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Abstract. We consider linear approximations of an iterated block cipher in the presence of several
strong linear approximation trails. The effect of such trails in Matsui’s Algorithm 2, also called the
linear hull effect, has been previously studied by a number of authors. However, the effect on
Matsui’s Algorithm 1 has not been investigated until now. In this paper, we fill this gap and
examine how to exploit the linear hull in Matsui’s Algorithm 1. We develop the mathematical
framework for this kind of attacks. The complexity of the attack increases with the number of
strong linear trails. We show how to reduce the number of trails and thus the complexity using
related keys. Further, we illustrate our theory by experimental results on a reduced round version
of the block cipher PRESENT.
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1 Introduction

Linear cryptanalysis of an iterated block cipher as originally presented by M. Matsui in [10] is based on
strong correlations between a linear combination of plaintext bits and a linear combination of ciphertext
bits. Matsui also showed that given a sufficient amount of data such correlations can be observed from
the data and gave the relationship between the strength of the correlation and the data requirement.
Thus estimation of the data complexity is reduced to the problem of estimating the correlation of the
linear approximation. Matsui’s solution was to identify a strong linear approximation trail by chaining
approximations from round to round over the cipher and computing the total correlation as a product of
the round correlations based on what he called the Piling-up lemma. According to this method only the
sign, but not the magnitude of the correlation, depends on the secret key. Matsui presented a cryptanalysis
method, called Algorithm 1, which by observing the sign of the correlation allows determining one bit
of the secret key of the block cipher DES. The data complexity of this attack is determined by the
magnitude of the correlation, which is the same for all keys.

Daemen et al. [6] noted that, for fixed input and output bit linear combinations, there may exist
several approximation trails which give non-negligible correlations as calculated using the Piling-up
lemma. Moreover, all such trail correlations contribute to the magnitude of the total correlation in a
manner which depends on the secret key. For such ciphers, Matsui’s algorithms do not work as expected.
After the invention of linear cryptanalysis, the design principles of block ciphers include criteria such
as the Wide Trail Strategy [7] to split linear approximations into several small approximation trails.
Typical examples of block ciphers designed to be immune against Matsui’s Algorithm 1 are AES [7] and
PRESENT [4].

The set of linear trails contributing to the total correlation of a linear approximation was called
the linear hull in [12], where it was also shown how to calculate the average value of the squared total
correlation over the keys using the linear hull. This value gives a good estimate of the data complexity
of a linear distinguisher for a large proportion of the keys, while, as noted recently also by S. Murphy
[11], there may exist keys, which give total correlations with negligible magnitude and thus distinguishing
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attacks and Algorithm 2 are not effective The impact of linear hulls for Algorithm 1 type of cryptanalysis
was briefly addressed in [14], but has remained unexplored so far. The goal of this paper is to fill this
gap in the theory of block ciphers and investigate under which circumstances it is possible to determine
information about the secret key by observing the value of the correlation of a linear approximation from
the cipher data.

The first assumption we make is that the total correlation of a linear approximation is essentially
determined by a number of about equally strong approximation trails. We develop a mathematical
framework for the statistical analysis of the varying correlation values for key alternating block ciphers
with linear key schedule. The number of bits of information of the secret key obtained in this manner
is logarithmic to the number of trails. Subsequently we will show that we can reduce the number of
active trails using a related key attack, which can lead to a reduced complexity. By using several related
keys, we are able to increase the amount of secret key information that we learn. The data requirement
of these attacks will be inversely proportional to the least correlation of the approximation trails that
determine the total correlation. A suitable test bed of the new cryptanalysis method developed in this
paper is provided by a reduced seven-round version of the block cipher PRESENT. The correlations of
its linear approximations are determined by a number of equally strong trails, while the contribution of
the remaining trails is negligible.

Finally, let us note that the new attack frameworks presented in this paper exploit a single linear
approximation and are therefore essentially different from the multidimensional linear attacks and other
attacks that exploit multiple linear approximations simultaneously [3], [8].

The rest of the paper is structured as follows: First, we introduce linear hulls in Section 2, and show
the transition from trail-correlations to key-mask correlations in Section 3. In Section 4 we describe a
direct way of exploiting the information from the linear hull. Subsequently, we show in Section 5 how
we can refine the attack by using a related key approach with an arbitrary difference. We illustrate
in Section 6 how we can exploit specific differences to learn on the average significantly more bits of
information and in Section 7 we give a summary of the attack complexities. Finally in Section 8, we give
some empirical results on a seven-round version of the block cipher PRESENT [4].

2 Linear Hull

Let EK(x) denote the block cipher encryption of plaintext x ∈ Zn2 with key K ∈ Z`2. A linear approxi-
mation of a block cipher with mask (u, v, w) ∈ Z2n+`

2 is a Boolean function defined as

(x,K) 7→ u · x⊕ v ·K ⊕ w · EK(x) . (1)

The most difficult task in linear cryptanalysis is finding linear approximations with correlation of large
absolute value, and in particular, determining an adequate estimate of the correlation. Let us now assume
that the block cipher is a key-alternating iterated block cipher with round function G(x,Ki) = g(x⊕Ki),
where x is the data input and Ki is the key input to the round. With a fixed key K the iterated block
cipher is a composition of a number, say R, of round functions.

Definition 1. For a binary random variable X on {0, 1} the correlation is defined as

c(X) = 2 Pr(X = 0)− 1 .

For any Boolean function f : Zn2 → {0, 1} we can then define the correlation c(f(x)) as

c(f(x)) = 2−n
(

#{x ∈ Zn2 : f(x) = 0} −#{x ∈ Zn2 : f(x) = 1}
)
.

Then the correlation c(u · x ⊕ w · EK(x)) over a key-alternating block cipher can be calculated by the
following theorem:

Theorem 1. ([7], [13]) Let g be the round function of an R-round key-alternating iterated block cipher
EK with round keys (K1,K2, . . . ,KR). Then for any u ∈ Zn2 and w ∈ Zn2 it holds that

c(u · x⊕ w · EK(x)) =
∑

u2, . . . , uR
u1 = u, uR+1 = w

(−1)u1·K1⊕···⊕uR·KR
R∏
i=1

c(ui · x⊕ ui+1 · g(x)) . (2)
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The sequences u1 = u, u2, . . . , uR, uR+1 = w, over which the summation is taken, are called (linear

approximation) trails from u to w and the product (−1)u1·K1⊕···⊕uR·KR
∏R
i=1 c(ui · x ⊕ ui+1 · g(x)) is

called the trail-correlation of the trail (u1, . . . , uR+1). The goal of classical linear cryptanalysis, as first
proposed by Matsui [10], is to find masks u and w such that for almost all keys K this correlation is
large in absolute value. Matsui’s Algorithm 1 seeks to determine the bit v · K of information of the
key K based on the sign of the observed correlation c(u · x ⊕ w · EK(x)). This will succeed under two
conditions. First, the observed correlation c(u ·x⊕w · EK(x)) for the fixed unknown key K must be large,
and secondly a good theoretical estimate of the sign of the correlation c(u · x⊕ v ·K ⊕ w · EK(x)) must
be available. These conditions are satisfied, if the correlation is large in absolute value and the sum on
the right hand side of the Equation (2) is dominated by a single term with v = (u1, u2, . . . , uR). This is
the classical setting for performing Matsui’s Algorithm 1. Known examples of ciphers admitting single
dominant correlation trails are DES and SERPENT [2]. An extreme example of the opposite case is the
block cipher PRESENT [4], which due to its regular permutation layer splits all correlations to a large
number of terms without a single dominant trail.

To illustrate such a behaviour let us consider a small example presented in [7], see also [14]. In this
example, the correlation (2) is assumed to take the form c(u·x⊕w·EK(x)) = (−1)γ·Kcγ+(−1)λ·Kcλ where
cγ and cλ are the correlations of the linear trails γ and λ, and cγ ≈ cλ. Assume we aim at determining
the value of (−1)λ·K using c(u · x⊕ w · EK(x)) as an estimate of the trail correlation (−1)λ·Kcλ. When
observing the correlation c(u ·x⊕w ·EK(x)) from the data, three values are possible. They are −cλ−cγ or
0 or cλ+cγ depending on the key K. In the first and the third case (−1)λ·K will be correctly determined,
while for about half of the keys we observe correlation 0 ≈ cλ − cγ ≈ cγ − cλ which does not give any
useful information for the classical Algorithm 1.

Taking another look at this example reveals that given the trail correlations cλ and cγ and observing
the value of the correlation c(u ·x⊕w · EK(x)) from the data, we can extract quite a lot of information of
the key. Indeed for half of the keys we get two bits λ ·K and γ ·K of information and for the other half of
the keys, we get the information that (λ⊕γ) ·K = 1. Thus, contrary to the classical linear cryptanalysis,
also correlations equal to zero are meaningful.

As the number of trails grows, the more values the correlations may take and the distinct values of
the correlation (2) split the set of keys into mutually disjoint sets. Thus if sufficiently separated, the
distinct values of the correlations, and hence key classes, may be identified from the data. In this paper
we present a new type of linear cryptanalysis attack based on this observation.

3 From Trails to Key-Masks

Equation (2) sums over all possible trails and involves several linear combinations of round key bits. In
this section we transform it to an expression that is technically easier to handle.

We start by reducing the number of terms in (2) by including only the trails whose correlations are
above a certain threshold τ .

Assumption 1. The influence of trails with trail-correlation essentially smaller than τ is negligible.

Thus for fixed input and output masks u,w, we can define the set of strong trails:

T =

{
(u1, . . . , uR+1) : u1 = u, uR+1 = w,

∣∣∣∣∣
R∏
i=1

c(ui · x⊕ ui+1 · g(x))

∣∣∣∣∣ ≥ τ
}

.

By Assumption 1 it suffices to take the sum in (2) over the set T .
Next we define the key K which will be the target of our attack. Let KM ∈ Zk2 be the original master

key, from which all the round keys are derived. If the key schedule is linear we set K = KM. In the case
where the key schedule is non-linear we start with K = KM and add to K a new bit for each round key
bit that depends in a non-linear way from KM and is not yet in K. In the end we have a key K ∈ Z`2,
for some positive integer `, and a linear relation between K and K1, . . . ,KR. In the example considered
in Section 8 the length of KM is 80 and ` = 104.

Due to the linear relation between K and the round keys (K1, . . . ,KR), there exists a linear function
f which maps the round-masks u1, . . . , uR to a single mask for K, i.e. for all keys

f(u1, . . . , uR) ·K = u1 ·K1 ⊕ · · · ⊕ uR ·KR .
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This allows us to combine all the strong trails which map to the same value f(u1, . . . , uR) = v. We call
the vectors v the key masks and define, for all v ∈ Z`2, the key-mask correlation as

ρ(v) =
∑

(u1, . . . , uR+1) ∈ T
f(u1, . . . , uR) = v

R∏
i=1

c(ui · x⊕ ui+1 · g(x)) .

Remark 1. Depending on the size of T and the round key schedule the number of terms in this sum
varies. Typically for practical ciphers, however, each v originates from a single strong trail.

We define by V = {v ∈ Z`2 : |ρ(v)| > 0} the set of strong key masks. Using Assumption 1, we can now
approximate the correlation c(u · x⊕ w · EK(x)) using the sum

c(u · x⊕ w · EK(x)) =
∑
v∈V

(−1)v·Kρ(v) . (3)

The set V can be represented as a |V| × ` matrix, where each vector v ∈ V ⊂ Z`2 is represented as a row
of the matrix. We will denote this matrix by V . In our analysis, we will distinguish between two cases:
independent and dependent. In the independent case, all vectors in V are independent, where as in the
the dependent case, the vectors in V are not all independent, which means |V| > rank(V ). Thus, in the
dependent case we have to take into account the linear dependencies between different trails.

4 Direct Attack

As discussed in Section 2, the correlation c(u ·x⊕w · EK(x)) of a linear approximation with input/output
masks u and w depends on the key K. In this section, we develop a statistical method to obtain infor-
mation about the key using this fact.

Let C =
{
c(u · x⊕ w · EK(x)) : K ∈ Z`2

}
be the set of possible outcomes of the correlation for masks u

and w. We will denote by d = minc1 6=c2∈C |c1 − c2| the minimal distance between two elements of C. This
value affects the complexity of the attack. As a last value we define the constant c̃ = 2−n gcdv∈V (2nρ(v)).
From Definition 1 we know that 2nρ(v) is always an integer value. Then all strong key-mask correlations
can be written as integer multiples of c̃. Let I ⊂ Z denote the set of all integer multipliers of c̃ such that
C = {ic̃}i∈I . Then by (3) it must hold that d ≥ 2c̃. The variable c̃ makes the notation easier, however,
the important value is d.

Remark 2. In the case of PRESENT, the strong key-mask correlations are always ±c̃.

4.1 Statistical Test

We divide the set of all keys into |C| disjoint subclasses K(c) =
{
K ∈ Z`2 : c(u · x⊕ w · EK(x)) = c

}
for

all c ∈ C. Then we use the basic m-ary hypothesis testing problem with m = |C| to determine the value
c and, consequently, the key-class K(c).

Notation. We denote random variables by capital letters X,Y, . . . and their realizations x ∈ X , y ∈ Y, . . .
by lower case letters. A sequence of independent and identical distributed (i.i.d.) random variables is
denoted by a bold letter, e.g. X = X1, X2, . . . , XN , where N is the length of the sequence. The discrete
probability distribution of a random variable is denoted by p = (pη)η∈X . For a given sequence x, let
N(η|x) = #{i : xi = η} denote the empirical frequency of η in the sequence, with η ∈ X . If the sequence
is clear from the context we will use sometimes Nη = N(η|x). Then the empirical distribution q is given
by qη = Nη/N for η ∈ X .

The result of the linear approximation (u ·x⊕w · E(x)) is either zero or one, thus we have X = {0, 1}
and p = (p0, p1). For our statistical analysis we want to solve a basic m-ary hypothesis testing problem,
where we want to decide which of the m = |C| = |I| different hypotheses Hi with i ∈ I is true. Hypothesis
Hi states that the i.i.d. random variables Xj , 1 ≤ j ≤ N , have correlation ic̃, thus pi0 = 1

2 (1 + ic̃) and
pi1 = 1

2 (1− ic̃). The a priori distribution of Hi is given by πi = Pr(Hi) = 2−`|K(ic̃)|. We use the decision
function δ : XN → I to solve the testing problem. This function assigns each sequence x to a hypothesis.
We denote Pij = Pr (δ(X) = i|Hj) the error probability of δ choosing Hi if Hj is true.

4



Optimal Test Statistic. We use a Bayesian approach, with m = |C| different hypotheses. For a given
hypothesis Hi, the sequence X is binomial distributed, i.e.

Pr
(
N(0|X) = N0

∣∣∣Hi

)
=

(
N

N0

)
(pi0)N0(pi1)N1 .

Let q = (q0, q1) be the empirical distribution, with qη = N(η|x)
N , η = 0, 1. The previous equation only

depends on q and is defined as the likelihood function

L(i; q) =

(
N

Nq0

)
(pi0)Nq0(pi1)Nq1 .

Then for a given sequence x, the optimal decision function outputs i for which the probability of the
sequence is maximal, i.e. which maximizes

Pr
(
Hi

∣∣∣N(0|x)
)

=
πi Pr

(
N(0|x)

∣∣∣Hi

)
Pr
(
N(0|x)

) . (4)

Which i maximizes (4), depends only on the empirical probability q. Thus for a given q the optimal
decision function searches for the i which maximizes πiL(i; q). By taking the logarithm and ignoring
factors that are the same for all i’s we get the following result:

Lemma 1. [9] The optimal decision function is given by:

δ(x) = arg max
i∈I

[
log2(πi) +N0 log2(pi0) +N1 log2(pi1)

]
, (5)

and leads to a total error probability of

Pe =
∑
i∈I

πi
∑

j∈I,j 6=i

Pij . (6)

Complexity. In this section we study the data complexity N that we need for a fixed error probability
Pe. In the analysis we use the following two assumptions.

Assumption 2. The distributions of pi and pj are close, i.e. for i, j ∈ I there exists an 0 < ε < 1/2 such
that |piη − pjη| ≤ εpjη for all η ∈ {0, 1}.

Assumption 3. For all i ∈ I, 1� |ic̃|. From this follows that c̃−1 � |i| and we can approximate c̃−2 + i2

by c̃−2, for i ∈ I.

Both assumption are true for all practical cases.

Lemma 2. For the optimal decision function described in Lemma 1 and a fixed error probability Pe, the
data complexity is upper bounded proportional to

N = 8 ln(2)
log2(|C| − 1)− log2 Pe

d2
. (7)

Lemma 2 shows that the data complexity is proportional to d−2, where d is the minimal difference
between two correlations in C, but only logarithmic in |C|.

Proof. We start by considering a binary decision between two hypotheses Hi and Hj and finally deduce
N for the total test.

The Chernoff theorem [5] states that the error probability Pij is given by

Pij = O
(

2−ND
∗(pi,pj)

)
, (8)
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independent of the a priori distributions, where

D∗(pi, pj) = − min
0≤λ≤1

log2

∑
η∈X

(piη)λ(pjη)1−λ


is the Chernoff-information between the distributions pi and pj .

Baignères and Vaudenay [1] showed that if pi is close to pj , the Chernoff-information can be approx-
imated by

D∗(pi, pj) ≈ 1

8 ln(2)
C(pi, pj), (9)

where C(pi, pj) =
∑
η∈X (piη−pjη)2/pjη is the capacity between the two distributions. Due to Assumption 2,

we can use the previous equation and due to Assumption 3 we can approximate the capacity by

C(pi, pj) =
(i− j)2

c̃−1 − j2
≈ (i− j)2c̃2 .

Together with Equations (8) and (9) we get that for a fixed error Pij , the data complexity is proportional
to

Nij = 8 ln(2)
− log2 Pij
(i− j)2c̃2

.

We now fix the pairwise error probabilities to Pij = Pe/(|C| − 1). To achieve this value we need a data
complexity of

N = 8 ln(2) max
i6=j∈I

log2(|C| − 1)− log2 Pe
(i− j)2c̃2

= 8 ln(2)
log2(|C| − 1)− log2 Pe

d2C
.

From Equation (6) we know that the total error will be

∑
i∈I

πi
∑

j∈I,j 6=i

Pe
(|C| − 1)

= Pe
∑
i∈I

πi = Pe .

ut

Gained Information. The test will tell us in which key-class the secret key lies. A question remains:
How much information do we gain by this knowledge?

For a probability distribution, the average information learned by guessing the outcome correctly is
given by its Shannon entropy [15]. Thus, in our case we learn on average

h = −
∑
i∈I

πi log πi (10)

bits of information. In the independent case where all |ρ(v)| = c̃, the hypotheses are binomial distributed,
i.e. I = {−|V|+ 2j}0≤j≤|V| and

πi = Pr(Hi) =

( |V|
|V|+i

2

)
2−|V| .

Then, the entropy, and thus the average information, is given by 1
2 log2

(
πe
2 |V|

)
+ O

(
1
|V|

)
. From this

follows that the gained information increases only logarithmically with the number of different paths.

If we have more variation in ρ(v) in the independent case and always in the dependent case, we have
to consider the a priori distribution for the specific set V. In the next section we show an efficient way
of finding these values without computing (3) for all K ∈ Z`2. In any case, the entropy will be smaller or
equal to log2 |I| = log2 |C|.

6



4.2 Efficient Computation of the Key-classes and the A Priori Probabilities

In this section we show how to compute the set C, the different key classes and their a priori probabilities
without evaluating (3) for all K ∈ Z`2.

Let t be the dimension of the vector space span(V) ⊂ Z`2. We first choose a basis B = (b0, . . . , bt−1)
of span(V) and denote by B the t × ` matrix containing all the basis vectors and by BT its transpose.
Then we can represent every vector v by a t-tuples v = (v0, . . . , vt−1) ∈ Zt2 with v =

∑t
i=0 vibi = vB.

In the following we will always use v to denote the t-bit value and v to denote the corresponding ` bit
value in V. Let V = {v ∈ Zt2 : v ∈ V} ⊂ Zt2, then we can write (3) as:

c(u · x⊕ w · EK(x)) =
∑
v∈V

(−1)(
∑t−1
i=0 vibi)·Kρ(v) =

∑
v∈V

(−1)v·(KB
T )ρ(v) . (11)

We see that the correlation depends only on the t-bit value K = (KBT ). Thus, to obtain C, the key
classes and the a priori probabilities it is sufficient to consider only all K ∈ Zt2 instead of all K ∈ Z`2.

The direct computation of (11) for all K ∈ Zt2 can be done in O (|V|2t). However, if we extend the
sum in (11) to all v ∈ Zt2 and set ρ(v) = 0 for v 6∈ V , we can use a fast Walsh-Hadamard transform,
which reduces the complexity further to O (t2t). To store the key classes we need O (2t) memory.

5 Related-Key Approach

In this section we show how the number of terms in (3) can be reduced using a related key attack. If
such an attack can be repeated using a number of different related keys, more refined information about
the key will be possible to achieve as will be shown in the next section.

For the basic related key setting we consider the correlation differences between the keys K and
K ⊕ α,

∆(K,α) = c(u · x⊕ w · EK(x))− c(u · x⊕ w · EK⊕α(x)) =
∑
v∈V

(−1)v·Kρ(v)−
∑
v∈V

(−1)v·(K⊕α)ρ(v) .

Many terms in the sum cancel out. Thus, the idea behind the related key approach is that we can reduce
the number of v over which we have to sum. We define this reduced set by Vα = {v ∈ V : v · α = 1}.
Then we have

∆(K,α) = 2
∑
v∈Vα

(−1)v·Kρ(v) . (12)

We denote Cα =
{
∆(K,α) : K ∈ Z`2

}
, the set of all possible correlation differences, and Iα with Cα =

{ic̃}i∈Iα , Kα(c) and πiα the corresponding index set, key classes and a priori probabilities, respectively.
We define again by dα = minc1 6=c2∈Cα |c1 − c2| the minimal differences between two values in Cα. Note
that due to the multiplication factor 2, dα ≥ 4c̃.

5.1 Statistical Test

This time, instead of using the binomial distribution, we approximate the outcome of a sequence X, with
correlation c, by a normal distribution, i.e.

Pr (N(0|X)) ∼ N
(
N

2
(1 + c),

N

4
(1 + c)(1− c)

)
= N

(
N

2
(1 + c),

N

4
(1− c2)

)
.

Let X be a sequence with correlation c1 and Y be a sequence with correlation c2. We assume that N(0|X)
and N(0|Y) are independently distributed. Then their difference is distributed with

Pr (N(0|X)−N(0|Y)) ∼ N
(
N

2
(c1 − c2),

N

4
(2− c21 − c22)

)
.

Since 2� c21 + c22, we will approximate the variance by N/2.
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Optimal Test Statistic. Let X be the sequence corresponding to c(u·x⊕w ·EK(x)) and Y the sequence
corresponding to c(u · x⊕ w · EK⊕α(x)).

Assumption 4. The random variables N(0|X) and N(0|Y) are independently distributed.

Hypothesis Hi states that N(0|x)−N(0|y) is distributed according to N
(
N
2 (ic̃), N2

)
. For a given outcome

x,y, we use again a test statistic that outputs hypothesis Hi for which the probability

Pr
(
Hi

∣∣∣N(0|x)−N(0|y)
)

=
πiα Pr

(
N(0|x)−N(0|y)

∣∣∣Hi

)
Pr
(
N(0|x)−N(0|y)

) (13)

is maximized. If we take the natural logarithm of (13) and discard all parts that do not depend on Hi

we get the following optimal decision function:

δα(x,y) = arg max
i∈Iα

[
ln(πiα)−

(
N(0|x)−N(0|y)− N

2 ic̃
)2

N

]
. (14)

Complexity. Similar to Section 4, we can give the following lemma.

Lemma 3. For the optimal decision function (14) and a fixed error probability Pe, the data complexity
is upper bounded proportional to

N = 16 ln(2)
log2(|Cα| − 1)− log2 Pe

d2α

Note that in comparison with Lemma 1 we have the factor 16 ln(2) instead of 8 ln(2). However, due to
the multiplication by 2 in (12), in most of the cases we will have dα ≥ 2d, which leads to a slightly
smaller data complexity in the related key approach.

Proof. Like in the previous section we start with the decision problem between two hypotheses Hi and
Hj . Hypotheses i and j state that the outcome is distributed accordingly to, respectively, N

(
N
2 (ic̃), N2

)
and N

(
N
2 (jc̃), N2

)
, where we approximate the variance by N/2. Then the error probability Pij is given

by Pij = 1√
πNij

e−
Nij
16 (i−j)2c̃2 and we have

Nij =

[
− ln(2)

2
log2(πNij)− ln(2) log2(Pij)

]
16

(i− j)2c̃2
<
−16 ln(2) log2(Pij)

(i− j)2c̃2
.

We now fix Pij = Pe/(|Cα| − 1) and obtain

N = 16 ln(2) max
i 6=j∈Iα

log2(|Cα| − 1)− log2 Pe
(i− j)2c̃2

= 16 ln(2)
log2(|Cα| − 1)− log2 Pe

d2α
.

This concludes the proof by the same arguments as in the proof of Lemma 2. ut

Gained Information. We can apply the same method to evaluate the gained Information as in Sec-
tion 4, however we use the set Vα instead of V. Thus by the related key approach we obtain

hα = −
∑
i∈I

πiα log πiα (15)

bits of entropy.

Efficient computation. We can use the same method as in Section 4.2. Instead of t = dim(span(V))
we can consider tα = dim(span(Vα)), which in most cases will be smaller than t and thus reduces the
complexity.
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6 Using Multiple Related Keys

In this section we show how to use several related keys to obtain more information about the key K. It
may take a lot of offline analysis to determine the optimal selection of the related key differences to be
used in the attack.

To analyze the situation let us use the same approach as in Section 4.2. This means that we have a
basis B for span(V) and we consider only the t-bit values K = KBT of the keys instead of all K ∈ Z`2.
Thus, we might write ∆(K, αi) for (12) instead of ∆(K,αi). In the independent case we can set directly
B = V.

We now choose t differences α0, . . . , αt−1 ∈ Z`2 in such a way that they form a dual basis for B, i.e.

αi · bj =

{
1 for i = j ,

0 otherwise .
(16)

Since all basis vectors are independent, we can always solve this system. From (12) follows that

∆(K,αi) = 2
∑
v∈Vαi

(−1)v·Kρ(v) .

Knowing the corresponding correlation difference ηi = ∆(K,αi) will give us the key class Kαi(ηi). If we
combine the results for all 0 ≤ i ≤ t− 1 we can increase our knowledge. Let η = (η0, . . . , ηt−1), then we
know that the key must be in

KB(η) =
⋂

0≤i≤t−1

Kαi(ηi) .

Note that the set KB(η) depends only on the choice of the basis B but not on the choice of the αi as
long as they satisfy (16). The question is now, how many keys are in each KB(η) and how much entropy
can we gain by this method. This value depends of the set V and the choice of B, and can be evaluated
in O

(
t22t

)
by computing ∆(K, αi) for all K ∈ Zt2 and 0 ≤ i ≤ t− 1. We need O (t2t) memory to store

the definitions of all KB(η). Let CB = {η = (η0, . . . , ηt−1) : ∆(K, αi) = ηi, 0 ≤ i ≤ t− 1,K ∈ Zt2}. Then
the probability of η is pη = 2−t|KB(η)| and we will learn on average

hB = −
∑
η∈CB

pη log2 pη . (17)

Since |CB| ≤ 2t, we can never achieve more than t bits of entropy. However, the example in Section 8
shows that we can get close to t bits of entropy. We could even find masks for which the entropy reaches
t bits.

Note that when computing the entropy hB, it is not allowed to sum over all hαi since the results from

the different αi’s are not independent. In general, the correct value hB is much smaller than
∑t−1
i=0 hαi .

7 Complexity of the attacks

All attacks in this work can be separated in three phases. In the precomputation phase we compute the
correlation for each key, in the online phase we obtain the empirical bias of the plaintext/ciphertext
pairs for the secret key and in the post-computation phase we choose one key-class. A summary of the
complexity for the different attacks is given in Table 1. The memory complexity in the multiple related
key attack can be reduced to O (2t) if we redo the computation of the key classes separately for each
difference in the post-computation phase. However, this would increase the time complexity of the last
phase to O

(
t22t

)
.

8 Results from Experiments on Reduced Round PRESENT

The attacks presented in this paper were tested on a seven-round version of the block-cipher PRESENT [4]
with an 80-bit key. PRESENT has a specific property which makes it very suitable for our purposes. This
property is that for each possible input and output mask there are several strong trails, each consisting
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Table 1. Complexity of the different attacks

precomputation online post-computation

time memory data time

direct attack t O
(
t2t
)
O
(
2t
)

d ≥ 2c̃ N = 8 ln(2) log2(|C|−1)−log2 Pe
d2

O (|C|)
related key tα ≤ t O

(
tα2tα

)
O
(
2tα
)

dα ≥ 4c̃ Nα = 16 ln(2) log2(|Cα|−1)−log2 Pe
d2α

O (|Cα|)
mult. rel. key t O

(
t22t

)
O
(
t2t
)

dαi ≥ 4c̃ N = max0≤i≤t−1 Nαi O
(∑t−1

i=0 |Cαi |
)

of round approximations with an absolute correlation of 2−2. Thus, all strong trails over r rounds have
a trail-correlation of absolute value 2−2r. For seven rounds, all strong trails map to separate key-masks,
thus, ρ(v) = ±2−14 for all v ∈ V. We can set c̃ = 2−14 and know that d ≥ 2−13 and dα ≥ 2−12.

We are using the original non-linear key-schedule of PRESENT. In the 80-bit key case, at every round
except for the first one, 4 bits are transformed by an S-box. Thus to construct the target key K, from
which all the round-keys depend in a linear way, we have to extend the original 80-bit key KM by the
bits that are the output from the S-box transformations. For 7 rounds the key K consists of ` = 104 bits.
In the related-key approach we must be careful not to use a difference for K which cannot be achieved
by a linear difference in KM.

We only used 1-bit masks for the input and the output, where the output mask is applied directly
after the last S-box layer. Let u,w be the bit-position of, respectively, the input and the output mask,
then we denote the mask pair by (u,w). The simple structure of the cipher allows to obtain the exact
set V including ρ(v) for a given mask quite fast. For example for the 1-bit mask pair (53, 37) we could
obtain V for 20 rounds in less than 14 seconds.

For our tests, we chose the masks (53, 37), fixed a basis and computed α0, . . . , α14. Our choice leads
to the following values: |V = 24|, |C| = 13, t = 15, h = 3.21, hB = 14.25.

As we have seen, different approaches lead to different amounts of average learned information. To
acknowledge this fact, we define the new notion of achieved entropy which is the entropy of a test
multiplied by its success probability. Note that we achieve the full entropy hB only if we determine all
values ηi, 0 ≤ i ≤ t− 1, correctly.

In Fig. 1 we consider three different cases: The direckt attack (Section 4), the related key attack for
a single difference α (Section 5, |Vα| = 9, |Cα| = 10, tα = 9, hα = 2.63), and the multiple related key
approach (Section 6). In all three cases we give the probability of success and the achieved entropy for
400 random keys and up to N = 232 plaintext/ciphertext pairs. Since the number of keys is not very
high, the graphs still show some uneven behaviour.

We see that the success probability of the single related key attack is always larger than the one
for the generic attack. This comes from the fact that |Cα| < |C|, thus we have less choices and a higher
probability to be correct, but also from the fact that dα > d. We only determine the full η correctly if
we determine all the ηi correctly, thus the success probability of the third graph increases later, but in
the end it benefits form the fact that dαi > d.

When considering the achieved entropy, we see that for some time the single related key approach
leads to better results than the direct approach. For N ≥ 228, the multiple related key approach leads
to the highest achieved entropy.

9 Conclusion

In this paper, we have described some new approaches of extracting information of the observed corre-
lation of a linear approximation. We have tested the attack algorithms on the PRESENT block cipher
and seen that they work as expected. We would expect the attacks to be applicable to any iterated block
cipher which has a linear key schedule and linear approximations originating from a relatively small
number of about equally strong approximation trails. PRESENT has this behaviour over a small number
of rounds, but as the number of rounds grows the number of trails and the rank of the trail matrix will
become prohibitive. Also the data complexity determined by the trail correlation will exceed the size of
the cipher’s code book after about 16 rounds. The existence of a more practical example of a cipher with
a suitable linear trail structure remains an open question. For the direct attack, the linear key-schedule
is not necessary.
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Fig. 1. Empirical results for 400 random keys

The direct attack uses the full value set of the correlation. We have also seen how to reduce this value
set by inserting a difference, known to the attacker, in the secret key. This can lead to slightly smaller
data complexity and to a reduced time and memory complexity. Similarly, it is possible to consider a
related key fault attack by flipping one bit in a known position of the round key. If physically feasible,
such an attack would work for any key alternating block cipher and give one bit of information of the
round keys provided that the targeted trail correlation is sufficiently large.

We described a way how to exploit a linear hull in Matsui’s Algorithm 1, which has not been analyzed
until now. We showed that the data complexity is inversely proportional to the square of the smallest
trail correlation. In Algorithm 2 the average data complexity is inversely proportional to the sum of the
squares of the trail correlations, which makes the data complexity in general smaller than for Algorithm
1. However, our approach for Algorithm 1 works for all keys and not just for a subset and if the number
of trails is small, the difference of the complexity between the two approaches is not very big. As the two
algorithms target on different sets of key-bits, Algorithm 1 on the inner round-keys, Algorithm 2 on the
external round-keys, Algorithm 1 is not an alternative to Algorithm 2 but typically used in addition to
it, which makes these two algorithms not directly comparable.
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