On the Amortized Complexity of Zero Knowledge Protocols for
Multiplicative Relations

Ronald Cramer, Ivan Damgard and Valerio Pastro

CWI Amsterdam and Dept. of Computer Science, Aarhus University

Abstract. We present a protocol that allows to prove in zero-knowledge that committed values
Ti Y, 2i, © = 1,...,1 satisfy x;y; = z;, where the values are taken from a finite field. For error proba-
bility 27" the size of the proof is linear in u and only logarithmic in [. Therefore, for any fixed error
probability, the amortized complexity vanishes as we increase [. In particular, when the committed val-
ues are from a field of small constant size, we improve complexity of previous solutions by a factor of I.
Assuming preprocessing, we can make the commitments (and hence the protocol itself) be information
theoretically secure. Using this type of commitments we obtain, in the preprocessing model, a perfect
zero-knowledge interactive proof for circuit satisfiability of circuit C' where the proof has size O(|C]).
We then generalize our basic scheme to a protocol that verifies | instances of an algebraic circuit D
over K with v inputs, in the following sense: given committed values z;; and z;, with ¢ = 1,...,]
and j = 1,...,v, the prover shows that D(x;,1,...,%iv) = z; for ¢ = 1,...,l. The interesting property
is that the amortized complexity of verifying one circuit only depends on the multiplicative depth of
the circuit and not the size. So for circuits with small multiplicative depth, the amortized cost can be
asymptotically smaller than the number of multiplications in D. Finally we look at commitments to
integers, and we show how to implement information theoretically secure homomorphic commitments
to integer values, based on preprocessing. After preprocessing, they require only a constant number
of multiplications per commitment. We also show a variant of our basic protocol, which can verify [
integer multiplications with low amortized complexity. This protocol also works for standard computa-
tionally secure commitments and in this case we improve on security: whereas previous solutions with
similar efficiency require the strong RSA assumption, we only need the assumption required by the
commitment scheme itself, namely factoring.

1 Introduction

The notions of commitment schemes and zero-knowledge proofs are among the most fundamental in the
theory and practice of cryptographic protocols. Intuitively, a commitment scheme provides a way for a
prover to put a value z in a locked box and commit to z by giving this box [z] to a verifier. Later the prover
can choose to open the box by giving away the key to the box.

In a zero-knowledge protocol, a prover wants to convince a verifier that some statement is true, such that
the verifier learns nothing except the validity of the assertion. Typically, the prover claims that an input
string u is in a language L, and after the interaction, the verifier accepts or rejects. We assume the reader
is familiar with the basic theory of zero-knowledge protocols and just recall the most important notions
informally: the protocol is an interactive zero-knowledge proof system for L if it is complete, i.e., if u € L,
then the verifier accepts — and sound, i.e., if u € L then no matter what the prover does, the verifier accepts
with at most probability e, where € is called the soundness error of the protocol. Finally, zero-knowledge
means that given only that u € L, conversations between the honest prover and an arbitrary poly-time
verifier can be efficiently simulated and are indistinguishable from real conversations.

In this paper we concentrate on commitments to elements in a finite field K, or to integers and we assume
that commitments are also homomorphic, i.e., both commitments and randomness are chosen from (finite)
groups, and [z]-[y] = [z+y] (we will describe this property more in detail in section 2.1 and 7). For K = F, for
a prime ¢, such commitments can, for instance, be constructed from any g-invertible group homomorphism
[CDY98] that exists, if factoring or discrete log are hard problems. It is also easy based on known techniques
— but perhaps less well known — that homomorphic commitments with unconditional hiding and binding can

be built if we assume preprocessing, e.g., the committer gets random field elements and information theoretic
MACs and the receiver gets corresponding keys. We give more details on this later (see Section 2.1). Finally,
Homomorphic commitments to integers based on factoring were proposed in [FO97,DF02].

In typical applications of these commitment schemes, the prover needs to convince the verifier that the
values he commits to satisfy a certain algebraic relation. A general way to state this is that the prover commits

to x1,...,x,, and the verifier wants to know that D(z1,...,x,) = 0 for an algebraic circuit D defined over
K or over the integers. If D uses only linear operations, the verifier can himself compute a commitment to
D(x1,...,2,) (using the homomorphic properties of the commitment scheme) and the prover opens this to

reveal 0. However, if D uses multiplication, we need a zero-knowledge protocol where the prover convinces
the verifier that three committed values x,y, z satisfy xy = z.

In [CDD™99], such a multiplication protocol was proposed for homomorphic commitments over any finite
field K. The soundness error for that protocol is 1/|K], which is too large if K is a field with small size
(constant or logarithmic in the security parameter). The only known way to have a smaller error is to repeat
the protocol. This solution leads to a protocol with communication complexity ©(kl) for soundness error 2~
and where commitments have size x bits.

Likewise, a multiplication protocol for integer commitments was proposed in [FO97,DF02]. This protocol
has essentially optimal communication complexity @(x + [+ k), where k is size in bits of the prover’s secret
integers, but it requires an extra assumption, namely the strong RSA assumption. If we only want to assume
what the commitment scheme requires (factoring), the best known complexity is O((k + k)I).

An approach to improving this state of affairs was proposed in [CD09], where it was suggested to take
advantage of the fact that many applications require the prover to make many ZK proofs of similar state-
ments. The idea is to make the amortized complexity per proof be small by combining all the proofs into
one protocol. In our case, this would mean that the prover commits to x;,v;,2; for i = 1,...,] and wants
to convince the verifier that z;y; = z; for all i. The technique from [CD09] yields a protocol with amortized
complexity ©(k + 1) but, unfortunately, requires that all z;’s are equal (or all y;’s are equal), and in most
applications, this condition is not satisfied.

1.1 Ouwur Contribution

In this paper, we construct a new zero-knowledge protocol that works for arbitrary x;, y;, z;, and uses black-
box access to any homomorphic commitment scheme. If we instantiate the commitments by a standard
unconditionally binding and computationally hiding scheme, the amortized complexity is O(% - x) bits for
error probability 27%. In particular, for [= u, we get O(k). Therefore, when the committed values are from a
field of small constant size, we improve the complexity of previous solutions by a factor of . We also propose
(based on standard techniques) a way to implement unconditionally secure homomorphic commitments
assuming preprocessing. Using this implementation, the amortized complexity is O(% - u. In particular, for
for both types of commitments and any fixed error probability, the amortized overhead vanishes as we increase
l.

We generalize our approach to obtain a protocol that verifies [instances of an algebraic circuit D over K
with v inputs, in the following sense: given committed values x; ; and z;, with¢ =1,...,land j = 1,...,v, the
prover shows that D(x;1,...,%;,) = 2 for i = 1,...,1 (the protocol easily generalizes to circuits with more
than one output). The amortized cost to verify one circuit with multiplicative depth & is O(2°k 4 vk + 6 log 1)
bits for an error probability of 27! and so does not depend on the circuit size. For circuits with small
multiplicative depth (sometimes known as the classes K-SAC? or K-SAC?!), this approach is better than
using our first protocol, in fact the amortized communication cost can be asymptotically smaller than the
number of multiplications in D.

Another interesting feature of this protocol is that prover and verifier can execute it given only black-box
access to an algorithm computing the function implemented by D. This is in contrast to standard protocols
where the parties work their way through the circuit and must therefore agree on the layout. Our protocol
would, for instance, allow the verifier to outsource computation of the function to a third party. As long as
the verifier chooses the random challenge in the protocol, this would be secure if the prover is malicious and
the third party is semi-honest.

Our final result is a zero-knowledge protocol using black-box access to homomorphic commitments to
k-bit integers. For checking [integer multiplications and error probability 27!, the amortized complexity is
O(k + k + llog(l)). When instantiating the commitments using a standard computationally secure scheme,
this improves security of previous solutions that needed the strong RSA assumption, while we need no
assumption, other than what the underlying commitment scheme requires (typically factoring). We also show
a new technique for implementing unconditionally secure homomorphic commitments to integers based on
preprocessing. This makes the protocol be much more efficient, as only a constant number of multiplications
per commitment is required.

When using information theoretically secure commitments based on preprocessing, our protocols are
perfect zero-knowledge against general verifiers. When using standard computationally secure commitments,
they are only honest verifier zero-knowledge, but can be made zero-knowledge in general using standard
techniques.

Our technique is somewhat related to the “MPC-in-the-head” technique from [IKOS09], but with an
important difference: both strategies make use of “virtual players”, that is, the prover in his head imagines
n players that receive shares of his secret values and he must later reveal information to the verifier relating
to these shares. The protocol from [IKOS09] has complexity linear in n, because the prover must commit
to the view of each virtual player. We use a different approach, exploiting the homomorphic property of the
commitment scheme to get a protocol with complexity logarithmic in n. This is the reason our amortized
overhead vanishes instead of being constant, as one would get using MPC-in-the-head. On the other hand,
we show that a combination of “multiparty computation in the head” and our protocol for verifying algebraic
circuits can actually improve the communication complexity for some parameter values. In concurrent and
independent work, Ben-Sasson et al. [BSFO11] show a multiparty protocol for honest majority that checks
several multiplicative relations on secret-shared values with low amortized complexity. The technique is
somewhat related in that it is based on secret sharing, but the checking works in a different way since in
that setting there is no single prover who knows all values.

1.2 Applications

One obvious application of our protocol is to give ZK proofs for satisfiability of a Boolean circuit C': the prover
commits to the bits on each wire in the circuit, opens the output as a 1 and shows that, for each AND-gate, the
corresponding multiplicative relation holds for the committed bits. To explain how this compares to previous
work, we define the (computational or communication) overhead of a protocol to be its (computational or
communication) complexity divided by |C|. One can think of this as the overhead factor one has to pay to get
security, compared to an insecure implementation. Now, in the ideal commitment model (i.e., assuming access
to a ideal commitment functionality) [IKOS09] obtained constant communication overhead and polynomial
computation overhead, as a function of the security parameter u, for error probability 27*. Later, [DIK10]
showed how to make both overheads poly-logarithmic. For both protocols, the ideal commitments can be
implemented by doing preprocessing, and the resulting “on-line” protocol will still have the same complexity.

As mentioned, our protocol can be thought of as working in the ideal homomorphic commitment model
where the commitment functionality can do linear operations on committed bits (but where we of course
charge for the cost of these operations). In this model our protocol achieves constant computational and
communication overhead.

We may then instantiate the commitments using the information theoretically secure homomorphic
scheme. This incurs an extra cost for local computing, so as a result we obtain a ZK-protocol with constant
communication overhead and polynomial computation overhead (essentially O(ulogw)). Asymptotically, the
overheads match those of [IKOS09], but the involved constants are smaller in our case because we do not
need the “detour” via a multiparty protocol. Finally, we pay no communication for linear operations, while
this seems hard to achieve in the protocol from [IKOS09].

Another application area where our result can improve state of the art is the following: as shown in
[CDNO1], general multiparty computation can be based on additively homomorphic encryption schemes.
Many such schemes are known, and in several cases, the plaintext space is a small field. One example is the
Goldwasser-Micali (GM)-scheme [GM84], where the plaintext space is Fo. Supplying inputs to such a protocol

amounts to sending them in encrypted form to all players and proving knowledge of the corresponding
plaintexts. However, in many applications one would want to check that inputs satisfy certain conditions,
e.g., an auction may require that bids are numbers in a certain interval. Since ciphertexts in such an additively
homomorphic scheme can be thought of as homomorphic commitments over the field, our protocol can be
used by a player to prove that his input satisfy a given condition much more efficiently that by previous
techniques.

A final type of application is in the area of anonymous credentials and group signatures. Such construc-
tions are often based on zero-knowledge proofs that are made non-interactive using the Fiat-Shamir heuristic.
If the proof requires showing that a committed number is in a given interval, the standard solution is to
“transfer” the values to an integer commitment scheme and use the proof technique of Boudot [Bou00].
This in turn requires multiplication proofs, so if sufficiently many proofs are to be given in parallel, one can
use our technique for integer commitments. Assuming preprocessing and our information theoretically secure
commitments this can be very efficient, requiring only a constant number of multiplications per commitment.

2 Preliminaries

2.1 Information Theoretic Commitments

In this section we assume a setup that allows commitments to be unconditionally secure. We use [v] as
shorthand for a commitment to v in the following. Operations on committments are supposed to be mul-
tiplicative, while values that are committed lie in an additive group. Therefore a commitment scheme is

homomorphic if [v] - [v'] = [v 4 ¢/] for all v,v’ in the proper domain (either a finite field K or the integers).
Also, if v = (v1,...,v) is a vector with entries in K (or in the integers), [v] denotes a vector of commit-
ments, one to each coordinate in v. If u = (uy,...,uy) is a vector of the same length as v, then [v]" means

[v]* = [1,;[vs]*, which is a commitment containing the inner product of u and v. Moreover [u]*[v] refers to
the component-wise product.

Field Scenario Let K be a finite field and L be an extension of K. Although the set-up is general, we will
think of K as a small constant size field in the following. Let a € L be a private value held by the verifier.
We suppose that the prover has a list A of uniform values uq,...,u;,... € K and for each u; he also has
a value m,, = a - u; + by,, where b,, is uniform in L and privately held by the verifier. One can think of
m,, as an information theoretic message authentication code on u;, and of (a,b,,) as the key to open such
a MAC on u;. It is possible to achieve this situation assuming a functionality for the preprocessing phase of
a multiparty computation protocol, such as in the ones in [BDOZ11,DPSZ12].

With this setup, commitments can be done as follows: In order for the prover to commit to v € K, the
prover sends u — v to the verifier and sets m, = m, = a - u + b,, where u is the first unused value in the
list A; the verifier then updates the corresponding key b,, into b, = b, + a- (u — v). A commitment to v can
therefore expressed as the following data (where P denotes the prover, and V denotes the verifier);

o] = P:v,u my=a-u+by,
S \Viu—v,a,b,=by+a (u—0)

In order to open commitment [v], the prover sends v, m, to the verifier, who checks if a - v + b, equals m,,.

Commitments of this form are unconditionally binding: A prover committing to v can send an opening
v, m with v # v if and only if a - v + b, = m. This is equivalent for the prover to be able to sample two
distinct points (Pg, Py) = (v,my), (Qe, Qy) = (v,m) from the line Y = a - u + b,; which is equivalent for
the prover to know the key (a, b,) privately held by the verifier. This shows that the probability of a prover
succeeding in opening to a different value is bounded by the probability of guessing a random element in
a line over L; such a probability equals 1/|L|. Since we want to have a negligible probability of breaking
the binding property of the commitment scheme, we require |L| = 29(5) where & is the security parameter.
In particular, this means that in (the unfortunate) case where K is a field with constant size, then L is an
extension of K of degree linear in k.

These commitments are also unconditionally hiding: A verifier receiving a commitment v — v only knows
a and by,,...,by,, ..., which are all independent from wv.

Moreover, the above commitments are homomorphic (meaning: [v] - [v'] = [v + ¢]), where [v] - [v/] is
defined as follows:

[’U] . [’U’] = P:U+vlv u+ul7 Mytv! = My, + My
‘ Vi(u—v)+ W —v), a, by =by + by +a-(u—v+u —v)

Integers Scenario We here give a construction of unconditionally secure commitments on k-bits integers.
Contrary to the previous construction, this one is new, to the best of our knowledge. Let a be a prime in
the interval [—2%,...,2%] privately held by the verifier. We assume the prover has a list A of integer values
Up,. .., U, ... uniform in [—2F+% . 28%] and for each u; he also has an integer m,, = a - u; + b,,, where
b,, is a uniform integer in [—2%+3% . 2k+3%] and privately held by the verifier.

With this setup, commitments can be done as follows: In order for the prover to commit to the integer
v € [-2%,...,2%], the prover sends u — v to the verifier and sets m, = m,, = a - u + b,, where u is the first
unused value in the list A; the verifier then updates the corresponding key b, into b, = b, +a- (u — v). A
commitment to v can therefore expressed as the following data (where P denotes the prover, and V' denotes
the verifier);

[v] = {P:v, U, My = G- U+ by
Viu—w,a b,=b,+a-(u—0)

In order to open commitment [v], the prover sends v, m, to the verifier, who checks if a - v + b, equals m,,.

Commitments of this form are homomorphic, unconditionally hiding (same arguments as above) and
unconditionally binding: A prover committing to v can send an opening v,m with v # v if and only if
a-vU+ b, = m. Subtracting the latter equation to the relation m, = a-v+b,, we obtain m —m, = a- (v —v),
so the prover must know a multiple of a of length k + x bits. Any (k + k)-bits integer can be thought of
its factorization, and the prover can break the binding property if he knows a (k + x)-bits integer where
a appears in its factorization. Since a (k + x)-bits integer contains at most (k + x)/k prime factors of
length s and the number of x-bits primes is ©(2%/k), then the error probability of the scheme is equal to
O(((k+ k)/k) - (k/2%)) = O((k + k) /2%). If k = O(k), the error probability is O(k/2%).

2.2 Linear Secret Sharing Schemes

The model of linear secret sharing schemes we consider here is essentially equivalent to both the monotone
span program formalism [KW93,CDMO00] and the linear code based formalism [CCGT07]. However, we
generalize to schemes where several values from the underlying field can be shared simultaneously. The
model is designed to allow us to describe our protocol to follow as easily as possible.

Let K be a finite field and let m be a positive integer. Consider the m-dimensional K-vector space
K™. Consider the index set I = {1,2,...,m}, and write x = (x;);er for the coordinates of x € K™. In
the following, linear functions between finite spaces are considered. It is useful to recall that because such
functions are (additive) group homomorphisms, they are always regular; that is, each element in the image
has the same number of pre-images, namely the cardinality of the kernel.

For a non-empty set A C I, the restriction to A is the K-linear function

74 K™ — KA

X > (Ti)iea-

Let C C K™ be a K-linear subspace which we keep fixed throughout this section. Let A,S € I be
non-empty sets. We say that S offers uniformity if 75(C) = K!5I. Note that by regularity of wg, if ¢ is
uniform in C, then mg(c) is uniform in K151,

Jumping ahead, we will use the subspace C for secret sharing by choosing a random vector ¢ € C such
that mg(c) = s where S is a set offering uniformity and s is the vector of secret values to be shared. The
shares are then the coordinates of ¢ that are not in S.

We say that A determines S if there is a function f : K14l — KISl such that, forallc € C, (f o) (c) =
ms(c). Note that such f is K-linear if it exists. Note that if ¢ is uniformly chosen from C and if A determines
S, then 74(c) determines mg(c) with probability 1.

We say that A and S are mutually independent if the K-linear function

¢A75 :C — WA(C) X 7T5(C)

¢ — (ma(c), ms(c))

is surjective. Note that mg(C) = {0} is the only condition under which it occurs that both A and S are
independent and A determines S. In particular, if ¢ is uniformly chosen from C, then wg(C) # {0} and if A
and S are independent, then 74(c) and 7wg(c) are distributed independently.

Suppose S offers uniformity. Let e be a positive integer and let

g: KlSIte ¢

be a surjective K-linear function. Define 7, : KI517¢ — KISI as the projection to the first |S| coordinates.
We say that g is an S-generator for C if 7, = mg o g, that is, if the first S| coordinates of p € K|ISI+e
are the same as the coordinates of g(p) designated by S. Such an S-generator always exists, by elementary
linear algebra, with |B| + p = dimg (C).

For any S-generator g we have that if s € K191 is fixed and if ps is uniformly chosen in K!5I+¢ subject
to mg(ps) = s, then g(ps) has the uniform distribution on the subset of C' consisting of those ¢ € C with
mg(c) =s.

We are now ready to define linear secret sharing schemes in our model: Let S C I be non-empty and
proper. Write S* = I'\ S. The tuple (C,S) is a linear secret sharing scheme if S offers uniformity and
if §* determines S.

If that is the case, S* is called the player set, ms(C') is the secret-space, and mg-(C) is the share-
space. If j € S*, then 7;(C) is called the share-space for the j-th player. If [= | S|, the scheme is said to
be l-multi-secret. For A C §* we say that the scheme has A-privacy (or A is an unqualified set) if A = @
or if A and S are independent. There is A-reconstruction (or A is qualified) if A is non-empty and if A
determines S. The scheme offers t-privacy if, for all A in the player set with |A| = ¢, there is A-privacy.
The scheme offers r-reconstruction if, for all A in the player set with |A| = r, there is A-reconstruction.
Note that 0 < ¢t < r < |S*|if there is t-privacy and r-reconstruction. A generator for (C, S) is an S-generator
for C.

Let (C,S) be a secret sharing scheme, and let g be a generator. If s € K5l is the secret, shares for the
players in S* are computed as follows. Select a vector ps according to the uniform probability distribution
on K191+¢ subject to m,(ps) = s and compute ¢ = g(ps). The “full vector of shares” is the vector mg-«(c).

In the following, where we write ps, it will usually be understood that it holds that m,(ps) = s, and we
say that such a vector is consistent with the secret s.

Multiplication Properties For any x,y € K™, the Schur-product (or component-wise product) between
them is the element (x xy) € K™ defined as (x xy) = (x; - y;)jer. If C C K™ is a K-linear subspace, then
its Schur-product transform is the subspace C C K™ defined as the K-linear subspace generated by all
elements of the form c * ¢/, where c,c’ € C.

Note that if (C,S) is a linear secret sharing scheme, then S offers uniformity in C as well. But in general
it does not hold that S* determines S in C. However, suppose that it does (so (5 ,S) is a linear secret sharing
scheme). Then (C, S) is said to offer 7-product reconstruction if (6, S) offers T-reconstruction.

Sweeping vectors Let (C,S) be a linear secret sharing scheme, let g be a generator for it and let A be
an unqualified set. Since A and S are mutually independent so that ¢4 s is surjective, it follows that for
any index j € S, there exists ¢4 ; € C such that ¢4 s(ca ;) = (0,e;) where e; is the vector with a 1 in

position j and zeros elsewhere. Note that since the generator g is surjective on C we can choose w4 ; such
that g(wa,j) = caj, and my(w4 ;) = ;. The vector wy ; is called a jth sweeping vector.
To see the purpose of these vectors, suppose we have shared a vector of |S| zeros, so we have ¢y = g(po).
It is now easy to see that the vector
S|
po+ D TiWay
j=1

is consistent with the secret (z1,...,z|g). Moreover, if we apply g to this vector, the player set A gets the
same shares as when 0’s were shared.

3 Our Protocol

We are now ready to solve the problem mention in the introduction, namely the prover holds values x =
(x1,..,21),y = (Y1, .-, 41),2 = (21,...,21), has sent commitments [x], [y], [z] to the verifier and now wants
to convince the verifier that z;y; = z; for i = 1,...,[, i.e., that x xy = z.

We suppose that both the prover and the verifier agreed on using an /-multisecret linear secret sharing
scheme (C, S), for d players, offering 7-product reconstruction, and with privacy threshold ¢. We fix a gener-
ator g : K't¢ — C. Moreover, we suppose that g : K'*¢ — Cisa generator for (6, S) and that a public basis
for K+ (respectively for K'*°) has been chosen such that the linear mapping g (resp. §) can be computed
as the action of a matrix M (resp. M).

The idea of the protocol is as follows: the prover secret shares x and y using (C,S) and z using (6 ,9),
in such a way that the resulting vectors of shares cx, ¢y, €, satisfy cx * ¢, = C,, which is possible since
(C, S) offers product reconstruction. The prover commits to the randomness used in all sharings, which, by
the homomorphic property, allows the verifier to compute commitments to any desired share. The verifier
now chooses ¢ coordinate positions randomly and asks the prover to open the commitments to the shares in
those positions. The verifier can then check that the shares in x, y multiply to the shares in z. This is secure
for the prover since any ¢ shares reveal no information, but on the other hand, if the prover’s claim is false,
thus x xy # 2z, then cx * ¢y and €, can be equal in at most 7 positions, so the verifier has a good chance of
finding a position that reveals the cheat. More formally, the protocol goes as follows:

Protocol Verify Multiplication

1. The prover chooses two vectors ry,ry, € K¢, and sets px = (X,rx), py = (¥,ry). Define cx = Mpyx, ¢y =
Mpy. Now, the prover computes p, € K +€ such that p, is consistent with secret z and such that
M Pz = Cx * Cy.

Note that this is possible by solving a system of linear equations, exactly because x * y = z. We then
write p, = (z,T,) for some T, € K°. Set ¢, = Mp,.

2. The prover sends vectors of commitments [ry], [ry], [F;] to the verifier. Together with the commitments
to x,y and z, the verifier now holds vectors of commitments [px], [py], [Pz]-

3. The verifier chooses ¢ uniform indices O C S* and sends them to the prover.

4. Let m; be the i’th row of M and m; the i’th row of M. For each ¢ € O, using the homomorphic property
of the commitments, both prover and verifier compute commitments

e l(Ca)il = [™

]mi

[(ex)i] = [px]™, [(ey)i]l = lpy

The prover opens these commitments to the verifier.
5. The verifier accepts if and only if the opened values satisfy (cx); - (cy); = (¢5); for all i € O.

Theorem 1. Assume the commitment scheme used is the one described in section 2.1. Then protocol Verify
Multiplication is perfect zero-knowledge, and if for some i, x;y; # z;, the verifier accepts with probability at
most ((r—1)/d)t + 1/|L].

In the appendix we give a proof for the above theorem !. Theorem 4 given later covers the case where we
use standard computationally based commitments.

Representing a Sequence of Points We here compare two approaches to represent a sequence O of ¢
elements drawn uniformly and independently from a set S* = {1,...,d}. This comparison helps us to find
the best communication complexity achievable by our protocols, since in all of them there is one step in
which such O has to be sent between players.

One method is to send the sequence of points in O: such a procedure requires log d bits per point; so the
total amount of bits is ¢ - logd. An alternative method is to send a bit-vector of dimension d, where its ith
coordinate is equal to 1 if and only if ¢ € O; the total amount of bits is then d.

In the proceeding version of our paper, we always assumed that the communication between players
was performed using the first method, while in the full version we take advantage of the most convenient
method: when the choice of the parameters is such that d < ¢ -log d holds, we use the latter (in the protocol
for verification of a single multiplication, both for finite fields and for the integers), while we use former when
the inequality is not satisfied (in the protocol for verification of a circuit).

Demands to the Secret Sharing Schemes. Above, we have described the protocol for a fixed secret
sharing scheme, but what we really want is to look at is the asymptotic behavior as a function of [, the
number of secrets we handle in one execution, and u, where we want error probability 27*. For this, we need
a family of secret sharing schemes, parametrized by [, u, which will make ¢, d, e, 7 and € be functions of I, u.

Say that committing requires sending . bits while opening requires k, bits. For standard computation-
ally secure commitments, it is usually the case that k. is ©(k,), but this is not the case for the information
theoretically secure commitments, where . can be much smaller than x,. Using this notation, the commu-
nication complexity of the protocol is O(k.(e + €) + kot + d) bits.

Now, suppose we can build a family of secret sharing schemes, where e, € are O(u) and 7 is O(l +u), t is
O(u) and (F—1)/d is O(1). This allows d to be O(l 4+ u) and so we can achieve the complexities we promised
earlier: For standard computationally hiding commitments, we get we get soundness error 2~“* for some
constant > 0 for one instance of the protocol. For the information theoretically secure commitments, we
get the same if we set |L| = 29("). In any case, if necessary, we can achieve 2~* by repeating in parallel
a constant number of times. Inserting in the above expression, and dividing by [, we get the complexity
per multiplicative relation: O(% (ke + ko)). For standard commitments we will have k. = K, = &, and
for information theoretically secure commitments we have k. is O(1) and &, is O(u). So this gives us the
complexities we promised in the Introduction.

We show in Section 4 how to construct a secret sharing scheme with the right properties.

Application to Zero-Knowledge Proofs for Circuit Satisfiability An obvious application of our
protocol is to give ZK proofs for Boolean circuit satisfiability: the prover commits to the bits on each wire in
the circuit C', opens the output as a 1 and shows that, for each AND-gate, the corresponding multiplicative
relation holds for the committed bits.

We can apply the Verify Multiplication protocol to do this. Then we have that ! is O(|C|). If we run
the protocol with error probability 27%, our expression for the total communication complexity becomes
O(|C|ke + u(ke + ko)), note that we have to add the cost of committing to the bits in the circuit.

Now we note that if we use the information-theoretic commitments as described above, then k., = 1
and k, is O(u). Therefore the complexity is actually O(|C| + u?)) bits, and when dividing by |C| we get
communication overhead O(1), as promised in the introduction.

! We note already now that since we assume preprocessing for this type of commitment, the simulator constructed
for zero-knowledge emulates the verifier’s output from the preprocessing as well as his view of the proof (as is
standard for set-up models).

4 A Concrete Example

In this section we explain how to design a secret-sharing scheme meeting the demands we stated earlier. For
simplicity we first show the details for the case of u =I.

As a stepping stone, we consider the following scheme based on Shamir’s scheme. Suppose 2(t+1—1) < d
and d + ! < |K|. Choose pairwise distinct elements q1,...,q,p1,...,pq € K, and define

C= {(f(ql)a .. '7f(QI)7f(p1)7' . 7f(pd)) | f € K[X]St-i-l—l} C Kl+da

where K[X]<¢1;—1 denotes the K-vector space of polynomials with coefficients in K and of degree at most
t+1—1. Let S correspond to the first [coordinates. Then, by Lagrange Interpolation, it is straightforward
to verify that (C,S) is an [-multi-secret K-linear secret sharing scheme of length d, with t-privacy and
(2t 4 21 — 1)-product reconstruction. So if we set ¢ = [(and hence the degrees are at most 2l — 1), d = 8,
and |K| > 9], then 2(t +1—-1)=4l—-2<8l=d,d+1 =9 < |K|,and 7 =2t + 2] — 1 =4l - 1 < 4l = d/2.
In particular, ’A’;l < % Moreover, e = 2l, and € = 4] — 1. So all requirements are satisfied, except for the
fact that in this approach |K| = 2(logl).

Before we present a scheme which works over a constant size field, yet asymptotically it meets all require-
ments, we describe simple, useful lifting technique. Suppose the finite field of interest K, i.e., the field over
which our zero-knowledge problem is defined, does not readily admit the required secret sharing scheme, but
that some degree-u extension L of K does. Then we may choose a K-basis of L of the form 1,z,...,2%"!
for some x € L. It is then easy to “lift” the commitment scheme and to obtain one that is L-homomorphic
instead: simply consider the elements of L as coordinate-vectors over K, according to the basis selected
above, and commit to such a vector by committing separately to each coordinate. This scheme is clearly
homomorphic with respect to addition in L. Multiplication by (publicly known) scalars from L is easily seen
to correspond to applying an appropriate (publicly known) K-linear form to the vector of K-homomorphic
commitments. Furthermore, K is embedded into L by mapping a € K toa+0-2 + ... +0-z%"'. When
committing to a € K, simply commit to a in the original commitment scheme, and append u — 1 “default
commitments to 0.” This way, the protocol problem can be solved over K, with a secret sharing scheme over
L. However, communication-wise, even though all further parameters may be satisfied, there are now O(ul)
commitments, instead of O(l) as required.

For example, if the above secret sharing scheme is implemented, then since the field K of interest is of
constant size, the field L over which the secret sharing is defined must grow proportionally to log!. Hence,
the total communication is a logarithmic factor off of what we promised. This is resolved as follows, by using
a technique that allows passing to an extension whose degree u is constant instead of logarithmic.

Let F' be an algebraic function field over the finite field I, with ¢ elements. Write g for its genus and
n for its number of rational points. Suppose 2g +2(t+ 1 — 1) < d and d + ! < n. Choose pairwise distinct
rational points Q1,...,Q;, P1,..., P; € F, and define

C={(f@Q1),..-, F(Qu), f(P1),..., f(Pa)) | f € L(G)} C FLH,

where G is a divisor of degree 2g+t+[—1 whose support does not contain any of the @;’s nor any of the P;’s,
and where £(G) is the Riemann-Roch space of G. As before, let S correspond to the first I coordinates. Using
a similar result as in [CCO06], one proves, using the Riemann-Roch Theorem that (C,S) is an l-multi-secret
F,-linear secret sharing scheme of length d, with ¢-privacy and (2¢ + 2t + 2 — 1)-product reconstruction.
Moreover, e = g+t + 1 and € < 3g + 2t + 21 — 1. Asymptotically, using this result in combination with

optimal towers over the fized finite field F, where ¢ > 49 is a square, we get g/n = \/6171 < 1/6. Hence, if we

set, for example, t =1 = n/20 and d = 19/20n, then there is 2(I)-privacy, ?TTl < ¢ < 1 for some constant
¢, and e = (2(1), € = (2(l). Therefore, at most a degree 6 extension of the field of interest is required, as the
maximum is attained for K = Fy with the extension being Fg4. Finally, these schemes can be implemented
efficiently.

The more general case where v and [are independent parameters follows easily from the above and
we leave the details to the reader. The basic reason why it works is that the number of required random

field elements for a sharing (e, €) is linear in the required privacy threshold which we want to be ©(u) and
furthermore the reconstruction threshold (7) is linear in the sum of the length of the secret vector and the
privacy threshold, which here is I + ©(u).

5 A More General Approach

In this section we define linear secret sharing with a more general multiplicative property, and we use the
notation from Section 2.2. Let D be an arithmetic circuit over K with v inputs and one output. Then for
C1,...,¢, € K™, we define D(cy,...,c,) € K™ as the vector whose j’th coordinate is D((c1);, ..., (cy);),
i.e., we simply apply D to the j’th coordinate of all input vectors.

If C C K™ is a linear subspace, then C” is defined as the K-linear subspace generated by all vectors
of form D(cy,...,c,) where cy,...,c, € C. Just as for the standard multiplication property, if (C,S) is a
secret sharing scheme, then S offers uniformity in C”, but in general it does not necessarily hold that S*
determines S in CP. If it does, however, so that (CP,S) is a linear secret sharing scheme, then we say that
(C, S) offers (7, D)-product reconstruction if (CP,S) offers 7-product reconstruction.

As a concrete example of this, one may think of Shamir secret sharing. Here, each c; is a sequence
of evaluations of a polynomial f; at a fixed set of points. Then D(cq,...,c,) denotes the vector having
coordinates of the form D(f1(j),..., fo(j)) for j in the set of evaluation points. These coordinates can be
thought as the evaluations of the polynomial D(fi,..., f,) (defined in the natural way), and sufficiently
many of those will determine D(f1, ..., f,) uniquely.

Based on this more general notion, we can design a protocol where a prover commits to vectors X1, ..., X,, %
and wants to prove that D(xq,...,%X,) = z.

Similarly to what we assumed in the first protocol, we suppose that both the prover and the verifier
agreed on using an [-multisecret linear secret sharing scheme (C,S), for d players, with (7, D)-product
reconstruction, and t-privacy. We fix a generator g : K¢ — C. Moreover, we suppose that g : K't¢ — CP
is a generator for (CP, S) and that a public basis for K¢ (respectively for K!*¢) has been chosen such that
the linear mapping g (resp. §) can be computed as the action of a matrix M (resp. M). The protocol goes
as follows:

Protocol Verify Circuit

1. The prover chooses v vectors ry,...,r, € K° and sets p; = (x;,r;) for j =1,...,v. Define ¢; = Mp;.
Now, the prover computes p, € K't¢ such that p, is consistent with secret z and such that M Pz =
D(x1,...,Xy).

Note that this is possible by solving a system of linear equations, because D(x1,...,X,) = z. We then
write p, = (z,T,) for some T, € KE€. Set ¢, = Mﬁz

2. The prover sends vectors of commitments [r;], j = 1,...,v and [r,] to the verifier. Together with the
commitments to x; and z, the verifier now holds vectors of commitments [p;], j =1,...,v, and [p,].

3. The verifier chooses ¢ uniform indices O C S* and sends them to the prover.

4. Let m; be the ¢’th row of M and let m; be the i’th row of M. For each i € O, using the homomorphic
property of the commitments, both prover and verifier compute commitments

[(c)i] = [p,)™, for j=1,...,0, [(&)i] = [pa]™

The prover opens these commitments to the verifier.
5. The verifier accepts if and only if the opened values satisfy
D((c1)i,---,(cy)i) = (Cz); for all i € O.

Using a similar proof as for theorem 1, one easily shows

Theorem 2. Assume the commitment scheme used is the one described in section 2.1. Then the protocol
Verify Circuit is perfect honest-verifier zero-knowledge and if D(x1,...,X,) # 2, the verifier accepts with
probability at most (7 —1)/d)* + 1/|L|.

10

The interesting question is whether we can build secret sharing schemes with this type of D-reconstruction
and whether the resulting more general protocol offers advantages over the first one.

The answer to the first question is positive, the construction was already hinted at above: we can base
a scheme on Shamir secret sharing extended & la Franklin and Yung [FY92] to share blocks of | secrets.
This requires polynomials of degree e = [+t — 1. Since each multiplication in D doubles the degree of the
polynomials, the degree after applying D will be 2°¢ where ¢ is the multiplicative depth of D. This means
that € = 7 = 2%t for this construction, and d should be a constant factor larger than 7 to get exponentially
small error probability.

We assume for simplicity that the cardinality of K is larger than d+[, in order to have the required number
of evaluation points. If this is not the case, we can pass to an extension field at cost a logarithmic factor, as
explained in the previous section. Note that the algebraic geometric approach presented in Section 2.2 does
not give any non-constant improvement over the Shamir-based approach in the setting of D-reconstruction.
However, it appears that the algebraic geometric approach can be extended to get a non-trivial improvement
here as well, using more advanced techniques.

We can now compare two natural approaches to verifying that committed vectors xi,...,x,,2 satisfy
D(x1,...,%y) =2z

The first approach is to perform the Verify Circuit protocol using the secret sharing scheme we sketched.
If we go for error probability 27! and therefore choose ¢ to be G(1), and representing the index set O in
the most convenient way (see “Representing s Sequence of Points” in section 3), simple inspection of the
protocol shows:

Lemma 1. Using the Verify Circuit Protocol, the amortized communication complexity to verify one instance
of a circuit with multiplicative depth § and v inputs is O(2°k + vk + dlogl) bits for an error probability of
271

Note that, except for the cost of committing to the inputs the communication complexity only depends
on the depth of the circuit.

The second approach is to use the Verify Multiplication protocol. The prover will, for every multiplication
gate T in D, commit to a vector zy where (zr); is the output from T in the instance of D where the inputs
are (X1)4,- .., (Xy);. Now, for every multiplication gate T the verifier can compute vectors of commitments
[x7], [yr] to the inputs to T (since any linear operations in D “between multiplication gates” can be done
by the verifier alone). We then use the Verify Multiplication protocol to check that xr * yr = zr. Using this
protocol verifying a multiplication has communication cost O(k) bits, so the total cost to verify one instance
of the circuit corresponds to O(uk + vk) bits, where u is the number of multiplication gates in D.

Notice that large fan-out comes at no cost in our model, and that linear operations with large fan-in are
also for free. Moreover, both approaches generalize easily to circuits with several outputs. Therefore, there
is no fixed relation between p and 4, in particular, we could consider families of circuits where § is constant
or logarithmic in the input size, but p grows faster than 2°. In such a case, using the Verify Circuit protocol
is better; it has the interesting property that the amortized cost of verifying a single instance of D can be
asymptotically smaller than the number of multiplication gates in D.

In the appendix, we sketch a final variant of the Verify Circuit Protocol using the “MPC in the head
approach” [IKOS09] where we try to limit the dominating cost of committing to the € entries of ¥,. The
idea is as follows: instead of committing to the values in T, in the usual way, the prover will simply send
the required commitments to shares [(C;);] and use the “MPC in the head” approach to prove to the verifier
that the commitments contain the correct shares.

The cost of this approach to generate the required commitments to shares is O(I%x + él2k).

This should be compared to the normal Verify Circuit protocol where the cost of this same step is
O((é + 1)k). We see that if kK > [2k and € > [? - which may well be the case in practice - then this solution
has smaller cost.

11

6 Proving Integer Multiplication

In Appendix A, we show a protocol designed for the case where the prover’s secret values are integers. We use
a specific integer linear secret sharing scheme based on polynomials and the commitment scheme described
in section 2.1. The idea of the protocol is otherwise similar to the one for finite fields. Due to space limitation
we only give an informal result here, details can be found in Appendix A.

Theorem 3 (Informal). Assume the commitment scheme used is the one described in section 2.1. There
exists a perfect zero-knowledge proof for showing that committed l-vectors X,y ,z satisfy X -y = z, and if for
some i, x;y; # zi, the verifier accepts with probability at most (2(t +1)/d) + O(rk/2).

7 Commitment Schemes Based on Computational Assumptions

We consider two kinds of commitment schemes: The first one is over a finite field K and can be seen as a
function compy, : K x H — G where H, G are finite groups and pk is a public key (this includes the examples
suggested in [CD98]). The second one is over the integers, and comyy : Z x Z — G.

The public key pk is generated by a PPT algorithm G on input a security parameter x. To commit to
value x € K or an integer x, the prover chooses r uniformly in H (or, in case of integer commitments, in
some appropriate interval) and sends C' = compi(z,7) to the verifier. A commitment is opened by sending
x,7. We assume that the scheme is homomorphic, i.e. compi(z,r) - compr(y,s) = compi(x + y,rs). For
simplicity, we assume throughout that K is a prime field. Then, by repeated addition, that we also have
compi(x,)Y = comp(zy,rY) for any y € K. We also use [z] as shorthand for a commitment to z in the
following, and hence suppress the randomness from the notation.

We counsider computationally hiding schemes: for any two values x, ' the distributions of pk, comp(x,r)
and pk, compi(z',) must be computationally indistinguishable, where pk is generated by G on input security
parameter k. Such schemes are usually unconditionally binding, meaning that for any pk that can be output
from G, there does not exist z,r,z’, s with # 2’ such that comp(x,) = compi(z’, s). For such schemes,
the prover usually runs G, sends pk to the verifier and may have to convince him that pk was correctly
generated before the scheme is used.

One may also consider unconditionally hiding and computationally binding schemes, where pk, comy(z,)
and pk, compi(x’, s) must be statistically indistinguishable, and where it must be infeasible to find x,r,2', s
with z # 2’ such that comyi(z,r) = comp(2’, s).

8 Results with Standard Commitments

Theorem 4. Assume the commitment scheme used is unconditionally binding and computationally hiding.
Then the Verify Multiplication protocol is a computationally honest-verifier zero-knowledge interactive proof
system for the language

(. il iy iy = 22, for i = 1,1}
with soundness error ((r—1)/d)*.

In the appendix, we give a proof for the above theorem and explain how to modify the protocol to work for
an unconditionally hiding commitment scheme. Using a similar proof as for theorem 4, one easily shows

Theorem 5. Assume the commitment scheme used is unconditionally binding and computationally hiding.
Then the protocol Verify Circuit is a computationally honest-verifier zero-knowledge interactive proof system
for the language

{(x1], - [%0], [2]) | D(X1y-..,%y) =2}

with soundness error ((7 —1)/d).

12

Theorem 6 (Informal). Given an commitment scheme for integers in the interval [—2F, ... 2F] that is
computationally binding and unconditionally hiding. There exists an statistical honest-verifier zero-knowledge
argument of knowledge for showing that committed l-vectors x,y,z satisfy x -y = z. The protocol has
amortized complexity O(k + k) bits and knowledge error 27,

References

[BDOZ11] Rikke Bendlin, Ivan Damgérd, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In EUROCRYPT, pages 169-188, 2011.

[BGO6] Mihir Bellare and Oded Goldreich. On probabilistic versus deterministic provers in the definition of proofs
of knowledge. Electronic Colloguium on Computational Complezity (ECCC), 13(136), 2006.

[Bou0O] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Bart Preneel, editor,
EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages 431-444. Springer, 2000.

[BSFO11] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty computa-
tion with a dishonest minority. Cryptology ePrint Archive, Report 2011/629, 2011. http://eprint.iacr.org/.

[CCO6] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-party compu-
tations over small fields. In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer
Science, pages 521-536. Springer, 2006.

[CCGT07] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and Vinod Vaikuntanathan. Secure
computation from random error correcting codes. In Moni Naor, editor, EUROCRYPT, volume 4515 of
Lecture Notes in Computer Science, pages 291-310. Springer, 2007.

[CD98] Ronald Cramer and Ivan Damgard. Zero-knowledge proofs for finite field arithmetic; or: Can zero-
knowledge be for free? In Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer
Science, pages 424—441. Springer, 1998.

[CDO09] Ronald Cramer and Ivan Damgard. On the amortized complexity of zero-knowledge protocols. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 177-191. Springer,
2009.

[CDD"99] Ronald Cramer, Ivan Damgérd, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient multiparty
computations secure against an adaptive adversary. In EUROCRYPT, pages 311-326, 1999.

[CDMO00] Ronald Cramer, Ivan Damgard, and Ueli M. Maurer. General secure multi-party computation from any
linear secret-sharing scheme. In Bart Preneel, editor, EUROCRYPT, volume 1807 of Lecture Notes in
Computer Science, pages 316-334. Springer, 2000.

[CDNO1] Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. Multiparty computation from threshold ho-
momorphic encryption. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes in
Computer Science, pages 280-299. Springer, 2001.

[DF02] Ivan Damgard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based on groups
with hidden order. In Yuliang Zheng, editor, ASIACRYPT, volume 2501 of Lecture Notes in Computer
Science, pages 125-142. Springer, 2002.

[DIK10] Ivan Damgard, Yuval Ishai, and Mikkel Krgigaard. Perfectly secure multiparty computation and the
computational overhead of cryptography. In Henri Gilbert, editor, FUROCRYPT, volume 6110 of Lecture
Notes in Computer Science, pages 445-465. Springer, 2010.

[DPSZ12] Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from somewhat
homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of
Lecture Notes in Computer Science, pages 643-662. Springer, 2012.

[FO97] FEiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular polynomial
relations. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294 of Lecture Notes in Computer Science,
pages 16-30. Springer, 1997.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (extended ab-
stract). In STOC, pages 699-710. ACM, 1992.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270-299, 1984.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from secure
multiparty computation. SIAM J. Comput., 39(3):1121-1152, 2009.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Structure in Complezity Theory Conference,
pages 102-111, 1993.

13

A Proving Integer Multiplication

In the following, we show a protocol designed for the case where the prover’s secret values are integers.
We make use of a specific integer linear secret sharing scheme based on polynomials and assume that the
underlying commitment scheme is computationally binding and unconditionally hiding. The idea of the
protocol is similar to the one for finite fields.

Let
A= [G-,
i,j=1,...,d,
i#£]
where d is the number of players. Assume that the secrets sy, ...,s; to be shared satisfy s; € {—2% ..., 2F}
for all 4, for some k. In order to share them, sample random integers a1, ...,a; € {—I12FT*Ad!, ..., 12Ft Ad!}

(where u is the security parameter) and use Lagrange interpolation over the rationals to find g € Q[X] such
that

g(—=i)=s; and g(~l—j)=ay,

fori =1,...,land j = 1,...,t. Since there are ¢t 4+ [points to interpolate, g has degree (less or) equal to
t + 1. Define f = A - g. It follows that f is indeed a polynomial over the integers, since A is a multiple of
each denominator appearing in the coefficients of g. The shares are then the values f(1),..., f(d). Given at
least t 4+ [+ 1 shares, one can reconstruct the secrets, simply by doing Lagrange interpolation over Q.

Furthermore, any set of at most ¢ shares has distribution statistically independent of s1,...,s;: let A be
an index set designating t players. By Lagrange interpolation we can construct a polynomial w'A’i of degree
at most ¢ + | with rational coefficients such that w/, ;(—i) = 1 and w; ;(j) = 0 for i = 1,...,] and for
J € A. From the standard construction of w', ;, it follows that wa,; = Awfw has integer coefficients, and
that wa (=1 —1),...,wa;(—I —t) are all numerically at most Ad!

Now suppose we have shared the secret consisting of [0’s using a polynomial A. Then f = h+22:1 SiWAG
is a polynomial consistent with sharing the secrets s1, ..., s;, but the shares rising from f received by player
set A are the same as the ones rising from h. If f is such that f(—I —1),..., f(—=I —t) are in the correct
interval we conclude that the set of shares in question will be chosen for A with the same probability whether
the secrets are 0,...,0 or s1,...,s;. But the evaluations h(—I — 1),...,h(—] — t) were chosen in an interval
a factor 2" larger than the size of the the evaluations of Zézl s;wa,, and hence h and f are both legal,
except with probability negligible in u. Hence the distribution of shares seen by A is, for any tuple of secrets,
statistically indistinguishable from the distribution for the zeros tuple.

B A Protocol to Prove Integer Multiplication

In this section, we give a protocol allowing prover to show that committed vectors x,y, z with integer entries
satisfy x * y = z where, consistently with the previous section, an honest prover will choose the committed
integers from {—2%,... 2¥}. We use the secret sharing scheme from the previous section where we set the
security parameter u to be ! (this is consistent with previous sections where we have used [as the parameter
controlling error probabilities). We use the same notation for commitments as in previous sections, and as an
example of the concrete commitment scheme based on computational assumptions, the reader may think of
the factoring based scheme from [FO97,DF02]. As an example of the the unconditionally secure commitments
scheme, we refer to section 2.1.

Before stating the actual protocol, we fix some notation. Let f be a polynomial of degree equal to m.
Write f(X) = >_7", f;X7. Define f = (fo,..., fm) and ev(i) = (1,4,...,i™). Notice that

m

O =3 ;-7 =f-ev(@). and (0] = [[15)" = 0.

J=0

14

The formulation on the right hand side of these equations is the one used in the protocol, which proceeds
as follows. Note that the protocol differs with respect to the kind of commitment scheme used (based on
computational assumptions or unconditionally secure).

The prover holds values x = (x1,...,2;),y = (y1,-.-,y) and z = (21,...,2;), has sent commitments
[x], [y] and [z] to the verifier. We suppose they both agreed in using the linear secret sharing scheme described
in section A. In case they are using a commitment scheme based on computational assumptions, we suppose
there exists an interactive zero-knowledge proof of knowledge P¢ for the relation

C ={(a,w) | a = compp(z,r),w = (z,7)}.

Moreover, we assume this interactive proof of knowledge is a X-protocol that can prove knowledge of opening
for | commitments at once, with knowledge error 2!. Conversations in such a protocol has form (a, e, z)
where e is random challenge issued by the verifier. Because commitments are homomorphic, such a proof of
knowledge follows immediately from the techniques described in [CD09]. In the protocol below, we execute
a variant of our protocol from the previous sections in parallel with Po. Thus the overall protocol will have
the form of a X-protocol which simplifies the proof of soundness.

Note! Text in italic font denotes actions performed only if using a commitment scheme based on compu-
tational assumptions.

1. The prover chooses ax,a, € Z' and uses Lagrange interpolation (over the rationals) to generate two
polynomials g, gy, having degree ¢t 4 [, such that

9z (—1) = z3, 9e (=1 —J) = (ax);, gy(—1) = i, gy(—1—7) = (ay);,

fori=1,...,land j =1,...,¢. The prover now sets g, = g, - gy, fo = Ags, fy = Ag, and fz = A%g,.
As explained above, f, and f, are polynomials with integral coefficients and have degree at most ¢ + .
Notice that f. is also a polynomial with integral coefficients, but has degree at most 2(t + {).

~

2. The prover sends commitments [fx], [fy] and [f,].

3. The verifier checks that [x], [y] and [z] are consistent with f,, f, and f.: namely for all i = 1,...,1 it
computes _ 4 R _
BIVCOA] T, IO EIC(A%

and asks the prover to open these commitments to zero. If any of these openings do not agree with the
commitments, the verifier quits. R

4. The prover defines the vector xc = ([x], [y, [z], [fx], fy], [f2]) containing committed values. We think of
xc as a vector of instances for the protocol Po. The prover computes a vector ac as the first message
for the protocol Pc with instance xc. the prover sends ac to the verifier.

5. The verifier chooses ¢ uniform indices O C {1,...,d}. Similarly as above, the verifier computes

~

£V = (b)), BIVO = (b)), [V =[(Ba)il,

for ¢ € O. The verifier generates a vector ec as a challenge on (xc,ac) according to Po. The verifier
sends ec together with the index set O to the prover.

6. The prover computes the vector z¢ as a reply for (xvc,ac,ec) according to Po. The prover sends zo
together with the openings of [(bx);], [(by);] and [(Bz)z} for i € O.

7. The verifier accepts if and only if (z¢,ac,ec, zc) is an accepted conversation for Po and the opened
values satisfy (bx); - (by); = (Bz)2 for i € O.

Using a proof similar to the one of theorem 1 one shows the following result:

Theorem 7. Assume the commitment scheme used is the one described in section 2.1. Then protocol above
is perfect zero-knowledge, and if for some i, x;y; # z;, the verifier accepts with probability at most (2(t +
D/d)t + k)27,

15

In the theorem below, we show soundness and honest verifier zero-knowledge for the above protocol. It
may seem strange at first sight that the theorem does not assume that commitments are binding. This is
because we show that the protocol unconditionally is a proof of knowledge that either the prover knows x,y,z
with the expected multiplicative relation, or he knows a commitment that he can open in two different ways.
Using this result in an application, one would apply the knowledge extractor and then argue that because the
commitment scheme is computationally binding, the possibility that the prover breaks the binding property
occurs with negligible probability. Since the primary example we know of integer commitments ([FO97,DF02])
has binding based on factoring, applications of this result only need to assume factoring is hard, in contrast
to earlier techniques where strong RSA was needed.

Theorem 8. Assume the homomorphic commitment scheme used is unconditionally hiding. Then the above
protocol is a statistical honest-verifier zero-knowledge interactive proof of knowledge for the relation

l l
M :{(G,U)) | a = (pkaAiaBiaCi)izl , W = (xi7ri7yi75iaziati)i:1 :
compi (x4, 1) = Ajy compi (Yi, 8;) = By, compp(2i, ;) = Ci, 2 = xyy; for i =1, 1}U

{(a,w) | a = (pk, A) ,w = (v,r,0",7") : compr(v,7) = A = compr (v, 1), v # v}

with knowledge error kepr = max{(2(t +1)/d)t,27'}.

On the complexity of the protocol We now examine the complexity of the integer multiplication protocol
assuming we want a knowledge error that is exponentially small in [, as in previous sections. It is easy to see
that this can be arranged if we choose the parameters t and d to be ©(1). Recall also that we already chose the
statistical security parameter of the secret sharing scheme to be @(1). With these parameter choices, simple
inspection of the protocol and secret sharing scheme shows that the amortized complexity per multiplication
proved is O(k + k). This also includes the cost of the proof Px: This can be verified by a direct inspection
of the technique from [CD98], for a case where a proof is given for I commitments in parallel and where the
statistical security parameter of the proof is also set to I.

C Verify Multiplication Protocol for Unconditionally Hiding Commitments

We briefly sketch how to modify the protocol to work for an unconditionally hiding and computationally
binding commitment scheme. The protocol would then be a proof of knowledge that the prover can open
his input commitments to reveal strings x,y,z with x x y = z. We need to add in Step 2 that the prover
must prove that he knows how to open all the commitments [x], [y], 2], [rx], [ry], [Fz]. This can be done by
simply invoking the amortized efficient zero-knowledge protocol from [CD09] since the commitment function
we assume is exactly of the form this protocol can handle. The overhead introduced by this is only a constant
factor.

The proof of zero-knowledge is exactly the same, except that we get perfect (statistical) zero-knowledge
if the commitment scheme is perfect (statistically) hiding.

For soundness, we argue that parameters are chosen such that ((7 — 1)/d)? is negligible in the security
parameter, and if the prover convinces the verifier with non-negligible probability, then there exists a knowl-
edge extractor that uses the prover to compute openings of his input commitments to strings x,y,z with
x *y = z (except with negligible probability). This algorithm would first invoke the knowledge extractor for
the protocol from [CD09] to get opening of all the prover’s initial commitments, to strings x,y, z, rx, 'y, T5.
We claim that except with negligible probability, we will have x x y = z.

This follows since, as we now argue, if x * y # z then we could break the binding property of the
commitments. To see this, notice that from the openings we know of the prover’s initial commitments, we
can use the homomorphic property to compute openings of any commitment to a share that the prover can
be asked to open in Step 4. Call these the predetermined openings. Note that the shares in question will be
consistent with secret sharing the strings x,y, z.

16

Now we send a random challenge to the prover, and by assumption on the prover, his reply will pass the
verifier’s test with non-negligible probability, i.e., for all i € O, the opened values s, ;, 5y, 5., Will satisfy
S2,iSyi = Sz,4. However, this is not the case for the predetermined openings of the same commitments:
it immediately follows from the soundness proof of the previous theorem that because the predetermined
openings are consistent with actually secret sharing x,y,z, these openings will satisfy the multiplicative
relation with only negligible probability ((r—1)/d)* (over the choice of the verifier’s challenge). It follows that
with non-negligible probability, there will be at least one commitment to a share for which the predetermined
opening is different from the opening done by the prover in response to the challenge. We have therefore
broken the binding property.

D Using MPC in the Head for the Verify Circuit Protocol

We now sketch a final variant of the Verify Circuit protocol that leads to a complexity that is in general
incomparable to the first one, but for reasonable parameter values will give an improvement.

The idea is as follows: instead of committing to the values in r, in the usual way, the prover will simply
send the required commitments to shares [(C,);] and use the “MPC in the head” approach from [IKOS09]
(the IKOS compiler) to prove to the verifier that the commitments contain the correct shares.

To use this approach, one first specifies a multiparty protocol that creates the desired output, the IKOS
compiler will then produce a 2 party zero-knowledge protocol proving the result is correct, assuming also a
suitable commitment scheme (not necessarily the one we use in the basic protocol).

The multiparty protocol goes as follows: we will have a € () players, of which a constant fraction may
be actively corrupted. The first step is to generate a set of random secret shared values 71, ..., rs, shared
among the a players using standard Shamir sharing over K. Using a simple variant of the protocol by Hirt
and Berliova based on hyperinvertible matrices, this can be done in total communication complexity O(élk)
bits where k is the size of a field element. We now set T, = (r1,...,7z) and we let the shares of these values
bery;, u=1,...,€ j=1,...,a. Let n; be the last € entries of m,. Then each player outputs a commitment
to the inner product [t; ;] = [(71,,...,7s;) - M.

Let A1,...,\q be the Lagrange coefficients to reconstruct the secret given correct shares. Everybody can
now compute [t;] = [, [t]2

Note that we do not yet know if the value is correct, but if all virtual players output correct commitments,
then the desired commitment to (€,); can be computed as a “linear combination” of the commitments z and
[t:]-

Note that the ¢; ;’s are in fact Shamir shares in ¢;, and they are all correct, except for a constant fraction.
Therefore, it follows that ¢; is correct if all ¢; ; are on a polynomial of low enough degree. We check this by
computing commitments to the “syndrome” of the set of ¢; ;’s: these commitments should contain all 0’s. In
a normal multiparty situation, we could not open these commitments, but in our case a prover is executing
the protocol in his head, so we can just ask the prover to open these.

When we compile this protocol to a 2-party protocol, the idea is, as mentioned, that the prover executes
the protocol in his head and commits to the views of all players. We do this with a separate commitment
scheme that does not need to be homomorphic. The verifier asks the prover to open the views of a randomly
chosen unqualified subset of players and checks the views for consistency. The IKOS results show that if the
protocol has not worked correctly, the verifier will reject, except with probability 2-©(%). As a result, we get
the commitments to shares we wanted.

Since a and t, the number of opened shares are O(1), the cost of this is O(I2) bits for the commitments
and él%k bits for the views of virtual players.

This new protocol should be compared to the normal one where the cost is O((é + [)x). We see that if
k > [2k and € > [? then the new solution has smaller cost.

17

E Proofs

Proof (Theorem 1). For soundness, we suppose that the prover is dishonest (so z;y; # z; for some i) and we
compute the probability that the protocol accepts. Note first that, from the prover’s commitments, vectors
Cx, Cy, C, are determined, where we know that x,y and z respectively appear in coordinates designated by
S. Since z;y; # z; for some ¢, it follows that cx * ¢y 7# Cy.

Denote by 7' C S* the index set in the share space where the vectors cx * ¢y and ¢, agree.

Note that the cardinality of 7" is at most 7 — 1, because cx *cy and €, are consistent with different secrets.
In order for the prover to be successful, one of the following must hold:

— All t entries the verifier asks the prover to unveil are in T.
In this case the prover can behave honestly, since the choice of the verifier points to values that already
satisfy the expected multiplicative relation.

— The prover can break the binding property of the commitment scheme.
In this case the prover can open commitments to arbitrary values.

For the first event: the probability that one entry chosen by the verifier is in 7" is at most equal to (¥ —1)/d,
since the choice is uniform. Repeating this argument ¢ times implies that the event that all ¢ entries asked
by the verifier are in T happens with probability equal to ((7 —1)/d)*.

If this event does not happen, there is at least an entry chosen by the verifier that lies outside T'. The
prover can still succeed the check by opening to values that satisfy the multiplicative relation expected by the
verifier, even for those entries that lie outside T'. Since there is at least one entry outside 7', the prover must
break the binding property of the commitment scheme to succeed, and this event happens with probability
1/|L|, as shown in section 2.1. Therefore, the soundness error of the protocol is bounded by (r—1)/d+1/|L|.

To show zero-knowledge, we build the following simulator.

— For the setup, the simulator runs a local copy of the ideal functionality for the preprocessing, obtaining

values (u1, My,)., (Ui, My,), ... € K x L and values (ay,,by,), .., (Gu,,by,),... € L x L such that
My, = Gy, * Wi + by, for all i.
The simulator sends the values (ay,,bu,), -, (Gu;, by,), - - . to the verifier.
— The simulator runs the protocol exactly as a honest prover until step 3.
— In step 4, in order to open each value [(cx);] = [px|™ (respectively [(cy),]), the simulator first computes

the corresponding key (a,b(c,),) (respectively (a,b(c,),)), samples a uniform z; € K (respectively y'),
computes m,; = a-T;+b,), (respectively m,, = a-y;+b(c,),) and sends (x}, m,) (respectively (y;,m,))
as opening. To open [(C,);] the simulator computes the corresponding key (a,be,),, sets z; = xj - y;,
computes m.; = a - z; + bg,), and sends (2{,m_;) as opening.

The simulation is clearly polynomial time. The distribution of the messages sent to the verifier is the same
as in a real execution of the protocol until step 3. In step 4 the opened values have the same distribution as
in the real protocol (x},y; are uniform, and z; = 2} - y), and the openings are valid, since they pairs sent
satisfy the linear relation expected by the verifier. O

Proof (Theorem /). For soundness, one can follow the lines of the proof of theorem 1.

To show (honest-verifier) zero-knowledge, the idea is to “execute the protocol” exactly as the honest
prover would have done, but assuming that all secret values are 0. After that, we adjust the relevant values
so they become consistent with the actual values of x,y and z.

So we first generate random vectors pg = (0,ry), py = (0,ry), both consistent with sharing the all-0
vector. We compute pg = (0,rg) such that]\/Zﬁﬁ = (Mp%)*(Mp}). We then choose a random subset A C S*
of ¢ indices. Note that we have (Mp§);(Mpy); = (M\ﬁg)l for i € A, and that these shares have the same
distribution as in the real conversation, since any ¢ shares have distribution independent of the actual secrets.
We then form random vectors of commitments [rg], [r3], [r4]. Note that since the commitment function is a

18

homomorphism from K x H to G, the neutral element 14 is a commitment to 0 € K. Therefore we can form
vectors of commitments as follows

) = ((Aa, ... 1a), [rg]), [pg] = (e, ..., 1a). [v]), [A6] = ((la,---,1q),[rg]).

As described above, we can assume existence of sweeping vectors w, j and Wy ; for the secret sharing
schemes (C, S) and (C, S), respectively, and we know that the vectors

l l

l
szpi)(-i-zxj'WAm Py=P§+Zyj'WA,j, Pz = Do + Z WA,J
j=1 j=1 j=1

are consistent with sharing x,y and z, respectively, but where the subset A gets the same shares as when
0’s were shared. The simulator cannot compute px, py, pz, but it can compute commitments to them. Using
the fact that the commitments [z;], [y;], [2;] are given and the sweeping vectors are public, it can compute,
for instance, a vector of commitments [z; - w4 ;] and hence

l l

l
51 L]l -was) Al by wash el = 81 TG)

It is easy to verify that because we used neutral elements 1¢ as the first entries in [pg], [pg], [08], the first
entries of [px], [py], [Pz] as computed above will exactly be [x], [y] and [z]. The simulator therefore extracts
the last e commitments from [px| and [py], and the last € commitments from [p,], and uses these to simulate
the commitments sent in Step 2.

It then outputs the index set A as simulation of step 3.

For step 4, note that the simulator may compute and open commitments to

[(Mp)i] = [(Mp%)), [(Mpy)i] = [(Mp)], [(Mp3)i),

for i € A, where these equalities follow by the sweeping vector properties. By construction, the opened values
satisfy the multiplicative property expected by the verifier.

This simulation is clearly polynomial time, and we argued underway that the distribution of all values that
are opened are exactly as in a real conversation. The commitments [px] and [py] are also distributed correctly.
Therefore, the only difference between simulation and conversation lies in the distribution of p, hidden in
[02] (in a real conversation, the choice of p, ensures that the resulting ¢, satisfies (cx);(cy); = (€5); for all
indices i, whereas for the simulation this only holds for ¢ € A). It therefore follows from the hiding property
of commitments and a standard hybrid argument that simulation is computationally indistinguishable from
real conversations. O

Proof (Theorem 8). For soundness, for any prover P* that makes the protocol accept with probability
p we build a knowledge extractor Ej; having running time (p — keps)~tpoly(u), where keys is equal to
max{(2(t +1)/d)!,27!}. The latter equality allows us to assume p > (2(t + 1)/d)*. Note that by the result
from [BGO6], we may assume that P* is deterministic. Therefore p is simply the fraction of challenges ec, O
that P* answers correctly.

(i) E runs the protocol with P* until step 3; E)ps stores each opening (v,) in a list L.
) Ej continues the protocol. It receives ac during step 4.
ii) Ej sends ec, O computed according to the protocol at step 5.

) During step 6 Ej; receives z¢ and the openings of [(bx).], [(by):] and [(by);] for i € O. Ep; rewinds the
prover to step 5 and goes to (iii) until it sees two conversations (z¢,ac,ec, zc), (o, ac, €q, z¢) valid
for Po and such that ec # e(,. At this point Ejs can retrieve the witness for x¢, namely the values and
the randomness used to make the commitments.

(v) En checks whether x x y = z. If that is the case, it outputs w = (x4, yi, 2i, 74, Si, ti)i 1 as a witness for
the committed values [x],[y] and [z] and quits.

19

(vi) Ejps performs the check of step 3 on its own, using the retrieved values and randomness. Each result
(v', ") is stored on a list L', using the same ordering as the one for L (i.e. for each possible j, the j-th
entry of L and of L’ correspond to the opening of the same commitment). If there exists an index j
such that L; = (v,r), L; = (v',r’) and v # o', then Ej outputs w = (v,r,v’,7’) as a witness for
compy (v, 1) = comypr(v',r") and quits.

(vil) Eps defines T as i € T if and only if x;y; = 2;. Then, Ej; rewinds the prover to step 5 and sends ec, O
according to the protocol.

(viii) During step 6, if for some index i ¢ T the prover outputs (z}, 7}, yl, sty zi,th) such that aly; = z., then
E)y outputs w = (x4, 14, @}, rl) if @ # af, w = (y4, 8i, 5, 8%) if y; # i, or w = (23, t;, 25, t;) if 2z; # 2} and
quits. Else Fj; rewinds the prover to step 5 and repeats this step.

The expected running time of this algorithm can be analyzed as follows:

— Step (i) runs in polynomial time, since Ej; stores a polynomial amount of data. Notice that the check
at step 3 must pass, since p is bigger than zero.

— Step (ii), (iii), (iv) run in polynomial time. The number of rewindings to pass step (iv) is bounded by
2(p—2~Y)~1 which is under the constrains. Retrieving the commitments requires polynomial time (from
the special soundness property of sigma protocols).

— Step (v) runs in polynomial time (I multiplications).

— Step (vi) runs in polynomial time, since it requires to perform a polynomial amount of linear operations
and multiplications.

— Step (vii) runs in polynomial time.

— Step (viii) happens if P* makes the test x * y = z fail. We now bound the probability p that P* succeeds
in the protocol in such a situation. In order for P* to be successful, it had to open the values pointed
by O correctly. Since x xy # z, then f. f, # fz Notice that f, f, and fz are both polynomials of degree

2(t + 1) and since they are distinct, they have at most 2(¢ + 1) roots in common. This implies that one
way for P* to succeed is that all the entries in O point to common roots (that is, O C T'). Since the
choice of O is uniform and independent from P*’s choices, the probability that O C T is (2(t +1)/d).
Since p is assumed to be greater than (2(¢t +1)/d)", it means there exists some set O ¢ T that make P*
succeed. The probability for a uniform O to make P* succeed and O ¢ T is equal to p — (2(t +1)/d)*.
This implies that the expected number of rewinds in step (viii) is equal to (p — (2(t +1)/d)*)~!; so the
total running time of the algorithm is within the constrains even if it terminates in step (viii).

To show (honest-verifier) zero-knowledge we use the same technique we exploit in the field scenario. The
simulator samples two random polynomials h,,h, of degree t + I such that h,(—i) = 0 = hy(—i), that
is hg, hy are both consistent with sharing the secret consisting of [zeros. It then computes h, = hgh,.

Let A C {1,...,d} be a subset of players of size t. Notice that h(i)hy(i) = iAzz(z) for all ¢ € A and that
these shares have distribution statistically indistinguishable from a real conversation, since any t shares are
essentially independent of the actual secrets. Using the polynomials w4, ¢ = 1,...,l we define

l l l
fx = hx—t—inwAi, fy :hy+zyiwx4,ia fz :hz+ZAZiwA,i~
=1 1=1

=1

These three polynomials are consistent with sharing x,y and z, but where the subset A gets the same
shares as when 0’s where shared. The simulator cannot compute these polynomials, but it can compute
commitments to the coefficients. Using the fact that the commitments [x],[y] and [z] are given, and the
polynomials w4 ; are public, it can compute commitments

! ! !
o [] 1z - wand, H Y - WA, [£.] H 2z AwWa k]
k=1 k=1 k=1

Step 2 is simulated sending commitments [fy], [f,] and [£,]. The verifier in step 3 checks the consistency of the
received data and the check passes. We here prove it for z; (with a similar proof one shows the check passes

20

for y;, z;, for i = 1,...,1). The verifier can use the homomorphic properties of the commitment schemes to
check whether _
£V - [A] ™! = [0].

From the construction of f,, it follows that
[fx]ev(fz) . [Axi}fl _ ([hx]ev(z) . H[l'k 'WA,k]ev(z)> . [Al_i]fl
k=1

l
= [ha(—=0)] - [[len - wan(=0)] - [A] ™!
k=1
[A

= [0] - [Azi] - [Az;] 7" = [0].

For step 4, the simulator can compute and open commitments

o~

()] = [(h)dl, ()] = [(hy)d, [(E)] = [(Ba)il,

for i € A. By construction, the opened values satisfy the multiplicative property expected by the verifier.
This simulation is clearly polynomial time, and we argued underway that the distribution of all values
that are opened are statistically close to those of a real conversation. The commitments [fx] and [fy] are
also distributed correctly. Therefore, the only difference between simulation and conversation lies in the
distribution of f, hidden in [f | (in a real conversation, the choice of £, ensures that the resulting b, satisfies
(bx)i(by); = (b); for all indices 4, whereas for the simulation this only holds for ¢ € A). Since commitments
are statistically hiding, it follows that the simulation is computationally indistinguishable from a real con-
versation. g

21

