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Abstract

The general number field sieve (GNFS) is asymptotically the fastest known factoring
algorithm. One of the most important steps of GNFS is to select a good polynomial
pair. A standard way of polynomial selection (being used in factoring RSA challenge
numbers) is to select a nonlinear polynomial for algebraic sieving and a linear polynomial
for rational sieving. There is another method called a nonlinear method which selects two
polynomials of the same degree greater than one. In this paper, we generalize Montgomery’s
method [7] using small geometric progression (GP) (mod N) to construct a pair of nonlinear
polynomials. We introduce GP of length d + k with 1 ≤ k ≤ d − 1 and show that we can
construct polynomials of degree d having common root (mod N), where the number of
such polynomials and the size of the coefficients can be precisely determined.

Keywords : polynomial selection, number field sieve, geometric progression, LLL algo-
rithm

1 Introduction

The number field sieve (NFS) [6, 11] is asymptotically the fastest known algorithm to factor a
large composite integer N . One of the most exciting news on this topic is the factorization of
RSA-768 by the collaboration of Kleinjung and many other researchers [3] using the technique
of the general number field sieve (GNFS). Almost all of the factored RSA numbers with 100
digit size or more were tackled by using NFS algorithm so far. Recently the polynomial
selection step of NFS is being studied widely since a good polynomial pair greatly reduces the
entire running time of NFS algorithm.

Among several polynomial selection methods for NFS being proposed so far, the base-m
method is one of the most standard ones. Murphy [9] proposed an improvement of the base-m
method by refining the notion of polynomial yield. Murphy’s method focuses on root property,
which is a measurement of the efficiency of polynomial pair having roots modulo small primes.
Kleinjung [2] proposed an improvement of Murphy’s method to nonmonic linear polynomial.
Both Murphy’s and Kleinjung’s methods were used on factorization of many RSA challenge
numbers. We call all these polynomial selection methods linear method since it selects a
nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving.

A nonlinear method refers the method of choosing two nonlinear polynomials (of degree≥ 2)
having a common zero (mod N). Several researchers focus on nonlinear polynomial selection
methods. Montgomery [7] showed that one can find two nonlinear polynomials of degree d and
size O(N1/2d) having common root (mod N) if and only if one can find a geometric progression

1



(GP) (mod N) of length 2d − 1 and size O(N1−1/d). Montgomery succeeded in finding such
GP (mod N) when d = 2 but the case d ≥ 3 is still unresolved. The quadratic method
(d = 2) is not competitive to linear method when the integer N is over 120 digits [9]. Prest
and Zimmermann [12], and also Williams [13] proposed other nonlinear polynomial selection
methods using GP (mod N) of length d + 1, however these methods produce polynomials
which have larger coefficients than the optimal bound O(N1/2d) expected from Montgomery’s
method.

In this paper, we propose a polynomial selection method using a GP of length d+ k with
1 ≤ k ≤ d−1 which generalizes Montgomery’s method of GP with length 2d−1 (i.e., k = d−1).
Natural implication of our result is that one can generate polynomials with different degrees
d for all l

2 < d < l having common root (mod N) from a GP of fixed length l. We also

introduce a method of finding a GP of (d + 1)-term with size O(N1−1/d) and show that the
proposed method has flexibility than the usual base-m method. GP with length d+2 and size
O(N1−1/d) is difficult to find in general but we show that such GP can be found under certain
conditions. We apply the result to GP of size O(N2/3) to construct cubic polynomials having
common roots (mod N).

The remaining part of this paper is organized as follows. We explain the existing polynomial
selection methods in section 2. We introduce an extension of Montgomery’s GP method and
state generalized polynomial selection method given GP of arbitrary length in section 3. We
explain the method of constructing a GP of length d+1 and d+2, and give explicit examples
in section 4. Finally we give conclusive remarks in section 5.

2 Existing Polynomial Selection Methods

2.1 Linear polynomial selection method

2.1.1 Base-m method

Let N1/(d+1) < m ≤ N1/d and let N =
∑d

i=0 aim
i (0 ≤ ai < m) be the base m-expansion of

N . Then
f(x) = adx

d + ad−1x
d−1 + · · ·+ a0, g(x) = x−m

are two polynomials having common root m (mod N). There are other improvements to
reduce the size of coefficients of f with the property f(m) ≡ 0 (mod N) being preserved. For
example, if ai > m/2 then the substitution

ai ← ai −m and ai+1 ← ai+1 + 1,

makes |ai| < m/2 for every i. For more detail, refer [6, 9].

2.1.2 Murphy’s method

Murphy’s method [9] is an improvement of the base-m method to generate skewed polyno-
mials having good root property using rotations and translations. For given polynomial pair
(f(x), g(x)) with common root m (mod N), rotation by r(x) refers another polynomial pair
(f(x)+r(x)g(x), g(x)). Also translation by t refers a polynomial pair (f(x−t), g(x−t)) having
common root m+ t (mod N).

The root property measures the smoothness of given polynomial, i.e. it tells how many
roots the polynomial has modulo small primes. To measure the root property of a polynomial
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f , one defines

α(f) =
∑
p≤B

(1− qp)
log p

p− 1

where B is the given bound and qp is the number of root of f(x) ≡ 0 (mod p). Sufficiently many
zeros of f (mod p) implies that one has negative α(f) with larger absolute value. Similarly one
can also define α value for a bivariate homogeneous polynomial F (x, y) with f(x) = F (x, 1). In
this case, projective roots p dividing the leading coefficient ad of f should be also considered.
That is, if the leading coefficient of f has many small prime factors, then f may have a
good root property. Therefore one may we select m with adm

d ≤ N < (ad + 1)md with ad
having many small prime factors. By using the techniques of translation and rotation, one
may generate skewed polynomials having good root properties. In Murphy’s method, rotation
by linear polynomial r(x) was used. Rotation by nonlinear polynomials using the Chinese
remainder theorem was proposed in [15].

2.1.3 Kleinjung’s method

Kleinjung [2] proposed an improvement of Murphy’s method to nonmonic linear g. The method
first selects a positive integer ad which has many small prime factors. Next, one chooses an
integer p such that adx

d ≡ N (mod p) is solvable. Now let m be a solution of adx
d ≡ N

(mod p) close to m̃ = (N/ad)
1/d. Then there is an expression

N = adm
d + ad−1m

d−1p+ · · ·+ a1mpd−1 + a0p
d,

with |ad−1| < dad
m−m̃

p + p and |ai| < m+ p for i = 0, · · · , d− 2 (see Lemma 2.1 of [2]). Thus

f(x) = adx
d + ad−1x

d−1 + · · ·+ a0, g(x) = px−m

is a polynomial pair having common root p−1m (mod N), where ad−1 and ad−2 can be bounded
in terms of ad, p and m. Considering plenty of triples (ad, p,m), Kleinjung found polynomial
pairs with nonmonic g having better yields than that of Murphy’s method. This method was
used for the factorization of RSA-768 [3].

2.2 Nonlinear polynomial selection method

2.2.1 Montgomery’s method

Montgomery [7] proposed a nonlinear method which finds two polynomials of the same degree d
using a small GP (mod N). If there exists a GP (mod N) of length 2d−1 with ci = O(N1−1/d)
written in vector notation as

c⃗ = [c0, c1, · · · , c2d−2],

which is not a linear recurrence of order d− 1 over Q, then by looking at the two dimensional
sublattice of Zd+1 which is orthogonal to d− 1 vectors in Zd+1 spanned by

[c0, c1, · · · , cd], [c1, c2, · · · , cd+1], · · · , [cd−2, cd−1, · · · , c2d−2],

one can construct two polynomials f1(x) = adx
d + ad−1x

d−1 + · · · + a0 and f2(x) = bdx
d +

bd−1x
d−1 + · · · + b0 of degree d with common root r (mod N), where r is the geometric ratio

of GP c⃗ and the coefficients of f1 and f2 are of O(N1/2d).
At this moment, it is still an open problem whether one can find such GP (mod N) with

length 2d − 1 and size ci = O(N1−1/d) for general d. However, when d = 2, Montgomery

3



presented a GP (mod N) satisfying the above conditions. That is, letting p be a prime
satisfying

(i) p <
√
N, (ii)

(
N

p

)
= 1,

Montgomery finds a solution c1 of x2 ≡ N (mod p) with |c1 −
√
N | ≤ p/2, and thus

[c0, c1, c2] = [p, c1, (c
2
1 −N)/p] (1)

is a desired GP (mod N) with ratio r ≡ p−1c1 (mod N). It seems difficult to extend the idea
of Montgomery to general d ≥ 3. A positive answer for the case d = 3 would imply that we
may replace the sieving polynomial pair (f(x), l(x)) with linear l(x) and deg f = 5, 6 by two
cubic polynomials. For details, refer [9].

2.2.2 The method of Prest and Zimmermann

According to Montgomery’s idea, we need a GP (mod N) with length 2d−1 and size O(N1−1/d)
to generate two polynomials of degree d with common root (mod N) and coefficients of
O(N1/2d). In the case that we have only (d + 1)-term of GP, we may still generate two
polynomials of degree d with common root (mod N). Williams [13] showed that a GP of
length 4 (i.e., d = 3) of size O(N2/3) gives two cubic polynomials having common root (mod
N) with coefficients O(N2/9). Therefore the resultant of two polynomials is O(N4/3), while
O(N) is the optimal resultant size expected from two polynomials with coefficients O(N1/2d).
Prest and Zimmermann [12] considered the case of arbitrary degree to generate skewed poly-
nomials. Choosing a GP of the form [1,m, · · · ,md−1,md−N ] with m near N1/d, and applying
LLL algorithm [5] on the lattice spanned by the column vectors of the following matrix

m · · · md−1 md −N
s · · · 0 0
...

. . .
...

...
0 · · · sd−1 0
0 · · · 0 sd


where s is the skewness parameter, they get two short vectors of the form

−a0
a1s
...

ads
d

 .

Thus the polynomials a0 + · · · + adx
d have m as a common root (mod N). They showed

that, by selecting s = O(N
2

d(d2−d+2) ), the skewed polynomials have medium coefficients of size

O(N
d2−2d+2
d3−d2+2d ) and resultant of size O(N

2(d2−2d+2)

d2−d+2 ). When d = 3, this method gives two cubic
polynomials whose resultant is of O(N5/4) and medium coefficients of O(N5/24).

3 Polynomial Selections from GP of Length d+ k

To find a pair of nonlinear sieving polynomials, Montgomery [7] considers GP (mod N) c⃗ =
[c0, c1, · · · , c2d−2] with length 2d − 1 and size ci = O(N1−1/d). On the other hand, Prest and
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Zimmermann [12] consider c⃗ = [c0, c1, · · · , cd] with length d + 1 and size ci = O(N1−1/d).
Finding GP (mod N) with length d+1 and size ci = O(N1−1/d) is easy because, if one choose
c0 = ⌊N1/d⌋ + j for small j and ci ≡ ci0 (mod N), then one gets ci = O(N1−1/d). However it
is not clear how one can find a GP (mod N) with bounded size for general length d+ k

c⃗ = [c0, c1, · · · , cd+k−1].

The most desirable case is k = d− 1 so that we have a GP of length 2d− 1 and can find two
independent polynomials of degree d having common root (mod N).

It should be mentioned that finding GP even in the cases k = 2, 3, · · · , d − 2 satisfying
suitable size property is supposed to be a difficult problem. Moreover, for given GP of length
d+ k, we may find more than two polynomials having common roots (mod N), and the size of
the coefficients of such polynomials will be determined by the size of c⃗. Our aim is to generalize
the idea of Montgomery to the case of GP c⃗ (mod N) of arbitrary length d + k and also to
provide an unified approach for the polynomials of degree d having common roots (mod N)
arising from a GP c⃗ of variable length such as d + 1 [12] and 2d − 1 [7]. Moreover we will
clarify the relations between the polynomials of different degree d having common root (mod
N) for given GP c⃗ of fixed length. For example, we will show that, for given 5-term GP of
size O(N2/3), we can generate 2 cubic polynomials and 4 polynomials of degree 4, all having
coefficients of size O(N1/6) and the same common root (mod N). To summarize the raised
questions;

• How many independent polynomials we may generate for given GP of fixed length ?
• What are the possible degrees of such polynomials ?
• How the size of the coefficients of such polynomials is related to the size of the given GP ?

We will answer all the questions in the following theorem below. For given polynomial f(x) =∑
aix

i, let us define the norm of f as ||f || =
√∑

a2i .

Theorem 1. Let d and k be integers with d ≥ 2 and 1 ≤ k ≤ d − 1. Suppose that c⃗ =
[c0, c1, · · · , cd+k−1] is a GP (mod N) with length d + k such that the k vectors [c0, · · · , cd],
[c1, · · · , cd+1], · · · , [ck−1, · · · , cd+k−1] ∈ Zd+1 are linearly independent over Q. Then we may
generate d− k + 1 polynomials fi of degree at most d having common root r (mod N) with r
the ratio of the GP and satisfying

||f1|| · ||f2|| · · · ||fd−k+1|| = O

(
||⃗c ||k

Nk−1

)
. (2)

Proof. Let Λ be the lattice in Zd+1 spanned by the following k independent vectors

v⃗0 = [c0, · · · , cd], v⃗1 = [c1, · · · , cd+1], · · · , v⃗k−1 = [ck−1, · · · , cd+k−1], (3)

obtained from d + 1 consecutive terms of c⃗. Define Ω to be the lattice in Zd+k+1 spanned by
the column vectors of the following (d+ k + 1)×(d+ 1) matrix

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

Kc0 Kc1 · · · Kcd
Kc1 Kc2 · · · Kcd+1
...

...
. . .

...
Kck−1 Kck · · · Kcd+k−1


, (4)
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where K is a constant. Then Theorem 4 of [10] says that, if {x⃗1, · · · , x⃗d+1} is an LLL-
reduced basis of Ω and if one chooses K sufficiently large (i.e., if K > 2d+(d−k)2vol(Λ)), then
{x⃗′1, · · · , x⃗′d−k+1} is an LLL-reduced basis for Λ⊥, where x⃗′i ∈ Zd+1 is the vector obtained

by taking the first (d + 1)-terms of x⃗i and Λ⊥ is the orthogonal lattice of Λ. Therefore
x⃗′i = (a0, a1, · · · , ad) ∈ Λ⊥ satisfies

0 = a0c0 + a1c1 + · · ·+ adcd ≡ a0 + a1r + a2r
2 + · · · adrd (mod N)

where r ≡ c−1
0 c1 (mod N), which implies that x⃗′i corresponds to a polynomial fi(x) = a0 +

a1x+ · · ·+ adx
d with degree at most d. Hence we may consider {f1, f2, · · · , fd−k+1} is a basis

for Λ⊥ over Q of dimension d+ 1− k. A standard result of LLL-reduced basis says that

vol(Λ⊥) ≤
d−k+1∏
i=1

||fi|| ≤ 2
d(d−1)

4 vol(Λ⊥),

where vol(Λ⊥) = vol(Λ) with Λ = spanQ(Λ) ∩ Zd+1. Therefore, to estimate the size of fi,
we need to estimate the volume of Λ⊥. Observe that y⃗ ∈ Zd+1 is orthogonal to the vectors
v⃗0, v⃗1, · · · , v⃗k−1 defined in (3) if and only if it is orthogonal to the lattice Λ′ spanned by

v⃗0,
v⃗1 − rv⃗0

N
,
v⃗2 − rv⃗1

N
, · · · , v⃗k−1 − rv⃗k−2

N
,

where r is the geometric ratio of GP c⃗. Since vol(Λ⊥) = vol((Λ′)⊥) = vol(Λ′) ≤ vol(Λ′), to
estimate the volume of Λ⊥, we need to compute vol(Λ′) =

√
det(ATA) where A is the k × k

matrix with each column written as v⃗0,
v⃗1 − rv⃗0

N
,
v⃗2 − rv⃗1

N
, · · · , v⃗k−1 − rv⃗k−2

N
, Now

det(ATA) =

∣∣∣∣∣∣∣∣∣∣∣∣


v⃗0

v⃗1 − rv⃗0
N
...

v⃗k−1 − rv⃗k−2

N


(

v⃗0
v⃗1 − rv⃗0

N
· · · v⃗k−1 − rv⃗k−2

N

)
∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

v⃗0 · v⃗0 v⃗0 ·
v⃗1 − rv⃗0

N
· · · v⃗0 ·

v⃗k−1 − rv⃗k−2

N
v⃗1 − rv⃗0

N
· v⃗0

v⃗1 − rv⃗0
N

· v⃗1 − rv⃗0
N

· · · v⃗1 − rv⃗0
N

· v⃗k−1 − rv⃗k−2

N
...

...
. . .

...
v⃗k−1 − rv⃗k−2

N
· v⃗0

v⃗k−1 − rv⃗k−2

N
· v⃗1 − rv⃗0

N
· · · v⃗k−1 − rv⃗k−2

N
· v⃗k−1 − rv⃗k−2

N

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

N2(k−1)

∣∣∣∣∣∣∣∣∣
v⃗0 · v⃗0 v⃗0 · (v⃗1 − rv⃗0) · · · v⃗0 · (v⃗k−1 − rv⃗k−2)

(v⃗1 − rv⃗0) · v⃗0 (v⃗1 − rv⃗0) · (v⃗1 − rv⃗0) · · · (v⃗1 − rv⃗0) · (v⃗k−1 − rv⃗k−2)
...

...
. . .

...
(v⃗k−1 − rv⃗k−2) · v⃗0 (v⃗k−1 − rv⃗k−2) · (v⃗1 − rv⃗0) · · · (v⃗k−1 − rv⃗k−2) · (v⃗k−1 − rv⃗k−2)

∣∣∣∣∣∣∣∣∣
=

1

N2(k−1)
det(BTB),

where B is the matrix with each column vector written as v⃗0, v⃗1−rv⃗0, v⃗2−rv⃗1, · · · , v⃗k−1−rv⃗k−2.
Since the base change matrix between the following two bases for Qd+1,

{v⃗0, v⃗1, v⃗2, · · · , v⃗k−1},
{v⃗0, v⃗1 − rv⃗0, v⃗2 − rv⃗1, · · · , v⃗k−1 − rv⃗k−2},

6



is triangular and having 1 in all diagonal entries (in particular unimodular), they span the
same lattice and thus we get det(BTB) = det((v⃗i · v⃗j)) = O(||⃗c ||2k). Consequently one gets

vol(Λ⊥) ≤ vol(Λ′) = O

(
||⃗c ||k

Nk−1

)
which completes the proof.

Corollary 1. With the same conditions in Theorem 1, suppose that k vectors [c0, c1, · · · , cd−1],
[c1, c2, · · · , cd], · · · , [ck−1, ck, · · · , ck+d−2] of consecutive d terms are linearly independent over
Q. Then we get at least one polynomial of degree d having r as a zero (mod N). Moreover if

all fi are O

((
||⃗c||k
Nk−1

)1/(d−k+1)
)
, then we may choose all such polynomials having degree d.

Proof. On the contrary, assume that all fi found in Theorem 1 have degree < d. This
happens when the basis vectors x⃗′1, · · · , x⃗′d−k+1 for Λ⊥ have last coordinate 0 (i.e., x⃗′i =

(a0, a1, · · · , ad−1, 0) ). Then we may view {x⃗′1, · · · , x⃗′d−k+1} ⊂ Zd which spans (d − k + 1)-
dimensional orthogonal subspace to k independent vectors [ci, ci+1, · · · , ci+d−1] (0 ≤ i ≤ k−1)
in Zd, which is absurd. For the second assertion, let f ∈ {f1, f2, · · · , fd−k+1} be a polynomial
of degree d. Then for any fi with deg fi < d, we may replace fi by fi + f so that the resulting

polynomial has common root r (mod N) and the coefficients are of O

((
||⃗c||k
Nk−1

)1/(d−k+1)
)
.

One can also think of the converse of Theorem 1 and it can be phrased as follows.

Theorem 2. Suppose 1 ≤ k ≤ d − 1 and j = ⌈d−1
k ⌉ + 1. Assume that there exist degree d

polynomials g1(x), · · · , gj(x) ∈ Z[x] having common root r (mod N) such that g1, · · · , gj are
linearly independent over Q. Then one can find GP c⃗ = [c0, · · · , cd+k−1] (modN ) of length
d+ k and ||⃗c|| = O(||g||d+k−1) where ||g|| = max||gi||.

Proof. The condition j = ⌈d−1
k ⌉ + 1 implies (j − 1)k < d + k − 1 ≤ jk. One may consider

(2d+ 2k − 1)× (d+ k) matrix

M =


Id+k

KG1
...

KGj−1

KGj

 , (5)

where Id+k is the identity matrix of dimension d + k and KGi(1 ≤ i ≤ j − 1) is k × (d + k)
submatrix spanned by the k row vectors in Zd+k

[

d+1︷︸︸︷
Kgi ,

k−1︷ ︸︸ ︷
0, · · · , 0], [0,

d+1︷︸︸︷
Kgi ,

k−2︷ ︸︸ ︷
0, · · · , 0], · · · , [

k−1︷ ︸︸ ︷
0, · · · , 0,

d+1︷︸︸︷
Kgi ].

The submatrix KGj is defined similarly but the number of cyclic shifts (i.e., the number of
rows) is d + k − 1 − (j − 1)k. Now as in the case of the matrix in (4), one may think of
LLL reduced basis of d + k column vectors of M. Theorem 4 in [10] again says that, if K is
sufficiently large, we have one dimensional orthogonal lattice c⃗ = [c0, c1, · · · , cd+k−1] ⊂ Zd+k

to the lattice of dimension d + k − 1 spanned by the row vectors of KG1, · · · ,KGj . Since
[1, r, r2, · · · , rd+k−1] is also orthogonal to all the row vectors of KG1, · · · ,KGj (mod N), one
finds that c⃗ and [1, r, r2, · · · , rd+k−1] spans the same space (mod N), and therefore the ratio
of c⃗ (mod N) is r. Finally the volume of the lattice c⃗ is bounded by the volume of the lattice
spanned by the d+ k − 1 row vectors of KG1, · · · ,KGj and is of O(||g||d+k−1).
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Remark 1. From Theorem 1 and 2, it is natural to expect j ≤ d−k+1. Indeed, if j > d−k+1,
then from d−k+2 ≤ j < d+2k−1

k , we get (k− 1)d < k2− 1 = (k− 1)(k+1) and thus d < k+1
which is a contradiction.

The following corollary shows that, for given GP of fixed length l, one can obtain several
polynomials with similar size having common root (mod N) for various degrees d with l

2 <
d < l, which implies the size of the coefficients depends on the length of GP not on the degree.

Corollary 2. Let c⃗ be a GP (mod N) of l-term of size O(N ϵ l−1
l+1 ) with d < l < 2d and

0 < ϵ < l+1
l−1 . Then we may generate 2d− l + 1 polynomials fi with degree at most d such that

2d−l+1∏
i=1

||fi|| = O(N ϵ 2d−l+1
l+1 ·N (ϵ−1)(l−d−1)).

Proof. From Theorem 1, by letting l = d+ k,

||f1|| · ||f2|| · · · ||f2d−l+1|| = O

(
||⃗c||l−d

N l−d−1

)
= O

N ϵ
(l−1)
l+1

(l−d)

N ϵ(l−d−1)
· N

ϵ(l−d−1)

N l−d−1


= O

(
N ϵ

(l−d)(l−1)
l+1

−ϵ(l−d−1) ·N (ϵ−1)(l−d−1)

)
= O

(
N ϵ 2d−l+1

l+1 ·N (ϵ−1)(l−d−1)
)
.

Remark 2. Letting ϵ = 1, one has

2d−l+1∏
i=1

||fi|| = O(N
2d−l+1

l+1 ).

Moreover, if all fi have roughly the same size, we get ||fi|| = O(N
1

l+1 ). For example, if

l = 2d − 1, we get two polynomials of degree at most d of size O(N
1
2d ) as expected in [7, 9].

The condition ||fi|| = O(N
1

l+1 ) implies that the size of fi does not depend on the the degree
l
2 < d < l for fixed l. For example, if we have a 5-term GP of O(N2/3), then we may generate 2
polynomials of degree 3 for (d, k) = (3, 2), and also 4 polynomials of degree 4 for (d, k) = (4, 1),
where all the coefficients are of O(N1/6).

Corollary 3. With the same conditions in Theorem 1, suppose that r2d+2 − 1 is relatively
prime to N . Let h(x) ∈ Z[x] be a polynomial of degree at most d such that h(r) ≡ 0 (mod N).
Then there exist integers s1, s2, · · · , sd−k+1 such that h(x) ≡

∑d−k+1
i=1 sifi(x) (mod N).

Proof. For any polynomial f(x) =
∑d

i=0 aix
i of degree at most d, define a vector f⃗ = [a0, · · · , ad]

in Zd+1. Since Qd+1 is spanned by the basis vectors, f⃗1, f⃗2, · · · , f⃗d−k+1, v⃗0, v⃗1, · · · , v⃗k−1 where
v⃗i are defined in (3), we have

h⃗ =
d−k+1∑
i=1

sif⃗i +
k−1∑
j=0

tj v⃗j

8



for some si, tj in Q. Now letting r⃗ = [1, r, · · · , rd] and noticing the ratio of the GP c⃗ =
[c0, · · · , cd+k−1] (mod N) is r, we get

v⃗j = [cj , cj+1, · · · , cd+j ] ≡ cj r⃗ (mod N).

Therefore

0 ≡ h(r) ≡ h⃗ · r⃗ ≡
∑

sifi(r) +
∑

tj(v⃗j · r⃗) ≡
∑

tjcj(r⃗ · r⃗)

≡
∑

tjcj(1 + r2 + r4 + · · ·+ r2d) ≡ r2d+2 − 1

r2 − 1

∑
tjcj (mod N).

Since r2d+2 − 1 is relatively prime to N , we get
∑k−1

j=0 tjcj ≡ 0 (mod N). Consequently

h⃗ =
d−k+1∑
i=1

sif⃗i +
k−1∑
j=0

tj v⃗j ≡
d−k+1∑
i=1

sif⃗i +
k−1∑
j=0

tjcj r⃗

≡
d−k+1∑
i=1

sif⃗i + r⃗(

k−1∑
j=0

tjcj) ≡
d−k+1∑
i=1

sif⃗i (mod N).

4 Constructing GP (mod N)

4.1 GP (mod N) with Length d+ 1

As is mentioned in Section 2.1.1, one finds such GP by the base-m method with m = ⌊Nd⌋+ j
for small j so that the base-m expansion of N , N =

∑d
i=0 aim

i, gives a polynomial f(x) =∑d
i=0 aix

i with f(m) ≡ 0 (mod N) and coefficients ai = O(N
1
d ). On the other hand, Theorem

1 says that we can find d such polynomials of degree d with coefficients O(N
d−1
d2 ) having m as a

common zero (mod N). It should be mentioned that d polynomials in Theorem 1 are obtained
via LLL algorithm [5] not from the base-mmethod. Also since there are d polynomials, we have
much freedom in manipulating those polynomials via rotations and translations to find optimal
polynomials having good root property. By extending the idea of GP in (1) of Montgomery,
we may generate GP (mod N) with length d+ 1 as follows.

Proposition 1. Suppose p is a prime such that

(i) p < N1/d, (ii) xd ≡ N (mod p) is solvable.

Let r be a solution of xd ≡ N (mod p) with |r −N1/d| ≤ p
2 . Then

c⃗ = [c0, c1, c2, · · · , cd] =
[
pd−1, pd−2r, · · · , rd−1,

rd −N

p

]
(6)

is a (d+ 1)-term GP (mod N) of size O(N1−1/d) with geometric ratio rp−1 (mod N).

Remark 3. Heuristic argument tells that, for randomly chosen prime p with p ≡ 1 (mod d),
the probability that N is a d-th power residue (mod p) is 1

d . Therefore we may generate plenty
of p and r satisfying the conditions of the Proposition 1.
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Remark 4. Letting p = 1, we get c⃗ = [1, r, r2, · · · , rd−N ] which is exactly the base-m method.
Thus the proposed method is a generalization of the base-m method and has more flexibility.
Note that p in the proposition need not necessarily be a prime as long as the solutions of
xd ≡ N (mod p) are efficiently computable. One possible direction of this idea is to think of
the solutions of xd ≡ N (mod

∏
pi) using Chinese Remainder Theorem from the solutions of

xd ≡ N (mod pi).

Remark 5. Another generalization of the Proposition 1 is using kN in place of N , where k
is small and a product of small primes. Therefore if r is a solution of xd ≡ kN (mod p), then
the GP

c⃗ =

[
pd−1, pd−2r, · · · , rd−1,

rd − kN

p

]
(7)

produces polynomials fi(x) such that fi(p
−1r) ≡ 0 (mod kN), which implies that fi(x) ≡ 0

(mod q) has a solution for all primes q dividing k. In this way, one may find polynomials with
good root properties. (See Example 2.)

Applying LLL algorithm on the (d + 2) × (d + 1) matrix in (4) with the GP in (6) or (7)
gives d polynomials of degree d with coefficients size O(N (d−1)/d2) under the assumption of
Corollary 1. All generated polynomials have p−1r as a common root (mod N) and the linear
polynomial px−r also has p−1r (mod N) as a root. We can also improve this method to select
skewed polynomials following [12]. For given skewness s and GP c⃗, applying LLL algorithm
on the column vectors of 

1 0 · · · 0
0 s · · · 0
...

...
. . .

...
0 0 · · · sd

Kc0 Kc1 · · · Kcd

 (8)

gives d skewed polynomials.

Example 1. Let

N = C59 = 71641520761751435455133616475667090434063332228247871795429

and d = 3 as in [12]. We choose prime p = 41532518328905334671 near N1/3. Then x3−N ≡ 0
(mod p) has solution r = 25417166874734771107. Running LLL algorithm with the GP c⃗ =

[p2, pr, r2, r
3−N
p ] gives 3 polynomials of degree 3 having common root p−1r (mod N):

f1(x) = 2294658610753x3 + 9597429436365x2 − 1723025618025x− 771270274282,

f2(x) = 11446806849070x3 − 244248671393x2 + 4093360192946x+ 6409599094515,

f3(x) = 5816639714842x3 + 718509494635x2 − 13763827243329x+ 12637580760070.

Since l(x) = px − r has the common root p−1r (mod N) also, using the Corollary 3, we may
express l(x) as a linear combination

l(x) ≡ −232236f1(x) + 1304425f2(x) + 2658649f3(x) (mod N).

Example 2. Let N, d be the same as in Example 1. We choose prime p = 15712338827
near N1/6. Then x3 ≡ 210N (mod p) has solution r = 246864077935052193511. Let s =

10



5000 ≈ N
1
12 be the skewness parameter. Running LLL algorithm on the matrix (8) with

c⃗ = [p2, pr, r2, r
3−210N

p ] gives 3 skewed polynomials of degree 3 having common root p−1r (mod
N):

f1(x) = 115x3 + 43124977x2 + 1893281131859157x+ 4083363045384283521,

f2(x) = 100x3 + 37499980x2 + 1646332102153129x− 7182470305537674917,

f3(x) = 2998982x3 + 1127760117969x2 + 374107139392334x− 2209056969433053257.

The above polynomials have α(f1) = −1.50, α(f2) = −1.96, α(f3) = −0.09, of which two
polynomials f1 and f2 have better α-values than α(f) = −0.41, α(g) = −0.65 in page 9 of [12],
where

f(x) = 42044x3 − 58243x2 + 216589713956652x+ 309824665860518028,

g(x) = 189599x3 − 262649x2 − 11115144906243x− 3123165185295940301.

Moreover our resultant Res(f1, f2) = −26250N = N1.075 is just 64-digits while Res(f, g) =
N1.22 in [12] is of 73 digits. Our resultant is 9-digits less than [12] and only 5-digits more than
N . Since we may try many possible candidates of p, r and k satisfying rd ≡ kN (mod p), it is
a more flexible method than that of the base-m method, so it is expected to get polynomials
of better yields when combined with other techniques.

4.2 GP (mod N) with Length d+ 2

We introduce a form of (d + 2)-term GP (mod N) of size O(N1−1/d) which improves a GP
introduced in Proposition 1.

Proposition 2. With the same conditions in Proposition 1, assume further N1/d = O(p) and
suppose that

drd−1x ≡ −rd −N

p
(mod p) (9)

has a solution t with t = O(1). Then we can find a GP (mod N) with length d + 2 and size
O(N1−1/d).

Proof. Write r∗ = r + tp where t is a solution of (9). By Hensel’s Lemma, r∗ is a solution of
xd ≡ N (mod p2) with |r∗−N1/d| = O(p). Therefore the first d+1 terms of the following GP

c⃗∗ = [c∗0, c
∗
1, · · · , c∗d−1, c

∗
d, c

∗
d+1] =

[
pd−1, pd−2r∗, · · · , r∗d−1,

r∗d −N

p
,
r∗(r∗d −N)

p2

]
. (10)

are of O(N1−1/d), i.e., c∗0, c
∗
1, · · · , c∗d = O(N1−1/d). Also the assumption N1/d = O(p) implies

r = O(p). Therefore
r∗

p
=

r

p
+ t = O(1) and we get cd+1 = c∗d ·

r∗

p
= O(N1−1/d).

Remark 6. An equivalent condition of Proposition 2 is that there exists a prime p with p ≈
N1/d such that xd ≡ N (mod p2) has a solution r∗ with r∗ ≈ p.

Next corollary shows that the GP introduced above gives polynomials with special proper-
ties.

Corollary 4. Let f(x) = adx
d+ad−1x

d−1+ · · ·+a1x+a0 be a polynomial of degree d obtained
by applying (d+ 2)-term GP in (10). Then we get ad−1 = 0.
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Proof. From the orthogonality condition

[a0, a1, · · · , ad] ⊥ [c∗0, · · · , c∗d−1, c
∗
d], [c

∗
1, · · · , c∗d, c∗d+1],

we obtain two equations

c∗0a0 + · · ·+ c∗d−1ad−1 + c∗dad = 0,

c∗1a0 + · · ·+ c∗dad−1 + c∗d+1ad = 0.

By cancelling ad from the above two equations,

0 = (c∗1c
∗
d − c∗0c

∗
d+1)a0 + · · ·+ (c∗d−1c

∗
d − c∗d−2c

∗
d+1)ad−2 + (c∗2d − c∗d+1c

∗
d−1)ad−1

= (c∗2d − c∗d+1c
∗
d−1)ad−1 +

d−2∑
i=0

(c∗i+1c
∗
d − c∗i c

∗
d+1)ai

= (c∗2d − c∗d+1c
∗
d−1)ad−1 +

d−2∑
i=0

(c∗i+1c
∗
d − c∗i

r∗

p
c∗d)ai = (c∗2d − c∗d+1c

∗
d−1)ad−1

Since c∗d+1c
∗
d−1 − c∗2d ̸= 0, we have ad−1 = 0.

Therefore if we can find a GP introduced in (10), then we may generate polynomials whose
second highest coefficient is zero. It may give some possible advantage in NFS algorithms. In
particular, when d = 3, we can generate 2 cubic polynomials of coefficients size O(N1/6) with
coefficient of x2 zero. Unfortunately, for large N , it is not easy to find such p and r.

Example 3. Let N = 39327284784436337729633 = q1q2 with q1 = 198211041043 and q2 =
198411171131. Letting m = ⌈N1/3⌉, m

10 < p < m, and |t| < 10, we find 3 tuples [p, r∗, t]
satisfying the condition of Proposition 2 (i.e., r∗3 ≡ N (mod p2) with r∗ ≈ p) :

[p, r∗, t] = [6906203,−11939854,−2], [6634469,−52235909,−8], [3855949, 1149030, 0]

Using the last example with p = 3855949, r∗ = r = 1149030 and t = 0, we get a 5-term

GP (mod N) as c⃗ = [p2, pr∗, r∗2, r
∗3−N
p , r

∗(r∗3−N)
p2

]. With this GP as an input, running LLL

algorithm on the lattice in (4) produces 2 cubic polynomials

47x3 + 37753x+ 20989, 88x3 − 11355x+ 63746,

for the case d = 3, k = 2. If we let d = 4, k = 1, then we obtain 4 polynomials of degree 4 as
follows:

3685x4 − 1107x3 + 6503x2 − 4298x− 5409,

9189x4 − 2744x3 − 2619x2 − 2363x− 3028,

1643x4 − 477x3 + 7085x2 + 3355x+ 7011,

710x4 − 212x3 − 3979x2 − 10256x+ 3116.

All 6 generated polynomials have a common root p−1r∗ (mod N). Therefore we obtain 1
polynomial pair of degree (3,3), 8 polynomial pairs of degree (3,4), 6 polynomial pairs of
degree (4,4).
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Remark 7. Similarly as in Section 4.1, we may extend the idea in Proposition 2 to more
general case when xd ≡ kN (mod p2) with small k has a solution r∗ ≈ p so that[

pd−1, pd−2r∗, · · · , r∗d−1,
r∗d − kN

p
,
r∗(r∗d − kN)

p2

]
(11)

is a (d+ 2)-term GP (mod N) of O(N1−1/d).

Example 4. Let N be the same with Example 3. Let p = 5212793, then r∗ = −2210554 is a

solution of x3 ≡ 10N (mod p2). From the 5-term GP [p2, pr∗, r∗2, r
∗3−N
p , r

∗(r∗3−N)
p2

], we get 2
cubic polynomials

34x3 − 63279x+ 67566, 37x3 + 84455x+ 138544

for d = 3, k = 2, and we get 4 polynomials of degree 4

7410x4 + 3146x3 + 7470x2 + 3237x+ 10278,

6175x4 + 2616x3 + 6225x2 + 13244x− 2696,

10797x4 + 4578x3 − 10220x2 − 11459x− 4718,

71x4 + 31x3 + 21176x2 − 4903x− 3412,

where all 6 polynomials have common root p−1r∗ (mod N).

Using xd ≡ kN (mod p2) for many small k increases the probability that the equation is
solvable. In practice, the GP in (11) is much easier to find than the GP with k = 1. For
instance, in Example 3 with k = 1, there are 3 pairs (p, r∗) such that r∗3 ≡ N (mod p2) with
|r∗| ≤ 10p and m

10 < p < m. If we extend our search range to 1 ≤ k ≤ 10, then have 27 of (p, r∗)
such that r∗3 ≡ kN (mod p2) with |r∗| ≤ 10p and m

10 < p < m, which is not so cost effective
because we get less than three times of (p, r∗) even if we increased the range of k ten times. On
the other hand, reducing the search range of p from m

10 < p < m to m
10 < p < 19m

100 produces 9
pairs of (p, r∗) with 1 ≤ k ≤ 10. That is, we still find more GP by reducing the range of p and
increasing the range of k, which seems more effective since we consider congruence equations
(mod p2) for smaller values of p.

Table 1 show a small numerical data for the number of the pair (r∗, p) satisfying r∗3 ≡ kN
(mod p2) for all N which is a product of two primes q1 ̸= q2 with 104 < q1, q2 < 105. Note
that each pair (r∗, p) corresponds to a GP of length 5 which is either the form of (10) or (11).
This result suggests that 5-term GP (10) and (11) exist with high probability, even though the
number of GP is relatively small for each N . Moreover it says that one is more likely to find
solution of x3 ≡ kN (mod p2) by increasing the range of k rather than that of p. It should
be mentioned that it also saves the time for the following reason. If we increase the range of
k from k = 1 to 1 ≤ k ≤ 10, the number of equations x3 ≡ kN (mod p2) we need to consider
is increased by the factor of 10. However if we increase the range of p from m

10 < p < m to
m
10 < p < 10m, the number of equations x3 ≡ kN (mod p2) we need to consider is increased
by the factor of π(9910m)/π( 9

10m) ≈ 11 but the catch in this case is that we have to solve the
congruence equation x3 ≡ kN (mod p2) for ten times larger size of p which inevitably slow
down the implementation time on PARI-GP, as is shown in the table.

5 Conclusions

We have presented a method of constructing polynomials of degree d for all l
2 < d < l having

common roots (mod N) given GP (mod N) of fixed length l. We also give the estimation of the
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k = 1 k = 1 1 ≤ k ≤ 10
m
10 < p < m m

10 < p < 10m m
10 < p < 19m

100

Average number of (r∗, p) with |r∗| ≤ 5p for each N 2.29 3.94 7.46
The number of N such that 89.79% 98.04% 99.91%
x3 ≡ kN (mod p2) has a solution |r∗| ≤ 5p
Average number of (r∗, p) with |r∗| ≤ 10p for each N 3.81 6.57 12.44
The number of N such that 97.75% 99.85% 100%
x3 ≡ kN (mod p2) has a solution |r∗| ≤ 10p
PARI-GP time estimation on 2 days 18 days 2days
Intel U7300 1.30GHz CPU laptop

Table 1: Existence of GP (10) and (11)

size of the coefficients of the obtained polynomials in terms of the size of each terms of given
GP, which generalizes Montgomery’s method. We showed that the GP of length d + 1 can
be constructed in more flexible way than the usual base-m method and we find corresponding
polynomials of various degrees having common root (mod N). We also stated the conditions
when special GP of length d+ 2 exists.
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