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Abstract. We propose a generalization of the learning parity with noise (LPN) and learning with
errors (LWE) problems to an abstract class of group-theoretic learning problems that we term learning
homomorphisms with noise (LHN). This class of problems contains LPN and LWE as special cases, but
is much more general. It allows, for example, instantiations based on non-abelian groups, resulting in a
new avenue for the application of combinatorial group theory to the development of cryptographic prim-
itives. We then study a particular instantiation using relatively free groups and construct a symmetric
cryptosystem based upon it.
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1 Introduction

Motivation. One of the pillars of the modern reductionist approach to cryptography, as exempli-
fied e.g., in [17,18], has been the focus on explicit computational assumptions, precisely phrased
in the language of probabilistic modeling. The resulting separation of cryptographic mechanisms
from their underlying conjectured-hard problems has been instrumental to the development of a
proper formalization of security for disparate cryptographic notions, and for the establishment of
connections and elucidation of relations among crypto primitives.

Despite their fundamental role in the theory of cryptography, there is little variety in the fam-
ily of intractability assumptions. Most of the cryptographic constructs which are used in practice
today either rely on a small handful of computational assumptions related to factoring and discrete
logs (e.g., RSA, Diffie-Hellman), or lack a well-defined assumption altogether (e.g., AES, and any
of the SHA functions). A number of alternatives have surfaced, beginning with elliptic curve cryp-
tosystems [31,27] and more recently with lattice-based constructions [1,2]. Both have turned out
to provide revolutionary advances in the theory. Elliptic curves led to the development of identity
based cryptosystems [37,11,12], and lattices have recently led to the development of the first fully
homomorphic cryptosystems [14,39,15,16].

In this paper, we seek to tap into new sources of computational hardness. Inspired by the recent
success of the learning parity with noise (LPN [26,10]) and learning with errors (LWE [36,30])
problems as a platform for a variety of cryptographic applications, we pursue a generalization of
these problems into an abstract class of hard group-theoretic learning problems. Besides being of
interest in its own right, this generalization opens the way to a new approach for basing cryptog-
raphy on combinatorial group theory. The rich algebraic structure of non-abelian groups compares
favorably with the rigid structure of cyclic groups. Moreover, no efficient quantum algorithms are
known for most computational problems in combinatorial group theory, which provides substantial
motivation for pursuing this direction of research.

Besides enriching the set of viable intractability assumptions and providing a plausible alter-
native for post-quantum cryptography, our approach brings into play tools and ideas that have
traditionally not found much application in cryptography. For example, in Section 4, we develop an



instantiation of our abstract group-theoretic learning problem based on the theory of groups with
exponent k, or Burnside groups. We hope that the computational properties of these mathematical
objects will spark further work to develop new applications of group theory to cryptography.

A number of attempts to apply combinatorial group theory to cryptography exist in the litera-
ture (see below for a survey). Earlier efforts aimed at capitalizing on the algorithmic unsolvability of
many of the standard computational problems in combinatorial group theory (e.g., the word prob-
lem, the conjugacy problem and the membership problem). These attempts, however, overestimated
the relevance of problems that are unsolvable in the worst-case for cryptographic purposes. Our
approach instead suggests new group-theoretic problems and efficiently sampleable distributions on
which it is reasonable to conjecture that these problems remain difficult on average.

Non-Commutative Cryptography. In 1984, Wagner and Magyarik [40] proposed the first con-
struction of a group-theoretic asymmetric cryptosystem based on the hardness of the word problem
for finitely-presented groups and semigroups. In a nutshell, their idea parallels that of Goldwasser
and Micali [19]: rather than distinguishing between quadratic residues and non-residues, the un-
derlying problem is to distinguish two words in a finitely presented group G.

The Wagner-Magyarik cryptosystem has been cryptanalyzed in a number of works, including
[21,23,8]. The breakdown in the security was not caused by a weakness of the word problem for
groups, but rather it stemmed from a general lack of precision when describing the system and the
assumptions on which it was founded. This absence of proper formalization has been characteristic
of a number of the early approaches to applying group theory to cryptography [20]. For example,
as noted in [8], the description of the protocol in [40] is quite ambiguous, and many design choices
were left unspecified. More precisely, the authors failed to provide polynomial time algorithms to
generate system parameters (e.g., the group G), as well as the public and private keys, and also
failed to provide a complete description of the decryption algorithm. Formal definitions of security
were also lacking. When left with this level of ambiguity, formal security analysis is impossible.

A more recent proposal was the work of Anshel et al. [4], which can use essentially any non-
abelian group as the platform. In their original paper, the authors adopted braid groups. However
this choice made the protocol susceptible to various attacks, some of them quite successful (e.g.,
[13]; see also [33] for a survey).

Perhaps it is not surprising that many of the early attempts to employ non-abelian groups
in cryptographic protocols were lacking in precision. The transition from finite abelian groups to
non-abelian (possibly infinite) groups for cryptographic purposes is not a small step. Very little is
known regarding problems in the theory of non-abelian groups with high average-case complexity, let
alone about problems that additionally could support public-key operations. To move a discussion
of security to the setting of infinite groups is more difficult still. To begin with, many of the
fundamental definitions of security (e.g., [19]) are phrased in terms of probability. Probabilistic
analysis for finite groups is readily manageable because the uniform distribution over, say, a finite
cyclic group is easy to sample given just a generator and an estimate of the order. For infinite
groups, it is even unclear what the corresponding concept of the uniform distribution is, let alone
how one goes about sampling it. An attempt toward defining a suitable analogue of the uniform
distribution on infinite groups has been recently made by Lee [28], who proposed the notion of right
invariance, and observed that all previous concrete cryptographic constructions on infinite groups
have failed to achieve it.
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LPN/LWE. Roughly speaking, the LPN and LWE problems are about learning a certain function
by sampling a “noisy” oracle3 for its input / output behavior. Early research on these problems
appears in [10] and [36], respectively. Both problems exhibit attractive self-reducibility properties,
giving strong evidence to support the hypothesis that natural randomized versions of these problems
are intractable. For LWE, there is more evidence still: the works of [36,35] demonstrate reductions to
LWE from worst-case lattice problems. The self-reducibility arguments for these problems are very
algebraic, which perhaps suggests that the generalizations we propose may enjoy similar properties
when instantiated with other classes of groups. Such a development could produce an exciting new
source of problems in group theory which are difficult on average.

Our Contributions. Our main result is the generalization of the learning parity with noise
(LPN) and learning with errors (LWE) problems to an abstract class of learning problems. At
high level, we generalize the LWE setting of linear functions over vectors spaces to the context of
homomorphisms between groups. This yields conjectured hard problems where the computational
task is the recognition of noisy samples of (preimage, image) pairs for a hidden homomorphism
versus random pairs of elements from the relevant domain and codomain.

The resulting abstract class of group-theoretic learning problems contains the LPN and LWE
problems as special cases, but is much more general. It allows, for example, instantiations based
on non-abelian groups: Another important component of our work is the development of a learning
assumption based on free Burnside groups of exponent 3.

As an application, we propose a symmetric cryptosystem whose provable security can be rigor-
ously analyzed and established based on the conjectured hardness of our Burnside learning problem.
This is, to the best of our knowledge, the first time that the computational properties of Burnside
groups have been employed for cryptographic purposes.

Organization. Section 2 provides a brief review of basic group-theoretic notions. The proposed
generalized learning problem is described in Section 3. Section 4 develops a combinatorial instan-
tiation from free Burnside groups of exponent 3. A symmetric cryptosystem based on Burnside is
reported in Section 5.1. Attaining asymmetric encryption is substantially more involved: a possible
approach toward this goal is outlined in Section 5.2.

2 Review of Relevant Group-Theoretic Notions

Free groups and presentations. If X is a subset of a group G, let X−1 = {x−1 | x ∈ X}.
An expression w of the form a1 . . . an (n ≥ 0, ai ∈ X ∪ X−1) is termed a word or an X-word.
Such an X-word is said to be reduced if n > 0 and no subword aiai+1 takes either of the forms
xx−1 or x−1x. If F is a group and X is a subset of F such that X generates F and every reduced
X-word is different from 1F , then one says that F is a free group, freely generated by the set X,
and refers to X as a free set of generators of F , and writes F as F (X). A key property of a free
group F freely generated by a set X is that for every group H, every mapping θ from X into H
can be extended uniquely to a homomorphism θ∗ from F into H. If θ∗ is a surjection, and if K
is the kernel of θ∗, then the quotient group F/K is isomorphic to H. If R is a subset of F , then
in the event that K is generated by all of the conjugates of the elements of R, we express this by
writing H = 〈X;R〉 and term the pair 〈X;R〉 a presentation of H (notice that the mapping θ is
usually implicit). The elements of R are termed relators of H and R itself is referred to as a set of
defining relators of H. H is said to be finitely presented if X and R can be chosen to be finite.

3 Here, “noisy” refers to the fact that the oracle may perturb the correct output according to some random variable
whose probability distribution is known.
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(a) Free group, F (a, b) (b) B(2, 2) ∼= (F2
2,+) (c) B(2, 3) = B2

Fig. 1: Cayley graphs for various groups

Notice that if r ∈ R, then θ∗(r) = 1 and we sometimes say that r takes the value 1 in H or that
r is a relation in H. Of course a given group H can have many different presentations. It is also
worth noticing that every pair 〈X;R〉 consisting of a free set of generators of a free group F and a
subset R of F can be made a presentation of a group, namely the factor group H = F/K, where
K is the normal closure in F of R, i.e., the subgroup of F generated by the conjugates of the
elements of R. We need only take θ to be the mapping sending elements x ∈ X to their coset xK.

Relatively Free Groups. If F is a free group and K a normal subgroup of F , then the factor
group F/K is called relatively free if K is fully invariant, i.e., if α(K) ≤ K for any endomor-
phism α of F . If x1, . . . , xn are free generators of F , then x1K, . . . , xnK are called relatively free
generators of F/K, and typically denoted simply by x1, . . . , xn when there is no risk of confusion.
Let En denote a relatively free group of rank n, i.e., Fn = F (x1, . . . , xn) and En = Fn/K for
some fully invariant K. One key property of such a group is that any set map on its generators
into En can be extended to an endomorphism of En. Hence, one is immediately equipped with an
exponential number of homomorphisms, provided that the image is non-trivial.

Cayley distance. Finitely generated groups can also be viewed as geometric objects via the notion
of the Cayley graph. The Cayley graph of a group G relative to a particular set of generators
has the group elements as vertexes, and an edge between two vertexes if and only if multiplication
by a generator (or its inverse) translates one to the other. Figure 1 depicts Cayley graphs for few
simple groups, including the 27-element Burnside group B(2, 3) of exponent 3 with 2 generators.
(Burnside groups are discussed in Section 4.) The Cayley distance between two group elements
is defined as the length of the shortest path between the corresponding nodes in the Cayley graph.
The maximum Cayley distance between any two elements in the graph is the diameter of the
Cayley graph. The Cayley norm of an element x, denoted ‖x‖, is its distance from the identity
element in the Cayley graph. We remark that maxx∈G(‖x‖) corresponds precisely to the diameter.

Commutators. In non-abelian groups, the commutator of two group elements a, b, denoted [a, b],
is the group element satisfying the identity ab = ba[a, b], that is, [a, b] = a−1b−1ab. Starting with
the generators x1, . . . , xn of the group as the recursive basis, one obtains an ordered sequence of
formal commutators by combining two formal commutators a, b into the formal commutator
[a, b]. The weight of a formal commutator is defined by assigning weight 1 to the generators, and
defining the weight of [a, b] as the sum of the weights of a and b. The weight imposes a partial order
on formal commutators, which is typically made total by assuming an arbitrary ordering among
formal commutators of any given weight greater than 1, and by adopting the lexicographical order
among the generators.

Center. The center of a group G, denoted Z(G), is the set of all elements that commute with
every element of G.
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3 Generalized Learning Problems

We begin by reviewing the learning with errors problem, and we then generalize it to a novel
abstract group-theoretic problem concerning learning with respect to a “noisy” oracle.

3.1 Learning with Errors (LPN/LWE)

The problem of learning from noisy examples has been considered by Angluin and Laird [3], and
subsequently by Kearns [26] and Blum, Kalai, and Wasserman [10]. Informally, the problem is to
deduce a particular function by sampling the input / output behavior in the presence of noise (i.e.,
some of the outputs are incorrect). Of particular interest is the problem of learning vectors from
parity with noise (LPN) [10], which may be stated as follows. Let Ψ be a distribution on F2. Let s
and {ai}mi=1 be randomly chosen vectors, s,ai ∈ Fn2 , and let {ei}mi=1 be independent samples from
Ψ . Define bi = s · ai + ei for i = 1, . . . ,m, where · denotes the inner product. The problem is
then to determine s given {(ai, bi)}mi=1. In general, this problem is believed to be computationally
intractable. The best known algorithm is only slightly sub-exponential (2O(n/ logn), due to [10]).

More generally, one may consider the same problem on vector spaces over finite fields other
than F2. The case of Fp under zero-mean/low-variance discrete Gaussian noise was considered by
Regev and termed learning with errors (LWE) problem [36]. Therein, Regev showed a quantum
reduction from worst-case lattice problems (e.g., the shortest vector problem), which gives further
support to the conjecture that these problems are intractable. When the noise parameter is greater
than

√
n, the best known algorithm for solving this problem was demonstrated in [10] and requires

2O(n) time. When the noise parameter is smaller than
√
n, the recent work of [6] has demonstrated

a subexponential time algorithm using certain linearization techniques.
We also mention a variant of the LWE problem, recently proposed by Lyubashevsky et al. in [30]

to improve the ratio of the entropy of the noisy images over that of their preimages. In the setting
of [30], termed ring-LWE, the noisy samples have the form (a, b) ∈ R × R, where R is a ring of
algebraic integers in a suitable number field, b ≈ a · s for a secret random ring element s, and ·
denotes multiplication in R.

3.2 Learning Homomorphisms with Noise (LHN)

The class of functions at play in the LWE problem is the class {λs}s∈Fnp of linear functionals from

Fnp into Fp. By algebraic abstraction, we may replace arbitrary homomorphisms between groups
for the linear functionals thus translating the learning problem from the setting of vector spaces to
that of arbitrary groups. We describe the resulting generalization below.

For every n ∈ Z+, let Gn and Pn be groups (with the operation written multiplicatively). Let
Γn, Ψn, and Ξn be distributions on Gn, Pn, and Gn×Pn, respectively. Intuitively, Γn determines how
preimages are sampled, and will usually be uniform; Ψn is the error distribution on the codomain;
and Ξn is a sort of “base” distribution which is independent of any homomorphism and will also be
uniform in most finite cases. Finally, let Φn be a distribution on the set hom(Gn, Pn) of homomor-
phisms from Gn to Pn. Furthermore, assume that Γn, Ψn, Ξn and Φn are efficiently sampleable. Let

ϕ
$← Φn and define a distribution AΨnϕ on Gn × Pn whose samples are preimage / distorted image

pairs (a, b) where a
$← Γn and b = ϕ(a)e for e

$← Ψn. Figure 2 depicts the above generalization.
We now formulate search and decision versions of a general problem which we term learning

homomorphisms with noise (or for brevity, LHN).

Definition 1 (LHN-Search). Given an AΨnϕ -oracle, the LHN-search problem is to recover ϕ.
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Fnp 3 a Gn 3 a

Fp

λs

?
3 b = s · a+ e

≈ s · a

?
Pn

ϕ

?
3 b = ϕ(a)e

≈ ϕ(a)

?

Fig. 2: Generalizing learning problems from vector spaces (LWE, left) to arbitrary groups (LHN,
right).

Definition 2 (LHN-Decision). The LHN-decision problem is to distinguish AΨnϕ from Ξn.

For the search problem, the corresponding assumption is that for all probabilistic polynomial
time algorithms W and for every polynomial p, we have:

Pr
[
ϕ′ = ϕ | ϕ′ ←WAΨnϕ (1n)

]
<

1

p(n)

where the probability is over the random choices of ϕ
$← Φn and over the random coins of the

attacker W and of the oracle AΨnϕ . The corresponding assumption for the decision problem is

simply that AΨnϕ ≈
PPT

Ξn.

Note that this is a proper generalization of the standard LWE problem [36], with Gn = Fnp ,
Pn = Fp, Φn uniform on the linear functionals from Fnp into Fp, Γn uniform on Fp, Ξn uniform over
Gn × Pn, and where Ψn corresponds to a zero-mean discrete Gaussian over Fp of suitable variance.
At the same time, casting the assumption into abstract terms facilitates the formulation of new
learning problems that leverage the potential hardness of group-theoretic settings other than the
usual ones of cyclic groups and vector spaces. In particular, we will discuss an instantiation from
combinatorial group theory in Section 4.

3.3 Looking for Instantiations of LHN: What Makes LPN/LWE Hard?

To gain insight as to what ingredients are required in the more general context, and to understand
what properties one might need of a candidate group-theoretic setting to serve as a platform
for the abstract LHN problem, we begin with some general observations on the standard LWE
problem. First, we note that part of what makes LWE difficult in the standard vector space case
is that Fnp is a free module. Not only does this afford one with an exponential space of secret keys
(| hom(Fnp ,Fp)| = pn); in some sense, it also maximizes the difficulty of learning with errors: Given
a single noisy image ϕ(ai) + ei, every choice of noise ei produces a value that can be plausibly
explained as the true image ϕ̄(ai) of some homomorphism ϕ̄. Consequently, one must collect many
samples in order to rule out any given potential value of the hidden homomorphism ϕ. Even once
enough equations have been obtained to uniquely constrain ϕ, it is not clear which path to take
to distill this large set of equations down to ϕ, leading to an essentially exponential number of
choices to be considered. This is in sharp contrast with the setting of arbitrary finite groups, where
|hom(Gn, Pn)| may not be exponential, and furthermore, one could potentially detect the presence
of error from but a single sample (a, b) if, for example, the order of b does not divide the order of a.

From the above discussion, the setting of free groups arises as a seemingly natural alternative
to vector spaces. As for the case of Fnp , instantiating LHN over free groups results in a huge space
of possible keys (homomorphisms). Other similarities with vector spaces, however, are not easy to
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derive. First, free groups are infinite, which adds non-trivial complications to the sampling process,
and makes it cumbersome to even formally state the abstract learning problem in this case. Second,
multiplication in free groups is a rather transparent operation. For example, the analogue of the
subset sum problem (a crucial ingredient that is often paired with the LPN/LWE assumptions, and
used e.g., in the cryptosystem of [36]) admits an efficient algorithm in the setting of free groups
(see e.g., [29, Proposition I.2.21]), which makes it rather unsuitable for cryptographic applications.

We contend, however, that suitable analogues of Fnp might be found by restricting attention to
certain sub-classes of groups, like relatively free groups. As mentioned in Section 2, these groups
enjoy many of the desirable properties that free groups exhibit: they are, for instance, equipped
with exponentially many homomorphisms into any non-trivial group, and thus provide adequate
key space for the LHN problem. In contrast to free groups, they can also be chosen to be finite, thus
avoiding many of the complications that come with free groups. In the next section, we describe
an infinite class of finite relatively free groups: The free Burnside groups of exponent 3.

4 An Instantiation from Combinatorial Group Theory

We now put forth a new intractability assumption by instantiating LHN with a certain class of
finite non-abelian groups. We begin with some background and basic facts on the class of groups
in question, and then discuss their computational properties and choice of parameters suitable for
instantiating the LHN problem.

4.1 Burnside Groups

For a positive integer k, consider the class of groups for which all elements x satisfy xk = 1. Such
a group is said to be of exponent k. We will be interested in a certain family of such groups called
the free Burnside groups of exponent k, which are in some sense the “largest.” The free Burnside
groups are uniquely determined by two parameters: the number of generators n, and the exponent
k. We will denote these groups by B(n, k):

Definition 3 (Free Burnside group). For any n, k ≥ 0, the Burnside group of exponent k with
n generators is defined as

B(n, k) = 〈{x1, . . . , xn}; {wk | for all words w over x1, . . . , xn}〉.

The question of whether B(n, k) is finite or not is known as the bounded Burnside problem.
For sufficiently large k, B(n, k) is generally infinite [25]. For small exponents, it is known that
k ∈ {2, 3, 4, 6} yields finite groups for all n. (We remark that with the exception of k = 2, these are
non-trivial results.) For other small values of k (most notably, k = 5), the question remains open.

For the purposes of this paper, we will be interested primarily in groups of exponent 3; hence
in what follows we will denote B(n, 3) simply by Bn for brevity. Next, we review some important
facts about Bn (see [24,22] for a fuller account).

Normal form of Bn. Although Bn is non-abelian, an interesting consequence of the order law
w3 = 1 for w ∈ Bn is that Bn has a simple normal form: Each Bn-element can be written uniquely
as an ordered sequence of (a subset of) generators (or their inverses4), appearing in lexicographical
order, followed by (a subset of) the commutators of weight 2 (or their inverses), and finally by (a
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subset of) the commutators of weight 3 (or their inverses):

xα1
1 · · ·x

αi
i · · ·x

αn
n [x1, x2]

β1,2 · · · [xi, xj ]βi,j · · · [xn−1, xn]βn−1,n [x1, x2, x3]
γ1,2,3

· · · [xi, xj , xk]γi,j,k · · · [xn−2, xn−1, xn]γn−2,n−1,n =

n∏
i=1

xαii
∏
i<j

[xi, xj ]
βi,j

∏
i<j<k

[xi, xj , xk]
γi,j,k

where all αi, βi,j , γi,j,k ∈ {0, 1,−1} for all 1 ≤ i < j < k ≤ n, and [xi, xj , xk] = [[xi, xj ], xk].

Order of Bn. From the above normal form, it follows that Bn has exactly 3n+(n2)+(n3) elements.

Homomorphisms from Bn to Br. There are 3n(r+(r2)+(r3)) homomorphisms from Bn → Br. This
follows immediately from the order of Br and from the fact that Bn is a free object in the category
of groups of exponent 3 with generating set of size n.

We also have the following lemma regarding the diameter of Bn:

Lemma 1. ∃τn ∈ Bn such that ‖τn‖ ∈ Ω( n3

logn).

Proof. Let dn = maxx∈Bn(‖x‖), and recall that |Bn| = 3n+(n2)+(n3). Since all elements of the group
can be written with at most dn symbols taken from x±11 , . . . , x±1n :

(2n)dn ≥ 3n+(n2)+(n3) ⇐⇒ dn log3(2n) ≥ n+

(
n

2

)
+

(
n

3

)
⇐⇒ dn ≥

⌈
n+

(
n
2

)
+
(
n
3

)
log3 2n

⌉
ut

4.2 Computational Aspects of Burnside Groups

In order for the Burnside groups to be of use in cryptography, at a minimum, they must have a
concise representation, and the group operation must be efficiently computable. We demonstrate
here that both criteria are met. First, we note that as described above, each element of Bn has a
unique normal form as a product of the generators and certain commutators. Hence by storing an
array of the exponents (each of which is in the set {0, 1,−1}) we can uniquely represent an element.
The size of the array is cubic in n.

As for the group operation, this can be computed simply by concatenating two normal forms, and
then reducing the resulting word back into normal form. This process, referred to as the collection
process, takes cubic time (see [24], chap. 11) in the length of the input (which is itself cubic in n).
However, all commutators of weight 3 are in the center Z(Bn) of Bn, and hence there is no need to
expand them and apply the collection process—one can simply add the corresponding exponents
modulo 3. Furthermore, since all commutators of weight 4 are trivial (see [24], chap. 18), we know
that [Bn, Bn] is commutative. Hence, we can again avoid the collection process when moving the
weight-2 commutators amongst themselves, and in cubic time, we can reduce the expression to a
“nearly” normal form consisting of a product of at most 2n generators (or their inverses) followed
by commutators in normal form. Therefore we need only to apply the collection process on linear
input, and so the overall running time of computing the product is indeed O(n3). Inverses can also
be computed over Bn in at most cubic time by a similar (yet somewhat simpler) collecting process.

The last and most challenging computational aspect of Bn relates to its geodesics—the com-
putation of distances in the Cayley graph. For the applications we introduce here, it will suffice to
compute the norm (i.e., the distance to the identity of the group).

4 Note that x−1 = x2 in Bn, as Bn has exponent 3.
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In general, geodesics in the Cayley graph is a difficult problem. In some cases, it is known to
be NP-hard [32].5 However, this is not as troubling as it seems. We need only to compute norms in
the codomain group Pn, which is generally small, and does not necessarily grow with the security
parameter (although it may grow with a correctness parameter). For the case of the free Burnside
group Br, one possible solution is to perform a breadth-first search of the Cayley graph, storing
the norm of every element in a table. This process will begin to become infeasible around r = 5.
However, even with this small number of generators, the diameter is large enough to properly
decode for many interesting error distributions Ψn. For the general case, geodesics in the Cayley
graph of Bn might be efficiently computable (perhaps up to small approximation factors) making
use of a number of commutator identities, for instance:

[a, b] = [b, a]−1; a[a, b] = [a, b]a; [a, b]−1 = [a−1, b]; [a, b, c]−1 = [a−1, b, c].

This might allow one to either shorten the normal forms, or to first re-order the generators and
then notice that the resulting words are shorter. We shall not concern ourselves with this here, but
will consider this problem separately.

4.3 Instantiating LHN over Burnside Groups

Here we propose a concrete instantiation from Burnside groups, which we subsequently denote by
Bn-LHN. Set Gn

.
= Bn and Pn

.
= Br, where 2 ≤ r ≤ 4. Let Γn

.
= U(Bn) and Ξn

.
= U(Bn×Br). The

error distribution Ψn on Br is constructed by taking a randomly ordered product of the generators,
raised to random exponents. More precisely, its probability mass function is:

∀e ∈ Br, Pr
E

$←Ψn
[E = e] = Pr

v
$←Fr3,σ

$←Sr

[
e =

r∏
i=1

xviσ(i)

]
(1)

where the xi’s are the generators of Br, the vi’s are the components of v, and Sr denotes the
symmetric group on r letters. Since x2 = x−1 in Br, the norm ‖e‖ of a Ψn-sample e is at most
r. (Some intuition for this choice of Ψn is discussed at the end of this Section.) For any given
secret homomorphism ϕ, the above choices completely describe the distribution AΨnϕ . As for the
distribution Φn from which ϕ is drawn, we simply let Φn

.
= U(hom(Bn, Br)). Note that since Bn

is a relatively free group, any mapping of its n generators uniquely extends to a homomorphism.
Hence, to sample Φn, it suffices to select random Br-images for the n generators of Bn. Note that
for 2 ≤ r ≤ 4, elements of Br take at most 3 bytes, and thus storing ϕ requires just linear space.

Figure 3 summarizes the choice of groups and distributions for the Bn-LHN problem.

Gn Pn Γn Ξn Ψn Φn

Bn Br U(Bn) U(Bn ×Br)
[
v

$← U(Fr3), σ
$← Sr :

∏r
i=1 x

vi
σ(i)

]
U(hom(Bn, Br))

Fig. 3: Choice of groups and distributions for the Bn-LHN problem.

Choice of Parameters. To determine suitable choice of parameters for the Bn-LHN instantiation
described above, here we consider known approaches to attacking the assumption. First, observe
that the key space is rather large: |hom(Bn, Br)| = 3Θ(nr3), and so even small choices of n and r

5 One entertaining example is that of the Rubik’s cube group, whose diameter was demonstrated to be 20 in 2010
via a distributed computing project which required 35 CPU-years.
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will defeat a brute-force attack. In terms of a distinguishing attack, we derive below an interesting
connection to LWE with p = 3, based on the projection onto the commutator-factor (cf. Figure 4).
Computationally, ρn amounts to just retaining the exponent-tuple corresponding to the generators

ρn : Bn → Bn/[Bn, Bn] ∼= (Fn3 ,+)

ρr : Br → Br/[Br, Br] ∼= (Fr3,+)

Bn
ϕ - Br

(Fn3 ,+)

ρn

?

ϕ′
- (Fr3,+)

ρr

?

Fig. 4: Action over Bn and Br of the projection onto the commutator-factor.

in the normal form of a Bn-element. One easily verifies that ρn and ρr transform the distribution AΨnϕ

from an Bn-LHN instance to a new distribution, A
Ψ ′n
ϕ′ over Fn3×Fr3, which presents us with a problem

very similar to the standard LWE with p = 3. (Even with r > 1, the resulting problem is polynomial-
time equivalent to the standard version; see e.g., [5], Lemma 4.2.) Notably, the resulting noise
distribution Ψ ′n for the LWE-like instance is just the abelianization of Ψn, which by construction
amounts to a random r-tuple of F3-exponents (cf. Equation (1)). Thus, applying the commutator-
factor transformation yields an LWE-like instance where the noisy distribution is identical to the
random one, and so the instance is impossible to break. Nevertheless, in light of this connection with
LWE, it seems prudent to pick values for n that would also make LWE hard. The best algorithm
for this setting is currently the one of [10], and requires time 2O(n/ logn), which suggests values of n
in the few hundreds.

Remark 1. Regarding the error distribution, we remark that the support of Ψn should never be
contained in a proper normal subgroup of Pn, else an adversary will always be able to “factor out”
the noise to mount a distinguishing attack. Note that for the standard LWE/LPN problems, as well
as the error distribution we propose for Bn-LHN in Equation (1), this issue does not arise because
the support of Ψn generates all of Pn.

Regarding the choice of r, as discussed above, r = 4 will suffice, as this permits an exhaustive,
breadth first search of the Cayley graph. For each element of Br, a geodesic representative (or just
the norm) can be stored in a moderately-sized table (≈ 14MB) for future use. We stress that this
computation needs only to be done once for the lifetime of the system.

We note also that there is still much flexibility in the choice of Ψn; random walks of variable
length, perhaps according to a similar distribution as that of [9], may also be appropriate. Addi-
tionally, we remark that one may consider altogether different metrics on the group, e.g., taking a
normal form for the elements and then using the Hamming metric on the resulting vector of expo-
nents. The distribution Ψn could then correspond to explicitly corrupting part of the description of
ϕ(a). However, the former approach using the Cayley graph seems to have much more promise for
application to an asymmetric setting—we discuss this further in the following section.

5 Applications

5.1 A Group-Based Symmetric Cryptosystem

In this section, we present a symmetric cryptosystem based on the hardness of learning Burnside
homomorphisms with noise (Bn-LHN cf. Section 4.3).
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Precomputation: Run breadth-first search on the Cayley graph of Br, recording the norm of each
element. We stress that this procedure need only be done once for the lifetime of the system.

Key-Gen(n): Run the setup algorithm for Bn-LHN to select a random homomorphism ϕ from

the set of homomorphisms from Bn into Br, and set the shared key SK
·

= ϕ. Using the table
generated in the precomputation phase, select an element τ ∈ Br of maximal norm. Given the
lower bound from Lemma 1, we know that ‖τ‖ = Ω(r3/ log r).

Encrypt(SK, t): To encrypt a bit t, select (a, b)
$← AΨnϕ , compute b′

·
= bτ t(= ϕ(a)eτ t), and output

the ciphertext c
.
= (a, b′).

Decrypt(SK, (a, b′)): Compute e′ = ϕ(a)−1 · b′ and output t = 0 if and only if ‖e′‖ ≤ r.

Theorem 1 (Correctness). If (a, b′)
$← Encrypt(SK, t), then Decrypt(SK, (a, b′)) = t.

Proof. First note that for any group G, the norm in the Cayley metric is well-behaved with respect
to the group product: in particular we have that for all a, b ∈ G,

|‖a‖ − ‖b‖| ≤ ‖ab‖ ≤ ‖a‖+ ‖b‖ .

Combining this fact with Lemma 1, we see that as r grows, correctness follows easily, since for any

e
$← Ψn, we have ‖e‖ ≤ r, and ‖τ‖ ∈ Ω(r3/ log3(2r)) so that ‖eτ‖ ≥ ‖τ‖ − ‖e‖ 
 r. ut

Remark 2. For the case of small r, we must take more care. Note that from the proof of Lemma 1,

we have more precisely that ‖τ‖ ≥
⌈
r+(r2)+(r3)

log3 2r

⌉
. Hence if r = 4, then our lower bound for ‖τ‖ is 8,

which presents a small problem, since the maximal norm element from the support of Ψn is of norm
4. Such an element will be sampled from Ψn with probability 16

81 , and hence in this case, we simply
remark that correctness can be amplified by sending multiple encryptions. The Decrypt algorithm
will then output 0 if

∥∥ϕ(a)−1 · y
∥∥ is ever less than 4, 1 if it is ever greater, and ⊥ if it is always 4.

We also remark that the elementary lower bounds from Lemma 1 are likely not tight, in which case
there is no need for the amplification. Even for r = 4, if ‖τ‖ = 9 rather than 8, the scheme above
would attain correctness with probability 1, making amplification unnecessary.

Theorem 2 (Security). If the Bn-LHN -Decision problem is hard, then the above cryptosystem
is IND-CPA secure.

Proof. We structure the proof following the sequence-of-game approach of [38]. We define a sequence
of “indistinguishable” games G0, G1, G2, and G3, all operating over the same underlying probability
space. Starting from the actual adversarial game G0, we make incremental modifications to the
behavior of the encryption and challenge oracles. This changes the way in which the adversary’s
view is computed, but the changes are controlled so as to ensure that the views’ distributions
across games are indistinguishable. Additionally, the last game (game G3) is defined so that the
adversary’s goal is clearly impossible; by the indistinguishability of any pair of consecutive games,
it will follow that the adversary’s advantage in the original game is negligible.
Game G0. Game G0 models the standard notion of symmetric-key IND-CPA [7] security for the case
of bit encryption. On input the security parameter 1n, the adversary A interacts with an encryption
oracle OEnc(·) and with a challenge oracle OCh(). The oracles (reported in Figure 5) run with the
same random secret key ϕ, sampled according to the Bn-LHN -Decision instance generator from
Section 4.3. At the end of the interaction, A outputs a bit t′ as her best guess to the bit t∗ drawn
by the challenge oracle in step C0.

11



E1. ai
$← Bn

E2. ei
$← Ψn

E3. bi ← ϕ(ai)ei
E4. di ← biτ

ti

return(ai, di)

(a) OEnc(ti)

C0. t
∗ $← {0, 1}

C1. a
∗ $← Bn

C2. e
∗ $← Ψn

C3. b
∗ ← ϕ(a∗)e∗

C4. d
∗ ← b∗τ t

∗

return(a∗, d∗)

(b) OCh()

Fig. 5: Oracles in Game G0.

Game G1. Game G1 is identical to game G0 except for a notational change: steps E1–E3 and
C1–C3 are replaced with:

E′123. (ai, bi)
$← AΨnϕ C ′123. (a

∗, b∗)
$← AΨnϕ

Let S1 be the event that t′ = t∗ at the end of game G1. By definition of AΨnϕ , it is clear that the

difference between games G0 and G1 is just syntactic, and so Pr[S0] = Pr[S1] .

Game G2. In game G2, the distribution Adist is replaced with Ξn
·

= U(Gn × Pn):

E′′123. (ai, bi)
$← Ξn C ′′123. (a

∗, b∗)
$← Ξn

In Lemma 2, games G1 and G2 are proven indistinguishable under the Bn-LHN -Decision as-
sumption. In particular, denoting with S2 the event that t′ = t∗ at the end of game G2, and
with νBn-LHN the maximum success probability against the Bn-LHN -Decision problem by any

probabilistic polynomial time distinguisher W , it holds that |Pr[S1]− Pr[S2]| ≤ νBn-LHN .

Game G3. Game G3 is identical to game G3 except that step C4 is replaced with:

C ′′′4 . d
∗ ← b∗

Let S3 be the event that t′ = t∗ at the end of game G3. We claim that events S2 and S3 are

equivalent, and so Pr[S2] = Pr[S3] . To see this, note that the only difference between the two

games is how d∗ is computed. Since in game G3 d
∗ is uniform and independent of anything else in

the adversary’s view, it suffices that this is also the case in game G2. Indeed, for any fixed c ∈ Br:

d∗ = c [in G2] ⇔ b∗τ t
∗

= c ⇔ b∗ = c(τ t
∗
)−1

Thus,

Pr
G2

[d∗ = c] = Pr
G2

[b∗ = c(τ t
∗
)−1] =

1

|Br|
because b∗ is uniform in Br.

Next, observe that Pr[S3] = 1/2 : Indeed, A’s view in game G3 is computed independently of

the bit t∗. Putting it altogether we get:

12



|Pr[S0 − 1/2]| = |Pr[S0 − S3]| = |Pr[S1 − S2]| ≤ νBn-LHN .

ut

Lemma 2. Pr[S1]− Pr[S2] ≤ νBn-LHN .

Proof. We describe a reduction from the Bn-LHN -decision problem to distinguishing between
games G1 and G2. In other words, given an IND-CPA adversary A against our scheme, we construct
a distinguisher W that, given oracle access to a distribution D ∈ {AΨnϕ , Ξn}, uses A to discriminate
between the two cases.

Distinguisher W runs a copy of A internally. Whenever A asks for a ciphertext on ti ∈ {0, 1},
W obtains from its oracle D a sample (ai, bi), and returns (ai, di) to A, where di

·
= biτ

ti . When A
asks for the challenge ciphertext, W picks a random bit t∗, obtains a sample (a∗, b∗) from its oracle

D, computes d∗
·

= b∗τ t
∗
, and returns (a∗, d∗) as challenge to A. Eventually, A will stop and output

a bit t′. At that point, if t′ = t∗, then W will output 1, guessing that D was in fact running as AΨnϕ .
Otherwise, W will output 0, guessing that D was instead Ξn.

Clearly, W is roughly as efficient as A. Furthermore, W essentially “interpolates” between games
G1 and G2, in the sense that:

Pr[WAΨnϕ (1n) = 1] = Pr[S1] Pr[WΞn(1n) = 1] = Pr[S2]

It follows that:

|Pr[S1]− Pr[S2]| = |Pr[WAΨnϕ (1n) = 1]− Pr[WΞn(1n) = 1]| ≤ νBn-LHN

ut

5.2 Towards Group-Based Asymmetric Cryptosystems

There are several remaining obstacles to basing asymmetric cryptography on Bn-LHN . The pri-
mary issue is in providing a means of sampling the distribution AΨnϕ without knowledge of the secret
ϕ. In cryptosystems like that of [36], this was accomplished via computing the sum over a random
subset of known samples from the distribution. However, note that commutativity seems critical
for this to be effective:6 if {(ai, bi)}mi=1 are samples (so bi = ϕ(ai) + ei, where ei are “small”) and
S ⊂ [m], then

∑
i∈S bi =

∑
i∈S(ϕ(ai)+ei) = ϕ

(∑
i∈S ai

)
+
∑

i∈S ei. It follows that, if |S| is not too
large,

∑
i∈S bi will remain close to the true image ϕ(

∑
i∈S ai). In the non-abelian case,

∏
(ϕ(ai)ei)

is not generally equal to
∏
ϕ(ai)

∏
ei, and so it is not necessarily true that

∏
(ϕ(ai)ei) remains

close to ϕ(
∏
ai) just because the norm of

∏
ei is small.

We briefly mention some possible approaches toward bypassing this issue. A first workaround
might be to consider only abelian Pn. However, this makes the problem somewhat less interesting,
since applying the factor-commutator transformation to AΨnϕ would then produce a new distribution
over abelian groups which likely is not any more difficult to distinguish from uniform as the original
(assuming that Γn = U(Gn) and Ξn = U(Gn × Pn) as usual).7 So it would seem that to consider
only abelian Pn is to rule out non-abelian groups altogether.

6 We adopt below additive notation, as it is more natural for the LPN/LWE setting.
7 This follows primarily from the fact that for any epimorphism ψ : G → P of groups, ψ(U(G)) = U(P ), but also

requires the assumption that the commutator subgroup [Gn, Gn] can be efficiently sampled, or that some other
means exist for sampling the fibers of the projection Gn → Gn/[Gn, Gn].
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A more promising approach might be to place additional constraints on the distribution Ψn.
By careful selection of the error terms, one might be able to guarantee that the resulting product

behaves well in the sense that commutators involving e
$← Ψn are small in comparison to the

diameter of Pn. However, we remark that the näıve method of forcing the support of Ψn to be
contained in Z(Pn) is flawed: the commutator-factor transformation then produces a distribution
without noise, which will typically be easy to distinguish from random via standard linear algebra
techniques. More generally, as discussed in Section 4, the support of Ψn should never be contained
in a proper normal subgroup of Pn. Note that in our instantiation of Bn-LHN using free Burnside
groups, the support of Ψn generates all of Pn.

6 Conclusions and Future Work

In this paper, we put forth a generalization of the learning parity with noise and learning with
errors problems, moving from linear functionals over vector spaces to homomorphisms between
arbitrary (possibly non-abelian) groups. We also developed an instantiation of our abstract group-
theoretic learning problem from the theory of Burnside groups, and proposed the first cryptographic
applications of these groups in the form of a symmetric cryptosystem.

Our work broadens the family of cryptographically useful intractability assumptions. It also
raises several research questions, ranging from specific issues like estimating the most suitable
choice of parameters, to broader problems like devising alternate instantiations of our learning
problem. Other related lines of inquiry to be investigated in future work include: 1) applying the
techniques of [34] to extend the symmetric scheme to efficiently encrypt multiple bits; 2) adapting
our Burnside-based cryptosystem to the asymmetric setting; 3) improving existing algorithms for
computing over Burnside groups (e.g., to compute the Cayley norm); and 4) assessing the hard-
ness of learning homomorphisms with noise over Burnside groups by designing sub-exponential
distinguishing attacks.

Acknowledgement. We are grateful to Hugo Krawczyk for suggesting a cleaner acronym for our
generalized learning assumption.

References

1. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, pages 99–108. ACM, 1996.

2. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In STOC ‘97,
pages 284–293, 1997.

3. D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2(4):343–370, 1988.
4. I. Anshel, M. Anshel, and D. Goldfeld. Non-abelian key agreement protocols. Discrete Applied Mathematics,

130(1):3–12, 2003.
5. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and circular-secure

encryption based on hard learning problems. In CRYPTO, pages 595–618, 2009.
6. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. Manuscript, 2011.
7. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment of Symmetric Encryption:

Analysis of the DES Modes of Operation. In Proceedings of the 38th Annual Symposium on Foundations of
Computer Science—FOCS ’97, pages 394–403, 1997.

8. J.C. Birget, S.S. Magliveras, and M. Sramka. On public-key cryptosystems based on combinatorial group theory.
Tatra Mountains Mathematical Publications, 33:137–148, 2006.

9. A. Blass and Y. Gurevich. Matrix transformation is complete for the average case. SIAM Journal on Computing,
24(1):3–29, 1995.

14



10. A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the statistical query
model. J. ACM, 50:2003, 2003.

11. D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. SIAM J. of Computing, 32(3):586–
615, 2003.

12. C. Cocks. An identity-based encryption scheme based on quadratic residuosity. In Cryptology and Coding, pages
360–363, Heidelberg, 2001. Springer. LNCS 2260.

13. D. Garber, S. Kaplan, M. Teicher, B. Tsaban, and U. Vishne. Probabilistic solutions of equations in the braid
group. Advances in Applied Mathematics, 35:323–334, 2005.

14. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09: Proceedings of the 41st annual
ACM symposium on Theory of computing, pages 169–178, New York, NY, USA, 2009. ACM.

15. C. Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In CRYPTO, pages 116–137,
2010.

16. C. Gentry, S. Halevi, and V. Vaikuntanathan. i-hop homomorphic encryption and rerandomizable Yao circuits.
In CRYPTO, pages 155–172, 2010.

17. O. Goldreich. Foundations of Cryptography, vol. 1. Cambridge Univ. Press, 2001.
18. O. Goldreich. Foundations of Cryptography, vol. 2. Cambridge Univ. Press, 2004.
19. S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2):270–299, 1984.
20. M.I. Gonzalez-Vasco, S. Magliveras, and R. Steinwandt. Group Theoretic Cryptography. Chapman and Hall/CRC,

United States, 2012. To appear.
21. M.I. Gonzalez-Vasco and R. Steinwandt. Reaction attacks on public key cryptosystems based on the word

problem. Applicable Algebra in Engineering, Communication and Computing, 14(5):335–340, 2002.
22. N. Gupta. On groups in which every element has finite order. Amer. Math. Month., 96:297–308, 1989.
23. C. Hall, I. Goldberg, and B. Schneier. Reaction attacks against several public-key cryptosystem. In In Proc. of

ICICS’99, LNCS, pages 2–12. Springer-Verlag, 1997.
24. M. Hall. The Theory of Groups. Macmillan Company, New York, 1959.
25. Sergei V. Ivanov. The free Burnside groups of sufficiently large exponents. Internat. J. Algebra Comput., 4(1-

2):ii+308, 1994.
26. M. Kearns. Efficient noise-tolerant learning from statistical queries. In Journal of the ACM, pages 392–401. ACM

Press, 1993.
27. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209, 1987.
28. E. Lee. Right-invariance: A property for probabilistic analysis of cryptography based on infinite groups. In

ASIACRYPT, pages 103–118, 2004.
29. R. Lyndon and P. Schupp. Combinatorial Group Theory. Classics in Mathematics. Springer, 2001.
30. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In

EUROCRYPT, pages 1–23, 2010.
31. V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology—Crypto ’85, pages 417–426, New

York, 1985. Springer. LNCS 218.
32. A. Myasnikov, V. Roman’kov, A. Ushakov, and A. Vershik. The word and geodesic problems in free solvable

groups. Trans. Amer. Math. Soc., 362:4655–4682, 2010.
33. A. Myasnikov, V. Shpilrain, and A. Ushakov. Group-Based Cryptography. Birkhäuser Verlag, Switzerland, 2008.
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