
Constructing a Ternary FCSR with a Given
Connection Integer

Lin Zhiqiang1,2 and Pei Dingyi1,2

1 School of Mathematics and Information Sciences, Guangzhou University, China
2 State Key Laboratory of Information Security, Chinese Academy of Science, China

Abstract. FCSRs have been proposed as an alternative to LFSRs for
the design of stream ciphers. In 2009, a new ”ring” representation of
FCSRs was presented. This new representation preserves the statisti-
cal properties and circumvents the weaknesses of the Fibonacci and the
Galois FCSRs. Moreover an extension of the ring FCSRs called ternary
FCSRs has been proposed. They are suitable for hardware and software
implementations of FCSRs. In this paper, we show a method of con-
structing a ternary FCSR with a given connection integer for hardware
implementation. The construction is simple and convenient. And the
ternary FCSRs we get are able to meet the hardware criteria.

Keywords: stream cipher, 2-adic integer, FCSRs, ring FCSRs, l-sequences

1 Introduction

Feedback with Carry Shift Registers (FCSRs) were introduced by Klapper and
Goresky in [1]. They are very similar to classical Linear Feedback Shift Reg-
isters (LFSRs) used to generate pseudo-random sequences. According to their
nonlinearity, FCSRs have been suggested as an alternative to LFSRs for avoid-
ing the drawback of linear structure. The mathematical model for the generated
sequences of FCSRs is the one of rational 2-adic numbers. It can be used to prove
several interesting properties such as proven period, non-degenerated states, and
good statistical properties [1∼4].

FCSRs have two traditional representations. They are the Fibonacci and the
Galois representations [5]. However, FCSRs are usually implemented by hard-
ware and software using the Galois representation since the Fibonacci mode is
not suitable for cryptographic applications [6]. By using a filter on the cells of
the Galois FCSR automaton, family of hardware stream ciphers based on FC-
SRs: F-FCSRs[7∼10] and family of software stream ciphers based on FCSRs:
X-FCSRs[11,12] were proposed for stream cipher design. Unfortunately, these
stream ciphers were exposed to a very powerful attack by LFSRization of them
[13,14].

In [10,12], Arnault et al. have introduced a new FCSR representation called
a ring or diversified representation for responding to the LFSRization attack.
This new representation is based on the transition matrix of the automaton

graph instead of the quadratic transition function in the Galois representation.
Many advantages have appeared with this new representation if the transition
matrix is well-chosen. For hardware implementations, the criteria are that the
critical path length must be equal to 1 and the fan-out must be 2. For software
applications, a particular realization suitable for software utilization has been
given. This realization uses a specific circuit which acts essentially on binary
words. In [15], Arnault et al. have generalized ring FCSRs to 2-adic automata.
These automata have been constructed of inputs and outputs, with the entries
of matrices in the set of 2-adic integers.

In this paper, we focus on the hardware stream cipher design based on ternary
FCSRs, a special kind of 2-adic automata. The criteria to build these automata
were presented in [10,15]. Moreover, a ternary FCSR automaton can meet the
hardware criteria by well-chosen of the transition matrix. In [15], the authors
have proposed an algorithm to get suitable transition matrices. But it is time-
consuming because it has to compute the connection integer and test if the
connection integer is primitive every time. Therefore an open problem has been
presented: How can a diversified or ternary FCSR be constructed when a con-
nection integer is specified?

We solve this problem in this paper. The method of our construction is simple
and convenient. It is more efficient than the algorithm above. What’s more, the
cost of logic gates of a constructed ternary FCSR is less than the one of the
Fibonacci or Galois FCSR with the same connection integer. After we finished
our work, we found that our work was similar to the method in [16], constructing
Ring LFSRs with given connection polynomials. The results of [16] have good
application value in the construction of Ring LFSRs, and it seems that our
method is useful to the construction of ternary FCSRs. Algorithm 2 in section 3
presents this method, and through the algorithm we also prove a conjecture in
[15]: For each given q of size n, there is a transition matrix with a critical path
of length 1 and a fan-out 2.

2 Ternary FCSRs

In this section, we briefly introduce some properties of 2-adic integers and ternary
FCSRs. Then we present the criteria to build hardware oriented FCSRs.

2.1 2-adic Integers

First, we recall some properties of 2-adic numbers. For more details, the readers
could refer to [1].

A 2-adic integer is formally a power series s =
∑∞

i=0 si2
i with si ∈ {0, 1}.

The set of 2-adic integers is a Ring denoted by Z2. Addition and multiplication
in Z2 can be performed by reporting the carries to the higher order terms, i.e.,
2n + 2n = 2n+1 for all n ∈ N. s is a positive integer if there exists an integer K
such that sn = 0 for all n ≥ K. Moreover, any odd integer q has an inverse in
Z2 which can be computed by q−1 =

∑∞
n=0 q

′n, where q′ = 1− q. The functions
mod 2 and div 2 are defined on the set Z2 by:

s mod 2 = s0
s div 2 =

∑∞
i=0 si+12i.

The following theorems present the relationship between eventually periodic
sequences and 2-adic integers.

Theorem 1. Let s =
∑∞

i=0 si2
i be a 2-adic integer, with si ∈ {0, 1}. Denote

S = (si)i∈N. Then the sequence S is eventually periodic if and only if there
exists two numbers p and q in Z, q odd, such that s = p/q. Moreover, S is
strictly periodic if and only if pq ≤ 0 and |p| ≤ |q|.

Theorem 2. Let s =
∑∞

i=0 si2
i = p/q with si ∈ {0, 1}, pq ≤ 0, |p| ≤ |q|, q odd

and gcd(p, q) = 1. Denote S = (si)i∈N. Then the sequence S is strictly periodic
and the period of S is the order of 2 modulo q, i.e., the smallest integer T such
that 2T ≡ 1(mod q). The period satisfies T 6 |q| − 1.

Definition 1. An l-sequence is a periodic sequence S = (si)i∈N such that s =∑∞
i=0 si2

i = p/q with si ∈ {0, 1}, pq ≤ 0, |p| ≤ |q|, q a power of an odd prime
and the period of S is ϕ(q) where ϕ denotes the Euler’s phi function.

Obviously, the period of a l-sequence can achieve its maximum possible least
period T = q − 1 if and only if q is prime and 2 is a primitive root modulo q. In
particular, l-sequences are close to m-sequences: known period, good statistical
properties, fast generation, etc. [1∼4].

In this paper, we use the notations proposed in [15].
Given a sequence a = (a(t))t∈N of elements in {0, 1}, we have∑

t≥t0
a(t)2t−t0 = a(t0)20 + a(t0 + 1)21 + · · ·

in Z2.
A time dependent vector m in {0, 1}n is denoted at time t by m(t)T =

(m0(t), . . . ,mn−1(t)) where m(t) is a column vector. And we denote

M(t0) =
∑
t≥t0

m(t)T 2t−t0

in Zn
2 , i.e., M(t0) = (M0(t0), . . . ,Mn−1(t0)), where

Mi(t0) = mi(t0)20 +mi(t0 + 1)21 + · · ·

0 ≤ i ≤ n− 1.

2.2 Diversified FCSRs and Ternary FCSRs

A new FCSR representation called a ring or diversified representation was first
introduced in [10] for responding to the attack against the stream ciphers based
on Galois FCSRs.

Definition 2. A diversified FCSR is an automaton composed of a main shift
register of n binary cells mT = (m0,m1, . . . ,mn−1) and a carry register of n
integer cells cT = (c0, c1, . . . , cn−1). It is updated using the following relations:

{
m(t+ 1)T = Am(t)T + c(t)T mod 2
c(t+ 1)T = Am(t)T + c(t)T div 2

where A is a n× n matrix with entries 0 or 1 in Z, called transition matrix.

A diversified FCSR is a no-input binary 2-adic FSM presented in [15]. More-
over, using the subtracter-with-carry to compute the difference between two 2-
adic integers, the authors have introduced an extension of binary 2-adic FSMs,
which allows the entries of the matrices in {−1, 0, 1}. These automata are called
ternary 2-adic FSMs. In particular, the no-input ternary 2-adic FSMs called
ternary FCSRs are proposed to build hardware oriented FCSRs.

Definition 3. A ternary FCSR is the same automaton as the one defined in
Definition 2.4 except for the entries of the transition matrix A in {−1, 0, 1}.

The following two properties of 2-adic FSMs presented in [15], which are also
the behaviors of diversified and ternary FCSRs.

Proposition 1. Consider a diversified or ternary FCSR composed of the main
register m, the carry register c and the transition matrix A. We have

M(t0 + 1) = AM(t0) + c(t0)T

Theorem 3. The series Mi(t0) (0 ≤ i ≤ n−1) observed in each cell of the main
register are 2-adic expansion of pi/q with pi ∈ Z and with integer q = det(I−2A).
q is called the connection integer of the automaton.

Theorem 2.7 implies that the transition matrix A completely defines the di-
versified or ternary FCSR. The Galois and Fibonacci representations are special
cases of diversified FCSRs with the following transition matrices AG and AF

respectively:

AG =


q1 1
q2 0 1 (0)
...

. . .
. . .

qn−1 (0) 0 1
1 0

 AF =


0 1

0 1 (0)
. . .

. . .

(0) 0 1
1 qn−1 qn−2 · · · q1


where |q| =

∑n
i=0 qi2

i (q0 = −1, qn = 1, qi ∈ {0, 1} for 1 ≤ i ≤ n− 1).

2.3 Hardware Criteria

In this subsection, we introduce the criteria to build hardware oriented FCSRs.
The reader can refer to [10,15] for more details. In this paper, we focus on the
problem: How to choose a good ternary FCSR for hardware implementation?

We first consider some of the characteristics of the hardware implementation
of FCSRs:
Critical path— the critical path length is the maximum number of logic gates the
signal has to pass though. If this number is low, the automaton can be clocked

at a higher rate.
Fan-out— the signal of a flip-flop should drive a minimal number of gates as
exposed in [17]. Large fan-out makes possible differential power analysis attacks.
Cost— the number of logic gates must be as small as possible to lower consump-
tion and cost of the automaton.

The critical path length, fan-out and cost of logic gates are the basic blocks
for FCSRs. Shorter length of critical path, smaller fan-out and lower cost lead to
high clock frequencies. These data can be computed from the transition matrix
A of the ternary FCSR:
— the critical path length is the smallest integer j such that 2j is greater or
equal to the highest Hamming weight of the rows of A;
— the fan-out is the highest Hamming weight of the columns of A;
— the cost is the Hamming weight of A.

For hardware oriented FCSRs, the shortest of the critical path is 1 and the
smallest fan-out is 2. Therefore the requirements of the transition matrix A =
(aij)1≤i,j≤n of size n× n are as follows:
— the over diagonal must be full of 1 and an1 = 1 (to preserve the shifting);
— the number of nonzero entries in any row or any column must be at most two
(to preserve the critical length 1 and the fan-out 2);
— q = det(I − 2A) is prime, and the order of 2 modulo q is |q| − 1 (to preserve
outputting l-sequences).

To choose suitable transition matrices, an algorithm has been given in [15].
In this algorithm, a matrix A has been constructed in the form of the require-
ments, then q = det(I − 2A) is tested whether it is prime and whether 2 is
the primitive root modulo q. If q can pass the test, then A is a suitable ma-
trix. However, this algorithm is time-consuming, because every time q has to be
computed and tested. Hence, at the end of the paper [15], the authors have left
an open problem: How can a diversified or ternary FCSR be constructed when
a connection integer is specified? Fortunately, we find a method to solve this
problem. Through our method, we can immediately construct a suitable A for
a given integer q, without any test and complicated computation. This method
looks like the one in [16] where the authors proposed a method of constructing
Ring LFSRs with transition matrix of the form

A =



1
1 (0)

. . .

1
(0) h1 1

. .
.
h2

. . .

hn−4 .
.

hn−2 hn−3 1
1 hn−1 (0)



for the given connection polynomial Xn+hn−1X
n−1+· · ·+h1+1 and n odd (the

form is similar when n is even). However, these two results are different between
the theories and applications of LFSRs and FCSRs. Moreover, the methods of
proofs are also different. It seems that our proof is clearer and simpler. Our
construction will be showed in the next section.

3 Constructing A with a Given q

This section gives a method of constructing suitable matrices for hardware ori-
ented FCSRs. For a FCSR automaton, the connection integer q is often assumed
to be a negative odd integer. Therefore, we consider the following problem:

Given a negative odd integer q, we will construct a matrix A = (aij)1≤i,j≤n
with entries in {−1, 0, 1}, meeting the requirements as follows:
— the over diagonal must be full of 1 and an1 = 1;
— the number of nonzero elements in each row and each column must be at
most two;
— q = det(I − 2A).

First, we introduce a particular binary signed digit representation of a posi-
tive integer presented in [18], called the non-adjacent form (NAF).

Definition 4. A non-adjacent form (NAF) of a positive integer k is an expres-

sion k =
∑l−1

i=0 ki2
i where ki ∈ {−1, 0, 1}, kl−1 6= 0 and no two consecutive digits

ki are nonzero. l is called the length of the NAF.

This form has the following properties:
— Any positive integer k has a unique NAF denoted NAF (k).
— NAF (k) has the fewest nonzero digits of any binary signed representation of
k.
— The length of NAF (k) is at most one more than the length of the binary
representation of k.

NAF (k) can be efficiently computed using the following algorithm proposed
in [18]:

Now we present our construction by Algorithm 2. It first computes NAF (−q)
of a given negative odd integer q, then Algorithm 2 will output a matrix with
order n = l−1 where l is the length of NAF (−q). In some cases the NAF (−q) is
made by shortening the length to output a smaller matrix with order n = l− 2.
Interestingly, the Hamming weight of the constructed matrix is less than the
one of the transition matrix of the Fibonacci or Galois representation with the
same connection integer q, because NAF (−q) has the fewest nonzero digits of
any binary signed representation of −q. It implies that the cost of logic gates of
the constructed ternary FCSR is less.

The following example explains Algorithm 2:

Example 1. q = −747
1. Using Algorithm 1, compute:NAF (747) = (1, 0,−1, 0, 0, 0,−1, 0,−1, 0,−1).

Algorithm 1 Computing the NAF of a positive integer

Input: A positive integer k.
Output: NAF (k) = (kl−1, kl−2, . . . , k1, k0).
1: l← 0.
2: while k ≥ 1 do
3: if k is odd then
4: kl ← 2− (k mod 4), k ← k − kl;
5: else
6: kl ← 0.
7: end if
8: k ← k/2, l← l + 1.
9: end while

10: return (kl−1, kl−2, . . . , k1, k0).

2. Since q10 = 1, q9 = 0 and q8 = −1, changeNAF (747) into (1, 1, 0, 0, 0,−1, 0,−1, 0,−1)
and let n = 9.

3. Since q0 = −1, construct a matrix A through step 6 to step 17 of Algorithm
2, then

A =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 −1 0 1 0 0 0 0
0 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0


and det(I − 2A) = −747.

Finally, we prove that the matrices constructed by Algorithm 2 meet the
requirements proposed at the beginning of this section. First, some properties of
determinants should be mentioned.

Proposition 2. Let G be a matrix over a Ring R of size n × n. Let Eij be
the matrix with a single 1 in position (i, j) and other entries are zero. Then
det(G + λEij) = det(G) + λCofij(G), where Cofij(G) denotes the cofactor of
(i, j) in the matrix G.

Proposition 3.3 is a classic property of determinants. It gives a way to com-
pute the determinant of a modified matrix by its original matrix and the cofactors
of the original matrix.

Proposition 3. Let B = (bij)1≤i,j≤n be the matrix

Algorithm 2 Constructing a Ternary FCSR with a negative odd integer q

Input: A negative odd integer q < −1.
Output: A matrix A = (aij)1≤i,j≤n.
1: Using Algorithm 1, compute NAF (−q) = (ql−1, ql−2, . . . , q1, q0).
2: n← l − 1
3: if ql−1 = 1, ql−2 = 0 and ql−3 = −1 then
4: ql−1 ← 0, ql−2 ← 1, ql−3 ← 1, and n← l − 2.
5: end if
6: for 1 ≤ i, j ≤ n do

7: aij ←
{

1 if j ≡ i + 1 mod n
0 otherwise

8: end for
9: m← 0.

10: k ← n− 1
11: if q0 = −1 then
12: while k > 1 do
13: if qk 6= 0 then
14: ak+m,m+1 ← qk, m← m + 1.
15: end if
16: k ← k − 1.
17: end while
18: else
19: ann ← 1.
20: while k > 1 do
21: if qk 6= 0 then
22: ak+m,m+1 ← −qk, m← m + 1.
23: end if
24: k ← k − 1.
25: end while
26: end if
27: return (aij)1≤i,j≤n.



1 −2
1 −2 (0)

(0)
. . .

. . .

. . .
. . .

bi01 · · · bi0j0
. . .

. . .
... · · ·

...
. . . −2

bn1 · · · bnj0 (0) 1


where bii = 1 for 1 ≤ i ≤ n, bi,i+1 = −2 for 1 ≤ i ≤ n−1, bij ∈ Z for i0 ≤ i ≤ n
and 1 ≤ j ≤ j0 where i0, j0 are two constants (1 ≤ j0 < i0 ≤ n) and other
entries are 0. We can determine some cofactors of B:

Cofkl(B) = 2k−l for 1 ≤ j0 ≤ l < k ≤ i0 ≤ n.

Moreover, if we let bnn = −1 and other entries of B be fixed, then:

Cofkl(B) = −2k−l for 1 ≤ j0 ≤ l < k ≤ i0 ≤ n− 1.

Proof. Consider Cofkl(B) (1 ≤ j0 ≤ l < k ≤ i0 ≤ n), we have

Cofkl(B) = (−1)k+ldet(B∗kl)

where B∗kl is a matrix of size (n− 1)× (n− 1) by deleting the kth row and the
lth column of B, i.e.,

B∗kl =



b11 · · · b1,l−1 b1,l+1 · · · b1k b1,k+1 · · · b1n
... · · ·

...
... · · ·

...
... · · ·

...
bl−1,1 · · · bl−1,l−1 bl−1,l+1 · · · bl−1,k bl−1,k+1 · · · bl−1,n
bl1 · · · bl,l−1 bl,l+1 · · · blk bl,k+1 · · · bln
... · · ·

...
... · · ·

...
... · · ·

...
bk−1,1 · · · bk−1,l−1 bk−1,l+1 · · · bk−1,k bk−1,k+1 · · · bk−1,n
bk+1,1 · · · bk+1,l−1 bk+1,l+1 · · · bk+1,k bk+1,k+1 · · · bk+1,n

... · · ·
...

... · · ·
...

... · · ·
...

bn1 · · · bn,l−1 bn,l+1 · · · bnk bn,k+1 · · · bnn


=

 D (0)
E

(∗) F


where

D =

 b11 · · · b1,l−1
...

. . .
...

bl−1,1 · · · bl−1,l−1

 =


1 −2

1 −2 (0)
. . .

. . .

(0) 1 −2
1



E =


bl,l+1 bl,l+2 · · · blk
bl+1,l+1 bl+1,l+2 · · · bl+1,k

...
... · · ·

...
bk−1,l+1 bk−1,l+2 · · · bk−1,k

 =



−2
−2 (0)

. . .

(∗)
. . .

−2



F =

 bk+1,k+1 · · · bk+1,n

... · · ·
...

bn,k+1 · · · bnn

 =


1 −2

1 −2 (0)
. . .

. . .

(0) 1 −2
1



Then bij (i0 ≤ i ≤ n and 1 ≤ j ≤ j0) are all in the area (∗) of B∗kl and E since
1 ≤ j0 ≤ l < k ≤ i0 ≤ n. Hence det(B∗kl) = det(D)det(E)det(F) = (−2)k−l, and
Cofkl(B) = (−1)k+l · (−2)k−l = 2k−l for 1 ≤ j0 ≤ l < k ≤ i0 ≤ n.

Moreover, if we let bnn = −1 and other entries of B be fixed, then for

1 ≤ j0 ≤ l < k ≤ i0 ≤ n − 1, F ′ =


1 −2

1 −2 (0)
. . .

. . .

(0) 1 −2
−1

 will be substituted for

F in the above proof, and the remaining proof is similar. Therefore, the result
is valid.

Proposition 3.4 proposes that some cofactors of B are of the form of 2k,
which is useful for the proof of the following theorem.

Theorem 4. Given a negative odd integer q < −1, the matrix constructed by
Algorithm 2 meets the requirements proposed at the beginning of this section.

Proof. Given a negative odd integer q < −1, we get the NAF (−q) or the
NAF (−q) with small modification after step 5. Then q = −2n − qn−12n−1 −
· · ·−q222−q12−q0, and no two consecutive digits qi (0 ≤ i ≤ n−1) are nonzero
by Definition 3.1.

IF q0 = −1, we initially construct

A =


0 1

0 1 (0)
. . .

. . .

(0) 0 1
1 0


Let B = (bij)1≤i,j≤n = I − 2A, then

B =


1 −2

1 −2 (0)
. . .

. . .

(0) 1 −2
−2 1


and det(B) = −2n + 1 = −2n − q0.

Now we prove that det(B) = q after step 17 by induction. Suppose 1 ≤
k0 ≤ n − 1, qn−1 = qn−2 = · · · = qk0+1 = 0 and qk0

6= 0. In step 14, A
is modified by ak01 ← qk0 , then bk01 ← −2qk0 . Denote the modified matrix
by Anew, and Bnew = I − 2Anew. By Proposition 3.3, det(Bnew) = det(B) −
2qk0

Cofk01(B). And by Proposition 3.4, Cofk01(B) = 2k0−1. Hence det(Bnew) =
−2n − qk0

2k0 − q0. Suppose it has got 1 < k < n − 1, m ≥ 0 and det(B) =
−2n − qn−12n−1 − · · · − qk+12k+1 − q0 after step 16. Then the algorithm return
to step 13 to check if qk 6= 0. If qk = 0, A is not changed. Hence det(B) =

−2n − qn−12n−1 − · · · − qk2k − q0. If qk 6= 0, In step 14, A is modified by
ak+m,m+1 ← qk, then bk+m,m+1 ← −2qk. By Proposition 3.3, after modification
we have det(Bnew) = det(B)−2qkCofk+m,m+1(B). Suppose k′ is the least integer
such that k′ > k and qk′ 6= 0. Since no two consecutive digits qi (0 ≤ i ≤ n− 1)
are nonzero, we have k ≤ k′ − 2. Then k + m < k′ − 2 + m + 1 = k′ + m − 1
and m > m − 1. Hence Cofk+m,m+1(B) = 2k−1 by Proposition 3.4 (here i0 =
k′+m− 1 and j0 = m− 1), and det(Bnew) = −2n− qn−12n−1− · · · − qk2k − q0.
Therefore, det(I − 2A) = q after step 17 and A has the required form by the
construction process.

IF q0 = 1, we initially construct

A =


0 1

0 1 (0)
. . .

. . .

(0) 0 1
1 1


and the remaining proof is similar to the case q0 = −1.

4 Conclusions

In this paper, we have given a method of constructing a ternary FCSR for
hardware implementation with a given connection integer q. The cost of logic
gates of the constructed ternary FCSR is less than that of the Galois or Fibonacci
case. This construction is simple, convenient and useful for hardware oriented
FCSRs. It is more efficient than the algorithm presented in [15]. The results of
this paper have solved an open problem and a conjecture came up in [15].

References

1. Klapper, A., Goresky, M., 2-adic shift registers, in FSE. Lecture Notes in Computer
Science (eds. Anderson, R.J.), New York: Springer, 1993, vol. 809: 174-178.

2. Goresky, M., Klapper, A., Arithmetic cross-correlations of feedback with carry shift
register sequences, IEEE Trans. Inf. Theory, 1997, 43(4): 1342-1345.

3. Goresky, M., Klapper, A., Periodicity and distribution properties of combined
FCSR sequences, in ETA. Lecture Notes in Computer Science (eds. Gong, G.,
Helleseth, T., Song, H.Y., Yang, K.), New York: Springer, 2006, vol. 4086: 334-
341.

4. Klapper, A., Goresky, M., Large period nearly deBrujin FCSR sequences, in Ad-
vances in Cryptology, Lecture Notes in Computer Science (eds. Guillou, Quisquater
J.J.), Berlin: Springer, 1995, vol. 921: 263-273.

5. Goresky, M., Klapper, A., Fibonacci and Galois representations of feedback-with-
carry shift registers, IEEE Trans. Inf. Theory, 2002, 48(11): 2826-2836.

6. Fischer, S., Meier, W., Stegemann, D., Equivalent representations of the F-FCSR
keystream generator. The State of the Art of Stream Ciphers, Workshop Record,
2008.

7. Arnault, F., Berger, T.P., F-FCSR: design of a new class of stream ciphers, in FSE.
Lecture Notes in Computer Science (eds. Gilbert, H., Handschuh, H.), New York:
Springer, 2005, vol. 3557: 83-97.

8. Arnault, F., Berger, T.P., Lauradoux, C., The FCSR: primitive specification and
supporting documentation, ECRYPT - Network of Excellence in Cryptology, 2005.
http://www.ecrypt.eu.org/stream/

9. Arnault, F., Berger, T.P., Lauradoux, C., Update on F-FCSR stream
cipher. ECRYPT - Network of Excellence in Cryptology, 2006.
http://www.ecrypt.eu.org/stream/

10. Arnault, F., Berger, T.P., Lauradoux, C. et al., A new approach for FCSRs, in
Selected Areas in Cryptography. Lecture Notes in Computer Science (eds. M.J.J.
Jr., Rijmen, V., Safavi-Naini, R.), New York: Springer, 2009, vol. 5867: 433-448.

11. Arnault, F., Berger, T.P., Lauradoux, C. et al., X-FCSR: a new software oriented
stream cipher based upon FCSRs, in INDOCRYPT. Lecture Notes in Computer
Science (eds. Srinathan, K., Rangan, C.P., Yung, M.), New York: Springer, 2007,
vol. 4859: 341-350.

12. Berger, T.P., Minier, M., Pousse, B., Software oriented stream ciphers based upon
FCSRs in diversified mode, in INDOCRYPT. Lecture Notes in Computer Science
(eds. Roy, B.K., Sendrier, N.), New York: Springer, 2009, vol. 5922: 119-135.

13. Hell, M., Johansson, T., Breaking the F-FCSR-H Stream Cipher in Real Time, in
ASIACRYPT. Lecture Notes in Computer Science (eds. Pieprzyk, J.), New York:
Springer, 2008, vol. 5350: 557-569.

14. Stankovski, P., Hell, M., Johansson, T., An efficient state recovery attack on X-
FCSR-256, in FSE. Lecture notes in computer science (eds. Dunkelman, O.), New
York: Springer, 2009, vol. 5665: 23-37.

15. Arnault, F., Berger, T.P., Pousse, B., A matrix approach for FCSR automata,
Cryptography and Communications, 2010, vol. 3, Num. 2: 109-139.

16. Mruglaski G., Rajski J., Tyszer J., Ring Generators-New Devices for Embedded
Test Applications, IEEE Trans. on Computer-Aided Design, 2004, vol. 23, No. 9:
1306-1320.

17. Joux, A., Delaunay, P., Galois LFSR, embedded devices and side channel weak-
nesses, in Progress in Cryptology-INDOCRYPT 2006. Lecture Notes in Computer
Science (eds. Barua, R., Lange, T.), New York: Springer, 2006, vol. 4329: 436-451.

18. Hankerson, D., Vanstone, S., Menezes, A., Guide to Elliptic Curve Cryptography,
New York: Springer, 2004.

