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Abstract. In this paper, we propose a new lightweight block cipher
called LBlock. Similar to many other lightweight block ciphers, the block
size of LBlock is 64-bit and the key size is 80-bit. Our security evaluation
shows that LBlock can achieve enough security margin against known
attacks, such as differential cryptanalysis, linear cryptanalysis, impossi-
ble differential cryptanalysis and related-key attacks etc. Furthermore,
LBlock can be implemented efficiently not only in hardware environ-
ments but also in software platforms such as 8-bit microcontroller. Our
hardware implementation of LBlock requires about 1320 GE on 0.18 µm
technology with a throughput of 200 Kbps at 100 KHz. The software
implementation of LBlock on 8-bit microcontroller requires about 3955
clock cycles to encrypt a plaintext block.

Key words: Block cipher, Lightweight, Hardware efficiency, Design,
Cryptanalysis.

1 Introduction

With the development of electronic and communication applications, RFID tech-
nology has been used in many aspects of life, such as access control, parking
management, identification, goods tracking etc. In this kind of new cryptogra-
phy environment, the applications of RFID technology and sensor networking
both have similar features, such as weak computation ability, small storage space,
and strict power constraints. Therefore, traditional block ciphers such as AES are
not suitable for this kind of extremely constrained environment. Hence, in recent
years, research on lightweight ciphers has received a lot of attention. Compared
with traditional block ciphers, lightweight ciphers have the following three main
properties. Firstly, applications for constrained devices are unlikely to require the
encryption of large amounts of data, and hence there is no requirement of high
throughput for lightweight ciphers. Secondly, in this cryptography environment,
attackers are lack of data and computing ability, which means lightweight ciphers
only need to achieve moderate security. Lastly, lightweight ciphers are usually

⋆ This paper was first published at ACNS 2011, LNCS 6715, pp. 327-344. Unfortu-
nately, there are some errors in the contents of S-box table in page 332, and here we
provide a revision of this paper.



implemented in hardware environment, and small part of them are also imple-
mented on software platforms such as 8-bit microcontroller. Therefore, hardware
performance will be the primary consideration for lightweight ciphers. Hardware
efficiency can be measured in many different ways: the length of the critical path,
latency, clock cycles, power consumption, throughput, area requirements, and so
on. Among them area requirement is the most important parameter, since small
area requirement can minimize both the cost and the power consumption effi-
ciently. Therefore, it has become common to use the term hardware efficient as
a synonym for small area requirements, and the area requirements are usually
measured as gate equivalents (GE). At present, for the hardware implementation
of lightweight cipher, area requirements are usually dominated by the registers
storing the data state and the key, since registers typically consist of flipflops
which have a rather high area and power demand. For example, when using the
standard cell library it requires between 6 and 12 GE to store a single bit [26].
Therefore, in the design of lightweight block ciphers, 64-bit block size and 80-bit
key size are popular parameters.

While there is a growing requirement of ciphers suited for resource-constraint
applications, a series of lightweight block ciphers have been proposed recently,
e.g. PRESENT[9], HIGHT[14], mCrypton[21], DESL[19], CGEN[28], MIBS[15],
KATAN & KTANTAN[10], TWIS[23], SEA[30] etc. All of these ciphers are de-
signed and targeted specifically for extremely constrained environments such as
RFID tags and sensor networks. Among them, PRESENT is supposed to be very
competitive, since its hardware requirement is comparable with today’s leading
compact stream ciphers, and it is called an ultra-lightweight block cipher. Since
its publication, only a few cryptanalytic results have been proposed against
PRESENT, including the related-key rectangle attack on 17-round PRESENT
in [24] and the side-channel attacks described in [27, 35]. HIGHT has a 32-round
generalized Feistel structure. Its main feature is the compact round function
which contains no S-box and all the operations are simple computations such
as XOR, rotation, and addition operating on 8-bit input. In respect of crypt-
analysis, a related-key attack on full-round HIGHT was presented in ICISC2010,
and an impossible differential attack on 26-round HIGHT were presented in [24].
mCrypton can be considered as a miniature of the block cipher Crypton[20], and
a related-key rectangle attack on 8-round mCrypton has been reported in [25].
DESL and DESXL are lightweight modified versions of the well-known DES, and
they adopt only one single S-box in order to minimize the hardware implementa-
tion. CGEN employs a compact round function called mixtable operation, and
the main design strategies include using a fixed and per-device seed key which
reduces the key scheduling and the decryption operation is not needed either.
MIBS is a 32-round Feistel cipher, and its round function employs SP-network
with XOR operations as diffusion layer, whose hardware requirements are more
expensive than the bitwise permutation used in PRESENT etc. KATAN and
KTANTAN are a family of lightweight block ciphers which contain six vari-
ants altogether. The KATAN family of ciphers all employ the same components,
whose design strategy exploits some features of stream cipher [11]. Meet-in-the-



middle attacks to the KTANTAN family with a key of 80 bits were presented in
[36]. TWIS is inspired from the existing block cipher CLEFIA [29]. However, a
differential distinguisher with probability 1 for full-round TWIS was presented
in [31]. SEA is a Feistel cipher with scalable block and key sizes, and its round
function only consists of rotation, XOR, and a single 3-bit S-box operations.
TEA [33] and XTEA [34] are lightweight block ciphers proposed several years
earlier.

In this paper we propose a new lightweight block cipher called LBlock. The
design of its structure and components, such as S-box layer, P permutation
layer etc, all represent the trade-off between security and performance. Our se-
curity analysis shows that full-round LBlock can provide enough security margin
against known cryptanalytic techniques, such as differential cryptanalysis, linear
cryptanalysis, impossible differential cryptanalysis, related-key attack etc. Fur-
thermore, the performance evaluation of LBlock shows that not only hardware
efficiency but also software implementations on 8-bit/32-bit platforms are ultra
lightweight. The rest of this paper is organized as follows. Sect. 2 presents the
specification of LBlock. Sect. 3 introduces the design rationale briefly. Sect. 4
and Sect. 5 describe the security analysis and performance evaluation of LBlock
respectively. Finally, Sect. 6 concludes the paper.

2 Specification of LBlock

The block length of LBlock is 64-bit, and the key length is 80-bit. It employs a
variant Feistel structure and consists of 32 rounds. The specification of LBlock
consists of three parts: encryption algorithm, decryption algorithm and key
scheduling.

2.1 Notations

In the specification of LBlock, we use the following notations:
− M : 64-bit plaintext
− C: 64-bit ciphertext
− K: 80-bit master key
− Ki: 32-bit round subkey
− F : Round function
− s: 4× 4 S-box
− S: S-box layer consists of eight s in parallel
− P, P1: Permutations operate on 32-bit
−

⊕
: Bitwise exclusive-OR operation

− <<< 8: 8-bit left cyclic shift operation
− >>> 8: 8-bit right cyclic shift operation
− ||: Concatenation of two binary strings
− [i]2: Binary form of an integer i



2.2 Encryption Algorithm

The encryption algorithm of LBlock consists of a 32-round iterative structure
which is a variant of Feistel network. The encryption procedure is illustrated in
Fig. 1. Let M = X1||X0 denote a 64-bit plaintext, and then the data processing
procedure can be expressed as follows.

1. For i = 2, 3, . . . , 33, do

Xi = F (Xi−1,Ki−1)⊕ (Xi−2 <<< 8)

2. Output C = X32||X33 as the 64-bit ciphertext
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Fig. 1. Encryption procedure of LBlock

Specifically, the components used in each round are defined as follows.

(1) Round function F

The round function F is defined as follows, where S and P denote the con-
fusion and diffusion functions which will be defined later.

F : {0, 1}32 × {0, 1}32 −→ {0, 1}32
(X,Ki) −→ U = P(S(X ⊕Ki))

Fig. 2 illustrates the structure of round function F in detail.

(2) Confusion function S



Confusion function S denotes the non-linear layer of round function F , and
it consists of eight 4-bit S-boxes si in parallel.

S : {0, 1}32 −→ {0, 1}32
Y = Y7||Y6||Y5||Y4||Y3||Y2||Y1||Y0 −→ Z = Z7||Z6||Z5||Z4||Z3||Z2||Z1||Z0

Z7 = s7(Y7), Z6 = s6(Y6), Z5 = s5(Y5), Z4 = s4(Y4),
Z3 = s3(Y3), Z2 = s2(Y2), Z1 = s1(Y1), Z0 = s0(Y0).

The contents of eight 4-bit S-boxes are listed in Table 1.

(3) Diffusion function P

Diffusion function P is defined as a permutation of eight 4-bit words, and it
can be expressed as the following equations.

P : {0, 1}32 −→ {0, 1}32
Z = Z7||Z6||Z5||Z4||Z3||Z2||Z1||Z0 −→ U = U7||U6||U5||U4||U3||U2||U1||U0

U7 = Z6, U6 = Z4, U5 = Z7, U4 = Z5,
U3 = Z2, U2 = Z0, U1 = Z3, U0 = Z1.
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Fig. 2. Round function F

2.3 Decryption Algorithm

The decryption algorithm of LBlock is the inverse of encryption procedure, and it
consists of a 32-round variant Feistel structure too. Let C = X32||X33 denotes a
64-bit ciphertext, and then the decryption procedure can be expressed as follows.

1. For j = 31, 30, . . . , 0, do

Xj = (F (Xj+1,Kj+1)⊕Xj+2) >>> 8

2. Output M = X1||X0 as the 64-bit plaintext.



2.4 Key Scheduling

The 80-bit master key K is stored in a key register and denoted as K =
k79 k78 k77 k76 ...... k1k0. Output the leftmost 32 bits of current content of register
K as round subkey K1, and then operate as follows:

1. For i = 1, 2, . . . , 31, update the key register K as follows:
(a) K <<< 29

(b) [k79 k78 k77 k76] = s9[k79 k78 k77 k76]
[k75 k74 k73 k72] = s8[k75 k74 k73 k72]

(c) [k50k49k48k47k46]⊕ [i]2

(d) Output the leftmost 32 bits of current content of register K as round
subkey Ki+1.

where s8 and s9 are two 4-bit S-boxes, and they are defined in Table 1.1

Table 1. Contents of the S-boxes used in LBlock

s0 14, 9, 15, 0, 13, 4, 10, 11, 1, 2, 8, 3, 7, 6, 12, 5

s1 4, 11, 14, 9, 15, 13, 0, 10, 7, 12, 5, 6, 2, 8, 1, 3

s2 1, 14, 7, 12, 15, 13, 0, 6, 11, 5, 9, 3, 2, 4, 8, 10

s3 7, 6, 8, 11, 0, 15, 3, 14, 9, 10, 12, 13, 5, 2, 4, 1

s4 14, 5, 15, 0, 7, 2, 12, 13, 1, 8, 4, 9, 11, 10, 6, 3

s5 2, 13, 11, 12, 15, 14, 0, 9, 7, 10, 6, 3, 1, 8, 4, 5

s6 11, 9, 4, 14, 0, 15, 10, 13, 6, 12, 5, 7, 3, 8, 1, 2

s7 13, 10, 15, 0, 14, 4, 9, 11, 2, 1, 8, 3, 7, 5, 12, 6

s8 8, 7, 14, 5, 15, 13, 0, 6, 11, 12, 9, 10, 2, 4, 1, 3

s9 11, 5, 15, 0, 7, 2, 9, 13, 4, 8, 1, 12, 14, 10, 3, 6

3 Design Rationale

3.1 Structure

The structure of LBlock is a variant of Feistel network, and its design decisions
contain a lot of considerations about security and efficient implementations (such
as area, cost and performance etc.). In the aspect of implementation, the most
important consideration is the area requirement when implemented in hardware.
Therefore, we try to reduce the number of S-boxes used in each round and also
minimize the size of each S-box used. Hence a Feistel-type structure seems a

1 There are some errors in the contents of s8 and s9 in the original paper, and we
have corrected them here. Note that the other parts of this paper remain unchanged
(including test vectors in Appendix I). The errors are only introduced in our typos.



proper choice. Furthermore, for all kinds of generalized Feistel structures which
operate less bits in each round, to achieve enough security margin they must
take more rounds iteration which will affect its performance (such as speed and
throughput). Therefore, in each round of LBlock, we choose only half of the
data to go through round function F , and the other half applies a simple rota-
tion operation. In the diffusion layer, we also choose to use permutation which
can be implemented with no cost in hardware. However, instead of the bitwise
permutation usually used, we apply a 4-bit word-wise permutation which can
be implemented cheaply not only in hardware but also in software environments
such as 8-bit microprocessor platforms. For example, the word-wise permutation
in round function F can be combined with the S-box layer to form 8 × 8 ta-
ble lookups. Moreover, we specifically choose the rotation offsets of right half in
each round as 8 bits which can be omitted in 8-bit platform implementation. On
the other hand, in the aspect of security requirement, we choose the word-wise
permutation carefully so that the structure of LBlock satisfies that in both en-
cryption and decryption directions it can achieve best diffusion [32] in 8 rounds.
Furthermore, the number of differential and linear active S-boxes both increase
quickly, and the following Table 2 lists the guaranteed number of active S-boxes
before 20 rounds.

Table 2. Guaranteed number of active S-boxes of LBlock

Rounds DS LS Rounds DS LS

1 0 0 11 22 22

2 1 1 12 24 24

3 2 2 13 27 27

4 3 3 14 30 30

5 4 5 15 32 32

6 6 6 16 35 35

7 8 8 17 36 36

8 11 11 18 39 39

9 14 14 19 41 41

10 18 18 20 44 44

3.2 Diffusion Layer

The diffusion permutation of LBlock consists of two parts, namely the word-wise
permutation in round function which is denoted as P , and the rotation of right
half data in each round which is denoted as P1. Both of these permutations
can be implemented by wiring in hardware which needs no additional area cost.
For software environments such as 8-bit and 32-bit microprocessor platforms,
P can be combined with the S-box layer in round function as table lookups



and P1 (8-bit rotation) can be implemented quite easily. Therefore, the diffusion
permutations of LBlock can be implemented efficiently both in hardware and in
software environments. Furthermore, the combination of P and P1 can guarantee
the best diffusion rounds and the least number of active S-boxes of LBlock. For
example, there already exist at least 32 active S-boxes for 15-round LBlock.

3.3 S-Box Layer

On the pursuit of hardware efficiency, we use 4 × 4 S-boxes s : F 4
2 → F 4

2 in
LBlock. Compared with the regular 8 × 8 S-box, small S-box has much more
advantage when implemented in hardware. For example, to implement the S-
box of AES in hardware more than 200 GE are needed. On the other hand, for
the 4 × 4 S-boxes used in LBlock, all of them can be implemented in hardware
with only about 22 GE. Furthermore, in the aspect of security, the S-boxes used
in LBlock are carefully chosen so that they all fulfill the following conditions: no
fix point, completed, best non linearity, best differential probability, and good
algebraic order etc.

3.4 Key Scheduling

Similar to many other lightweight block ciphers, the key scheduling of LBlock is
also designed in a stream cipher way. We only apply simple rotation and non-
linear operations to generate the round subkeys. First of all, the operation of
29-bit left rotation can be implemented freely in hardware, and it can also break
the 4-bit word structure, which helps to improve the security of LBlock against
related-key attacks. Secondly, we choose to use two 4×4 S-boxes as the non-linear
operation which represents a trade-off between security and performance. Lastly,
the exact values of rotation offset, constants and positions of constant addition
are carefully chosen, so as to avoid weak relations between round subkeys.

4 Security Evaluation

4.1 Differential Cryptanalysis

For differential cryptanalysis, we adopt an approach to count the number of ac-
tive S-boxes of differential characteristics. This is a regular method to evaluate
the security against differential attack, which were adopted by many other block
ciphers, such as AES [12], Camellia [1] and CLEFIA [29] etc. We found the
guaranteed number of differential active S-boxes of LBlock by computer pro-
gram, and the results before 20-round are listed in Table 2. Considering that
there are at least 32 active S-boxes for 15-round LBlock and the best differential
probabilities of si are all equal to 2−2, then the maximum probability of differ-
ential characteristics for 15-round LBlock satisfies DCP 15r

max ≤ 232×(−2) = 2−64.
This means there is no useful 15-round differential characteristic for LBlock,
since the block length of LBlock is only 64-bit. Therefore, we believe that the
full 32-round LBlock is secure against differential cryptanalysis.



4.2 Linear Cryptanalysis

We also apply the method of counting active S-boxes for the evaluation of LBlock
against linear cryptanalysis. Since there are at least 32 active S-boxes for 15-
round LBlock and the best linear bias of each si is 2−2, the maximum bias of
linear approximations for 15-round LBlock satisfies LCP 15r

max ≤ 232−1 ·232×(−2) =
2−33. Therefore, according to the complexity estimation of linear cryptanalysis,
we can conclude that it is difficult to find useful 15-round linear-hulls which
can be used to distinguish LBlock from a random permutation. As a result, we
believe that the full 32-round LBlock has enough security margin against linear
cryptanalysis.

4.3 Impossible differential Cryptanalysis

Impossible differential attack [3] is one of the most powerful cryptanalytic tech-
niques, and its applications to many block ciphers (such as Camellia and CLEFIA
etc.) represent the best cryptanalytic results obtained so far. We search for the
impossible differential characteristic of LBlock using the algorithm proposed by
Kim et al. [16]. The best distinguisher found is the following 14-round impossible
differential characteristic:

(00000000, 00α00000)
14r

̸→(0β000000, 00000000), (1)

where α, β ∈ {0, 1}4\{0} represent non-zero differences. Note that by changing
the positions of α, β, we can construct other 14-round impossible differential
characteristics in a similar way.

Based on the 14-round impossible differential distinguishers, we can mount a
key recovery attack on 20-round LBlock. The attack procedure can be described
as follows.

1. Choose a set of 212 plaintexts to construct a structure, where the 4-bit words
X0,1, X0,3 and X1,2 take all possible values and all the other words take con-
stants. Then each structure can generate about 223 plaintext pairs satisfying
the input difference (∆X1, ∆X0) = (00000 ∗ 00, 0000 ∗ 0 ∗ 0). Choose 251

different structures which can generate about 274 candidate plaintext pairs.
2. For each corresponding ciphertext structure after 20-round encryption, choose

the pairs satisfying the output difference (∆X21,∆X20) = (∗∗00∗∗0∗, 000∗
0 ∗ ∗0), where ∗ denotes non-zero difference. After this test, there remains
about 274 × 2−32 = 242 candidate pairs.

3. For every guess of 28-bit subkeyK20,0,K20,1,K20,2,K20,4,K20,5,K20,6,K20,7,
partially decrypt Round 20 to check if the pairs satisfying (∆X20,∆X19) =
(000∗0∗∗0, 00∗0000∗). After this test, there remains about 242×2−12 = 230

pairs.
4. For every guess of the 16-bit subkey K19,0,K19,2,K19,3,K19,5, partially de-

crypt Round 19 to check if the pairs satisfying (∆X19,∆X18) = (00 ∗
0000∗, ∗0000000). After this test, there remains 230 × 2−8 = 222 pairs.



5. For every guess of the 8-bit subkey K18,1,K18,7, partially decrypt Round
18 to check if the candidate pairs satisfying (∆X18,∆X17) = (∗0000000, 0 ∗
000000). After this test, there remains about 222 × 2−4 = 218 pairs.

6. For every guess of the 4-bit subkeyK17,6, partially decrypt Round 17 to check
if the candidate pairs satisfying (∆X17, ∆X16) = (0 ∗ 000000, 00000000).
After this test, there remains about 218 × 2−4 = 214 pairs.

7. For every guess of the 8-bit subkey K1,2, K1,7, partially encrypt Round 1 to
check if the candidate pairs satisfying (∆X2,∆X1) = (00∗00000, 00000∗00).
After this test, there remains about 214 × 2−4 = 210 pairs.

8. For every guess of the 4-bit subkey K2,5, partially encrypt Round 2 to check
if the candidate pairs satisfying the following equation:

(∆X3, ∆X2) = (00000000, 00 ∗ 00000).

9. If there still remains a pair satisfying the impossible differential, then the
68-bit subkey guessed must be wrong. Delete it from the candidate subkey
table. If the table of candidate subkey is not empty after analyzing all the
remaining pairs, output the subkey remained in table as correct subkey.

For each of the candidate pair in Step 8, the probability that it satisfies
the filtering condition is about 2−4. Therefore, for a wrong subkey guess, the
probability of its remaining after Step 8 is about (1− 2−4)2

10 ≈ 2−95. Then we
can expect that after all these filtering, there remains about 268 × 2−95 ≈ 2−27

wrong subkey guess, and only the correct subkey will be output.
The data and time complexities of above attack can be estimated as follows.

First of all, we choose 251 structures and the data complexity is 251 × 212 = 263

chosen plaintexts. The time complexity is dominated by Step 7 to Step 8, and
each step needs about 278 S-box operations. Therefore, the time complexity of
the attack is about 2×2×278× 1

8×
1
20 ≈ 272.7 20-round encryptions. According to

the complexities of impossible differential attack on 20-round LBlock, we expect
that the full 32-round LBlock has enough security margin against this attack.

4.4 Integral Attack

Since LBlock is a 4-bit word oriented cipher, we also consider that integral
attack [18] may be one of the most powerful attacks against LBlock. The best
integral characteristic found is the 15-round distinguisher. Table 3 illustrates
one of the 15-round integral distinguisher in detail, where C denotes a constant
word, A denotes an active word and B denotes a balanced word respectively.
Note that by changing the position of C in plaintext, we can obtain similar
integral distinguishers easily.

Based on the 15-round integral distinguisher, we can mount a key recovery
attack up to 20-round LBlock. For simplicity, we first give the integral attack on
18-round LBlock, and the attack procedure is as follows.

1. Choose a set of 260 plaintexts to construct a structure, where only 4-bit
word takes a constant and all the other words take all the possible values



Table 3. 15-Round integral distinguisher of LBlock

Rounds Integral characterisitcs

0 AAAC AAAA AAAA AAAA

1 AAAC ACAC AAAC AAAA

2 CCCC AAAC AAAC ACAC

3 ACAC CCCC CCCC AAAC

4 CCCC ACCC ACAC CCCC

5 ACCC CCCC CCCC ACCC

6 CCCC CCCC ACCC CCCC

7 CCCC CCAC CCCC CCCC

8 CCCC CCCA CCCC CCAC

9 CCCC AACC CCCC CCCA

10 CCCC AAAC CCCC AACC

11 CCAA ACAA CCCC AAAC

12 CAAB AAAA CCAA ACAA

13 B ?AA BBAA CAAB AAAA

14 ?B ?B ?B ?B B ?AA BBAA

15 ? ? ? ? ? ? ? ? ?B ?B ?B ?B

of {0, 1}60. Obtain the corresponding ciphertext after 18-round encryption.
Count the number of value X18,6, X18,4, X18,1, X19,6, X19,0 occurs, and dis-
card the values which occur even times.

2. Guess corresponding subkeys to decrypt the ciphertexts.
(a) For every guess of the 8-bit subkey (K18,1,K18,4), partially decrypt

Round 18 to compute X17,4 = s4(X18,4 ⊕ K18,4) ⊕ X19,6 and X17,6 =
s1(X18,1 ⊕K18,1)⊕X19,0.

(b) For every guess of the 4-bit subkey K17,4, partially decrypt Round 17 to
compute X16,4 = s4(X17,4 ⊕K17,4)⊕X18,6.

(c) For every guess of the 4-bit subkey K16,4, partially decrypt Round 16 to
compute X15,4 = s4(X16,4 ⊕K16,4)⊕X17,6.

3. Check if the equation ⊕
l
X15,4 = 0 is satisfied, where l is the number of plain-

texts. If the equation is satisfied, then X15,4 is a balance word. Otherwise,
guess another subkey and repeat until we get the correct subkey.

The complexity of this attack can be estimated as follows. Step 1 needs about
260 plaintexts which requires 260 encryptions. For the five words counted in Step
1, there are at most 220 values. Therefore, the time complexity of Step 1 to Step
3 are less than 220 × 216 encryptions. For a wrong subkey guess, the probability
that equation ⊕

l
X15,4 = 0 is satisfied is about 2−4. Therefore, to discard all the

wrong 16-bit subkey guesses, we need about five plaintext structures. Therefore,
the total data and time complexities of this attack are both 5× 260.

Moreover, we can mount an integral attack on 20-round LBlock based on the
15-round integral distinguisher. The attack procedure is similar with the attack



on 18-round LBlock, and we add two additional rounds in the end. Therefore,
12 subkey words need to be guessed and the data and time complexities will
increase to about 13× 260 ≈ 263.7.

4.5 Related-Key Attacks

Recently, the combination of related-key [2, 17] and traditional cryptanalysis has
become one of the most powerful attacks, and its application to some ciphers
has improved the cryptanalytic results significantly [4, 6–8, 13]. Therefore, we
have studied the possible related-key differential characteristic of LBlock so as
to evaluate the security of LBlock against related-key attacks. In order to get
related-key differential characteristic with high probability, we have to control
the number of active S-boxes. Therefore, we first choose the output differences
of 10 S-boxes (8 S-boxes in round function and 2 S-boxes in key scheduling) in
Round i all have hamming weight less than 2. Then we search for the related-key
differential before Round i in the decryption direction and after Round i in the
encryption direction respectively, and count the total number of active S-boxes.
The best related-key differential obtained so far is a 13-round distinguisher with
26 active S-boxes, and its probability is (2−2)25 · (2−3) = 2−53. For the 14-round
related-key differential obtained, there are 32 active S-boxes and its probability
is less than (2−2)31 ·(2−3) = 2−65. Table 4 illustrates the propagation of 14-round
related-key differential of LBlock in detail.

Table 4. 14-Round related-key differential characteristic of LBlock

Rounds ∆XL ∆RK ∆IS ∆OP ∆XR

1 01200101 00000000 01200101 20012100 01222121

2 02200001 00000000 02200001 20010100 01200101

3 00000001 02000000 02000001 20000100 02200001

4 00000002 00000000 00000002 00000100 00000001

5 00000000 00000008 00000008 00000200 00000002

6 00000000 00000000 00000000 00000000 00000000

7 00000000 00000000 00000000 00000000 00000000

8 00000000 00000400 00000400 00001000 00000000

9 00001000 00000000 00001000 00000010 00000000

10 00000010 00000000 00000010 00000002 00001000

11 00100002 00020000 00120002 01010100 00000010

12 01011100 00000000 01011100 21002010 00100002

13 31002210 00000000 31002210 20102012 01011100

14 21012013 02000000 23012013 11200212 31002210



5 Performance Evaluation

5.1 Hardware Performance

We implemented LBlock in VHDL and synthesized it on 0.18µm CMOS tech-
nology to check for its hardware complexity. Figure 3 in Appendix III shows
the datapath of an parallelization implementation of LBlock, which performs
one round in one clock cycle. In this optimized implementation, we use a 64-bit
width datapath and implement the eight S-boxes of round function in parallel.
Then, to encrypt 64-bit plaintext with an 80-bit key occupies about 1320 GE
and requires 32 clock cycles. Table 5 compares the hardware performances of
LBlock with other lightweight block ciphers.

Table 5. Comparison of lightweight block cipher implementations

Algorithm Block Key Area Speed Logic
Size Size #GE kbps@100KHz Process

XTEA 64 128 3490 57.1 0.13 µm

HIGHT 64 128 3048 188.2 0.25 µm

mCrypton 64 128 2500 492.3 0.13 µm

DES 64 56 2300 44.4 0.18 µm

DESXL 64 184 2168 44.4 0.18 µm

KATAN 64 80 1054 25.1 0.13 µm

KTANTAN 64 80 688 25.1 0.13 µm

PRESENT 64 80 1570 200 0.18 µm

LBlock 64 80 1320 200 0.18 µm

Specifically, in the above implementation the area requirement is occupied by
flip-flops for storing the key and the data state. To store the 80-bit key requires
about 480 GE and to store the 64-bit data state requires two 32-bit registers
(denoted as memleft and memright) which are about 384 GE. For round function
F , it is consisted of the following three parts. The KeyAddition is a 32-bit XOR
operation which requires about 87 GE. The S-box layer consists of eight 4 × 4
S-boxes in parallel, which requires about 21.84 × 8 = 174.8 GE. The diffusion
layer P can be implemented by simple wiring and costs no area. Then in the
end of each round, another 32-bit XOR operation of two halves is needed which
requires about 87 GE. Furthermore, another two 4× 4 S-boxes and a 5-bit XOR
operation are needed in key scheduling which require at most 43.7+13.5 ≈ 57.2
GE. Moreover, control logic and other counters require about 50 GE. Therefore,
the hardware implementation of LBlock requires an estimated area of 1320 GE.

We can give a more compact implementation of LBlock with a serialization
design. For example, in the key scheduling we can reuse the 32-bit register and
generate each subkey by several operations. Then the area requirement of key



register can be reduced to 212 GE, while additional RAM is needed. Further-
more, the data state in encryption can also reuse the 32-bit key register and the
area requirements can be reduced to 192 GE. Then the control logic and other
counters need about 70 GE. Therefore, this area-optimized implementation of
LBlock only needs about 866.3 GE with additional RAM. Since the register is
reused in both key scheduling and encryption, the generation of each round sub-
key will need 12 clock cycles, and the encryption procedure will need 192 clock
cycles. Therefore, to encrypt 64-bit plaintext with 80-bit key needs about 576
clock cycles in total. Table 6 in Appendix II summarizes the area requirement
of LBlock in detail.

5.2 Software Implementations

For some resource-constraint environments, such as smart card and sensor net-
working system, the embedded CPU is usually 8-bit oriented. Therefore, in the
design of LBlock, we consider the implementation performance of LBlock not
only in hardware environment but also in software platform such as 8-bit micro-
controller. The choices of 4-bit word permutation in round function and 8-bit
rotation in right half of each round are suitable for both hardware and software
platforms. For example, in case of 8-bit oriented software implementation, the
eight S-boxes and 4-bit word permutation P in round function can be combined
together and realized as four 8-bit lookup tables. Our software implementation
of LBlock on 8-bit microcontroller only requires about 3955 clock cycles to en-
crypt a plaintext block. Hence, LBlock can achieve competitive hardware and
software performances compared with other known lightweight block ciphers.

6 Conclusion

In this paper we propose a new lightweight block cipher LBlock, whose block
size is 64-bit and key size is 80-bit. Our design goal is to provide cryptogra-
phy security for resource-constraint environments, e.g. RFID tags and sensor
networks etc. Moreover, compared with other lightweight block ciphers, the pro-
posal should achieve better hardware performance and also have good software
efficiency on 8-bit microcontroller. Therefore, in the design of LBlock, we employ
a variant Feistel structure and the encryption algorithm is 4-bit oriented which
can be implemented efficiently in both hardware and software. Furthermore, the
round function employs a SP-network, whose confusion layer consists of small
4 × 4 S-boxes and diffusion layer consists of a simple 4-bit word permutation.
All of these components are designed with the consideration of both security
and implementation efficiency in mind. Our hardware implementation of LBlock
requires about 1320 GE on 0.18 µm technology, which satisfies the regular lim-
itation of 2000 GE in RFID applications. Furthermore, in an area-optimized
implementation, LBlock requires only 866.3 GE with additional RAM. We also
evaluate the security of LBlock and our cryptanalytic results show that LBlock
achieves enough security margin against known attacks. In the end, we strongly
encourage the security analysis of LBlock and helpful comments.
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Appendix I: Test Vectors

Test vectors for LBlock are shown in hexadecimal notation as follows.

Plaintext Key Ciphertext

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c2 18 18 53 08 e7 5b cd

01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef fe dc 4b 71 79 d8 eb ee 0c 26

Appendix II

Table 6. Area requirement of LBlock

Module Speed Area
Optimized Optimized

64-bit Data Register 384 192

Key Addition 87 87

S-box Layer 174.8 174.8

P Layer 0 0

32-bit XOR 87 87

80-bit Key Register 480 212

S-boxes (Key Scheule) 43.7 30

5-bit Constant XOR 13.5 13.5

Control Logic 50 70

Sum 1320 GE 866.3 GE
(with RAM)



Appendix III

Fig. 3. The datapath of an area-optimized version of LBlock


