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Abstract. We present the new concept of biclique as a tool for preimage attacks, which
employs many powerful techniques from differential cryptanalysis of block ciphers and hash
functions.

The new tool has proved to be widely applicable by inspiring many authors to publish new re-
sults of the full versions of AES, KASUMI, IDEA, and Square. In this paper, we demonstrate
how our concept results in the first cryptanalysis of the Skein hash function, and describe an
attack on the SHA-2 hash function with more rounds than before.
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1 Introduction

The last years saw an exciting progress in preimage attacks on hash functions. In contrast to
collision search [29, 26], where differential cryptanalysis has been in use since 90s, there had
been no similarly powerful tool for preimages. The situation changed dramatically in 2008,
when the so-called splice-and-cut framework has been applied to MD4 and MD5 [2, 24], and
later to SHA-0/1/2 [1, 3], Tiger [10], and other primitives. Despite amazing results on MD5,
the applications to SHA-x primitives seemed to be limited by the internal properties of the
message schedule procedures. The only promising element, the so-called initial structure
tool, remained very informal and complicated. Recent results on preimage attacks and,
maybe surprisingly, on key recovery attacks on block ciphers, have demonstrated that these
obstacles can be mitigated with the help of a new concept called bicliques.

This paper presents the first work on the concept of biclique cryptanalysis. Originally,
the new concept was a tool for preimage attacks only. However, it quickly became crucial
for new key recovery attacks on block ciphers as well as we mention at the end of the
introduction. In this paper we concentrate on the hash function setting alone, and focus on
new definitions and algorithms. As applications, we present an attack on the Skein hash
function (the only one existing so far) and briefly describe attacks on SHA-2 hash functions.

Splice-and-cut framework and its progress. Both splice-and-cut and meet-in-the-middle at-
tacks exploit the property that a part of a primitive does not make use of particular
key/message bits. If the property holds, the computation of this part stands still if we
flip those bits in the other part of a primitive. Assume the property is mutual, i.e. such
bits can be found for both parts (also called chunks). Then a cryptanalyst prepares a set
of independent computations for all possible values of those bits (called neutral bits) and
subsequently checks for the match in the middle. The gain of the attack is proportional to
the number of neutral bits.

Sasaki and Aoki observed [2,24] that compression functions with permutation-based
message schedule are vulnerable to this kind of attack as chunks can be long. They also
proposed various improvements. For example, since the number of computations to match



decreases together with the number of neutral bits, the match can be performed on a small
part of the state. In turn, the matching bits depend on fewer message bits, which in fact
leads to even larger number of neutral bits and the reduction in complexity.

The most interesting trick, however, is a so called initial structure [25,3]. The initial
structure can be informally defined as an overlapping of chunks, where neutral bits, although
formally belonging to both chunks, are involved in computation of the proper chunk only.
Concrete examples of the initial structure are much more sophisticated and hard to gen-
eralize. The concept seems to have large potential and few boundaries, while the other
improvements are likely exhausted already. As a motivating example, consider the case of
MD4, where recently an initial structure for as many as 17 rounds of a compression func-
tion was built. If this would work for SHA-256 (in the current best published attack the
initial structure is limited to four rounds), we would just be a few rounds away from a full
preimage attack on the hash standard.

Our contributions. We replace the idea of the initial structure with a more formal and
general concept of biclique, which provides us with several layers of understanding and ap-
plications. We derive a system of functional equations linking internal states several rounds
apart. Then we show that it is equivalent to a system of differentials, so the full structure
of states can be built out of a structure of trails. These structures are two sets of internal
states with each state having a relation with all states in another set. In terms of graph
theory, these structures are referred to as bicliques. A differential view, that builds up on
this formalism, allows us to apply numerous tools from collision search and enhanced differ-
ential attacks, from message modifications to local collisions. We propose several algorithms
constructing these bicliques, which are generic and flexible.

The applications of our concept are broad. Our first and simple example is the hash
function and the SHA-3 finalist Skein-512, which lacks any attacks in the hash setting. We
develop an attack on 22 rounds of Skein-512, which is comparable to the best attacks on the
compression function that survived the last tweak. Our attack on the compression function
of Skein-512 utilizes many more degrees of freedom as we control the full input, and thus
results in a 37-round attack.

Our second group of applications is the SHA-2 family. Enhanced with the differential
analysis, we heavily use differential trails in SHA-2, message modification techniques from
SHA-1 and SHA-0, and trail backtracking techniques from RadioGatun, Grindahl, SHA-1,
and many others. As a result, we build attacks on 45-round SHA-256 and 50-round SHA-
512, both the best attacks in the hash mode. Regarding the compression functions, we
penetrate up to seven more rounds, thus reaching 52 rounds and violating the security of
about 80% of SHA-256.

Reference Target Steps Complexity Memory (words)
Pseudo-preimage | Preimage
Section 4 | Skein-512 | 22 2°08 251 26
Section 4 | Skein-512 72 - 251176 negl.
Section 6 | Skein-512 37 95112 - 964
[1,10] SHA-256 | 43 22519 9254.9 26
Section 5 | SHA-256 | 45 2253 2295:5 26
Section 6 | SHA-256 | 52 2255 - 26
[1,10] SHA-512 | 46 2509 25115 26
Section 5 | SHA-512 | 50 2509 20115 2t
Section 6 | SHA-512 | 57 2511 - 26

Table 1. New preimage attacks on Skein-512 and the SHA-2 family.



Other applications of biclique cryptanalysis

Soon after the initial circulation of this work, the idea of biclique cryptanalysis found other
applications. Among them we mention key recovery faster than brute force for AES-128,
AES-192, and AES-256 by Bogdanov et al. [8]. Cryptanalysis of AES employed algorithms
for biclique construction which are partly covered in Section 3. In this context we also
mention new and improved results on Kasumi by Jia et al. [13] and IDEA by Biham et
al. [7] as well as more results announced both publicly [11, 18] and privately.

2 Bicliques

In this section we introduce splice-and-cut preimage attacks with bicliques. We consider the
most popular Davies-Meyer mode: H = E;(CV) @ CV, where CV is the chaining variable,
and F is the block cipher keyed with the message M.

Let f be a sub-cipher of E, and M = {M]Ji, j]} be a group of messages, which are
parameters for f. Then a biclique of dimension d over f for M is a pair of sets {Q;} and
{P;} of 24 states each such that
b, 1)

Qif

A biclique is used in the preimage search as follows (Figure 1). First, we note that if
M]i, j] is a preimage, then
M[i.j]

M{i,j] M{i,j]

f

E: CV P;

, H.

Qi

An adversary selects a variable v outside of f (w.l.o.g. between P; and H) and checks if

Hi,j: Pjﬂ)v;UﬂQi.
g1 g2

A positive answer yields a candidate preimage. Here to compute v from (Q; the adversary
first computes C'V and then derive the output of F as CV & H.

To benefit from the meet-in-the-middle framework the variable v is chosen so that g;
and go are independent of ¢ and j, respectively:

Mpeg) 2 Ml

Pj Qz
9 g2
Then the complexity of testing 22¢ messages for preimages is computed as follows:

C= 2d(Cgl + ng) + Cbicl + Crecheck7

where Ch; is the biclique construction cost, and Chrecheck 18 the complexity of rechecking the
remaining candidates on the full state. We explain how to amortize the biclique construction
in the next section.

Clearly, one needs 2”24 bicliques of dimension d to test 2" messages.

3 Biclique construction algorithms

Here we introduce several algorithms for the biclique construction. They differ in complexity
and requirements to the dimension of a biclique and properties of the mapping f.
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Fig. 1. Biclique of dimension 2 in the meet-in-the-middle attack.

For most algorithms we adopt a differential view on bicliques as it allows for numerous
tools from differential cryptanalysis to be employed. Consider a single mapping in Equa-
tion (1)

M(0,0]
—

Qo Fo. (2)

It is also called a basic computation. Consider the other mappings as differentials to the

basic computation:
A
Vi T) Aj, (3)
so that

Qi=Que Vi P=R&4;, Mlij=M[00eAl

Vice versa, if a computation (2) is a solution to 22¢ differentials in (3), then it is a basic
computation for a biclique.

In the following algorithms we show how to reduce the number of differentials needed
for a biclique, and hence construct a biclique efficiently.

Algorithm 1. Let the differences in a message group M be defined as the following linear
function:

A =AY ovM (4)
Let us fix Qo and construct P; as follows:

M][0,5]

Qo —— Pj. (5)
As a result, we get a set of trails:
M
0 % Aj. (6)
Let us also construct Q; out of Py:
Mi,0
Qi 2 P, (7)
f
and get another set of trails:
vM
Vi — 0 (8)



Suppose that the trails (8) do not affect active non-linear elements in the trails (6).
Then @; are solutions to the trails (6), so we get the biclique equation:

M[i,j]

To estimate the complexity, assume that the computation (7) does not affect active
non-linear elements in the trails (6) with probability 27¢. Then the probability that 27
such computations affect no condition is 92, Therefore, Equation (9) is satisfied with
probability 272, so we need 22" solutions to Equation (6) to build a biclique (which is
feasible for small d). This approach is used in the preimage attack on the hash function
Skein-512.

For non-ARX primitives with predictable diffusion this algorithm can be easily made
deterministic. For example, it is easy to construct the truncated differential trails for AES [8]
and Square that do not share active non-linear components with probability 1 (Figure 2).
As a result, an attack algorithm can be simply explained at a picture of trails.

Biclique
share no active elements

Fig. 2. Biclique out of non-interleaving trails.

Algorithm 2. (Modification of Algorithm 1 for the case when we can control internal state
and message injections within the biclique). Assume that the mapping f uses several inde-
pendent parts (blocks) of message M via the message injections (like in SHA-2). Consider a
message group with property (4) but do not define the messages yet. Fix a state QQp and sets
of trails (6) and (8) that do not share active non-linear components. Then find a message
M]0, 0] such that the computation

M{0,0]
=

Qo Py

conforms to both sets of trails. Since the sets do not share active non-linear components,
we get

Q24 b,

where QZ‘:Q()@VZ', Pj :Po@Aj.

Since we control message injections in f, we are able to define M0, 0] block by block
similarly to the trail backtracking approach [5]. If the message schedule is non-linear, the
differential trails (6) and (8) may depend on M0, 0]. Furthermore, parts of message M0, 0]
may remain undefined as they are not used in f. A procedure that ensures that the mes-
sage M0, 0] is well-defined, and the trails (6) and (8) do not contradict, is called message
compensation.



Algorithm 3. (for bicliques of dimension 1) We apply this rebound-style algorithm if the
mapping f is too long for differential trails with reasonable number of sufficient conditions.
Then we split it into two parts fi and fo and consider two differential trails with probabilities
p and ¢, respectively:

AJM v]\/[
0—4, V—70. (10)
fi f2

We fix the state S between f; and fo, and consider a quartet of states:
S, S®A SeV, SeAa V.

Suppose that for a given message M and the quartet of states is the quartet in the middle
of the boomerang attack, which happens with probability p?¢? for a random M under some
independence assumptions. Then we derive input states QQp, @?1 and output states Py, P,
which are linked as follows:

Qo XL 5 M p,.

fi f2
M M
Qo 4>ME';A S®A —>MG;A P,
1 2
Q M@VAJ S @ V M@VIVI P .
1 05
1 f2
M M M M
Q MOV g Ny MEATEV T b
1 2

Therefore, we get a biclique, where the message group is defined as follows:
M][0,0] = M; M[0,1] = M @ AM; M[1,0]= M & VM, M[1,1] = M @ AM ¢ VM.

In practice, we use freedom in the internal state and in the message injection fulfill conditions
in both trails with tools like message modification and auxiliary paths (Figure 3).

This algorithm is applied in the preimage attack on the Skein compression function. It
also has been used in so-called long biclique attacks on AES.

1 II 111
‘ Qo Q1
_ Guess = Resolve * * Construct
M1, 1] X dlﬁere_nce X in the middle X solutions
in computations —=| *
Py P

Fig. 3. Rebound-style algorithm for biclique construction.

4 Simple case: second preimage attack on Skein-512 hash

Skein [9] is a SHA-3 finalist, and hence gets a lot of cryptanalytic attention. Differential [4]
and rotational cryptanalysis [16] led the authors of Skein to tweak the design twice. As a
result, a rotational property, which allowed cryptanalyst to penetrate the highest number
of rounds, does not exist anymore in the final-round version of Skein. Hence the best known
attack are near-collisions on up to 24 rounds (rounds 20-43) of the compression function



of Skein [4,27]. Very recently near-collisions attacks on up to 32 rounds of Skein-256 were
demonstrated [30].

The cryptanalysis of the Skein hash function, however, is very limited, and since the
first publication of this work there has been no advance in this direction. Rotational attacks
did not extend to the hash function setting, and the differential attacks were not applied
in this model. In fact there is no cryptanalytic attack known on any round-reduced version
of Skein at all. We subsequently give the first attack in this arguably much more relevant
setting.

Since this is the first application of our method, we prefer to give the simplest example
in the strongest model rather than attack the highest number of rounds. We consider the
Skein-512 hash function reduced to rounds 3-24 (22-round version). In addition to using
the biclique concept, on of the interesting features of our attack is that we, apparently for
the first time, utilize a statistical hypothesis test to improve the matching phase instead of
a direct or a symbolic (indirect) matching. Without it, less rounds could be covered with
basically the same computational complexity.

4.1 Description of Skein-512

Skein-512 is based on the block cipher Threefish-512 — a 512-bit block cipher with a 512-bit
key parametrized by a 128-bit tweak. Both the internal state I and the key K consist of eight
64-bit words, and the tweak T is two 64-bit words. The compression function F(CV, T, M)
of Skein is defined as:

F(CV,T,M) = Ecvyr(M) & M,

where Ef 7(P) is the Threefish cipher, C'V is the previous chaining value, T' is the tweak,
and M is the message block. The tweak value is a function of several parameters including
the index of the last bit of the message.

Threefish-512 transforms the plaintext P in 72 rounds as follows:

P — Add subkey K — 4 rounds — Add K' — ... — 4rounds — Add K* — C.

The subkey K*® = (K§, K7,...,K$) is produced out of the key K = (K|0], K[1],...,K[7])
as follows:

K; = K[(s+j)mod9], 0<j<4 K: = K[(s +5) mod 9] + T[s mod 3];
K§=K|[(s+6)mod 9] +T[(s+ 1) mod 3]; K;=K]|[(s+7)mod9|+s,

where s is a round counter, T'[0] and T'[1] are tweak words, T'[2] = T'[0] + T[1], and K[8] =
Coa0 © @]7-:0 K|[j] with constant Cayy optimized against rotation attacks.

One round transforms the internal state as follows. The eight words I°,I',...,I7 are
grouped into pairs and each pair is processed by a simple 128-bit function MIX. Then all the
words are permuted by the operation PERM. The details of these operation are irrelevant
for the high-level description, for completeness they can be found in Appendix B. We use

the following notation for the internal states in round 7:

_ MIX _ PERM _
ST A ST M S P

4.2 Second preimage attack on the reduced Skein-512

We consider Skein-512 reduced to rounds 3-24. In the hash function setting we are given
the message M and the tweak value T', and have to find a second preimage. We produce
several pseudo-preimages (C'V, M’) to a call of the compression function that uses 512 bits
of M and then find a valid prefix that maps the original IV to one of the chaining values
that we generated. Let f map the state after round 11 to the state before round 16. We
construct a biclique of dimension 3 for f following Algorithm 1 (Section 3):



1. Define AM = (0,j < 58,5 < 58,0,0,0,0,0) and VM = (0,0,0,i < 55,7 < 55,0,0,0).

AM
2. Generate Qg and compute Py, P, ..., P;. If the trails 0 TJ> A; are not based on the

linear difference propagation, repeat the step.
3. Compute @; and check if the condition on active non-linear elements is fulfilled. If so,
output a biclique.

We use a differential trail that follows a linear approximation that is a variant of the 4-round
differential trail from the paper [4], which has probability 278 and, thus, 68 bit conditions
if taking the message addition into account. For the trails based on the 3-bit difference Aéw
we have, due to some overlaps, only 197 sufficient conditions in total. A computation of Q;
out of Py do not affect those conditions with probability 27%3 (checked on a PC), or 273
in total. Therefore, for the eight states P; the probability is 27038 ~ 273 We construct a
4-round biclique with complexity at most 21973 = 2200, Note that we have 1024 —200 = 824
degrees of freedom left.

Probabilistic matching. The matching variable v consists of bits 30, 31, 53 of the word 1
after round 24. Due to carry effects, there is a small probability that those bits require
the knowledge of the full message to be computed in both directions. This probability has
been computed experimentally and equals 0.09. Therefore, a matching pair of computations
yields a pseudo-preimage with probability 27°%1 and we need to use 259! bicliques for
this purpose.

1. Build a biclique of dimension 3 in rounds 12-15 with key additions (key addition + 4
rounds + key addition).

2. Compute forward chunk in rounds 16-19, backward chunks in rounds 8-11, and bits
1 %0731753 of the the state S24~% in both directions in the partial matching procedure.

3. Check for the match in these bits, produce 23 key candidates, which get reduced to 2%
due to the type I error. Check them for the match on the full state.

4. Generate a new biclique out of the first one by change of key bits.

5. Repeat steps 2-5 25979 times and generate 2°07-57509+29 — 91.6 fy]] pseudo-preimages.

6. Match one of the pseudo-preimages with the real C'Vj.

On step 3. We have checked experimentally that the matching bits can be computed from
both chunks independently with probability 0.91, so with probability 27! we have a type-I
error [21], i.e. a false positive, and the candidate is discarded. Insisting on probability 1, as
done in earlier work, would have lead to a redesign of the attack for a smaller number of
rounds.

Complexity. The biclique construction cost can be made negligible, since many bicliques can
be produced out of one. Indeed, we are able to flip most of the bits in the message so that the
biclique computation between the message injections remain unaffected, and only output
states are changed. Every new biclique needs half of rounds 8-11 and 16-19 recomputing,
and half of rounds 3-5 and 21-24 computing to derive the value of the matching variable.
Hence each biclique tests 2° preimage candidates at cost of (2+2+1.5)-8+(2+2+2)-8 = 92
rounds of 22-round Skein, or 223 calls of the compression function, taking a recheck into
account. As a result, a full pseudo-preimage is found with complexity 2°°%4. We need
3 = 216 pseudo-preimages to match one of 22194 prefixes, so the total complexity is 2512,



4.3 Second preimage search for full Skein-512

Skein-512 appears to be the only hash function in the finalist selection of the SHA-3 com-
petition that allows for time-complexity gains over brute-force search using cryptanalytic
meet-in-the-middle strategies®. In here we explore this further.

We start with the simple observation that when looking through a message space the
first rounds need only be partially computed. When using the 64-bit modular addition is
the cost metric, the first round can be for free, the second rounds needs only one instead of 8
computations, etc, saving more than 3 round computations in total. Likewise, if only a few
output bits instead of all need to be computed, e.g. for matching with the target hash value,
a similar number of computations can be saved. Similar observations can and have been
made for other primitives, however as Skein-512 is the only narrow-pipe SHA-3 finalist, we
can go further. Those bits on which the check is performed need not be at the end of the
compression function call, but can be at any point in the internal state. This allows to also
have savings in another chunk. One simple example of such savings are neutral bit effects.
Similar to [16], in experiments we found that for 5 rounds in the backwards direction, many
neutrals bits to not affect a number of state bits with probability 1. These neutral bits can
in turn be used as the inner loop of the search space. The total number of rounds that are
saved are hence at least 11, leading to a preimage search complexity of no more than 251176,
By spending some computation (that is later amortized) to find suitable chaining values
that allow for longer neutral bits, or by simply choosing a suitable CV in the compression
function setting, these results can be improved further.

5 Preimage attacks on the SHA-2 hash functions

The SHA-2 family is the object of very intensive cryptanalysis in the world of hash functions.
In contrast to its predecessors, collision attacks are no longer the major threat with the
best attack on 24 rounds of the hash function [12,23]. So far the best attacks on the SHA-
2 family are preimage attacks on the hash function in the splice-and-cut framework [1]
and a boomerang distinguisher that is only applicable for the compression function [17].
We demonstrate that our concept of biclique adds two rounds to the attack on SHA-256,
four rounds to the attack on SHA-512, and many more when attacking the compression
functions. The number of rounds we obtain for the compression function setting is in both
cases comparable to [17], the later however does not allow extension to the hash function
nor does it violate any “traditional” security requirement.

The message schedule of the SHA-2 family is nonlinear, so the number of attacked rounds
depends significantly on the position of the biclique. We apply the following reasoning:

— The message injections in rounds 14-15 are partially determined by the padding rules;
— Freedom in the message reduces the biclique amortized cost;

Chunks do not bypass the feedforward operation due to high nonlinearity of the message
schedule;

— There exists a 6-round trail with few conditions easy to use as a V-differential.
Chunks do not have maximal length, otherwise the biclique trail becomes too dense.

SHA-256 Taking these issues into account, we base our attack on a 6-round biclique
in rounds 17-22. The full layout is provided in Table 4. The biclique is constructed with
Algorithm 2, Section 3.

! The narrow pipe Skein-256-256 also allows for the approach, but all versions of Keccak, Grgstl, and JH
are wide-pipe and do not allow this. For Blake the situation is less clear.



SHA-512 Our attack on SHA-512 does not fix all the 129 padding bits of the last block.
This approach still allows to generated short 2nd-preimages by using the first preimage to
invest the last block that includes the padding and perform the preimage attack in the last
chaining input as the target.

For a preimage attack without a first preimage, expandable messages as e.g. described
in [15] can be used. This adds no noticeable cost as the effort for this is only slightly
above the birthday bound. In addition, the compression function attack needs to fulfill the
following two properties:

Firstly, the end of the message (before the length encoding, i.e., the LSB of W13) has
to be '1’. Secondly, the length needs to be an exact multiple of the block length, i.e., fix the
last nine bits of W' to 11011111117 (895). In total eleven bits would need to be fixed for
this. In the further text we show how to fulfill these conditions.

The biclique is constructed by an algorithm similar to the attack on SHA-256 (Algorithm
2, Section 3).

6 Attacks on the compression functions: SHA-2 and Skein

6.1 Preimage attacks on the Skein compression functions

In this section we provide an attack on the 37-round Skein-512 compression function. In the
compression function setting we control the tweak value, which gives us additional freedom
both in chunks and the construction of the biclique.

The attack parameters are listed in Table 3 in the Appendix. We build a biclique
in rounds 24-31, and apply the attack to rounds 2-38, i.e., to the 37-round compression
function.

Bicliques are constructed by Algorithm 3 (Section 3). We use two differential trails:
based on AM (A-trail) for rounds 16-19 (including key addition in round 19) and based
on VM (V-trail) for rounds 20-23. The differential trails are based on the evolution of a
single difference in the linearized Skein. The A-trail has probability 2752. The V-trail has
probability 272,

The biclique is constructed as follows. First, we restrict to rounds 19-20, where the
compression function can be split into two independent 256-bit transformations. A simple
approach with table lookups gives a solution to restricted trails with amortized cost 1 (more
efficient methods certainly exist). Then we extend this solution to an 8-round biclique by
the bits of K°. We use K in the messagemodification-like process and adjust the sufficient
conditions in rounds 16-23. We have 221 degrees of freedom for that (computed on a PC).
As many as 96 bits of freedom do not affect the biclique at all and are used to reduce the
amortized cost to only a single round.

In the matching part we recompute 29 rounds per biclique. However, a single key bit
flip affects only half of rounds 12-15 and 24-27, and also we need to compute only a half
of rounds 2-5 and 35-38. In total, we recompute 42 rounds, or 2!? calls of the compression
function per structure, and get 2 candidates matching on one bit. The full preimage is found
with complexity 22112,

6.2 Preimage attacks on the SHA-2 compression functions

In this section we provide short description of attacks on the SHA-2 compression functions.
As long as we do not attack the full hash function, the preimage attack on the compression
function is relevant if it is faster than 2", though not all these attacks are convertible to the
hash function attacks. As a result, we can apply the splice-and-cut attack with the minimum
gain to squeeze out the maximum number of rounds. This implies that we consider bicliques



of dimension 1. In differential terms, we consider single bit differences AM and VM. As a
result, we get sparse trails with few conditions, and may extend them for more rounds.

— Build 11-round biclique out of a 11-round V-trail in rounds 17-27 (SHA-256) and 21-
31 (SHA-512). The trail is a variant of the trail in Table 5 that starts with one-bit
difference.

— Construct message words in the biclique as follows. In SHA-256 fix all the message words
to constants, then apply the difference A{V[ to W7, and assume the linear evolution of
AM wwhen calculating AW 7+ from W2, ..., W', Assume also the linear evolution of
VM when calculating VW27~ from W28, ... W*2. Analogously for SHA-512.

— Build the biclique using internal message words as freedom, then spend the remaining
5 message words to ensure the A and V-trails in the message schedule. As a result, we
get the longest possible chunks (2-16 and 28-42 in SHA-256).

Therefore, we gain 5 more rounds in the biclique, and two more rounds in the forward chunk.
This results in a 52-round attack on the SHA-256 compression function, and a 57-round
attack on the SHA-512 compression function.

7 Discussion and Conclusions

We reconsidered meet-in-the-middle attacks and introduced a new concept of bicliques.
Bicliques have large potential in attacks on narrow-pipe hash functions and block ciphers,
as has been demonstrated by recent attacks on the full versions of popular block ciphers.

To emphasize new ideas and methods behind the new concept, we focused on clear
definitions and a variety of construction algorithms. As for applications, in the main text
we described basic steps in the best attacks so far on SHA-256, SHA-512, and the SHA-3
finalist Skein, with more details left for the Appendix.

As for the employed techniques, we additionally benefit from the following features:

— Use of differential trails in a biclique with a small number of sufficient conditions;
Deterministic algorithms to build a biclique, which can be adapted for a particular
primitive;

— Use of various tools from differential cryptanalysis like trail backtracking [5], message
modification and neutral bits [6, 14, 20, 28], and rebound techniques [19];
— Utilizing a statistical test for matching, instead of a direct or symbolic matching.

Overall, the differential view gives us much more freedom and flexibility compared to
previous attacks. Though all the functions in this paper are ARX-based, our technique can
be as well applied to other narrow-pipe designs.

Status of SHA-2 and Skein-512. For SHA-256, SHA-512, and Skein-512, we considered
both the hash function and the compression function setting. In all settings we obtained
cryptanalytic results on more rounds than any other known method. Using these data
points, it seems safe to conclude that Skein-512 is more resistant against splice-and-cut
cryptanalysis than SHA-512. An interesting problem to study would be possibilities for
meaningful bounds on the length of biclique structures.

For Skein-512 we also apply the meet-in-the-middle approach to obtain a computational-
complexity gain for its full 72-round version. While we don’t claim this to be an attack,
it seems worthwhile to point out that this is the only hash function in the SHA-3 finalist
selection that allows for such an approach.
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A Specification of SHA-2 Family of Hash Functions

We briefly review parts of the specification [22] needed for the cryptanalysis. The SHA-2
hash functions are based on a compression function that updates the state of eight 32-bit
state variables A, ..., H according to the values of 16 32-bit words My, ..., M5 of the
message. SHA-384 and SHA-512 operate on 64-bit words. For SHA-224 and SHA-256, the
compression function consists of 64 rounds, and for SHA-384 and SHA-512 — of 80 rounds.
The full state in round r is denoted by S".

The i-th step uses the i-th word W' of the expanded message. The message expansion
works as follows. An input message is split into 512-bit or 1024-bit message blocks (after
padding). The message expansion takes as input a vector M with 16 words and outputs
a vector W with n words. The words W* of the expanded vector are generated from the
initial message M according to the following equations (n is the number of steps of the
compression function):

7

- (1)

M for 0 <i <15
ol (W) + W £ og(W) 4 W16 for15<i<n
where o¢(x) and o1(z) are linear functions. Other details are irrelevant for the high-level

view and are given in the Appendix C.

B More details on Skein specification

The operation MIX has two inputs xg, 1 and produces two outputs yo, y1 with the following
transformation:

Yo = To + T1
Y1 = (21 LRy moa sy41.5) D Yo

The exact values of the rotation constants R;; as well the permutations 7 (which are
different for each version of Threefish) can be found in [9].

Local collision in Skein-512. If an attacker controls both the IV and the tweak he is able to
introduce difference in these inputs so that one of subkeys has zero difference. As a result,
he gets a differential which has no difference in internal state for 8 rounds. The lowest
weight of input and output differences is achieved in the following combination:

AK[6] = AK[7] = AT[1] = 5,



IO[IM 2 1P 18]I [Conditions in the round
SlQ—A 3 3
SB-4 63 9
SH=4lg 3 3] |12 24
s=A1316(3(24[12[6]6]3 161

Table 2. Number of active bits in the most dense A-trail in 4 rounds of Skein-512.

which gives difference (0,0,...,0,8) in the subkey K° and (§,0,0,...,0) in K&, and zero
difference in the subkey K*. The local collisions for further rounds are constructed analo-
gously. We use the following differences in the compression function attack to make a local
collision in rounds 8-15 and 24-31:

AK[0] = AT[0] = AT[1] = 1 < 63;  AK[3] = AK[4] = AT[1] = 1 < 63.

Biclique
Rounds |Dimension AM bits VM bits Complexity |Freedom used
16-23 1 K|[0] K[4]e3 2256 162
Chunks Matching
Forward| Backward |Partial matching|Matching bit|Matching pairs| Complexity
8-15 24-31 (32 239=2¢17 I3 22 ot

Table 3. Parameters of the preimage attack on the Skein-512 compression function

C DMore details on SHA-2 specification
The round function of all the SHA-2 functions operates as follows:

7Y = H' + $,(E") + Ch(E', F',G') + K' + W",
At Tl(i) + Tz(i) Bitl — 4i ¢itl _ gi pitl _ i
E’H—l — DZ +T(1) Fi-i—l — EZ G’H—l — FZ H’H—l _ Gl
7)) ) ) .
Here K’ is a round constant.The round function uses the bitwise boolean functions Maj and

Ch, and two GF(2)-linear functions Xy(z) and X (x). Functions Maj and Ch are defined
identically for all the SHA-2 functions:

Ch(z,y,z2) =x Ay@®T Az
Maj(z,y,2) =x ANy AzS YNz

For SHA-224 and SHA-256, Xy(x) and X (x) are defined as follows:
Yo(z) =(x>>2) @ (x>>13) @ (x > 22), Yi(z)=(x>>6)D (x> 11) & (x >> 25).
For SHA-384 and SHA-512, they are defined as follows:

Yo(x) = (xz>>28) @ (x> 34) @ (x > 39), Yix)=(z>>14)® (x> 18) @ (x >> 41).



Operations 3> and > denote bit-rotation and bit-shift of A by x positions to the right
respectively. The message schedule functions og(x) and o;(x) are defined as follows for
SHA-224 and SHA-256:

oo(x) = (>>7)@ (x> 18)® (x> 3), o1(z) = (2> 17) @ (z>>19) ® (x > 10).

and for SHA-384 and SHA-512:

oo(z)= (z>1)d@>8)d(z>17), oi(z) = (z>19)@ (z>>61)® (x> 6).

D Details on the 46-round SHA-256 attack

D.1 Biclique construction

Here we provide more details on the biclique construction algorithm:

1.

Fix a group of 6-round differential trails (the one based on 3-bit difference is listed in
Table 5)

vM
Vi ——0.

Derive the set of sufficient conditions on the internal states (Table 7).
Fix the message compensation equations with constants ¢y, co, ..., co (Section D.2).
Fix an arbitrary Qg and modify it so that most of conditions in the computation Q¢ —
Py are fulfilled. Derive @); out of Q¢ by applying V;.
Fix a group of 2-round trails (the one based on 3-bit difference is given in Table 6)
(AW — AS19) as a A-trail (Equation (6)) in rounds 17-19.
Choose W17, W1 ... W?% and constants cg, cg so that the conditions in the computa-
tions Qo — Pj,j = 0,...,7 are fulfilled. Produce all P;.

An algorithm for the biclique is detailed in Appendix, Section D.3. Finally, we produce

Qo, - -

,Q7 and Py,..., P; that conform to the biclique equations.

Biclique

Rounds |Dimension AM bits VM bits  |Complexity |Freedom used

1722 | 3 Wi 261 W a1 2% 416

Message compensation
Equations Constants used in the biclique
9 2
Chunks Matching

Forward| Backward |Partial matching|Matching bits| Complexity per match

2-16 23-37 37 =38« 1 A3 23 23

Table 4. Parameters of the preimage attack on the 45-round SHA-256

The complexity of building a single biclique is estimated as 232. However, as many as

7 message words are left undefined in the message compensation equations, which gives us
enough freedom to reuse a single biclique up to 22° times. The complexity to recalculate
the chunks is upper bounded by 22 calls of the compression function. The total amortized
complexity of running a single biclique and produced 22 matches on 4 bits is 23 calls
of the compression function (see details in Appendix). Since we need 2252 matches, the
complexity of the pseudo-preimage search is 22°3. Therefore, a full preimage can be found

with complexity approximately 217(

253+256)/2 ~ 92555 Yy restarting the attack procedure

256—253

2 =25 times. Memory requirements are approximately 215 x 24 words.



D.2 Message compensation.

Since any consecutive 16 message words in SHA-2 bijectively determine the rest of the
message block used at an iteration of compression function, we need to place the initial
structure within a 16-round block and define such restrictions on message dependencies
that maximize the length of chunks.

We use a heuristic algorithm to check how many steps forward and backward can be
calculated independently with a 6-step initial structure. We discovered that with W17 and
W22 selected as the words with neutral bits, it is possible to expand 16-round message block
{W12 .. W27} by 10 steps backwards and 9 steps forwards, so that {W?2,... W16} are
calculated independently of W17 | and {W?23, ..., W36} are calculated independently of W22,
Below we define the message compensation conditions that make such chunk separation
possible (neutral bit words are outlined in frames):

—0'1(W25) + W27 = c1; _ W19 _ 0'1(W24) + W26 = ¢y _O_l(W23) 4 W25 =3
— +WH =¢ — o (W) + W2 = ¢5; —o (W) + W2 = ¢

o (W)W = e W o (W) = e W W)= e
(14)

Fig. 4 explains how the message compensation dependencies are constructed. Columns
and rows correspond to message words and equations respectively, where X at the in-
tersection of row i ad column j shows that W7 is a part of i*" equation. Colour of a
column reflects whether the appropriate message word is set independently of both words
with neutral bits (white), calculated using NW1 (blue) or NW? (yellow). We start with
(W2, ..., WH W?2} colored blue and {W1'7, W?28 ... W36} colored yellow (Fig. 4, a) and
aim to get rid of equations that involve both ’blue’ and ’white’ message words. We split

these equations and introduce constants {ci,...,cg,co} (in other words, we create addi-
tional dependencies between controlled messages and words with neutral bits as shown in
Fig. 4,b).

It is easy to see that words W14, ... W1 W18 and W?° can be chosen independently
of both W7 and W22, so we can assign W4 and W' with 64-bit length of the message
to satisfy padding rules (additionally, 1 bit of W3 needs to be fixed). W& and W?° are
additional freedom for constructing the biclique.

D.3 Trails

The basic differential trail for the biclique is a 6-round trail in the backward direction
(Ag < VM) that starts with the difference in bits 22, 23, and/or 31 in Way. The trail is
briefly depicted in Table 5 with references to the sufficient conditions (which work out for
all the 7 possible differences) in Table 7.

We also use bits 25, 26, 27 as neutral in Wi7. To prevent this difference to interleave
with the backward trail difference in round 19, we restrict the behavior of the forward trail
as specified in Table 6. The aggregated conditions, which make each forward trail keep the
backward ones unaffected, are given in Table 7.

With three neutral bits we construct a biclique with 8 starting points for chunks in
each direction. First, we choose the initial state Ay7,..., H17 so that the conditions 1 and 5
are fulfilled. Then we proceed with a standard trail backtracking procedure modifying the
starting state if needed. Here we are free to use all the tools from the collision search like
message modification or tunnels. Next, in round 18 we further check whether the value of
FE stops carries in the forward trail. If not, we change the value of D in the starting state
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Fig. 4. Message dependencies: (a) before and (b) after message compensation in SHA-256

Round[A[B| C D E F G H W | Cond-s
17 [-[-[222331] - - A - * - 1
18 |-|- - |222331] - . A . - 3,4
19 |-|- - - 222331 - y A - 7-11
20 |-|- - - - |222331| - y - 12
21 |- |- - - - - |222331| - - 13
22 | -|- - - - - - |222331| -

23 |- |- - - - - - - |22,2331

Table 5. Details for biclique in SHA-256. Differential V-trail (active bits). A =
{6,11,12,16, 17, 20, 23, 24, 29, 30}

accordingly. Then we sequentially modify the initial state in order to fulfill the conditions
2-11.

The last two conditions are affected by the message words Wig and Wyg. We need to
fulfill three bit conditions for every Wiz, used in the attack. Therefore, we spend 3-8-2 = 48
degrees of freedom in message words W7, Wig, Wig, Wag, Wo1. Note that there is a difference
in Wig determined by the difference in Wi7 due to the message compensation. We have fixed
the constants cg and c¢7 from Eq. 14 while defining W19 and Wa;. In total, we construct the
biclique in about 23? time required to find proper Wig and Way.

Amount of freedom used. In total, we have 512 degrees of freedom in the message and
256 degrees of freedom in the state. The biclique is determined by the state in round 17
and message words Wi7—Ws;1. The choice of Wig and Wy is equivalent to the choice of
constants cg, ¢y in Eq. 14. Therefore, we spend 2564532 = 416 degrees of freedom for the
biclique fulfilling as few as 47 4+ 42 (Table 7) conditions. We note that we have more than
300 degrees of freedom left in the construction of a biclique. After the biclique is fixed, there
are 768 —416 = 352 degrees of freedom left. We spend 32+ 3242 = 66 for the padding, thus
leaving with 286 degrees of freedom. Therefore, one biclique is enough for the full attack.



Round |A|B|C|D E F G| H |Cond-s
18 | *|-|-|-]252627] - - 2
19 [ *|*]-|- P 25,26,27 | - | - 5,6

Table 6. Details for biclique in SHA-256. Differential A-trail (active bits).

= ¥1{25,26,27} = {0,1,2,14,15,16, 19,20, 21}, = stands for arbitrary difference.

’ Round ‘ Conditions ‘ Purpose ‘ F ‘ C ‘ Dw ‘
17 1: A?%23:31 — p22,23.31 Absorption (MAJ) | IC 3 0
2: (W®E18)25,26,27 =0 Stop forw. carry SM | 6 0
18 3:EV =1, Absorption (IFF) | SM | 9 0
4: (D@ Fg)*?%3t =0 Stop carry SM | 3 0
5 F25:26:27 — G25:26.27 | Ahsorption (IFF) | IC | 9 | 0
6: (S1® E19)? =0 Stop forw. carry | SM | 2 0
19 | 7: F2231 = G231 Absorption (IFF) | SM | 2 | 0
8 F2 £ G* Pass (IFF) SM |1] 0
9: CH?® # §1%° Force carry (H) SM | 1 0
10: (S1@ H)* =1 Stop carry (H) SM |9 0
11: (CH® H)** =0 Force carry (H) SM | 1 0
11 (CH® H)*® =0 Force carry (H) SM | 1 0
20 | 12: E*3L =9 Absorption (IFF) | W | 21 | 21
21 13: E?22331 —1 Absorption (IFF) | W2 | 21 | 21

Table 7. Sufficient conditions for the V-trails in SHA-256.

A" — i-th bit of A. F — how the conditions are fulfilled (IC — initial configuration, SM — state modification).
C — total number of independent conditions. Dy — conditions fulfilled by message words.
A= X1{22,23,31} = {6,11, 12,16, 17, 20, 25,29, 30}

E Details on the 50-round SHA-512 attack

E.1 Biclique construction

Attack layout The basic parameters of the pseudo-preimage attack are given in Table 8.
More details:

1. Fix a group of 6-round differential trails (Table 9) for the differential

v, Y5 0.

Derive the set of sufficient conditions on the internal states.

2. Fix the message compensation equations with 9 constants (Appendix E.2).

3. Fix an arbitrary (¢ and modify it so that the most of conditions in the computation
Qo — Py are fulfilled. Derive Q; out of Qg by applying V;.

4. Fix a group of 3-round trails (Table 10) (AW?! — AS?3) as A-trails (Equation (6)) in
rounds 21-23.

5. Choose W21, W?22 ... W26 and constants cg, cg so that the conditions in the computa-
tions Qo — Pj,j = 0,...,7 are fulfilled. Produce all P;.

Trail details for the biclique are detailed further. Finally, we produce Qq,...,Q7 and

Py, ..., P; that conform to the biclique equations.

The complexity of building a single biclique is estimated to be 232 units. However, the
amortized cost is again negligible, since we have much freedom in unused message words.
The complexity of getting 23 matches on 3 bits is 23 calls of the compression function. Since



Biclique
Rounds [Dimension AM bits VM bits |Complexity| Freedom used
2126 | 3 W o102 W2 5455 2% 96
Equations Message compensation |Constants used in the biclique
9 2
Chunks Matching
Forward| Backward |Partial matching|Matching bits Complexity per match
6-20 27-40 41 -+ 43 <5 AG% o 23

Table 8. Parameters of the preimage attack on the 50-round SHA-512

we need 2°% matches, the complexity of the pseudo-preimage search is 2°%7. Therefore, a full

preimage can be found with complexity approximately 211(509+512)/2 95115 Y,y pegtarting
12— 50¢

the attack procedure 27557 = 215 times. Memory requirements are approximately 215 x 24

words.

E.2 Message compensation

The system of compensation equations is defined similarly to the attack on SHA-256:

—0‘1(W29) + w3l = C1; —WE - 0‘1(W28) + w30 = c9; —0] (W27) + w2 = c3
— + W2 =¢y; — o (WH) + W = ¢5; —o (WB) + W = ¢4
—o (W) WE = W (W) = e W+ [ = ¢

To satisfy padding rules, we need to use 1 LSB of W3 and 10 LSB of W5.The choice of
constants cg, cg and fixed lower 53 bits of W26 provide us with sufficient freedom. Indeed,
by choosing cg we define lower 53 bits of W1'7. Having cg chosen, we derive 45 lower bits of
W16 fixed due to o( in message schedule. Further, we get lower 37 bits of W1?, 29 bits of
W1 and 21 bit of W13 fixed. As we need only one LSB of W' and 10 LSB of W to be
fixed, we use only lower 33 bits of W2, lower 33 bits of cg, and lower 25 bits of cg.

E.3 Trails

The basic differential trail for the biclique is a 6-round trail in the backward direction
(Ag <+ VM) that starts with the difference in bits 53, 54, and/or 55 in W26, The trail is
depicted in Table 9 with the number of independent sufficient conditions.We also use bits
60, 61, 62 as neutral in W?2!. To prevent this difference to interleave with the backward trail
difference in round 19, we restrict the behavior of the forward trail as specified in Table 10.
Note that the trails based on the linearized version are now compatible with our choice of
neutral bits. The biclique is basically the same as in SHA-256, with a small difference that
we spend 48 + 48 = 96 degrees of freedom inside.

Complezity estimate. We get a pseudo-preimage with complexity approximately 2°06 x 23 =
2509 compression function operations. Therefore, a full preimage can be found with complex-
ity approximately 211(509+512)/2 & 95115 1,y regtarting the attack procedure 9 — olb
times from step 2. Memory requirements are approximately 4 message words (2 message
words for storing the fixed parts of neutral bits, 23 entries of 3 neutral bits difference and
3 bits for matching in each list). For finding a preimage, we need to store 2! pseudo-

preimages, i.e. the memory requirement is 2'° x 24 words.




Round A |B C D E F G H Indep. cond-s
21 |- - [535455] - - a - % 3
22 |-|-] - |535455| - - A - 12
23 - |- - - 53,54,55 - - A 12
21 |-|-] - - - |535455] - - 24
25 - |- - - - - 53,54,55 - 24
26 - - - - - - - 53,54,55
Table 9. Biclique in SHA-512. Differential V-trail (active bits). A = X:{53,54,55}
(12,13, 14, 35,36, 37, 39, 40,41}
Round |[A|B|C|D E F G |H| Cond.
22 ¥1-]-1-160,61,62 - - - 3
23 R R I [ 60,61,62 | - | - 18

Table 10. Biclique in SHA-512. Differential A-trail.

@ = ¥1{60,61,62} = {17,20,21,42,43,44, 46,47, 48}, * stands for arbitrary difference.
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Fig. 5. Message compensation in SHA-512



