2
oracle is made by A with 〈Qi, U, V, ω〉 as input, C checks whether Qi = Qγ

and DBDHP,a(Qi, U, ω) = True.
– If the checks hold, output ω as the solution to the GBDH problem instance.

Correctness: Below, we show that the ω value obtained through the above steps is indeed ê(P, P)abc.

– The master public key Ppub of the system is set to be aP by C; therefore, the master secret key msk =
x = a implicitly.

– The public key Qγ of the target identity IDγ is set to be bP by C. Therefore the private key Dγ = xQγ =
abP implicitly.

– C has set the U∗ component of the challenge ciphertext c∗ as cP during the challenge phase.
– In order to decrypt the ciphertext c∗, A should compute a value ω = ê(Qγ , T), where T = caP and

query the OH2
oracle with 〈Qγ , U∗, V ∗, ω〉 as input.

– Thus when DBDHP,a(Qγ , U∗, ω) = True, ω = ê(P, P)abc which is the solution to the GBDH problem.

The events in which C aborts the game and the respective probabilities are given below:

1. E1 - The event in which C aborts when A queries the private key corresponding to IDγ .
2. E2 - The event in which IDγ is not chosen as the target identity by A for the challenge phase.

Suppose A has made qH1
number of OH1

queries and qe number of OExtract queries, then: Pr[E1]=
qe

qH1

and

Pr[E2]= 1−
1

qH1
− qe

. Therefore,

Pr[¬abort]= [¬E1 ∧ ¬E2]

=

[

1−
qe

qH1

]

.

[

1− 1−
1

qH1
− qe

]

=
1

qH1

.

Therefore, the advantage of C solving the GBDH problem is ǫ′ ≥

(

ǫ.
1

qH1

)

, where ǫ is the advantage of A in

breaking the IND-CCA security of the SIBE scheme.
�

4 Stateful Public Key Encryption Scheme (N − SPKE1)

In this section, we propose a compact CCA secure public key encryption scheme which provides shorter
ciphertext and is stateful, in the sense that the same randomness can be used across a session that typically
comprises encrypting different messages to the same receiver during the session. The ciphertext overhead of
our scheme is slightly higher than the recent stateful public key encryption scheme reported in [4] with the
added advantage that the ciphertext is verifiable after the decryption process. The main thing to be noticed
is that this ciphertext verifiability property comes with almost the same computational complexity as the
scheme in [4] and one more exponentiation for decryption which is strictly due to the additional verifiability
property of our scheme. The description of the new stateful public key encryption scheme with verifiable
ciphertext follows:

Setup(κ): Let κ be the security parameter and G be a group of prime order q. Choose a generator g ∈R G.
Let F : G → Zq, G : G × G × {0, 1}lm × {0, 1}µ → {0, 1}λ and H : G × G × {0, 1}λ × {0, 1}µ → {0, 1}lm

be three cryptographic hash functions, where λ is a parameter such that any computation involving 2λ or

The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes 11

more steps is considered infeasible in practice, lm represents the size of the message, µ is the size of the
index used in the scheme. Typically index may be a number from 1 to 220 (this supports one million
encryption per session) and hence the size of index will be utmost 20-bits. Set the system parameters as
params = 〈κ, q, g, G, F, G, H, 〉.

Key Generation(params): Choose x ∈R Zq and compute h = gx. The private key of the user is sk = x
and the public keys are pk = 〈g, h〉.

New State(params): Let i represent the index of the current state and hence the current state will be
referred as sti. The sender generates the state information as follows:

– Choose ri ∈R Zq

– Compute ui = F (gri) ∈ Zq

– Compute si = riui ∈ Zq

– Compute vi = gsi

The state information sti = 〈ui, vi, si〉.

Encryption(params, sti, pk, m): Let index be a number which represents the invocation number of the
encryption algorithm in the ith session. So during the start of each session, the value of index is initialized
to 1 and incremented each time an encryption is performed during the session. The sender generates the
ciphertext with params, state information, public key and the message as follows:

– Set c1 = vi

– Compute w = hsi

– Compute c2 = G(c1, w, m, index)⊕ ui

– Compute c3 = H(c1, w, c2, index)⊕m

The ciphertext c = 〈c1, c2, c3, index〉. We emphasize that he maximum number of encryptions to be per-
formed in a session will be determined by the sender. Thus, index is a user determined integer value and
to perform one million encryptions in a session, the value of index may be utmost 220. Hence, index may
typically be a value from 1 ≤ index ≤ 220 and thus of size less than 20-bits.

Decryption(params, sk, c) The receiver decrypts the ciphertext with the private key by performing the
following:

– Compute w′ = csk
1

– Compute m′ = c3 ⊕H(c1, w
′, c2, index)

– Compute u′ = c2 ⊕G(c1, w
′, m′, index)

Check whether u′ ?
= F (c

(u′)−1

1). If the check holds output m′, otherwise output ⊥.

Correctness: We have to show that the u′ computed by the decryption algorithm passes the verification test

u′ ?
= F (c

(u′)−1

1), if u′ = ui = F (gri).

RHS = F (c
(u′)−1

1)= F (v
(u′)−1

i)

= F (gsi(u
′)−1

)

= F (griui(u
′)−1

)
= F (gri) (If u′ = ui = F (gri))
= u′ = LHS

Thus, the decryption will hold if u′ = ui = F (gri).

Theorem 2. The compact stateful public key encryption scheme N − SPKE1 is IND-CCA secure in the
random oracle model if the SDH problem is hard in G.

Let κ be the security parameter and G be a multiplicative group of order q, where |q| = κ. The challenger
C is challenged with an instance of the SDH problem, say (g, ga, gb) ∈R G3 and access to a DDH oracle
DDHg,a(., .) which on input gb and gc outputs True if and only if gab = gc. Consider an adversary A, who
is capable of breaking the IND-CCA security of the scheme N − SPKE1. C can make use of A to compute
gab, by playing the following interactive game with A.

Setup: C begins the game by setting up the system parameters as in the N − SPKE1 scheme by performing
the following:

12 Vivek, Sharmila and Pandu

– Sets the public key h = ga (where ga is taken from the SDH instance).
– Hence, the private key is a implicitly.

C gives A the public keys pk = 〈g, h〉 and C also designs the three cryptographic hash functions F , G and H
as random oracles OF , OG and OH . C maintains three lists LF , LG and LH in order to consistently respond
to the queries to the random oracles OF , OG and OH respectively. A typical entry in list Lĥ will have

the input parameters of hash functions ĥ (for ĥ = F, G and H) followed by the corresponding hash value
returned as the response to the hash oracle query. In order to generate stateful encryptions, C generates n̂
tuples of state informations and stores them in a state list Lst. Each tuple in the list corresponds to a state
information. This is done as follows.

– For i = 1 to n̂, C performs the following:
• Choose ri ∈R Zq, compute ki = gri , choose ui ∈R Zq and adds the tuple 〈ki, ui〉 in the list LF ,

compute si = riui and compute vi = gsi .
• The state information sti = 〈ui, vi, si, indexi = 1〉.
• Store the tuple sti in list Lst.

The game proceeds as per the SPKECCA
A (κ) game.

Phase I: A performs a series of queries to the oracles provided by C. The descriptions of the oracles and
the responses given by C to the corresponding oracle queries by A are described below:

OF (k ∈ G): To respond to this query, C checks whether a tuple of the form 〈k, u〉 exists in the list LF . If a
tuple of this form exists, C returns the corresponding u, else chooses u ∈R Zq, adds the tuple 〈k, u〉 to the
list LF and returns u to A.

OG(c1 ∈ G, w ∈ G, m ∈ {0, 1}lm , index ∈ {0, 1}µ): To respond to this query, C checks whether a tuple of the
form 〈c1, w, m, index, h1〉 exists in the list LG. If a tuple of this form exists, C returns the corresponding h1,
else chooses h1 ∈R {0, 1}λ, adds the tuple 〈c1, w, m, index, h1〉 to the list LG and returns h1 to A.

OH(c1 ∈ G, w ∈ G, c2 ∈ {0, 1}λ, index ∈ {0, 1}µ): To respond to this query, C checks whether a tuple of the
form 〈c1, w, c2, index, h2〉 exists in the list LH . If a tuple of this form exists, C returns the corresponding h2,
else chooses h2 ∈R {0, 1}lm , adds the tuple 〈c1, w, c2, index, h2〉 to the list LH and returns h2 to A.

OEncryption(sti, mj): A may perform encryption with respect to any state information sti, chosen by C. C
performs the following to encrypt the message mj with respect to the state information sti, where i = 1 to
n̂, where n̂ is bound by the total number of states and j = 1 to m̂ is bound by the number of messages that
can be encrypted in one session:

– C retrieves the tuple sti of the form 〈ui, vi, si, indexi〉 from Lst, sets c1 = vi, computes w = hsi .
– Chooses h1 ∈R {0, 1}λ, adds the tuple 〈c1, w, mj , indexi, h1〉 to the list LG and computes c2 = h1 ⊕ ui.
– Chooses h2 ∈R {0, 1}lm, adds the tuple 〈c1, w, c2, indexi, h2〉 to the list LH and computes c3 = h2⊕mj.
– Returns c = 〈c1, c2, c3〉 as the ciphertext, increments indexi and updates the state information sti.

ODecryption(c): C performs the following to decrypt the ciphertext c = 〈c1, c2, c3, index〉:

– Retrieve the tuple 〈c1, w, c2, index, h2〉 from list LH such that the output of the DDH oracle query
DDHg,a(w, c1) is True and compute m′ = c3 ⊕ h2.

– Check whether a tuple of the form 〈c1, w, m, index, h1〉, where w is the same as the w value retrieved
from the tuple in the list LH and m is equal to m′ computed in the above step appears in the list LG.
If such a tuple appears, retrieve h1 and compute u′ = c2 ⊕ h1.

– Check whether a tuple of the form 〈k, u〉, where k = cu′−1

1 and u = u′ appears in list LF ,
– If any of the required tuples did not appear in the lists LF , LG or LH return ⊥.

Challenge: At the end of Phase I , A produces two messages m0 and m1 of equal length. C randomly
chooses a bit β ∈R {0, 1} and computes a ciphertext c∗ by performing the following steps:

– Choose u ∈R {0, 1}λ and add the tuple 〈gb, u〉 to the list LF .
– Set index∗ = 1.
– Compute c∗1 = gbu

– Choose h1 ∈R {0, 1}λ and add the tuple 〈c∗1,−, mβ, index∗, h1〉 in the list LG.

The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes 13

– Compute c∗2 = h1 ⊕ u.
– Choose h2 ∈R {0, 1}lm and add the tuple 〈c∗1,−, c2, index

∗, h2〉 in the list LH .
– Compute c∗3 = h2 ⊕mβ .
– Here the state information st∗ = 〈u∗ = u, v∗ = gbu, s∗ = −, index∗〉

Now, c∗ = 〈c∗1, c
∗
2, c

∗
3, index

∗〉 is sent to A as the challenge ciphertext.

Phase II: A performs the second phase of interaction, where it makes polynomial number of queries to the
oracles provided by C with the following condition:

– A should not query the ODecryption oracle with c∗ as input.
– A continues to get oracle access to all the oracles. It can also get the encryption for any message including

m0 and m1 for the state information st∗ through the encryption oracle Encryption(params, st∗, pk, mj).

The simulation of the OG, OH , OEncryption and ODecryption oracles are not same as in Phase I and hence
we provide the details below:

OG(c1 ∈ G, w ∈ G, m ∈ {0, 1}lm , index ∈ {0, 1}µ): To respond to this query, C performs the following:

– Check whether a tuple of the form 〈c1, w, m, index, h1〉 exists in the list LG. If a tuple of this form exists,
return the corresponding h1, else,
• If c1 = c∗1 then check with the DDH oracle whether DDHg,a(w, c1) is True. If the output is True,

return wu∗−1

as the solution to the SDH problem instance.
• Else, choose h1 ∈R {0, 1}λ, add the tuple 〈c1, w, m, index, h1〉 to the list LG and return h1 to A.

OH(c1 ∈ G, w ∈ G, c2 ∈ {0, 1}λ, index ∈ {0, 1}µ): To respond to this query, C performs the following:

– Check whether a tuple of the form 〈c1, w, c2, index, h2〉 exists in the list LH . If a tuple of this form exists,
C returns the corresponding h2, else,
• If c1 = c∗1 then check with the DDH oracle whether DDHg,a(w, c1) is True. If the output is True,

return wu∗−1

as the solution to the SDH problem instance.
• Else, choose h2 ∈R {0, 1}lm, add the tuple 〈w, c2, index, h2〉 to the list LH and return h2 to A.

OEncryption(sti, mj): A may perform encryption with respect to any state information sti including st∗,
chosen by C. C performs the following to encrypt the message mj with respect to the state information sti:

– If sti 6= st∗ then encryption is done as in Phase I
– If sti = st∗ then perform the following:
• Retrieve the tuple st∗ of the form st∗ = 〈u∗ = u, v∗ = gbu, s∗ = −, index∗〉 from Lst and set c1 = v∗.
• Choose h1 ∈R {0, 1}λ, add the tuple 〈c1,−, mj, index

∗, h1〉 to the list LG and compute c2 = h1⊕u∗.
• Choose h2 ∈R {0, 1}lm, add the tuple 〈c1,−, c2, index

∗, h2〉 to the list LH and compute c3 = h2⊕mj.
• Return c = 〈c1, c2, c3〉 as the ciphertext, increment index∗ and update the state information st∗.

ODecryption(c): C performs the following to decrypt the ciphertext c = 〈c1, c2, c3, index〉:

– If c1 6= c∗1 then decryption is done as in Phase - I
– If c1 = c∗1 then perform the following:
• Retrieve the tuple of the form 〈c1, w, c2, index, h2〉 from list LH , such that the output of the DDH

oracle query, DDHg,a(w, c1) is True. If the retrieved tuple is of the form 〈c1,−, c2, index, h2〉 then it
was the tuple generated by C during an encryption oracle query in the phase II. Note that C can even
work consistently with the tuple of this form. In this case, C chooses the value h2 without consulting
the DDH oracle. Compute m′ = c3 ⊕ h2.
• Check whether a tuple of the form 〈c1, w, m, index, h1〉, where w is the same as the w value retrieved

from the tuple in the list LH and m is equal to m′ computed in the above step appears in the list
LG. If such a tuple appears, retrieve h1 and compute u′ = c2 ⊕ h1. (Note that even in this case C
can work consistently with the tuple of the form 〈c1,−, m, index, h1〉)

• Check whether a tuple of the form 〈k, u〉, where k = cu′−1

1 and u = u′ appears in list LF ,
• If any of the required tuples did not appear in the lists LF , LG or LH return ⊥.

14 Vivek, Sharmila and Pandu

• If in the process a tuple of the form 〈c1, w, c2, index, h2〉 appeared in the list LG and a tuple of the
form 〈c1, w, m, index, h1〉 appeared in the list LH with DDHg,a(w, c1) is True, then output w as the
output to the SDH problem.

Lemma 2. The decryption oracle responds correctly to well-formed ciphertexts and rejects invalid cipher-
texts.

Proof: Let us consider c = 〈c1, c2, c3, index〉 is a well-formed ciphertext. In order to construct c, A should
have done the following:

– Chosen r ∈R Zq and queried the OF oracle with k = gr. Thus a tuple of the form 〈k, u〉 should appear
in LF .

– A should have computed c1 = gru, w = hru and queried the OG oracle with 〈c1, w, m, index〉 as input
and received h1 corresponding to this input.

– A should have computed c2 = h1 ⊕ u and queried the OH oracle with 〈c1, w, c2, index〉 as input and
received h2 corresponding to this input.

During the decryption, C retrieves the corresponding tuples, one from the lists LG and LH for which both
the w values are same and checks whether the output of the DDH oracle query, DDHg,a(w, c1) is True. For
a well formed ciphertext, this check holds because,

c1 = gru (1)

w = hru = garu (2)

From equations (1) and (2) it is clear that for a well formed ciphertext, this check holds and working with
the corresponding h1 and h2 will properly yield the message during decryption. Else, the ciphertext will be
rejected. �

Guess: At the end of Phase II , A produces a bit β′ to C, but C ignores the response and performs the
following to output the solution for the SDH problem instance.

– Each time a query for the OG oracle is made by A with (c1, w, m, index) as input, C computes g′ = wu∗−1

and checks whether DDHg,a(g′, gb)
?
= True. Alternatively, C can also perform the same with OH oracle

queries.

– Outputs the corresponding g′ value for which the above check holds as the solution for the SDH problem
instance.

Correctness: Below, we show that the g′ value obtained through the above steps is indeed gab.

– The public key h of the target user is set to be pk = 〈g, h = ga〉 by C. Therefore the private key sk = x = a
implicitly.

– C has set the c∗1 component of the challenge ciphertext c∗ as gbu (where, u = F (gb)) during the challenge
phase.

– In order to decrypt the ciphertext c∗, A should compute a value w = gabu and query the OG oracle with
w as the input.

– C computes g′ = wu−1

= (gabu)u−1

= gab, for each value of u from the list LF when ever a query is made

to the OG oracle with w as one of the inputs. C checks whether DDHg,a(g′, gb)
?
= True, if so returns

g′ = gab as the output to the SDH problem.

Thus, C obtains the solution to the SDH problem with almost the same advantage of A in the IND-CCA
game. �

The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes 15

5 Stateful Public Key Encryption Scheme (N − SPKE2)

In this section, we propose a compact CCA secure public key encryption scheme whose security is based on
the CDH problem. The ciphertext overhead and computational complexity of this scheme is same as that
of the previous scheme and the ciphertext is verifiable after the decryption process. The description of this
stateful public key encryption scheme follows:

Setup(κ): Same as the Setup(.) algorithm of N − SPKE1.

Key Generation(params): Choose x, y ∈R Zq, compute g1 = gx and g2 = gy. The private key of the user
is sk = 〈x, y〉 and the public keys are pk = 〈g, g1, g2〉.

New State(params): Same as the New State(.) algorithm of N − SPKE1.

Encryption(params, sti, pk, m): Let index be a number which represents the invocation number of the
encryption algorithm in the ith session. So during the start of each session, the value of index is initialized
to 1 and incremented each time an encryption is performed during the session. The sender generates the
ciphertext with params, state information sti = 〈ui, vi, si〉, public key and the message as follows:

– Set c1 = vi

– Compute w1 = gsi

1 and w2 = gsi

2

– Compute c2 = G(c1, w1, m, index)⊕ ui

– Compute c3 = H(c1, w2, c2, index)⊕m

The ciphertext c = 〈c1, c2, c3, index〉. It should be noted that index is an integer such that 1 ≤ index ≤ 220.
So index may typically be of size less than 20-bits.

Decryption(params, sk, c) The receiver decrypts the ciphertext with the private key by performing the
following:

– Compute w′
1 = cx

1 and w′
2 = cy

1

– Compute m′ = c3 ⊕H(c1, w
′
2, c2, index)

– Compute u′ = c2 ⊕G(c1, w
′
1, m

′, index)

Check whether u′ ?
= F (c

(u′)−1

1). If the check holds output m′, otherwise output ⊥.

Theorem 3. The compact stateful public key encryption scheme N − SPKE2 is IND-CCA secure in the
random oracle model if the CDH problem is hard in G.

Let κ be the security parameter and G be a multiplicative group of order q, where |q| = κ. The challenger
C is challenged with an instance of the CDH problem, say (g, ga, gb) ∈R G3. Consider an adversary A, who
is capable of breaking the IND-CCA security of the scheme N − SPKE2. C can make use of A to compute
gab, by playing the following interactive game with A. The proof revolves around the technique of [7].

Setup: C begins the game by setting up the system parameters as in the N − SPKE2 scheme by performing
the following:

– Choose z1, z2 ∈R Zq.
– Set the public key g1 = ga (where ga is taken from the CDH instance).
– Compute g2 = gz1/gaz2

– Hence, the private keys are a and (z1 − az2) implicitly.

C gives A the public keys pk = 〈g, g1, g2〉 and C also designs the three cryptographic hash functions F , G
and H as random oracles OF , OG and OH . C maintains three lists LF , LG and LH in order to consistently
respond to the queries to the random oracles OF , OG and OH respectively. A typical entry in list Lĥ will

have the input parameters of hash functions ĥ (for ĥ = F, G and H) followed by the corresponding hash
value returned as the response to the hash oracle query. In order to generate stateful encryptions, C generates
n̂ tuples of state informations and stores them in a state list Lst. Each tuple in the list corresponds to a
state information. This is done as follows.

– For i = 1 to n̂, C performs the following:

16 Vivek, Sharmila and Pandu

• Choose ri ∈R Zq, compute ki = gri , choose ui ∈R Zq and adds the tuple 〈ki, ui〉 in the list LF ,
compute si = riui and compute vi = gsi .
• The state information sti = 〈ui, vi, si, indexi = 1〉.
• Store the tuple sti in list Lst.

The game proceeds as per the SPKECCA
A (κ) game.

Phase I: A performs a series of queries to the oracles provided by C. The descriptions of the oracles and
the responses given by C to the corresponding oracle queries by A are described below:

OF (k ∈ G): To respond to this query, C checks whether a tuple of the form 〈k, u〉 exists in the list LF . If a
tuple of this form exists, C returns the corresponding u, else chooses u ∈R Zq, adds the tuple 〈k, u〉 to the
list LF and returns u to A.

OG(c1 ∈ G, w1 ∈ G, m ∈ {0, 1}lm , index ∈ {0, 1}µ): To respond to this query, C checks whether a tuple of
the form 〈c1, w1, m, index, h1〉 exists in the list LG. If a tuple of this form exists, C returns the corresponding
h1, else chooses h1 ∈R {0, 1}λ, adds the tuple 〈c1, w1, m, index, h1〉 to the list LG and returns h1 to A.

OH(c1 ∈ G, w2 ∈ G, c2 ∈ {0, 1}λ, index ∈ {0, 1}µ): To respond to this query, C checks whether a tuple of the
form 〈c1, w2, c2, index, h2〉 exists in the list LH . If a tuple of this form exists, C returns the corresponding
h2, else chooses h2 ∈R {0, 1}lm, adds the tuple 〈c1, w2, c2, index, h2〉 to the list LH and returns h2 to A.

OEncryption(sti, mj): A may perform encryption with respect to any state information sti, chosen by C. C
performs the following to encrypt the message mj with respect to the state information sti, where i = 1 to
n̂, where n̂ is bound by the total number of states and j = 1 to m̂ is bound by the number of messages that
can be encrypted in one session:

– Retrieve the tuple sti of the form 〈ui, vi, si, indexi〉 from Lst, set c1 = vi, compute w1 = gsi

1 and w2 = gsi

2 .
– Choose h1 ∈R {0, 1}λ, add the tuple 〈c1, w1, mj, indexi, h1〉 to the list LG and compute c2 = h1 ⊕ ui.
– Choose h2 ∈R {0, 1}lm, add the tuple 〈c1, w2, c2, indexi, h2〉 to the list LH and compute c3 = h2 ⊕mj .
– Return c = 〈c1, c2, c3〉 as the ciphertext, increment indexi and update the state information sti.

ODecryption(c): C performs the following to decrypt the ciphertext c = 〈c1, c2, c3, index〉:

– Retrieve the tuples of the form 〈c1, w1, m, index, h1〉 from the list LG. Consider that there are n̂G such
tuples. Choose the corresponding (w1i, h1i) values, for i = 1 to n̂G.

– Retrieve the tuples of the form 〈c1, w2, c2, index, h2〉 from the list LH . Consider that there are n̂H such
tuples. Choose the corresponding (w2j , h2j) values, for j = 1 to n̂H .

– For i = 1 to n̂G

• For j = 1 to n̂H

∗ Check whether w2j
?
= cz1

1 /wz2

1i .

∗ If the check holds for some index î and ĵ, choose the corresponding h1̂i and h2ĵ . If the check does
not hold for any tuple then reject the ciphertext c.

– Compute m′ = c3 ⊕ h2ĵ .
– Retrieve the value m from the tuple 〈c1, w1̂i, m, index, h1̂i〉 in the list LG.
– If (m = m′), then compute u′ = c2 ⊕ h1̂i, else reject the ciphertext c..

– Check whether a tuple of the form 〈k, u〉, where k = cu′−1

1 and u = u′ appears in list LF . If it appears
accept m′ and return it as the message corresponding to c.

– If any of the required tuples did not appear in the lists LF , LG or LH return ⊥.

Lemma 3. The decryption oracle responds correctly to well-formed ciphertexts and rejects invalid cipher-
texts.

Proof: Let us consider c = 〈c1, c2, c3, index〉 is a well-formed ciphertext. In order to construct c, A should
have done the following:

– Chosen r ∈R Zq and queried the OF oracle with k = gr. Thus a tuple of the form 〈k, u〉 should appear
in LF .

– A should have computed c1 = gru, w1 = gru
1 , w2 = gru

2 and queried the OG oracle with 〈c1, w1, m, index〉
as input and received h1 corresponding to this input.

The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes 17

– A should have computed c2 = h1 ⊕ u and queried the OH oracle with 〈c1, w2, c2, index〉 as input and
received h2 corresponding to this input.

During the decryption, C retrieves the corresponding tuples, one from the list LG and the other from the list
LH for which

w2 = cz1

1 /wz2

1 (3)

For a well formed ciphertext, this check holds because,

w1 = gru
1 = garu (4)

w2 = gru
2 = g(z1−z2a)ru (5)

cz1

1 = gz1ru (6)

From equations (4), (5) and (6), we have

cz1

1 /wz2

1 = gz1ru/garuz2 = g(z1−z2a)ru = w2

This clearly shows that for a well formed ciphertext, this check holds and working with the corresponding
h1 and h2 will properly yield the message during decryption. Else, the ciphertext will be rejected. �

Challenge: At the end of Phase I , A produces two messages m0 and m1 of equal length. C randomly
chooses a bit β ∈R {0, 1} and computes a ciphertext c∗ by performing the following steps:

– Choose u ∈R {0, 1}λ and add the tuple 〈gb, u〉 to the list LF .
– Set index∗ = 1.
– Compute c∗1 = gbu

– Choose h1 ∈R {0, 1}λ and add the tuple 〈c∗1,−, mβ, index∗, h1〉 in the list LG.
– Compute c∗2 = h1 ⊕ u.
– Choose h2 ∈R {0, 1}lm and add the tuple 〈c∗1,−, c2, index

∗, h2〉 in the list LH .
– Compute c∗3 = h2 ⊕mβ .
– Here the state information st∗ = 〈u∗ = u, v∗ = gbu, s∗ = −, index∗〉

Now, c∗ = 〈c∗1, c
∗
2, c

∗
3, index

∗〉 is sent to A as the challenge ciphertext.

Phase II: A performs the second phase of interaction, where it makes polynomial number of queries to the
oracles provided by C with the following condition:

– A should not query the ODecryption oracle with c∗ as input.
– A continues to get oracle access to all the oracles. It can also get the encryption for any message including

m0 and m1 for the state information st∗ through the encryption oracle Encryption(params, st∗, pk, mj).

The simulation of the OG, OH , OEncryption and ODecryption oracles are not same as in Phase I and hence
we provide the details below:

OG(c1 ∈ G, w1 ∈ G, m ∈ {0, 1}lm , index ∈ {0, 1}µ): To respond to this query, C performs the following:

– If c1 6= c∗1 then
• If a tuple of the form 〈c1, w1, m, index, h1〉 exists in the list LG, return the corresponding h1.
• Else, choose h1 ∈R {0, 1}λ, add the tuple 〈c1, w1, m, index, h1〉 to the list LG and return h1 to A.

– If c1 = c∗1 then

• If a tuple of the form 〈c1, w2, c2, index, h2〉 exists in the list LH , check whether w2
?
= cz1

1 /wz2

1 . If the

check holds then return wu∗−1

1 as the solution to the CDH problem instance.
• If a tuple of the form 〈c1, w2, c2, index, h2〉 does not exist in the list LH , choose h1 ∈R {0, 1}λ, add

the tuple 〈c1, w1, m, index, h1〉 to the list LG and return h1 to A.

OH(c1 ∈ G, w2 ∈ G, c2 ∈ {0, 1}λ, index ∈ {0, 1}µ): To respond to this query, C performs the following:

18 Vivek, Sharmila and Pandu

– If c1 6= c∗1 then
• If a tuple of the form 〈c1, w2, c2, index, h2〉 exists in the list LH , return the corresponding h2.
• Else, choose h2 ∈R {0, 1}lm, add the tuple 〈c1, w2, c2, index, h2〉 to the list LH and return h2 to A.

– If c1 = c∗1 then

• If a tuple of the form 〈c1, w1, m, index, h1〉 exists in the list LG, check whether w2
?
= cz1

1 /wz2

1 . If the

check holds then return wu∗−1

1 as the solution to the CDH problem instance.
• If a tuple of the form 〈c1, w1, m, index, h2〉 does not exist in the list LG, choose h2 ∈R {0, 1}lm, add

the tuple 〈c1, w2, c2, index, h2〉 to the list LH and return h2 to A.

OEncryption(sti, mj): A may perform encryption with respect to any state information sti including st∗,
chosen by C. C performs the following to encrypt the message mj with respect to the state information sti:

– If sti 6= st∗ then encryption is done as in Phase I
– If sti = st∗ then perform the following:
• Retrieve the tuple st∗ of the form st∗ = 〈u∗ = u, v∗ = gbu, s∗ = −, index∗〉 from Lst and set c1 = v∗.
• Choose h1 ∈R {0, 1}λ, add the tuple 〈c1,−, mj, index

∗, h1〉 to the list LG and compute c2 = h1⊕u∗.
• Choose h2 ∈R {0, 1}lm, add the tuple 〈c1,−, c2, index

∗, h2〉 to the list LH and compute c3 = h2⊕mj.
• Return c = 〈c1, c2, c3, index

∗〉 as the ciphertext, increment index∗ and update the state information
st∗.

ODecryption(c): In the case where (c1 6= c∗1), C responds as in phase I. If (c1 = c∗1), C performs the following
to decrypt the ciphertext c = 〈c1, c2, c3, index〉:

– Retrieve the tuples of the form 〈c1, w1, m, index, h1〉 from the list LG. Consider that there are n̂G such
tuples. Choose the corresponding (w1i, h1i) values, for i = 1 to n̂G. (If the retrieved tuple is of the form
〈c1,−, m, index, h1〉 then it was the tuple generated by C during an encryption oracle query in phase II.
Note that C can even work consistently with the tuple of this form without performing the test mentioned
below. Further note that for a fixed c1 and index, there will be only one such tuple in the list LG.)

– Retrieve the tuples of the form 〈c1, w2, c2, index, h2〉 from the list LH . Consider that there are n̂H such
tuples. Choose the corresponding (w2j , h2j) values, for j = 1 to n̂H . (Even in this case, if the retrieved
tuple is of the form 〈c1,−, c2, index, h2〉, the tuple was generated by C during an encryption oracle
query in phase II. C can even work consistently with the tuple of this form without performing the test
mentioned below. This is because for a fixed c1, c2 and index there will be only one tuple of this form
available in the list LH .)

– For i = 1 to n̂G

• For j = 1 to n̂H

∗ Check whether w2j
?
= cz1

1 /wz2

1i .

∗ If the check holds for some index î and ĵ, choose the corresponding h1̂i and h2ĵ and return wu∗−1

1̂i
as the solution to the CDH problem instance. If the check does not hold for any tuple then reject
the ciphertext c.

– Compute m′ = c3 ⊕ h2ĵ .
– Retrieve the value m from the tuple of the form 〈c1, w1̂i, m, index, h1̂i〉 from the list LG.
– If (m = m′), then compute u′ = c2 ⊕ h1̂i, else reject the ciphertext c.

– Check whether a tuple of the form 〈k, u〉, where k = cu′−1

1 and u = u′ appears in list LF . If it appears
accept m′ and return it as the message corresponding to c.

– If any of the required tuples did not appear in the lists LF , LG or LH return ⊥.

Guess: At the end of Phase II , A produces a bit β′ to C, but C ignores the response and performs the
following to output the solution for the CDH problem instance.

– Retrieves the tuples of the form 〈c∗1, w1, m, index〉 from the list LG and checks whether a tuple of the
form 〈c∗1, w2, c

∗
2, index, h2〉 is available in list LH . If a tuple of this form exists in the list LH , C checks

whether w2
?
= cz1

1 /wz2

1 . If the check holds, compute g′ = wu∗−1

1 as the solution to the CDH problem.
– Alternatively, retrieves the tuples of the form 〈c∗1, w2, c

∗
2, index〉 and checks whether a tuple of the form

〈c∗1, w1, mβ , index, h1〉 is available in list LG. If a tuple of this form exists in the list LG, C checks whether

w2
?
= cz1

1 /wz2

1 . If the check holds, compute g′ = wu∗−1

1 as the solution to the CDH problem.

The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes 19

here

Scheme Encryption Decryption Ciphertext Assumption Ciphertext
Cost Cost Expansion Verifiability

PMOsibe [16] 1H + 1MAC 1B + 1H + 1MAC ||G|| + |MAC| + |R| GBDH YES

YZMsibe [17] 1H + 1MAC 2BE + 1H + 1MAC ||G|| + |MAC| + |R| CBDH YES

SIBE [4] 2H 1B + 2H ||G|| + λ GBDH NO

Table - 1. Stateful Identity Based Encryption Schemes

here

Scheme Encryption Decryption Ciphertext Assumption Ciphertext
Cost Cost Expansion Verifiability

BKSst [5] 1H + 1MAC 1E + 1H + 1MAC ||G|| + |MAC| + |R| GDH YES

BCZst [4] 2H 1E + 2H ||G|| + λ GDH NO

N − SPKE1 2H 2E + 2H ||G|| + λ + µ SDH YES

N − SPKE2 2H 3E + 2H ||G|| + λ + µ CDH YES

Table - 2. Stateful Public Key Encryption Schemes with Short Ciphertext

Correctness: Below, we show that the g′ value obtained through the above steps is indeed gab.

– The public key pk of the target user is set to be pk = 〈g, g1 = ga, g2 = gz1/gaz2

〉 by C, where z1, z2 ∈ Zq

are known to C. Therefore the private key sk = x = a implicitly.
– C has set the c∗1 component of the challenge ciphertext c∗ as gbu∗

(where, u∗ = F (gb)) during the challenge
phase.

– In order to decrypt the ciphertext c∗, A should have computed the values

w1 = (c∗1)
x = (c∗1)

a = (gbu∗

)a = gabu∗

(7)

and w2 = (c∗1)
y = (c∗1)

z1−xz2 =(c∗1)
z1−az2 = (gbu∗

)z1−az2 =(gbu∗z1)(g−abu∗z2) =c∗z1

1 /wz2

1 . Therefore,

w2 = c∗z1

1 /wz2

1 (8)

– C should have queried theOG oracle with (c∗1, w1, mδ, index
∗) as input andOH oracle with (c∗1, w2, c

∗
2, index

∗)
as input.

– From equation (8), it is clear that the check w2
?
= cz1

1 /wz2

1 holds good.

– C computes g′ = wu−1

1 = (gabu∗

)u∗−1

= gab and returns g′ as the solution to the CDH problem.

Thus, C obtains the solution to the CDH problem with almost the same advantage of A in the IND-CCA
game. �

6 Comparison With Existing Schemes

In this section, we compare the SIBE scheme in [4] and new stateful public key encryption scheme (N − SPKE1),
proposed in section 4 with the existing schemes related to them respectively. In all the tables below, the
legends are E - Exponentiation, B - Bilinear Pairing, H - Hash computation, |G| - Cardinality of the group
G, ||G|| = log|G| - The size of a single group element, MAC - Computation of a MAC value, |MAC| - Length
of a MAC value, |R| - Size of a random string usually λ, CBDH - Computational Bilinear Diffie Hellman
Problem, GBDH - Gap Bilinear Diffie Hellman Problem, GDH - Gap Diffie Hellman Problem and SDH -
Strong Diffie Hellman Problem.

Table - 1 compares the stateful identity based encryption scheme SIBE (by Baek et al. [4]) with the
schemes by Phong et al. (PMOsibe [16]) and Yang et al. (YZMsibe [17]). We consider the situation where
a sender encrypts different messages to a fixed receiver during a state and this situation maximizes the
functionality of stateful encryption schemes. Hence, we don’t consider the computations done during the
state initialization. YZMsibe scheme makes use of an IND-CCA secure symmetric key encryption scheme,

20 Vivek, Sharmila and Pandu

which adds one MAC value and a random number to the ciphertext expansion of the scheme. From the table
it is clear that Baek et al.’s SIBE offers compact ciphertext when compared to the other two schemes but
does not offer ciphertext verifiability.

Table - 2 summarizes the computation complexity and ciphertext overhead of the stateful public key
encryption schemes by Bellare et al. (BKSst [5]), Baek et al. (BCZst [4]), N − SPKE1 and N − SPKE2.
In this table, µ is the size of the index used in our scheme. As mentioned above, it is possible to append
80-bits of known value (usually 80-bits of 0’s) to the plaintext while encrypting it and checking whether the
decryption of the ciphertext produces those 80-bits at the end along with the message to ensure ciphertext
verifiability. If this technique is used to ensure ciphertext verifiability, in the BCZst scheme, the ciphertext
expansion will be ||G|| + λ + ‘80−bits’. However, in the new schemes N − SPKE1 and N − SPKE2, the
size of the index (µ), is upper bound by 20-bits and hence can take a value starting from 1−bit, which is a
considerable reduction for resource constrained devices like sensors, PDAs and mobile devices. The ciphertext
overhead is also smaller than that of the BKSst scheme, that offers ciphertext verifiability.

7 Conclusion

We have formally prove that the security of the stateful identity based encryption scheme by Baek et al. [4]
does not reduce to the CBDH problem. We have shown that the challenger will confront the Y-Computational
problem while providing the decryption oracle access to the adversary. We have provided a formal security
proof for the same scheme, assuming the hardness of the Gap Bilinear Diffie Hellman (GBDH) problem. Two
new stateful public key encryption schemes with ciphertext verifiability were proposed and the security of
these schemes were supported by a formal proof. Our first stateful public key encryption scheme is proved to
be secure assuming the SDH problem and the second assuming the CDH problem. However, the ciphertext
overhead of both the schemes turns out to be the same. We have proved both the schemes in the random
oracle model. An interesting open issue that can be looked at is designing a public key encryption scheme
which offers compact ciphertext (ciphertext overhead of one group element) with ciphertext verifiability.

References

1. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle diffie-hellman assumptions and an analysis
of dhies. In Topics in Cryptology - CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science, pages
143–158. Springer, 2001.

2. Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. Tag-kem/dem: A new framework for
hybrid encryption and a new analysis of kurosawa-desmedt kem. In Advances in Cryptology - EUROCRYPT

2005, volume 3494 of Lecture Notes in Computer Science, pages 128–146. Springer, 2005.
3. Masayuki Abe, Eike Kiltz, and Tatsuaki Okamoto. Compact cca-secure encryption for messages of arbitrary

length. In Public Key Cryptography - PKC 2009, volume 5443 of Lecture Notes in Computer Science, pages
377–392. Springer, 2009.

4. Joonsang Baek, Cheng-Kang Chu, and Jianying Zhou. On shortening ciphertexts: New constructions for compact
public key and stateful encryption schemes. In Topics in Cryptology - CT-RSA 2011, volume 6558 of Lecture

Notes in Computer Science, pages 302–318. Springer, 2011.
5. Mihir Bellare, Tadayoshi Kohno, and Victor Shoup. Stateful public-key cryptosystems: how to encrypt with one

160-bit exponentiation. In ACM Conference on Computer and Communications Security, pages 380–389. ACM,
2006.

6. Xavier Boyen. Miniature cca2 pk encryption: Tight security without redundancy. In Advances in Cryptology -

ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 485–501. Springer, 2007.
7. David Cash, Eike Kiltz, and Victor Shoup. The twin diffie-hellman problem and applications. Journal of

Cryptology, Vol.22(No.4):470–504, 2009.
8. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure against

chosen ciphertext attack. SIAM Journal on Computing, Vol-33(No-1):167–226, 2003.
9. Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of public-key encryption at minimum cost.

In Public Key Cryptography, Second International Workshop on Practice and Theory in Public Key Cryptography,
volume 1560 of Lecture Notes in Computer Science, pages 53–68. Springer, 1999.

10. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, volume 1666 of
Lecture Notes in Computer Science, pages 537–554. Springer, 1999.

The Exact Security of a Stateful IBE and New Compact Stateful PKE Schemes 21

11. Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Advances in Cryptology - CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 482–499. Springer, 2003.

12. Eike Kiltz and John Malone-Lee. A general construction of ind-cca2 secure public key encryption. In Cryptography

and Coding, 9th IMA International Conference, volume 2898 of Lecture Notes in Computer Science, pages 152–
166. Springer, 2003.

13. Kaoru Kurosawa and Toshihiko Matsuo. How to remove mac from dhies. In Information Security and Privacy,

ACISP - 2004, volume 3108 of Lecture Notes in Computer Science, pages 236–247. Springer, 2004.
14. Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems for the security of

cryptographic schemes. In Public Key Cryptography, PKC - 2001, volume 1992 of Lecture Notes in Computer

Science, pages 104–118. Springer, 2001.
15. Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Relations among notions of non-malleability for encryption.

In Advances in Cryptology - ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 519–
535. Springer, 2007.

16. Le Trieu Phong, Hiroto Matsuoka, and Wakaha Ogata. Stateful identity-based encryption scheme: Faster encryp-
tion and decryption. In Proceedings of the 2008 ACM Symposium on Information, Computer and Communications

Security, ASIACCS 2008, pages 381–388. ACM, 2008.
17. Peng Yang, Rui Zhang, and Kanta Matsuura. Stateful public key encryption: How to remove gap assumptions

and maintaining tight reductions. In International Symposium on Information Theory and Its Applications, 2008.

ISITA 2008, pages 1–6. IEEE, 2008.

