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Abstract. Elliptic curve cryptosystems are more and more widespread in everyday-life applica-
tions. This trend should still gain momentum in coming years thanks to the exponential security
enjoyed by these systems compared to the subexponential security of other systems such as RSA.
For this reason, efficient elliptic curve arithmetic is still a hot topic for cryptographers. The core
operation of elliptic curve cryptosystems is the scalar multiplication which multiplies some point
on an elliptic curve by some (usually secret) scalar. When such an operation is implemented on
an embedded system such as a smart card, it is subject to side channel attacks. To withstand such
attacks, one must constrain the scalar multiplication algorithm to be regular, namely to have an
operation flow independent of the input scalar. A large amount of work has been published that
focus on efficient and regular scalar multiplication and the choice leading to the best perfor-
mances in practice is not clear. In this paper, we look into this question for general-form elliptic
curves over large prime fields and we complete the current state-of-the-art. One of the fastest
low-memory algorithms in the current literature is the Montgomery ladder using co-Z Jacobian
arithmetic with X and Y coordinates only. We detail the regular implementation of this algorithm
with various trade-offs and we introduce a new binary algorithm achieving comparable perfor-
mances. For implementations that are less constrained in memory, windowing techniques and
signed exponent recoding enable reaching better timings. We survey regular algorithms based
on such techniques and we discuss their security with respect to side-channel attacks. On the
whole, our work give a clear view of the currently best time-memory trade-offs for regular im-
plementation of scalar multiplication over prime-field elliptic curves.

1 Preliminaries

Let E be an elliptic curve defined over Fq with q > 3 according to the following short Weierstrass
equation:

E : y2 = x3 + ax+ b , (1)

where a, b ∈ Fq such that 4a3 + 27b2 6= 0. The set of rational points of E is the set E(Fq) of points
(x, y) ∈ F2

q whose coordinates satisfy (1). The rational points ofE, augmented with a neutral element
O called point at infinity, have an Abelian group structure. The associated addition law – which is
usually called chord-and-tangent rule – computes the sum of two points P = (x1, y1) and Q = (x2, y2)
as P + Q = (x3, y3) where:

x3 = λ2 − x1 − x2 , and y3 = λ(x1 − x3)− y1 , with λ =

{
y2−y1

x2−x1
if P 6= Q,

3x2
1+a
2y1

if P = Q.
(2)

The scalar multiplication of a point P by a natural integer k is denoted [k]P . The discrete loga-
rithm in basis P of some point Q = [k]P is then the integer k. Several cryptographic protocols have
been designed whose security relies on the difficulty of computing the discrete logarithm over the
rational points of an elliptic curve (only exponential-time algorithms are known to solve this prob-
lem in general). The scalar multiplication is the core operation of most of these protocols. Efficient
scalar multiplication arithmetic is hence a central issue for cryptography. The interested reader is
referred to [HMV03] for a good overview of the question.

Point addition formulae – such as (2) – are based on different operations over Fq (e.g. multiplica-
tion, inversion, addition, and subtraction) which have different computational costs. In this paper,
we shall denote by I, M, S, and A, the computational costs of a field inversion, a field multiplication,
a field squaring, and a field addition respectively. We shall further consider that a field subtraction



and a field doubling have the same cost than a field addition. In the context where q is a large prime,
it is often assumed that (i) the inversion cost satisfies I ≈ 100M, (ii) the squaring cost is S = 0.8M,
and (iii) the addition cost can be neglected. These assumptions are derived from the usual software
implementations of the field operations. However when the latter are based on a hardware copro-
cessor – as it is often the case in embedded systems – their costs become architecture-reliant. In
general, the inversion shall always cost a few dozens of multiplications, the squaring cost shall be
of the same order than the multiplication one (possibly a bit cheaper), and the addition cost shall
be clearly lower, but not always negligible (see for instance [GV10]). In the following, we shall take
interest into the computational cost of different point addition formulae in terms of field operations.
We shall also focus on their memory usage in terms of field registers, namely memory registers of size
log2(q) bits that can store elements of Fq .

This paper only deals with general-form elliptic curves that may be chosen arbitrarily among the
set of curves satisfying (1). Note that elliptic curves with special forms exist (e.g. Montgomery curves,
Edwards curves) which have performance advantages over general-form elliptic curves (see for
instance [BL]). However many applications require the compliance with arbitrarily chosen elliptic
curves, which motivates the investigation for efficient algorithms over general-form elliptic curves.

1.1 Jacobian Coordinates and Improvements

When points are represented in so-called affine coordinates as in (2), the addition of two points in-
volves an expensive field inversion. Fortunately, it is possible to avoid this cost for the intermediate
point additions in a scalar multiplication by representing points in projective coordinates. In projective
coordinates, a point P = (x, y) is represented by a triplet (X,Y, Z) where (X/Zc, Y/Zd) = (x, y) for
some given integers c and d. A point has several projective representations (as many as different Z).
The equivalence class containing (X,Y, Z) and all the other projective representations of the affine
point (X/Zc, Y/Zd) is denoted (X : Y : Z). We further denote P ≡ (X : Y : Z) if (X : Y : Z) is the
equivalence class of P .

The most widely used projective coordinates are the Jacobian coordinates for which c = 2 and
d = 3. These coordinates enable fast point doubling which is usually the most frequent operation
in a scalar multiplication algorithm. Let P = (X1, Y1, Z1), the Jacobian doubling of P is defined as
P + P = (X3, Y3, Z3) where:

X3 = B2 − 2A , Y3 = B(A−X3)− Y 4
1 and Z3 = Y1Z1 , (3)

with A = X1Y
2
1 , B = 1

2 (3X2
1 + aZ4

1 ).1 The Jacobian doubling can be computed at the cost of 4M +
6S + 8A using 6 field registers (see Appendix A). For the particular case where a = −3, we have
B = 3

2 (X1 +Z2
1 )(X1−Z2

1 ). This equality enables trading 1M+2S for 1M+1A in the computation of
B. The Jacobian doubling can then be computed at the cost of 4M+4S+9A using 5 field registers (see
Appendix A). When a 6= −3, an optimization is still possible when several doublings are performed
successively [CMO98,ITT+99]. Let (Xi, Yi, Zi) denote the input of the ith doubling. The optimization
consists in holding the value aZ4

i obtained in the (i− 1)th doubling, and using it in the subsequent
computation as aZ4

i+1 = a(YiZi)
4 = Y 4

i (aZ4
i ). As the computation of Y 4

i is already involved in the
ith point doubling, one can then trade 1M + 2S for 1M in the computation of aZ4

i+1. The Jacobian
doubling can then be computed at the cost of 4M + 4S + 8A using 6 field registers. The quadruplet
composed of the usual Jacobian coordinates together with aZ4 is called modified Jacobian coordinates
in [CMO98].

Now let Q = (X2, Y2, Z2), the Jacobian addition of P and Q (with P 6= Q) is defined as P +Q =
(X3, Y3, Z3) where:

X3 = F 2 − E3 − 2BE2 , Y3 = F (BE2 −X3)−DE3 and Z3 = Z1Z2E , (4)

with A = X1Z
2
2 , B = X2Z

2
1 , C = Y1Z

3
2 , D = Y2Z

3
1 , E = A − B, F = C −D. The Jacobian addition

can be computed at the cost of 12M + 4S + 7A using 7 field registers (see Appendix A). A strategy
to speed up the Jacobian addition is to use mixed-Jacobian-affine coordinates such as suggested in

1 The Jacobian doubling is often defined as computing the point (4X3, 8Y3, 2Z3) ≡ (X3, Y3, Z3) where X3, Y3

and Z3 satisfy (3), such that no halving appears in the expression of B.



[CMO98]. Consider that the point Q is represented in affine coordinates (namely Z2 = 1), it is easy
to see that one can save 4M + 1S in the computation of A, C, and Z3. The obtained mixed-Jacobian-
affine addition can then be computed at the cost of 8M+3S+7A using 7 field registers (see Appendix
A).

A further optimization of the Jacobian addition was put forward by Meloni in [Mel07]. It consid-
ers two input points sharing the same Z-coordinate. Let P = (X1, Y1, Z) and Q = (X2, Y2, Z), the
so-called co-Z addition of P and Q (with P 6= Q) is defined as P + Q = (X3, Y3, Z3), where:

X3 = D − (B + C) , Y3 = (Y2 − Y1)(B −X3)− E and Z3 = Z(X2 −X1) , (5)

with A = (X2−X1)2, B = X1A, C = X2A, D = (Y2−Y1)2 and E = Y1(C−B). This co-Z addition is
very efficient: it can be computed at the cost of 5M+2S+7A using 6 field registers. Moreover, it also
makes it possible to update the coordinates of P for free such that it shares the same Z-coordinate
than P +Q. Indeed, a close look at the expression ofB andE reveals thatB = X1(X2−X1)2 = x1Z

2
3

and E = Y1(X2 − X1)3 = y1Z
3
3 where (x1, y1) = (X1/Z

2, Y1/Z
3) denotes the affine coordinates of

P ; we hence have P ≡ (E : B : Z3). Such a free update enables the subsequent use of the co-Z
addition between P + Q and P . It was also shown in [VD10,GJM10a] that the conjugate P − Q
sharing the same Z-coordinate than P + Q can be obtained with a small additional cost. Indeed,
P −Q = (X ′3, Y

′
3 , Z3) where:

X ′3 = F − (B + C) and Y ′3 = (Y1 + Y2)(X ′3 −B)− E , (6)

with F = (Y1 + Y2)2 (and A, B, C, D, and E defined as in (5)). The conjugate addition computing
the two co-Z points (P + Q) and (P −Q) from two co-Z points P and Q can be computed at the
cost of 6M + 3S + 16A using 7 field registers2. Low level algorithms for co-Z (conjugate) addition
formulae are given in [GJM10b].

A doubling-addition operation in mixed Jacobian-affine coordinates was also put forward in
[LM08a] based on the mixed addition and the co-Z addition formulae. This operation computes a
point 2P + Q represented in Jacobian coordinates from a point P in Jacobian coordinates and a
point Q in affine coordinates. This is done in two steps. First a mixed Jacobian-affine addition is
performed to compute R = P +Q. As observed in [LM08a] it is then possible to update P so that it
shares the same Z-coordinate as R without any additional cost, the coordinates of the updated point
appearing in the intermediate result of the mixed addition. Then a co-Z addition is used to add R
and the updated point P , which yields 2P + Q. It is shown in [LM08a] that the unified doubling-
addition operation can be computed at the cost of 11M + 7S. A low-level implementation of this
operation is further described in [LM08b, App. A3] with a cost of 11M + 7S + 27A and involving 8
field registers. This implementation is recalled in Appendix A.

Eventually, it was noticed in [VD10] that several successive co-Z (conjugate) additions can be
computed without the Z-coordinate. It can indeed be checked from (5) and (6) that the X and Y
coordinates resulting from a co-Z addition do not depend on the input Z-coordinate. This trick
enables to save one multiplication per co-Z (conjugate) addition provided that the underlying scalar
multiplication algorithm enables the final Z-coordinate recovery. Such algorithms are presented in
Section 2.

1.2 Binary Scalar Multiplication Algorithms

The problem of designing a scalar multiplication algorithm from point addition and doubling for-
mulae is similar to that of computing an exponentiation from multiplications and squares. A simple
and efficient algorithm is the binary exponentiation – or binary scalar multiplication in the context of
elliptic curves – also known as the square-and-multiply algorithm – or double-and-add algorithm. The
binary algorithm processes a loop scanning the bits of the scalar and performing a point doubling,
followed by a point addition whenever the current scalar bit equals 1. Two versions of the binary
algorithm exist that either scan the scalar bits in a left-to-right direction or in a right-to-left direction.

Let k be an integer with binary expansion (kn−1, . . . , k1, k0)2, namely k =
∑

i ki2
i, where ki ∈

{0, 1} for every i < n − 1 and kn−1 = 1. The binary scalar multiplication of some point P by k

2 As we shall argue in Appendix A, it is possible to save 3A using an additional field register.



can be understood as follows. Defining Ti = [(kn−1, . . . , ki)2]P , we get a backward sequence where
Tn−1 = P , T0 = [k]P and Ti = 2Ti+1 + kiP , which leads to the left-to-right binary algorithm (see
Algorithm 1). On the other hand, we have [k]P =

∑
i ki[2

i]P which directly yields the right-to-left
binary algorithm (see Algorithm 2).

Algorithm 1 Left-to-right binary algorithm
Input: P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N
Output: Q = [k]P
1. R0 ← P ; R1 ← P
2. for i = n− 2 downto 0 do
3. R0 ← 2R0

4. if ki = 1 then R0 ← R0 +R1

5. end for
6. return R0

Algorithm 2 Right-to-left binary algorithm
Input: P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N
Output: Q = [k]P
1. R0 ← O; R1 ← P
2. for i = 1 to n− 1 do
3. if ki = 1 then R0 ← R0 +R1

4. R1 ← 2R1

5. end for
6. return

Both binary algorithms involve n point doublings and n/2 point additions on average. In order
to lower the number of point additions it is possible to use a signed representation of the exponent
k =

∑
i κi2

i where κi ∈ {−1, 0, 1}. The binary algorithm remains the same but when κi = −1,
the point in R1 is subtracted to the point in R0 instead of being added. The subtraction over an
elliptic curve is essentially equivalent to the addition since subtracting some point P = (X1, Y1, Z1)
to another point Q, is done by inverting its Y -coordinate to get −P = (X1,−Y1, Z1) and then by
adding −P to Q. Moreover, there exists a signed representation of the scalar called non-adjacent
form (NAF) that only has n/3 non-zero signed bits on average (see for instance [MO90,HMV03]).
The number of point additions performed by the binary algorithm using NAF representation of the
scalar hence falls to n/3 on average.

The above binary algorithms are simple and efficient, however they are insecure in a context
where the scalar is secret and where the implementation is subject to side-channel analysis (e.g. a
smart card performing an ECDSA signature). Side-channel analysis (SCA) exploits the physical in-
formation leakage produced by a device during a cryptographic computation such as its power
consumption and its electromagnetic radiations [KJJ99,QS02,AARR02]. Scalar multiplication imple-
mentation are vulnerable to two main kinds of SCA: simple power analysis (SPA) and differential power
analysis (DPA). The latter uses correlations between the leakage and processed data, and it can usu-
ally be efficiently defeated by the use of randomization techniques [Cor99,JT01,CJ03]. On the other
hand, an SPA can recover the secret scalar from a single leakage trace of a binary algorithm compu-
tation (even in the presence of data randomization). The reason of such a flaw is that point additions
and point doublings have different operation flows and hence induce different leakage patterns. The
leakage trace is hence composed of several points doubling patterns interleaved by point addition
patterns only for the loop iterations where the scalar bit equals 1 (or −1 in a signed representation).
Consequently, a single leakage trace of the scalar multiplication can reveal the whole secret scalar
(or significant information about it in a signed representation).

In order to withstand SPA, one must render the scalar multiplication regular, namely such that
it performs a constant operation flow whatever the scalar value. A first possibility is to make ad-
dition and doubling patterns indistinguishable. This can be achieved by using unified formulae
for point addition and point doubling [BJ02] or by the mean of side-channel atomicity whose prin-
ciple is to build point addition and point doubling algorithms from the same atomic pattern of
field operations [CMCJ04]. Another possibility is to render the scalar multiplication algorithm itself
regular, independently of the field operation flows in each point operation. Namely, one designs a
scalar multiplication with a constant flow of point operations. This approach was first followed by
Coron in [Cor99] who proposed to perform a dummy addition in the binary algorithm loop when-
ever the scalar bit equals 0. The obtained double-and-add-always algorithm performs a point doubling
and a point addition at every loop iteration and the scalar bits are no more distinguishable from
a leakage trace. Using Jacobian coordinates for R0 (assuming a = −3) and affine coordinates for
R1, the left-to-right double-and-add-always algorithm performs a scalar multiplication at the cost of
12M + 7S + 19A per loop iteration.



Other regular binary algorithms exist in the literature which enjoy attractive features, such as the
Montgomery ladder [Mon87] and the double-and-add algorithm proposed by Joye in [Joy07] (see
Algorithms 3 and 4). These algorithms are based on loop invariants the point registers R0 and R1.
In the Montgomery ladder, the relation R1 − R0 = P is satisfied at the end of every loop iteration,
while in Joye algorithm the ith loop iteration yields R0 + R1 = [2i]P (see [Mon87,Joy07] for further
details).

Algorithm 3 Montgomery ladder
Input: P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N
Output: Q = [k]P
1. R0 ← O; R1 ← P
2. for i = n− 1 downto 0 do
3. b← ki; R1−b ← R1−b +Rb

4. Rb ← 2Rb

5. end for
6. return R0

Algorithm 4 Joye double-and-add
Input: P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N
Output: Q = [k]P
1. R0 ← O; R1 ← P
2. for i = 0 to n− 1 do
3. b← ki
4. R1−b ← 2R1−b +Rb

5. end for
6. return R0

The Montgomery ladder was initially proposed as a scalar multiplication algorithm for a specific
kind of elliptic curves with very efficient point arithmetic: the so-called Montgomery curves [Mon87].
The Montgomery proposal also reaches additional speed up by only computing (X,Z)-coordinates
of intermediate points. This is made possible as the Montgomery ladder involves a so-called differ-
ential addition which computes the sum of two points whose difference is known. This approach was
subsequently generalized to elliptic curves in the Weierstrass form [BJ02,IT02,IMT02]. In particular,
it was shown in [IMT02] that a loop iteration of the Montgomery ladder using (X,Z)-coordinates
only can be performed in 11M + 4S + 2Ma + 18A where Ma denotes the cost of the multiplication
by the curve parameter a (which is a few additions if a is small e.g. a = −3).

The Montgomery ladder and the Joye double-and-add also provide efficient regular scalar mul-
tiplications based on co-Z addition formulae. In [VD10], Venelli and Dassande proposed several
variants of the Montgomery ladder based on co-Z arithmetic. The most efficient variant is based
on (X,Y )-only co-Z point additions and it reaches a computational cost of 9M + 5S (plus several
additions) per bit of the scalar. Independently of this work, Goundar et al. applied co-Z arithmetic
to the Montgomery ladder and the Joye double-and-add in [GJM10a]. The resulting algorithms in-
volve 11M+ 5S+ 23A per scalar bit, which can be reduced to 9M+ 7S+ 27A using standard tricks.
Recently, Hutter et al. proposed Montgomery ladder algorithms with (X,Z)-only projective co-Z
arithmetic in [HJS11]. Their fastest variant involve 10M + 5S + 13A per scalar bit.

In the next section we investigate regular binary algorithms based on Jacobian (X,Y )-only co-Z
arithmetic. After detailing the point operation algorithms, we propose a new binary algorithm using
these operations and based on a full signed expansion of the scalar. Then we detail the Montgomery
ladder algorithm based on such arithmetic. Compared to [VD10], we propose several tarde-offs and
we save a few field additions per scalar bit as well as a few memory registers.

2 Regular Binary Algorithms from Jacobian (X,Y )-only Co-Z Arithmetic

Algorithms 5 and 6 give the (X,Y )-only versions of the co-Z addition with update and the co-Z
conjugate addition. The so-called XYCZ-ADD algorithm takes the (X,Y )-coordinates of two co-Z
points P and Q and it computes the (X,Y )-coordinates of P +Q and the update (X,Y )-coordinates
of P (i.e. such that P and P +Q are co-Z). On the other hand, the XYCZ-ADDC algorithm computes
the (X,Y )-coordinates of P +Q and of its co-Z conjugate P −Q. The low level descriptions of these
algorithms are given in Appendix A. They show that the addition with update can be computed at
the cost of 4M+ 2S+ 7A using 5 field registers. For the conjugate addition, a time-memory trade-off
is possible. A first implementation involves 5M + 3S + 11A and requires 7 field registers, while a
second one uses only 6 field registers for a cost of 5M+ 3S+ 16A (see Appendix A). In comparison,
the implementation proposed in [VD10] (LightAddSub algorithm) involves 5M + 3S + 13A and it
requires 9 field registers.



Algorithm 5 (X,Y )-only co-Z addition with up-
date – XYCZ-ADD
Input: (X1, Y1) and (X2, Y2) s.t. P ≡ (X1 : Y1 : Z)

and Q ≡ (X2 : Y2 : Z) for some Z ∈ Fq , P ,Q ∈
E(Fq)

Output: (X3, Y3) and (X ′1, Y
′
1 ) s.t. P ≡ (X ′1 : Y ′1 : Z3)

and P +Q ≡ (X3 : Y3 : Z3) for some Z3 ∈ Fq

1. A← (X2 −X1)
2

2. B ← X1A
3. C ← X2A
4. D ← (Y2 − Y1)

2

5. E ← Y1(C −B)
6. X3 ← D − (B + C)
7. Y3 ← (Y2 − Y1)(B −X3)− E
8. X ′1 ← B
9. Y ′1 ← E

10. return
(
(X3, Y3), (X

′
1, Y

′
1 )
)

Algorithm 6 (X,Y )-only co-Z conjugate addi-
tion – XYCZ-ADDC
Input: (X1, Y1) and (X2, Y2) s.t. P ≡ (X1 : Y1 : Z)

and Q ≡ (X2 : Y2 : Z) for some Z ∈ Fq , P ,Q ∈
E(Fq)

Output: (X3, Y3) and (X ′3, Y
′
3 ) s.t. P +Q ≡ (X3 : Y3 :

Z3) and P −Q ≡ (X ′3 : Y ′3 : Z3) for some Z3 ∈ Fq

1. A← (X2 −X1)
2

2. B ← X1A
3. C ← X2A
4. D ← (Y2 − Y1)

2; F ← (Y1 + Y2)
2

5. E ← Y1(C −B)
6. X3 ← D − (B + C)
7. Y3 ← (Y2 − Y1)(B −X3)− E
8. X ′3 ← F − (B + C)
9. Y ′3 ← (Y1 + Y2)(X

′
3 −B)− E

10. return
(
(X3, Y3), (X

′
3, Y

′
3 )
)

In [GJM10a] a co-Z doubling-addition algorithm is proposed. This algorithm first performs a co-
Z addition (with update) between P and Q leading to a pair of co-Z points (R,P ) where R = P+Q.
Then a conjugate co-Z addition is processed that yields the pair of co-Z points (R + P ,R − P ) =
(2P +Q,Q). Algorithm 7 gives the (X,Y )-only version of the co-Z doubling-addition with update.

Algorithm 7 (X,Y )-only co-Z doubling-addition with update – XYCZ-DA
Input: (X1, Y1) and (X2, Y2) s.t. P ≡ (X1 : Y1 : Z) and Q ≡ (X2 : Y2 : Z) for some Z ∈ Fq , P ,Q ∈ E(Fq)
Output: (X4, Y4) and (X ′4, Y

′
4 ) s.t. 2P +Q ≡ (X4 : Y4 : Z4) and Q ≡ (X ′4 : Y ′4 : Z4) for some Z4 ∈ Fq

1.
(
(X3, Y3), (X

′
1, Y

′
1 )
)
← XYCZ-ADD

(
(X1, Y1), (X2, Y2)

)
2.
(
(X4, Y4), (X

′
4, Y

′
4 )
)
← XYCZ-ADDC

(
(X3, Y3), (X

′
1, Y

′
1 )
)

3. return
(
(X4, Y4), (X

′
4, Y

′
4 )
)

Algorithm 7 processes an addition and a conjugate addition sequentially, which involves 9M +
5S. We can also deduce from the low level algorithms of Appendix A that the total cost for this
doubling-addition algorithm is either of 9M+5S+18A with 7 field registers or of 9M+5S+23A with
6 field registers. In [GJM10a], some tricks are proposed to trade field multiplications against field
squarings3. Only one of the two proposed tricks applies in our context since the other one targets
the Z-coordinate computation. It enables trading one field multiplication for one field squaring and
8 field additions/subtractions (see Appendix A for details). The total cost of the obtained reduced
doubling-addition then becomes either 8M+ 6S+ 31A with 6 field registers or 8M+ 6S+ 26A with
7 field registers. Using this trick hence leads to a reduced doubling-addition faster than the original
one if and only if 1M > 1S + 8A.

2.1 Signed Binary Algorithm

Let k be a scalar with binary expansion (kn−1, . . . , k1, k0)2, where ki ∈ {0, 1} for every i < n− 1 and
kn−1 = 1. Without loss of generality, we will assume that k is odd (otherwise it could be replaced by
k + r where r is the group order). There exists a unique full signed expansion (κn−1, . . . , κ1, κ0) of k
such that k =

∑
i κi2

i with κi ∈ {−1, 1} for every i < n− 2 and κn−1 = κn−2 = 1. This expansion is
easily obtained from the observation that for every w > 1, we have 1 = 2w−

∑w−1
i=0 2i. It follows that

any group of w bits 00 . . . 01 in the binary expansion of k can be replaced by the group of w signed
bits 11̄1̄ . . . 1̄ (where 1̄ = −1). The full signed expansion of k is then obtained by:

3 These tricks are based on the usual approach applying a× b = 1
2
(a+ b)2−a2− b2 when a2 and b2 are already

available.



κi =

{
1 if i = n− 1 or i = n− 2,
(−1)1+ki+1 otherwise. (7)

We perform the scalar multiplication Q ← [k]P with a left-to-right binary algorithm using the
full signed representation of k, namely we iterate Q ← 2Q + κiP from i = n − 2 down to i = 0
(initializing Q to P ). In every iteration, we use the (X,Y )-only co-Z doubling-addition with update
(see Algorithm 7). Note that when κi = −1, P must be inverted prior to the doubling-addition
computation and the resulting update is the inverse of P . That is, when κi = −1, we compute
XYCZ-DA(Q,−P ) = (2Q−P ,−P ). Then for the next step, we can keep going with −P if κi−1 also
equals −1, otherwise we must invert the update of −P to recover the update of P . More generally,
the sign of P must be switched at the ith iteration if and only if κi 6= κi+1. Namely, we process
R0 ← (−1)bR0 where b = ki+1 ⊕ ki+2 and R0 denotes the register holding ±P .

At the end of the double-add loop, R1 holds the (X,Y ) coordinates of Q = [k]P and R0 holds
that of (−1)1+k1P . Then, we can recover the affine coordinates of P since P and Q share the same
Z-coordinate. Indeed, if P = (x, y) ≡ (X : Y : Z), then we have Z = xY/(Xy). This leads to a
simple coordinate recovery algorithm which computes Z−1 = Xy/(xY ) and then multiplies the X
and Y coordinates of Q by (Z−1)2 and (Z−1)3 respectively. A detailed description of the obtained
CoordRec algorithm is given in Appendix B. It has a computational cost of 1I + 6M + 1S.

Eventually, the initial step Q← 2P +P has to be treated in a peculiar way as the co-Z doubling-
addition formula requires input points which are not equal. Therefore we must start by tripling P to
get a pair of co-Z points (P ,Q = [3]P ). For such a purpose, we use an initial tripling with co-Z update
as proposed in [GJM10a] but without computing the Z-coordinates of P and Q. The corresponding
XYCZ-ITPL algorithm is given in Appendix C. Its computational cost is 6M + 6S + 17A and it uses
6 field registers.

The overall signed binary algorithm with (X,Y )-only co-Z doubling-addition is depicted in the
next algorithm.

Algorithm 8 Signed binary algorithm with (X,Y )-only co-Z doubling-addition
Input: P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N with kn−1 = k1 = 1
Output: Q = [k]P
1. (R1, R0)← XYCZ-ITPL(P )
2. for i = n− 3 downto 0 do
3. b← ki+1 ⊕ ki+2

4. R0 ← (−1)bR0

5. (R1, R0)← XYCZ-DA(R1, R0)
6. end for
7. R0 ← (−1)1+k1R0

8. return CoordRec(P , R0, R1)

Note that for the actual implementation to be regular one must implement Steps 4 and 7 in a
regular way. Possible solutions are provided in Appendix D. We shall consider that the cost of such
a regular conditional point inversion is 1A.

Algorithm 8 involves (n−2) XYCZ-DA computations, (n−1) conditional point inversions, the ini-
tial XYCZ-ITPL computation and the final coordinate recovery computation. The total computational
cost and memory requirement of Algorithm 8 are summarized in the following table, depending
on the chosen trade-off for the doubling-addition algorithm (the first row corresponds to the stan-
dard doubling-addition while the second row corresponds to the reduced doubling-addition). The
memory requirement is obtained from the number of field registers used by the doubling-addition
algorithm (which is either 6 or 7) plus two field registers to keep track of the affine coordinates of P .

Cost per bit (n− 2 times) Additional cost # field registers
9M + 5S + 24A/19A 1I + 12M + 7S + 18A 8/9
8M + 6S + 32A/27A 1I + 12M + 7S + 18A 8/9



2.2 Montgomery Ladder

The Montgomery ladder can also benefit from (X,Y )-only co-Z arithmetic [VD10,GJM10a]. Every
loop iteration in the Montgomery ladder (see Algorithm 3) can indeed be rewritten to perform a
conjugate addition followed by a regular addition:{

R1−b ← R1−b +Rb

Rb ← 2Rb
⇔

{
(R1−b, Rb)← (Rb +R1−b, Rb −R1−b)
Rb ← Rb +R1−b

We can then use the (X,Y )-only co-Z addition formulae depicted above to perform such operations.
Moreover, we can retrieve the Z-coordinate of the result and hence its affine coordinates [VD10].
Indeed, as the Montgomery ladder satisfies R1 − R0 = P at the end of every loop iteration, it
can be checked that the conjugate addition in the last loop iteration yields the value (−1)b−1P in
the register Rb, where b = k0. The current Z-coordinate can then be recovered as explained in the
previous section. Namely, the current Z-coordinate satisfies Z ′ = (−1)1−bxPYb/XbyP where (Xb, Yb)
denotes the coordinates in registerRb. According to (5), the final addition betweenRb andR1−b then
produces a result with Z-coordinate satisfying Z = (Xb −X1−b)Z

′. This way, one can compute the
inverse λ of the final Z-coordinate prior the last addition by:

λ = (−1)1−bXbyP
(
xPYb(Xb −X1−b)

)−1
= XbyP

(
xPYb(X1 −X0)

)−1
.

We shall denote by FinalInvZ(R0, R1,P , b) the above computation in the following. It has a com-
putational cost of 1I + 4M + 1A. Eventually, the final addition is performed which yields coordi-
nates (X0, Y0) in R0 satisfying (X0, Y0, λ

−1) ≡ [k]P . The final result is then returned as [k]P =
(X0λ

2, Y0λ
3).

Eventually, the initial step of the Montgomery ladder must be treated in a peculiar way to avoid
addition of O (which is not handled by the co-Z addition formula). Since kn−1 = 1, the first loop
iteration of the Montgomery ladder yields (R1, R0) = (2P ,P ). Therefore, we use an initial doubling
with co-Z update as proposed in [GJM10a], but still without returning the Z-coordinates of P and
2P . The corresponding XYCZ-IDBL algorithm is given in Appendix C. Its computational cost is
2M + 4S + 10A and it uses 6 field registers.

The overall (X,Y )-only co-Z Montgomery ladder is depicted in the next algorithm.

Algorithm 9 Montgomery ladder with (X,Y )-only co-Z addition
Input: P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N with kn−1 = 1
Output: Q = [k]P
1. (R1, R0)← XYCZ-IDBL(P )
2. for i = n− 2 downto 1 do
3. b← ki
4. (R1−b, Rb)← XYCZ-ADDC(Rb, R1−b)
5. (Rb, R1−b)← XYCZ-ADD(R1−b, Rb)
6. end for
7. b← k0
8. (R1−b, Rb)← XYCZ-ADDC(Rb, R1−b)
9. λ← FinalInvZ(R0, R1,P , b)

10. (Rb, R1−b)← XYCZ-ADD(R1−b, Rb)
11. return (X0λ

2, Y0λ
3)

Algorithm 9 involves (n − 1) XYCZ-ADDC computations, (n − 1) XYCZ-ADD computations, the
initial XYCZ-IDBL computation, the FinalInvZ computation and 3M+1S to get the affine coordinates
of the result. The total computational cost and memory requirement of Algorithm 9 are summarized
in the following table depending on the chosen time-memory trade-off for the conjugate addition
(see Appendix A). Here again, the memory requirement corresponds to the number of field registers
used by the doubling-addition algorithm plus two field registers to keep track of the affine coordi-
nates of P . Note that the storage of λ does not imply a memory overhead as the coordinate of P are
no more required one λ has been computed.

Cost per bit (n− 2 times) Additional cost # field registers
9M + 5S + 23A/18A 1I + 18M + 10S + 35A/30A 8/9



It is suggested in [GJM10a] to merge the regular addition in each iteration with the conjugate
addition of the next iteration to obtain a doubling-addition computation whose cost can possibly be
reduced depending of the S/M and the A/M ratios (see discussion above). Namely, one merges the
two following steps:

Rb ← Rb +R1−b ; (R1−d, Rd)← (Rd +R1−d, Rd −R1−d) ,

where b = ki and d = ki−1, which yields:{
(R1−d, Rd)← (2R1−b +Rb, Rb) if d = b,
(R1−d, Rd)← (2R1−b +Rb,−Rb) if d 6= b.

This amounts to process {(R1−d, Rd)← XYCZ-DA(R1−b, Rb) ; Rd ← (−1)sRd}where s = d⊕ b.
The obtained variant of the (X,Y )-only co-Z Montgomery ladder is depicted in the next algo-

rithm.

Algorithm 10 Montgomery ladder with (X,Y )-only co-Z doubling-addition
Input: P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N with kn−1 = 1
Output: Q = [k]P
1. (R1, R0)← XYCZ-IDBL(P )
2. b← kn−2; (R1−b, Rb)← XYCZ-ADDC(Rb, R1−b)
3. for i = n− 2 downto 1 do
4. b← ki; d← ki−1; s← d⊕ b
5. (R1−d, Rd)← XYCZ-DA(R1−b, Rb)
6. Rd ← (−1)sRd

7. end for
8. b← k0
9. λ← FinalInvZ(R0, R1,P , b)

10. (Rb, R1−b)← XYCZ-ADD(R1−b, Rb)
11. return (X0λ

2, Y0λ
3)

Algorithm 10 involves (n − 2) XYCZ-DA computations, (n − 2) conditional point inversion,
1 XYCZ-ADD computations, 1 XYCZ-ADDC computation, the initial XYCZ-IDBL computation, the
FinalInvZ, and 3M + 1S to get the affine coordinates of the result. The following table summarizes
the total computational cost and memory requirement of Algorithm 10 depending on the chosen
time-memory trade-off for the reduced doubling-addition (see Appendix A).

Cost per bit (n− 2 times) Additional cost # field registers
8M + 6S + 32A/27A 1I + 18M + 10S + 35A/30A 8/9

3 Regular Signed Window Algorithms

In the previous section, we have presented fast low-memory binary algorithms for scalar multipli-
cation. We now look at the context where more memory is available allowing the use of window
techniques. Window algorithms are similar to binary algorithms but in the former, each loop iter-
ation focuses on a window of w scalar bits rather than on a single bit. Otherwise said, every loop
iteration treats a digit of the scalar in radix 2w.

Let k be some scalar and let (d`−1, . . . , d1, d0)2w denote the expansion of k in radix 2w, namely ` =
dn/wewhere n is the scalar bit-length, and k =

∑
i di2

iw with di ∈ {0, 1, . . . 2w−1} and d`−1 6= 0. The
principle of the window scalar multiplication is analogous to that of the binary method (see Section
1.2). Defining Ti = [(d`−1, . . . , di)2w ]P , we get a backward sequence where T`−1 = [d`−1]P , T0 =
[k]P and Ti = [2w]Ti+1 + [di]P . The left-to-right window scalar multiplication algorithm consists
in evaluating this sequence. One starts by precomputing [d]P for every d, and then compute the Ti
sequence from T`−1 = [d`−1]P down to T0 = [k]P . Every iteration then consists in w successive
point doublings and one point addition. A right-to-left window algorithm also exists which is based
on the equality [k]P =

∑
i[di2

iw]P =
∑

d[d]
(∑

i;di=d[2iw]P
)
. A loop is processed which applies w

successive point doublings in every iteration to compute [2iw]P from [2(i−1)w]P , and which adds



the result to some accumulator Rdi
. At the end of the loop each accumulator Rd contains the sum∑

i;di=d[2iw]P . The different accumulators are finally aggregated as
∑

d[d]Rd = [k]P .
As explained in Section 1.2, subtraction over an elliptic curve is almost as efficient as addition,

which allows using a signed representation of the scalar. In the context of window methods, we can
use a signed 2w-radix representation of the scalar k = (d`−1, . . . , d1, d0)2w . In such a representation,
the digits di lie in a basis B which is different from the simple 2w-radix basis {0, 1, . . . 2w − 1} and
which includes negative integers. Applying the above principles we can then deduce the signed
window scalar multiplication algorithms depicted in Algorithms 11 (left-to-right) and 12 (right-to-
left), where B+ denotes the set {|d|; d ∈ B}.

Algorithm 11 Left-to-right signed window scalar
multiplication
Input: P ∈ E(Fq), k = (d`−1, . . . , d1, d0)2w ∈ N
Output: Q = [k]P
1. for all d ∈ B+ do Rd ← [d]P
2. d← d`−1; A← Rd

3. for i = `− 2 downto 0 do
4. d← |di|
5. A← [2w]A
6. if (di ≥ 0) then A← A+Rd

7. else A← A−Rd

8. end for
9. return A

Algorithm 12 Right-to-left signed window scalar
multiplication
Input: P ∈ E(Fq), k = (d`−1, . . . , d1, d0)2w ∈ N
Output: Q = [k]P
1. for all d ∈ B+ do Rd ← O
2. A← P
3. for i = 0 to `− 2 do
4. d← |di|
5. if (di ≥ 0) then Rd ← Rd +A
6. else Rd ← Rd −A
7. A← [2w]A
8. end for
9. return

∑
d∈B+ [d]Rd

Window algorithms with w > 1 involve less point operations than their binary counterparts.
While a typical regular binary algorithm involves roughly n point doublings and n point additions
(see Section 1.2), the utilization of a w-bit window lowers the number of point additions to n/w (ne-
glecting the precomputation and aggregation costs). On the other hand, window algorithms require
more memory as they involve (m + 1) point registers where m = #B+. We hence see that their
memory consumption depends of the choice of B, namely on the recoding of the scalar (this issue is
discussed hereafter).

Regular Implementation. In order to implement Algorithms 11 and 12 in a regular way, one must
avoid the conditional statement in the loop. A simple solution to avoid this statement is to replace
Steps 6 and 7 of Algorithm 11 and Steps 5 and 6 of Algorithm 12 by:

s← sign(di)
Rd ← (−1)sRd

A← A+Rd

Rd ← (−1)sRd

and


s← sign(di)
A← (−1)sA
Rd ← Rd +A
A← (−1)sA

where sign : x 7→
{

1 if x < 0,
0 otherwise.

The regular implementation of a conditional point inversion P ← (−1)sP is addressed in Appendix
D. We expect a computational cost of 1A. Therefore, using the above implementation for the condi-
tional statement shall induce a cost of 2A per loop iteration (in addition to thew point doublings and
to the point addition). It is actually possible to do better. One can indeed save 1A by merging the
second step P ← (−1)sP of an iteration to the first one in the next iteration. For the right-to-left im-
plementation, we simply get {s← sign(di)⊕sign(di−1);A← (−1)sA}, and we can remove the second
step A← (−1)sA (a special treatment of the first iteration is also necessary). For the left-to-right im-
plementation, things are slightly more complicated as two consecutive iterations are likely to handle
different precomputed points Rd. We shall then use a binary variable sd to keep track of the current
sign of Rd for every d. Each iteration shall then process {s← sign(d);Rd ← (−1)s⊕sdRd; sd ← s}.

The right-to-left algorithm is still not regular in its current form due to the initialization of the
accumulators Rd to O. This initialization implies that the first addition (or subtraction) of A to each
Rd must be treated in a peculiar way. Such a special treatment break the regularity of the algorithm,



which may leak the indices of the first occurrences of each digit in the scalar to an SPA adversary.
To avoid such a weakness, one can initialize each Rd to P . Doing so, the aggregation step shall yield
the point [k]P +

∑
d∈B+ [d]P . A simple trick to correct this value consists in subtracting

∑
d∈B+ d to

the scalar prior the loop [Joy09]. This way, the correct result [k]P is well obtained after aggregation.4

Another issue arises for the regular implementation of the left-to-right algorithm when the basis
B includes the zero digit (which is for instance the case with B = {0, 1, . . . , 2w − 1}). Indeed, if d = 0
then Rd = O and the addition A ← A + Rd needs a particular treatment. A possibility to avoid
this issue is to perform a dummy addition whenever d = 0. This is actually what naturally happens
with the right-to-left algorithm in which a zero digit implies an addition of A to the accumulator R0.
This addition is actually dummy since the final value of R0 does not affect the aggregation result.
Dummy operations are usually avoided because they render the implementation subject to safe-error
attacks [YKLM02]. Indeed, by injecting a fault in the addition computation, one could check whether
it is dummy or not (depending on the correctness of the result), and hence deduce which digit of the
scalar are zero and which are not. Note that such an attack scenario does not apply in the presence of
a randomized scalar which is often required for DPA-resistance [Cor99,CJ03]. It is however preferred
in general to avoid dummy operations, which constrains to choose a basis B such that 0 /∈ B.

Scalar Recoding. The main purpose of signed recoding of the scalar for window methods is to lower
the memory requirement. As discussed above, window algorithms require (m + 1) point registers
where m = #B+. It is not hard to see that the straightforward basis B = {0, 1, . . . , 2w − 1} implies
m = 2w. As suggested by Möller in [Möl01,Möl02], this can be improved by using the signed basis
B = {−2w−1,−2w−1 + 1, . . . , 2w−1− 1}. The recoding of the scalar into this basis can be simply done
by scanning its digits from the right to the left. Indeed if di ≥ 2w−1 one can replace it by di − 2w and
add 1 to the next digit di+1 (with possibly a carry propagation to the next digits). To avoid the zero
digit, it is also possible to replace it by −2w in the basis. The scalar recoding then further consists in
replacing every di = 0 by −2w and incrementing di+1 (still with a possible carry propagation). Note
that the new scalar representation may be of length ` + 1 (if d`−1 ≥ 2w−1 or because of some carry
propagation). This recoding satisfies m = 2w−1 + 1 and the resulting window algorithm involves
2w−1 + 2 point registers which is almost twice less than the 2w + 1 point registers required with the
straightforward basis.

A better solution is actually possible which was initially proposed by Okeya and Takagi in
[OT03]. It consists in using the basis of odd digits B = {±1,±3, . . . ,±2w − 1}. This recoding as-
sumes an odd scalar, which is not a loss of generality as an even k could be replaced by k + r where
r is the (usually prime) group order. The recoding works in a right-to-left direction from d1 to d`−1
(d0 is already odd by assumption) and it consists, at step i, in incrementing di (with a possible carry
propagation) and replacing di−1 by di−1 − 2w whenever di is even. Note that since the recoding
proceeds from the least to the most significant digits, di−1 is always odd and greater than 0 at step i
which ensures that (di−1−2w) ∈ B in case di−1 has to be updated. A regular version of this recoding
has been proposed by Joye and Tunstall in [JT09] which takes some scalar k and computes its 2w-
radix representation (d`, . . . , d1, d0)2w with digits lying in the odd basis. Their recoding algorithm
proceeds as follows:

1. i← 0
2. while (k > 2w) do
3. di ← (k mod 2w+1)− 2w

4. k ← (k − di)/2w
5. i← i+ 1
6. end while

The odd basis satisfies m = 2w−1 and the resulting signed window algorithm requires 2w−1 + 1
point registers (which is one register less than in the Möller proposal). It was moreover shown in
[OT03] that m = 2w−1 is the best that can be reached while ensuring that any (odd) scalar can be
represented in the underlying basis. In the following we shall then assume that the odd basis is
chosen for signed window algorithms.

4 Note that this trick only works if w > 1 so that when A is added (or subtracted) for the first time to some
Rd, it does not equal P . Otherwise a peculiar treatment would still be required to perform a doubling (or a
P − P = O) instead of an addition.



Point Arithmetic. Window algorithms mostly involve point doublings so the best choice to get
efficient point arithmetic is Jacobian coordinates. Using standard doubling and addition formulae
(see (3) and (4)) as proposed in [OT03], one shall then obtain a cost per scalar bit of 4M + 6S +
8A + 1

w (12M + 4S + 7A) (without precomputation and aggregation). When a = −3, this cost can be
reduced to 4M + 4S + 9A + 1

w (12M + 4S + 7A) (see Section 1.1). Concerning the memory usage,
each point register requires 3 field registers and the Jacobian addition requires 4 additional field
registers5, which makes a total memory consumption of 3 · 2w−1 + 7 field registers. Nevertheless, it
is possible to do better depending on the direction of the scalar scanning.

For the right-to-left algorithm, the case a 6= −3 can be optimized by using the repeated doubling
formula, i.e. by using modified Jacobian coordinates for the point register A (see Section 1.1). The
obtained cost then drops to 4M+4S+8A+ 1

w (12M+4S+7A) per scalar bit (with an additional cost
of 2M for the very first doubling), but one additional field register is needed. One could actually use
this strategy when a = −3 also, which would save 1A per scalar bit (and would only involve one
software code for both cases).

The case of the left-to-right algorithm is slightly different as the same register (namely A) is
doubled and receives the results of point additions. When a 6= −3, the accumulator A shall be rep-
resented in modified Jacobian coordinates to favor repeated doublings. As the addition of a register
Rd to A does not yield a point represented in modified Jacobian coordinates, the first doubling is
always a standard Jacobian doubling. The obtained cost for the w consecutive doublings is therefore
of 4wM + (4w + 2)S + 8wA. When a = −3, one shall just apply w times the optimized Jacobian
doubling getting a cost of w(4M + 4S + 9A). The used formula for the addition then depends on
the coordinates of the precomputed values. We can either use Jacobian coordinates and perform the
addition as a standard Jacobian addition with a cost of 12M + 4S + 7A. One may also use affine co-
ordinates for the precomputed values, which enables using the mixed Jacobian-affine addition with
a reduced cost of 8M + 3S + 7A (see Section 1.1). An alternative is to use the composite doubling-
addition formula from [LM08a] (see description in Section 1) to perform the last doubling and the
addition at the same time. In that case, a fast doubling6 and a mixed addition are replaced by a
mixed doubling-addition with a cost of 11M + 7S + 27A. This results in a trade of 1M for 12A (or
11A when doubling formula with a = −3 is used), so the method of choice depends on the A/M
ratio. Besides yielding a faster addition, the use of mixed coordinates further lowers the memory
consumption since only 2 field registers are required per precomputed value. The total memory
consumption then falls to 2w + 4 field registers. However, a mixed coordinates strategy requires the
translation of precomputed values from Jacobian coordinates to affine coordinates before the loop,
and such a translation may induce an important overhead in the precomputation step (in particular
it requires an additional field inversion).

Precomputation and Aggregation. For both signed window algorithms some additional computa-
tion is required. For the left-to-right algorithm, one must precompute the valuesRd = [d]P for every
d ∈ B+, while for the right-to-left algorithm the aggregation

∑
d∈B+ [d]Rd must be computed after

the loop.
The precomputation in the odd basis aims at producing points [3]P , [5]P , . . . , [2w − 1]P . Such a

computation can be efficiently processed based on co-Z arithmetic [LM08a]. One first compute a pair
of co-Z points (P , [2]P ) based on the doubling with co-Z update. A detailed algorithm is given in
Appendix C (Algorithm 23), which costs 2M+4S+10A. The only difference is that the Z-coordinate
must be returned but this does not imply any overhead as it is already computed in Algorithm 23.
Then [3]P is computed by a co-Z addition between P and [2]P with co-Z update of [2]P , afterwards
[5]P is computed by a co-Z addition between [3]P and [2]P with co-Z update of [2]P , and so on until
[2w−1]P . On the whole, the precomputation involves (2w−1−1) co-Z additions that each costs 5M+
2S+7A. The total cost of the precomputation step is then of 2w−1(5M+2S+7A)−3M+2S+3A. When
the precomputed values must be translated to affine coordinates, additional computation must be
performed. Let (Xi, Yi, Zi) denotes the Jacobian coordinates of the point [2i− 1]P obtained from the

5 This is obtained from the memory consumption of the Jacobian addition (7 field registers) by deducting 3
field registers for the result (which is one of the point register already counted).

6 The last doubling costs either 4M + 4S + 12A if a = −3 or 4M + 4S + 11A otherwise (as it is the last of
several repeated doubling).



above computation and let (X ′i, Y
′
i , Zi) denote the corresponding co-Z Jacobian coordinates of [2]P .

The co-Z addition formula (see (5)) implies Zi+1 = (Xi−X ′i)Zi and hence Zn =
(∏

i<n(Xi−X ′i)
)
Z1

for every n ≥ 1. Therefore it is possible to design some affine coordinate recovery algorithm which
starts by inverting the last Z-coordinate (i.e. that of [2w−1]P ) and then recover the affine coordinates
of the different points from [2w − 1]P down to [3]P . Such a scheme has been proposed in [LM08a]
(Scheme 2) which costs 1I + (2w+1 − 5)M + 1S and which requires 5 field registers in addition to
those for the Rb. Note that this memory consumption does not overcome the bottleneck considering
the 3 field registers necessary for A and the temporary registers for the point additions.

The aggregation step of the right-to-left window algorithm in the odd basis can be efficiently
computed as follows:

1. d← 2w − 1; A← Rd

2. d← d− 2
3. while (d > 1) do
4. Rd ← Rd +Rd+2

5. A← A+Rd

6. d← d− 2
7. end while
8. A← 2A+R3 +R1

One can check that at the end of the above while-loop the accumulator A and the register R3 contain
the values

∑
d>1[(d− 1)/2]Rd and

∑
d>1Rd respectively. The final step hence yields the aggregated

value
∑

d∈B+ [d]Rd. This computation involves (2w − 2) point additions and 1 point doubling. In
Jacobian coordinates, the total cost is then of (2w − 2)(12M + 4S + 7A) plus 4M + 6S + 8A in the
general case, and plus 4M + 4S + 9A when a = −3.

Eventually, for both algorithms the affine coordinates (x, y) of the result must be recovered
from the Jacobian coordinates (X,Y, Z). Such a recovery simply consists in computing (x, y) =
(X/Z2, Y/Z3) which costs 1I + 3M + 1S.

4 Security against Zero-Value Attacks

In the previous sections, we have described regular algorithms for elliptic curve scalar multiplica-
tion. As explained in Section 1.2, regularity is required to thwart SPA attacks distinguishing scalar
bits from different operation patterns in a leakage trace. However, regularity may not suffice to pre-
vent some refine SPA attacks called zero-value attacks.

In [Gou03], Goubin explained how to chose a point P that makes appear an intermediate point
with a zero-value coordinate in the computation of [k]P for certain values of k. The occurrence of
such a zero-coordinate can usually be detected from a leakage trace, which allows an SPA observer
to discriminate the value of k. This attack was extended in [AT03] where the authors also exploit
zero-value occurrence inside the point addition computations. A simple countermeasure to thwart
this kind of attacks is to randomize the scalar [Cor99,CJ03] (whereas other kinds of randomization
may fail [Gou03]).

Another kind of zero-value SPA attacks was recently introduced by Courrège et al. in [CFR10].
This attack targets modular exponentiation but it straightforwardly transposes to an attack against
certain scalar multiplication algorithms. The attack assumes that a side-channel adversary can iden-
tify whenever a multiplication by zero (or by some low Hamming weight digit) is performed by
the hardware multiplier of the target device. A multiplication over Fq is usually composed of many
(n ×m)-bit multiplications performed by some hardware multiplier. An adversary such as consid-
ered in [CFR10] could then learn when an operand of some field multiplication has a n-bit (resp.
m-bit) digit to zero (or with low Hamming weight). Such an observation can reveal secret informa-
tion. For instance the left-to-right window algorithm presented in the previous section handles the
value [d]P in the ith iteration if and only if di = d. An adversary could ask for the scalar multipli-
cation of some point P such that [d]P has one or several zero digit(s) in some of its coordinates.
Looking at the resulting leakage trace, he could then identify all the digits of the scalar which equal
d. Moreover, such an attack may also work when the adversary cannot choose the input point, and
even in the presence of randomization (of either the point coordinates or the scalar or both). If the



bit-size of the hardware multiplier is small (e.g. between 8 and 32) which is usual, the occurrence
probability of a zero digit in some (possibly randomized) coordinate of some precomputed point
[d]P is not weak. Then the partial information leaked about the scalar (even randomized) over sev-
eral computations could probably enable a complete break of the system based on a lattice attack
(see for instance [NNTW05]). In order to prevent such a vulnerability we recommend to avoid scalar
multiplication algorithms using fixed point with fixed coordinates such as left-to-right (window) al-
gorithms. Note that the binary algorithms presented in Section 2 do not suffer this weakness. Even
the signed left-to-right algorithm is secure as the coordinate of the fixed point P change in each
iteration thanks to co-Z updates.

5 Comparison

In this section we compare the performances of different scalar multiplication algorithms. We con-
sider previous regular binary algorithms with fast point arithmetic (see Section 1.2), including the
double-and-add-always algorithms using mixed-Jacobian-affine coordinates [Cor99], the Montgomery
ladder using (X,Z)-only projective coordinates [IMT02], the binary ladders based on co-Z Jacobian
coordinates7 [GJM10a], and the Montgomery ladder using (X,Z)-only co-Z projective coordinates
[HJS11]. We also consider the binary algorithms based on (X,Y )-only co-Z coordinates presented in
Section 2 with their different trade-offs, as well as the signed window algorithms detailed in Section
3. The performances of the different algorithms are provided in Table 1. For every algorithm, we
give the cost per bit (which is to count n − 1 times for binary algorithms and n times for window
algorithms where n is the scalar bit-length), the additional cost, and the number of required field
registers8.

The additional cost results from the different steps outside the main loop including precompu-
tation and postcomputation (e.g. affine coordinates recovery, aggregation). Some negative values
sometimes appear for algorithms in which the main loop is iterated only n − 2 times. For a fair
comparison, we then subtract the cost of one loop iteration to the additional cost.

The results in Table 1 give rise to the following remarks:

– Left-to-right window algorithms using mixed coordinates should provide the best performances
in general, especially when a equals −3 ( 2

wS are saved) and when the I/M ratio is low (left-to-
right algorithms with mixed coordinates require two inversions whereas other algorithms only
one). Moreover, for usual A/M ratios, the version using the doubling-addition from [LM08a]
shall bess slightly faster. However, as explained in Section 4, left-to-right algorithms are vulner-
able to zero-value attacks. If the latter are identified as a potential threat, one shall avoid such
algorithms and favour other algorithms discussed in this paper.

– For binary algorithms, those based on co-Z (X,Y )-coordinates are faster than any other algo-
rithm for common S/M and A/M ratios. Assuming 1S ≈ 1M, neglecting the field additions, and
assuming a to be small (i.e. A ≈ 0 and Ma ≈ 0), these algorithms are roughly 12.5% faster than
the co-Z binary ladders from [GJM10a], 7.7% faster than the (X,Z)-only Montgomery ladders
from [IMT02] and [HJS11] (without counting the final inversion). Note however that when addi-
tion are especially expensive (and more precisely when 6A > 1M), the co-Z (X,Y )-coordinates
Montgomery ladder proposed in [HJS11] may offer better performances.

– Among the binary algorithms based on co-Z (X,Y )-coordinates (see Section 2), the best choice
between the signed binary algorithm and the Montgomery ladder (already proposed in [VD10])
shall depend of several criteria. When the S/M ratio is low (e.g. lower than or equal to 0.8)
and when additions are cheap, the reduced algorithms shall be preferred, and the signed binary
algorithm shall always be faster than the Montgomery ladder (same cost per scalar bit, lower
additional cost). On the other hand if S ≈ M or if additions are not cheap, the non-reduced
algorithms shall be prefer. In that case, the Montgomery ladder requires one addition less per
scalar bit, but it has a more important additional cost (8M+ 5S+ 23A/18A more than the signed

7 For binary ladders with co-Z arithmetic from [GJM10a], we only give the best performances which are ob-
tained for the Joye double-and-add algorithm (the Montgomery ladder requiring slightly more precomputa-
tion).

8 For [IMT02] and [HJS11], the (+1) in the number of field registers means +0 when a is small and +1 (to store
a) when a is large.



Table 1. Performances of regular scalar multiplication algorithms.

Method Cost per scalar bit Additional cost # field regs.
Binary algorithms

DA-always with mixed coord. (a = −3) 12M+ 7S+ 19A 1I+ 3M+ 1S 12

Mont. ladder in (X,Z)-coord. [IMT02] 11M+ 4S+ 2Ma + 18A 1I+ 21M+ 7S+ 25A 9(+1)

Mont. lad. in co-Z (X,Z)-coord. [HJS11] 10M+ 5S+ 13A 1I+ 23M+ 1Ma + 8S+ 21A 10(+1)

Binary ladder in co-Z coord. [GJM10a] 11M+ 5S+ 23A 1I− 1M+ 2S− 6A 7
⇒with reduced doubling-add 9M+ 7S+ 27A 1I+ 1M− 10A 8

Signed binary algorithm (Algo. 8) 9M+ 5S+ 24A/19A 1I+ 3M+ 2S− 6A/1A 8/9
⇒with reduced doubling-add 8M+ 6S+ 32A/27A 1I+ 4M+ 1S− 14A/9A 8/9

Montgomery ladder v1 (Algo. 9) [VD10] 9M+ 5S+ 23A/18A 1I+ 9M+ 5S+ 12A 8/9
Montgomery ladder v2 (Algo. 10) 8M+ 6S+ 32A/27A 1I+ 10M+ 4S+ 3A 8/9

Right-to-left window algorithms

Jacobian coordinates (a = −3)
4M+ 4S+ 9A

+ 1
w
(12M+ 4S+ 8A)

1I+ 7M+ 5S+ 9A
(2w − 2)(12M+ 4S+ 7A)

3 · 2w−1 + 7

w = 2 10M+ 6S+ 13A 1I+ 31M+ 13S+ 23A 13
w = 3 8M+ 5.3S+ 11.7A 1I+ 79M+ 29S+ 51A 19
w = 4 7M+ 5S+ 11A 1I+ 175M+ 61S+ 107A 28

Jacobian coordinates (a 6= −3)
4M+ 4S+ 8A

+ 1
w
(12M+ 4S+ 8A)

1I+ 9M+ 7S+ 8A
(2w − 2)(12M+ 4S+ 7A)

3 · 2w−1 + 8

w = 2 10M+ 6S+ 12A 1I+ 33M+ 15S+ 22A 14
w = 3 8M+ 5.3S+ 10.7A 1I+ 81M+ 31S+ 50A 20
w = 4 7M+ 5S+ 10A 1I+ 177M+ 63S+ 106A 29

Left-to-right window algorithms

Jacobian coordinates (a = −3)
4M+ 4S+ 9A

+ 1
w
(12M+ 4S+ 8A)

1I+ 3S+ 3A
+2w−1(5M+ 2S+ 7A)

3 · 2w−1 + 7

w = 2 10M+ 6S+ 13A 1I+ 10M+ 7S+ 17A 13
w = 3 8M+ 5.3S+ 11.7A 1I+ 20M+ 11S+ 31A 19
w = 4 7M+ 5S+ 11A 1I+ 40M+ 19S+ 59A 28

Jacobian coordinates (a 6= −3)
4M+ 4S+ 8A

+ 1
w
(12M+ 6S+ 8A)

1I+ 3S+ 3A
+2w−1(5M+ 2S+ 7A)

3 · 2w−1 + 7

w = 2 10M+ 7S+ 12A 1I+ 10M+ 7S+ 17A 13
w = 3 8M+ 6S+ 10.7A 1I+ 20M+ 11S+ 31A 19
w = 4 7M+ 5.5S+ 10A 1I+ 40M+ 19S+ 59A 28

Mixed coordinates (a = −3)
4M+ 4S+ 9A

+ 1
w
(8M+ 3S+ 8A)

2I− 5M+ 4S+ 3A
+2w−1(9M+ 2S+ 7A)

2w + 4

w = 2 8M+ 5.5S+ 13A 2I+ 13M+ 8S+ 17A 8
w = 3 6.7M+ 5S+ 11.7A 2I+ 31M+ 12S+ 31A 12
w = 4 6M+ 4.8S+ 11A 2I+ 67M+ 20S+ 59A 20

Mixed coordinates (a 6= −3)
4M+ 4S+ 8A

+ 1
w
(8M+ 5S+ 9A)

2I− 5M+ 4S+ 3A
+2w−1(9M+ 2S+ 7A)

2w + 4

w = 2 8M+ 6.5S+ 12A 2I+ 13M+ 8S+ 17A 8
w = 3 6.7M+ 5.7S+ 10.7A 2I+ 31M+ 12S+ 31A 12
w = 4 6M+ 5.3S+ 10A 2I+ 67M+ 20S+ 59A 20

Mixed coordinates (a = −3)
with DA from [LM08a]

4M+ 4S+ 9A
+ 1

w
(7M+ 3S+ 19A)

2I− 5M+ 4S+ 3A
+2w−1(9M+ 2S+ 7A)

2w + 4

w = 2 7.5M+ 5.5S+ 18.5A 2I+ 13M+ 8S+ 17A 8
w = 3 6.3M+ 5S+ 15.3A 2I+ 31M+ 12S+ 31A 12
w = 4 5.8M+ 4.8S+ 13.8A 2I+ 67M+ 20S+ 59A 20

Mixed coordinates (a 6= −3)
with DA from [LM08a]

4M+ 4S+ 8A
+ 1

w
(7M+ 5S+ 20A)

2I− 5M+ 4S+ 3A
+2w−1(9M+ 2S+ 7A)

2w + 4

w = 2 7.5M+ 6.5S+ 18A 2I+ 13M+ 8S+ 17A 8
w = 3 7.3M+ 5.7S+ 14.7A 2I+ 31M+ 12S+ 31A 12
w = 4 5.8M+ 5.3S+ 13A 2I+ 67M+ 20S+ 59A 20



binary algorithm). Therefore the best trade-off depends on the S/M and A/M ratios as well as
on the scalar size.

– Right-to-left window algorithms require significantly more memory than the binary algorithms
based co-Z (X,Y )-coordinates to reach equivalent speed. For w ≥ 3, right-to-left window algo-
rithms indeed require more than twice the memory of binary algorithms. Moreover, for a 160-bit
scalar, assuming 1S ≈ 1M and neglecting the field additions, our signed binary algorithm is
16.7% faster, 0.9% faster, and 3.5% slower than the right-to-left window algorithm with w = 2,
w = 3, and w = 4 respectively (assuming a = −3 and without counting the final inversion).
Higher security levels slightly favor window algorithms as the precomputation cost becomes
less important in the overall computation. For a 512-bit scalar, we get that our algorithm is 15%
faster, 3.2% slower, and 12.2% slower than the right-to-left window algorithm withw = 2,w = 3,
and w = 4 respectively.

– Eventually, let us mention that when the target application is not constrained to use general el-
liptic curves (i.e. all curves satisfying (1)), better algorithms exist over elliptic curves with special
forms. For instance, the Montgomery ladder over Montgomery curves [Mon87] only requires
6M + 4S (and a few additions) per scalar bit. Another example is the Edwards form over which
the point doubling only requires 3M + 4S, the point addition 10M + 1S, and the mixed point
addition 9M + 1S, yielding faster window algorithms [BL07]. See [BL] for further examples.
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A Low-Level Algorithms

A.1 Standard Jacobian Formulae

This section provides low-level algorithms for standard Jacobian formulae. The Jacobian doubling is
depicted in Algorithm 13 for the general case, and in Algorithm 14 for the case a = −3. The former
has a cost of 4M + 6S + 8A and uses 6 field registers, while the latter has a cost of 4M + 4S + 9A
and uses 5 field registers. Note that these algorithms use the trick of [LG10] to trade 4 field additions
for a field halving9. We assume here that the computational cost of a halving is the same as for an
addition. Low level algorithms without halving can be found in [IMT02, App. A.1].

Algorithm 13 Jacobian doubling
Input: P ≡ (X1, Y1, Z1)
Output: 2P ≡ (X3, Y3, Z3)

(T1 = X1, T2 = Y1, T3 = Z1)
T4 ← T 2

1 [X2
1 ]

T5 ← T 2
2 [Y 2

1 ]
T1 ← T1 × T5 [X1Y

2
1 = A]

T5 ← T 2
5 [Y 4

1 ]
T6 ← T 2

3 [Z2
1 ]

T6 ← T 2
6 [Z4

1 ]
T3 ← T2 × T3 [Y1Z1 = Z3]
T2 ← T4 + T4 [2X2

1 ]
T4 ← T4 + T2 [3X2

1 ]

T6 ← a× T6 [aZ4
1 ]

T4 ← T4 + T6 [3X2
1 + aZ4

1 ]
T4 ← T4/2 [ 1

2
(3X2

1 + aZ4
1 ) = B]

T6 ← T 2
4 [B2]

T2 ← T1 + T1 [2A]
T6 ← T6 − T2 [B2 − 2A = X3]
T1 ← T1 − T6 [A−X3]
T4 ← T4 × T1 [B(A−X3)]
T1 ← T4 − T5 [B(A−X3)− Y 4

1 = Y3]

return (T6, T1, T3)

9 Compared to the low-level description given in [LG10, App. A], Algorithm 14 saves 3 field registers.



Algorithm 14 Jacobian doubling (a = −3)

Input: P ≡ (X1, Y1, Z1)
Output: 2P ≡ (X3, Y3, Z3)

(T1 = X1, T2 = Y1, T3 = Z1)
T4 ← T 2

2 [Y 2
1 ]

T5 ← T1 ∗ T4 [X1Y
2
1 = A]

T4 ← T 2
4 [Y 4

1 ]
T2 ← T2 ∗ T3 [Y1Z1 = Z3]
T3 ← T 2

3 [Z2
1 ]

T1 ← T1 + T3 [X1 + Z2
1 ]

T3 ← T3 + T3 [2Z2
1 ]

T3 ← T1 − T3 [X1 − Z2
1 ]

T1 ← T1 ∗ T3 [X2
1 − Z4

1 ]

T3 ← T1 + T1 [2(X2
1 − Z4

1 )]
T1 ← T1 + T3 [3(X2

1 − Z4
1 )]

T1 ← T1/2 [ 3
2
(X2

1 − Z4
1 ) = B]

T3 ← T 2
1 [B2]

T3 ← T3 − T5 [B2 −A]
T3 ← T3 − T5 [B2 − 2A = X3]
T5 ← T5 − T3 [A−X3]
T1 ← T1 ∗ T5 [B(A−X3)]
T1 ← T1 − T4 [B(A−X3)− Y 4

1 = Y3]

return (T3, T1, T2)

The following algorithms recall the low-level descriptions for the Jacobian addition (Algorithm
15) and for the mixed Jacobian-affine addition (Algorithm 16) given in [IMT02, App. A.2]. The
former has a cost of 12M + 4S + 7A and involves 7 field registers, while the latter has a cost of
8M + 3S + 7A and involves 7 field registers.

Algorithm 15 Jacobian addition
Input: P ≡ (X1, Y1, Z1) and Q ≡ (X2, Y2, Z2)
Output: P +Q ≡ (X3, Y3, Z3)

(T1 = X1, T2 = Y1, T3 = Z1, T4 = X2, T5 = Y2, T6 = Z2)

T7 ← T 2
3 [Z2

1 ]
T4 ← T4 × T7 [X2Z

2
1 = B]

T5 ← T5 × T3 [Y2Z1]
T5 ← T5 × T7 [Y2Z

3
1 = D]

T7 ← T 2
6 [Z2

2 ]
T1 ← T1 × T7 [X1Z

2
2 = A]

T2 ← T2 × T6 [Y1Z2]
T2 ← T2 × T7 [Y1Z

3
2 = C]

T1 ← T1 − T4 [A−B = E]
T3 ← T6 × T3 [Z1Z2]
T3 ← T1 × T3 [Z1Z2E = Z3]

T2 ← T2 − T5 [C −D = F ]
T7 ← T 2

1 [E2]
T6 ← T 2

2 [F 2]
T4 ← T4 × T7 [BE2]
T1 ← T7 × T1 [E3]
T6 ← T6 − T1 [F 2 − E3]
T7 ← 2T4 [2BE2]
T6 ← T6 − T7 [F 2 − E3 − 2BE2 = X3]
T4 ← T4 − T6 [BE2 −X3]
T2 ← T2 × T4 [F (BE2 −X3)]
T7 ← T5 × T1 [DE3]
T7 ← T2 − T7 [F (BE2 −X3)−DE3 = Y3]

return (T6, T7, T3)



Algorithm 16 Mixed Jacobian-affine addition
Input: P ≡ (X1, Y1, Z1) and Q = (x2, y2)
Output: P +Q ≡ (X3, Y3, Z3)

(T1 = X1, T2 = Y1, T3 = Z1, T4 = x2, T5 = y2)
T6 ← T 2

3 [Z2
1 ]

T4 ← T4 × T6 [x2Z2
1 = B]

T5 ← T5 × T3 [y2Z1]
T5 ← T5 × T6 [y2Z3

1 = D]
T1 ← T1 − T4 [X1 −B = E]
T3 ← T1 × T3 [Z1E = Z3]
T2 ← T2 − T5 [Y1 −D = F ]
T6 ← T 2

1 [E2]
T7 ← T 2

2 [F 2]

T4 ← T4 ∗ T6 [BE2]
T1 ← T6 ∗ T1 [E3]
T7 ← T7 − T1 [F 2 − E3]
T6 ← 2T4 [2BE2]
T7 ← T7 − T6 [F 2 − E3 − 2BE2 = X3]
T4 ← T4 − T7 [BE2 −X3]
T2 ← T2 ∗ T4 [F (BE2 −X3)]
T6 ← T5 ∗ T1 [DE3]
T6 ← T2 − T6 [F (BE2 −X3)−DE3 = Y3]

return (T7, T6, T3)

Algorithm 17 recall the low level description of the mixed doubling-addition given in [LM08b,
App. A3]. It has a cost of 11M + 7S + 27A and involves 8 field registers.

Algorithm 17 Mixed Jacobian-affine doubling-addition
Input: P ≡ (X1, Y1, Z1) and Q = (x2, y2)
Output: 2P +Q ≡ (X3, Y3, Z3)

(T1 = X1, T2 = Y1, T3 = Z1, T7 = x2, T8 = y2)

T4 ← T 2
3

T5 ← T7 × T4

T5 ← T5 − T1

T6 ← T3 + T5

T6 ← T 2
6

T6 ← T6 − T4

T4 ← T3 × T4

T4 ← T8 × T4

T4 ← T4 − T2

T3 ← T 2
5

T6 ← T6 − T3

T1 ← T1 × T3

T1 ← 2T1

T1 ← 2T1

T3 ← T3 × T5

T2 ← T2 × T3

T2 ← 2T2

T2 ← 2T2

T2 ← 2T2

T5 ← T 2
4

T3 ← T5 − T3

T3 ← 2T3

T3 ← 2T3

T3 ← T3 − T1

T3 ← T3 − T1

T3 ← T3 − T1

T4 ← T3 + T4

T4 ← T 2
4

T4 ← T5 − T4

T4 ← T4 − T2

T4 ← T4 − T2

T5 ← T 2
3

T4 ← T4 + T5

T1 ← T1 × T5

T5 ← T3 × T5

T3 ← T3 × T6

T2 ← T2 × T5

T5 ← 2T1

T5 ← T5 + T1

T6 ← T 2
4

T6 ← T6 − T5

T5 ← T5 − T6

T4 ← T4 × T5

T2 ← T4 − T2

T1 ← T1 − T5

return (T1, T2, T3)

A.2 (X,Y )-Only Co-Z Jacobian Formulae

This section provides low-level descriptions of the (X,Y )-only co-Z addition formulae with detailed
field operation flow and memory usage. The addition with update is depicted in Algorithm 18. This
algorithm has a total cost of 4M + 2S + 7A and it involves 5 field registers.



Algorithm 18 (X,Y )-only co-Z addition with update – XYCZ-ADD
Input: (X1, Y1) and (X2, Y2) s.t. P ≡ (X1 : Y1 : Z) and Q ≡ (X2 : Y2 : Z) for some Z ∈ Fq , P ,Q ∈ E(Fq)
Output: (X3, Y3) and (X ′1, Y

′
1 ) s.t. P ≡ (X ′1 : Y ′1 : Z3) and P +Q ≡ (X3 : Y3 : Z3) for some Z3 ∈ Fq

(T1 = X1, T2 = Y1, T3 = X2, T4 = Y2)
1. T5 ← T3 − T1 [X2 −X1]
2. T5 ← T 2

5 [(X2 −X1)
2 = A]

3. T1 ← T1 × T5 [X1A = B]
4. T3 ← T3 × T5 [X2A = C]
5. T4 ← T4 − T2 [Y2 − Y1]
6. T5 ← T 2

4 [(Y2 − Y1)
2 = D]

7. T5 ← T5 − T1 [D −B]

8. T5 ← T5 − T3 [X3]
9. T3 ← T3 − T1 [C −B]
10. T2 ← T2 × T3 [Y1(C −B)]
11. T3 ← T1 − T5 [B −X3]
12. T4 ← T4 × T3 [(Y2 − Y1)(B −X3)]
13. T4 ← T4 − T2 [Y3]

return
(
(T5, T4), (T1, T2)

)

For the conjugate addition, a time-memory trade-off is possible. The straightforward implemen-
tation leads to Algorithm 19 which costs 5M+ 3S+ 11A and requires 7 field registers. A more tricky
implementation was suggested in [GJM10b, App. A] which enables to save one field register for an
additional cost of 5A. It is depicted in Algorithm 20 (but without the Z-coordinate computation).
This implementation costs 5M+3S+16A and it involves 6 field registers. As the conjugate addition
is the most memory consuming part of the scalar multiplication algorithms presented in Section 2,
saving one field register for the conjugate addition implies saving one field register for the whole
scalar multiplication.

Algorithm 19 (X,Y )-only co-Z conjugate addition – XYCZ-ADDC
Input: (X1, Y1) and (X2, Y2) s.t. P ≡ (X1 : Y1 : Z) and Q ≡ (X2 : Y2 : Z) for some Z ∈ Fq , P ,Q ∈ E(Fq)
Output: (X3, Y3) and (X ′3, Y

′
3 ) s.t. P +Q ≡ (X3 : Y3 : Z3) and P −Q ≡ (X ′3 : Y ′3 : Z3) for some Z3 ∈ Fq

(T1 = X1, T2 = Y1, T3 = X2, T4 = Y2)

1. T5 ← T3 − T1 [X2 −X1]
2. T5 ← T 2

5 [(X2 −X1)
2 = A]

3. T1 ← T1 × T5 [X1A = B]
4. T3 ← T3 × T5 [X2A = C]
5. T5 ← T4 + T2 [Y1 + Y2]
6. T4 ← T4 − T2 [Y1 − Y2]
7. T6 ← T3 − T1 [C −B]
8. T2 ← T2 × T6 [Y1(C −B)]
9. T6 ← T3 + T1 [B + C]

10. T3 ← T 2
4 [(Y2 − Y1)

2]
11. T3 ← T3 − T6 [X3]
12. T7 ← T1 − T3 [B −X3]
13. T4 ← T4 × T7 [(Y1 − Y2)(B −X3)]
14. T4 ← T4 − T2 [Y3]
15. T7 ← T 2

5 [(Y2 + Y1)
2 = F ]

16. T7 ← T7 − T6 [X ′3]
17. T6 ← T7 − T1 [X ′3 −B]
18. T6 ← T6 × T5 [(Y1 + Y2)(X

′
3 −B)]

19. T6 ← T6 − T2 [Y ′3 ]

return
(
(T3, T4), (T7, T6)

)



Algorithm 20 (X,Y )-only co-Z conjugate addition – XYCZ-ADDC
Input: (X1, Y1) and (X2, Y2) s.t. P ≡ (X1 : Y1 : Z) and Q ≡ (X2 : Y2 : Z) for some Z ∈ Fq , P ,Q ∈ E(Fq)
Output: (X3, Y3) and (X ′3, Y

′
3 ) s.t. P +Q ≡ (X3 : Y3 : Z3) and P −Q ≡ (X ′3 : Y ′3 : Z3) for some Z3 ∈ Fq

(T1 = X1, T2 = Y1, T3 = X2, T4 = Y2)
1. T5 ← T3 − T1 [X2 −X1]
2. T5 ← T 2

5 [(X2 −X1)
2 = A]

3. T1 ← T1 × T5 [X1A = B]
4. T3 ← T3 × T5 [X2A = C]
5. T5 ← T4 − T2 [Y2 − Y1]
6. T5 ← T 2

5 [(Y1 − Y2)
2 = D]

7. T5 ← T5 − T1 [D −B]
8. T5 ← T5 − T3 [X3]
9. T6 ← T2 + T4 [Y1 + Y2]
10. T6 ← T 2

6 [(Y1 + Y2)
2 = F ]

11. T6 ← T6 − T1 [F −B]
12. T6 ← T6 − T3 [X ′3]

13. T3 ← T3 − T1 [C −B]
14. T3 ← T3 × T2 [Y1(C −B) = E]
15. T4 ← T4 − T2 [Y2 − Y1]
16. T2 ← 2T2 [2Y1]
17. T2 ← T2 + T4 [Y1 + Y2]
18. T6 ← T6 − T1 [X ′3 −B]
19. T2 ← T2 × T6 [(Y1 + Y2)(X

′
3 −B)]

20. T2 ← T2 − T3 [Y ′3 ]
21. T6 ← T6 + T1 [X ′3]
22. T1 ← T1 − T5 [B −X3]
23. T4 ← T4 × T1 [(Y2 − Y1)(B −X3)]
24. T4 ← T4 − T3 [Y3]

return
(
(T5, T4), (T6, T2)

)

As explained in Section 2, a doubling-addition algorithm can be designed by performing an
addition with update followed by a conjugate addition. By doing so in the (X,Y )-only setting, it
is possible to trade one field multiplication for one field squaring and a few field additions. Let
P = (X1, Y1) and Q = (X2, Y2) where P and Q are co-Z. The addition of P and Q yields a point
P + Q = (X3, Y3) satisfying (5) and a co-Z update P = (X ′1, Y

′
1). The trick proposed in [GJM10a] is

based on the following equality:

2Y3 = (Y2 − Y1 +B −X3)2 − (Y2 − Y1)2 − (B −X3)2 − 2E

= (Y2 − Y1 +B −X3)2 −D − (X ′1 −X3)2 − 2Y ′1 .

As the computation of (X ′1 −X3)2 is already involved in the subsequent addition of P + Q and P ,
the multiplication between (Y2 − Y1) and (B −X3) can be traded for a square of their sum, without
requiring additional field multiplications or squarings but only field additions. Let us now denote
2P + Q = (X4, Y4) and Q = (X ′4, Y

′
4) the two co-Z points resulting from the conjugate addition

between P + Q = (X3, Y3) and P = (X ′1, Y
′
1). Let us also denote A2 = (X ′1 − X3)2, B2 = X3A2,

C2 = X ′1A2, etc. the intermediate results of the conjugate addition. In order to deal with 2Y3 instead
of Y3, the conjugate addition must be slightly modified. For such a purpose, one just need to replace
Y ′1 , B2, and C2 by 2Y ′1 , 4B2, and 4C2 respectively. It can then be checked that applying the usual
co-Z conjugate addition formula (see (5) and (6)) results in the replacement of (X4, Y4) and (X ′4, Y

′
4)

by (4X4, 8Y4) and (4X ′4, 8Y
′
4) respectively. This modification does not affect the soundness of the

result since we know that there exists Z4 such that 2P + Q ≡ (X4 : Y4 : Z4) and Q ≡ (X ′4 : Y ′4 :
Z4), which implies 2P + Q ≡ (4X4 : 8Y4 : 2Z4) and Q ≡ (4X ′4 : 8Y ′4 : 2Z4). To summarize, the
computation of 2Y3 instead of Y3 trades one field multiplication for one field squaring and 4 field
additions. Moreover, the quadrupling of B2 and C2 involves 4 supplementary field additions (the
doubling of Y ′1 being already involved in the computation of 2Y3). On the whole, the trick suggested
in [GJM10a] enables trading 1M for 1S + 8A. In practice such a strategy should only be followed
if the field addition cost is really negligible. Algorithm 21 gives the low-level description of the
doubling-addition algorithm based on the above trick with the conjugate addition implemented as
in Algorithm 20.



Algorithm 21 (X,Y )-only co-Z doubling-addition with update – XYCZ-DA
Input: (X1, Y1) and (X2, Y2) s.t. P ≡ (X1 : Y1 : Z) and Q ≡ (X2 : Y2 : Z) for some Z ∈ Fq , P ,Q ∈ E(Fq)
Output: (X4, Y4) and (X ′4, Y

′
4 ) s.t. 2P +Q ≡ (X4 : Y4 : Z4) and Q ≡ (X ′4 : Y ′4 : Z4) for some Z4 ∈ Fq

1. (T1 = X1, T2 = Y1, T3 = X2, T4 = Y2)

– First addition:
1. T5 ← T3 − T1 [X2 −X1]
2. T5 ← T 2

5 [(X2 −X1)
2 = A1]

3. T1 ← T1 × T5 [X1A1 = B1]
4. T3 ← T3 × T5 [X2A1 = C1]
5. T4 ← T4 − T2 [Y2 − Y1]
6. T5 ← T 2

4 [(Y2 − Y1)
2 = D1]

7. T6 ← T5 − T1 [D1 −B1]
8. T6 ← T6 − T3 [X3]
9. T4 ← T4 + T1 [Y2 − Y1 +B1]
10. T4 ← T4 − T6 [Y2 − Y1 +B1 −X3]
11. T4 ← T 2

4 [(Y2 − Y1 +B1 −X3)
2]

12. T4 ← T4 − T5 [(Y2 − Y1 +B1 −X3)
2 −D1]

13. T5 ← T1 − T6 [B1 −X3]
14. T5 ← T 2

5 [(B1 −X3)
2 = A2]

15. T4 ← T4 − T5 [(Y2 − Y1 +B1 −X3)
2 −D1 −A2]

16. T3 ← T3 − T1 [C1 −B1]
17. T2 ← T2 × T3 [Y1(C1 −B1)]
18. T2 ← 2T2 [2Y1(C1 −B1)]
19. T4 ← T4 − T2 [2Y3]
– Intermediate result:
(T6 = X3, T4 = 2Y3, T1 = X ′1, T2 = 2Y ′1 , T5 = A2)

– Conjugate addition:
20. T6 ← T6 × T5 [X3A2 = B2]
21. T6 ← 4T6 [4B2]
22. T1 ← T1 × T5 [X ′1A2 = C2]
23. T1 ← 4T1 [4C2]
24. T5 ← T2 − T4 [2(Y ′1 − Y3)]
25. T5 ← T 2

5 [(Y ′1 − Y3)
2 = 4D2]

26. T5 ← T5 − T6 [4(D2 −B2)]
27. T5 ← T5 − T1 [4X4]
28. T3 ← T2 + T4 [2(Y3 + Y ′1 )]
29. T3 ← T 2

3 [4(Y3 + Y ′1 )
2 = 4F2]

30. T3 ← T3 − T6 [4(F2 −B2)]
31. T3 ← T3 − T1 [4X ′4]
32. T1 ← T1 − T6 [4(C2 −B2)]
33. T1 ← T1 × T4 [8Y3(C2 −B2) = 8E2]
34. T2 ← T2 − T4 [2(Y ′1 − Y3)]
35. T4 ← 2T4 [4Y3]
36. T4 ← T4 + T2 [2(Y ′1 + Y3)]
37. T3 ← T3 − T6 [4(X ′4 −B2)]
38. T4 ← T4 × T3 [8(Y ′1 + Y3)(X

′
4 −B2)]

39. T4 ← T4 − T1 [8Y ′4 ]
40. T3 ← T3 + T6 [X ′4]
41. T6 ← T6 − T5 [4(B2 −X4)]
42. T2 ← T2 × T6 [8(Y ′1 − Y3)(B2 −X4)]
43. T2 ← T2 − T1 [8Y4]

return
(
(T5, T2), (T3, T4)

)

Eventually, Table 2 summarizes the computational cost and memory consumption of the differ-
ent implementations. The last row of the table gives the cost of the doubling-addition implementa-
tion using the above trick with the conjugate addition implemented as in Algorithm 19.

Table 2. Low-level implementation performances.

Operation Implementation Costs # field registers

Addition Algorithm 18 4M+ 2S+ 7A 5

addition Algorithm 20 5M+ 3S+ 16A 6
Conjugate Algorithm 19 5M+ 3S+ 11A 7

Algo. 18 + Algo. 20 9M+ 5S+ 23A 6
Doubling-add Algo. 18 + Algo. 19 9M+ 5S+ 18A 7

Algorithm 21 8M+ 6S+ 31A 6
n/a 8M+ 6S+ 26A 7

B Coordinate Recovery Algorithm

This section provides the formal description of the coordinate recovery algorithm described in Sec-
tion 2. This algorithm takes the (X,Y )-coordinates of two co-Z points P and Q as well as the affine
coordinates of P , and it computes the affine coordinates of Q. This algorithm has a computational
cost of 1I + 6M + 1S.



Algorithm 22 Coordinate Recovery – CoordRec

Input: P = (x, y), P ′ = (XP , YP ) s.t. (XP /Z
2, YP /Z

3) = (x, y) for some Z, and Q′ = (XQ, YQ)
Output: Q = (XQ/Z

2, YQ/Z
3)

1. T1 ← x× YP [xY ]
2. T1 ← T−1

1 [(xY )−1]
3. T1 ← T1 ×XP [X(xY )−1]
4. T1 ← T1 × y [Xy(xY )−1 = Z−1]

5. T2 ← T 2
1 [Z−2]

6. T1 ← T2 × T1 [Z−3]
7. xQ ← XQ × T2

8. yQ ← YQ × T1

return (xQ, yQ)

C Initial Point Doubling and Tripling

We describe hereafter the doubling and tripling operations taking the affine coordinates of a point P
and computing the (X,Y )-only co-Z points (Q,P ) where Q either equals [2]P or [3]P . Both opera-
tions start by a Jacobian doubling of P = (x1, y1, 1) which yields Q = (X2, Y2, Z) = [2]P . Afterward
P is updated to be co-Z to Q by P ≡ (Z2xP : Z3yP : Z). For the tripling, an additional co-Z
addition with update is performed to obtain a pair of co-Z points ([3]P ,P ). From the Jacobian dou-
bling formula (see (3)), we see that the doubling of a point P in affine coordinates can be simplified.
Let P = (x1, y1, 1), we have [2]P = (X2, Y2, Z2) where X2 = B2 − 2A, Y2 = B(A − X2) − 8y41
and Z2 = 2y1, with A = 4x1y

2
1 , B = 3x21 + a. Note that the update of P can be deduced from

P ≡ (x1Z
2
2 : y1Z

3
2 : Z2) = (4x1y

2
1 : 8y41 : 2y1). The low level description of the doubling operation is

depicted in Algorithm 23. Its computational cost is 2M + 4S + 10A and it requires 6 field registers.

Algorithm 23 (X,Y )-only initial doubling with Co-Z Update – XYCZ-IDBL
Input: P = (x1, y1)
Output: (X2, Y2) and (X ′1, Y

′
1 ) s.t. [2]P ≡ (X2 : Y2 : Z2) and P ≡ (X ′1 : Y ′1 : Z2) for some Z2 ∈ Fq

(T1 = x1, T2 = y1)
1. T3 ← T 2

1 [x21]
2. T4 ← 2T3 [2x21]
3. T3 ← T3 + T4 [3x21]
4. T3 ← T3 + a [3x21 + a = B]
5. T4 ← T 2

2 [y21]
6. T4 ← 2T4 [2y21]
7. T5 ← 2T4 [4y21]
8. T5 ← T5 × T1 [4x1y21 = X ′1 = A]

9. T6 ← T 2
3 [B2]

10. T6 ← T6 − T5 [B2 −A]
11. T6 ← T6 − T5 [X2]
12. T1 ← T5 − T6 [A−X2]
13. T1 ← T1 × T3 [B(A−X2)]
14. T3 ← T 2

4 [4y41]
15. T3 ← 2T3 [8y41 = Y ′1 ]
16. T1 ← T1 − T3 [Y2]

return
(
(T6, T1), (T5, T3)

)

Algorithm 24 gives the high-level description of the tripling operation. From the low-level algo-
rithm for the doubling and the co-Z addition with update (see Algorithms 23 and 18), it is easy to
check that the tripling can be computed at the cost of 6M + 6S + 17A using 6 field registers.

Algorithm 24 (X,Y )-only initial tripling with Co-Z Update – XYCZ-ITPL
Input: P = (x1, y1)
Output: (X3, Y3) and (X ′′1 , Y

′′
1 ) s.t. [3]P ≡ (X3 : Y3 : Z3) and P ≡ (X ′′1 : Y ′′1 : Z3) for some Z3 ∈ Fq

1.
(
(X2, Y2), (X

′
1, Y

′
1 )
)
← XYCZ-IDBL(x1, y1)

2.
(
(X3, Y3), (X

′′
1 , Y

′′
1 )
)
← XYCZ-ADD

(
(X ′1, Y

′
1 ), (X2, Y2)

)
3. return

(
(X3, Y3), (X

′′
1 , Y

′′
1 )
)

D Regular Conditional Point Inversion

In this section, we provide solutions to implement the operation P ← (−1)bP in a regular way for
some P = (X,Y ) and b ∈ {0, 1}. A first solution is to process the following steps:



1. R0 ← Y
2. R1 ← −Y
3. Y ← Rb

This solution is very simple and efficient: it only costs 1A for computing −Y (other steps being
processed by pointer arithmetic of negligible cost). However, when b = 0 the inversion of Y is a
dummy operation which renders the implementation subject to safe-error attacks [YKLM02]. Indeed,
by injecting a fault in the register R1 and checking the result correctness, one could see whether R1

is used (which would imply a faulty result) or not, and hence deduce the value of b. A simple coun-
termeasure to avoid such a weakness consists in randomizing the buffer allocation, which yields to
the following solution:

1. r ←$ {0, 1}
2. Rr ← Y
3. Rr⊕1 ← −Y
4. Y ← Rr⊕b

Finally, if one still want to avoid any dummy operation, a third solution is possible:

1. R0 ← Y
2. R1 ← −Y
3. Y ← Rb +Rb −Rb⊕1

However this solution implies a total cost of 3A which should deter its use in practice.


