
Fully Homomorphic Encryption without Squashing

Using Depth-3 Arithmetic Circuits

Craig Gentry and Shai Halevi
IBM T.J. Watson Research Center

September 14, 2011

Abstract

We describe a new approach for constructing fully homomorphic encryption (FHE) schemes.
Previous FHE schemes all use the same blueprint from [Gentry 2009]: First construct a some-
what homomorphic encryption (SWHE) scheme, next “squash” the decryption circuit until it is
simple enough to be handled within the homomorphic capacity of the SWHE scheme, and finally
“bootstrap” to get a FHE scheme. In all existing schemes, the squashing technique induces an
additional assumption: that the sparse subset sum problem (SSSP) is hard.

Our new approach constructs FHE as a hybrid of a SWHE and a multiplicatively homomor-
phic encryption (MHE) scheme, such as Elgamal. Our construction eliminates the need for the
squashing step, and thereby also removes the need to assume the SSSP is hard. We describe
a few concrete instantiations of the new method, including a “simple” FHE scheme where we
replace SSSP with Decision Diffie-Hellman, an optimization of the simple scheme that let us
“compress” the FHE ciphertext into a single Elgamal ciphertext(!), and a scheme whose security
can be (quantumly) reduced to the approximate ideal-SIVP.

We stress that the new approach still relies on bootstrapping, but it shows how to bootstrap
without having to “squash” the decryption circuit. The main technique is to express the decryp-
tion function of SWHE schemes as a depth-3 (

∑∏∑
) arithmetic circuit of a particular form.

When evaluating this circuit homomorphically (as needed for bootstrapping), we temporarily
switch to a MHE scheme, such as Elgamal, to handle the

∏
part. Due to the special form of

the circuit, the switch to the MHE scheme can be done without having to evaluate anything
homomorphically. We then translate the result back to the SWHE scheme by homomorphically
evaluating the decryption function of the MHE scheme. Using our method, the SWHE scheme
only needs to be capable of evaluating the MHE scheme’s decryption function, not its own de-
cryption function. We thereby avoid the circularity that necessitated squashing in the original
blueprint.

Key words. Arithmetic Circuits, Depth-3 Circuits, Homomorphic Encryption, Symmetric Poly-
nomials

Contents

1 Introduction 1
1.1 Our Main Technical Innovation . 1
1.2 An Illustration of an Elgamal-Based Instantiation . 2
1.3 Leveled FHE Based on Worst-Case Hardness . 3

2 Decryption as a Depth-3 Arithmetic Circuit 4
2.1 Restricted Depth-3 Arithmetic Circuits . 4
2.2 Lattice-Based Somewhat-Homomorphic Cryptosystems 6
2.3 Decryption Using a Restricted Depth-3 Circuit . 6

3 Leveled FHE from SWHE and MHE 7
3.1 Notations . 7
3.2 Compatible SWHE and MHE Schemes . 8
3.3 Chimeric Leveled FHE: The Construction . 9

4 Optimizations 10
4.1 Computing Only One Product . 10
4.2 Short FHE Ciphertexts: Decryption as a Pure Symmetric Polynomial 11

References 12

A Instantiations of Chimeric FHE 14
A.1 The Homomorphic Capacity of SWHE Schemes . 14
A.2 Elgamal-based Instantiation . 14
A.3 Leveled FHE Based on Worst-Case Hardness . 16

A.3.1 Decryption under Sml . 17
A.3.2 The SWHE scheme Lrg. 18
A.3.3 Setting the parameters. 18

B Proof of Lemma 1 19

1 Introduction

Fully homomorphic encryption allows anyone to perform arbitrarily computations on encrypted
data, despite not having the secret decryption key. Several fully homomorphic encryption (FHE)
schemes appeared recently [Gen09b, vDGHV10, SV10, GH11], all following the same blueprint as
Gentry’s original construction [Gen09b, Gen09a]:

1. SWHE. Construct a somewhat homomorphic encryption (SWHE) scheme – roughly, a scheme
that can evaluate low-degree polynomials homomorphically.

2. Squash. “Squash” the decryption function of the SWHE scheme, until decryption can be
expressed as polynomial of degree low enough to be handled within the homomorphic capacity of
the SWHE scheme, with enough capacity left over to evaluate a NAND gate. This is done by
adding a “hint” to the public key – namely, a large set of elements that has a secret sparse subset
that sums to the original secret key.

3. Bootstrap. Given a SWHE scheme that can evaluate its decryption function (plus a NAND),
apply Gentry’s transformation to get a “leveled”1 FHE scheme.

In this work we construct leveled FHE by combining a SWHE scheme with a “compatible”
multiplicatively homomorphic encryption (MHE) scheme (such as Elgamal) in a surprising way.
Our construction still relies on bootstrapping, but it does not use squashing and does not rely
on the assumed hardness of the sparse subset sum problem (SSSP). Using the new method, we
construct a “simple” leveled FHE scheme where SSSP is replaced with Decision Diffie-Hellman. We
also describe an optimization of this simple scheme where at one point during the bootstrapping
process, the entire leveled FHE ciphertext consists of a single MHE (e.g., Elgamal) ciphertext!
Finally, we show that it is possible to replace the MHE scheme by an additively homomorphic
encryption (AHE) scheme that encrypts discrete logarithms. This allows us to construct a leveled
FHE scheme whose security is based entirely on the worst-case hardness of the shortest independent
vector problem over ideal lattices (ideal-SIVP) (compare [Gen10]). As in Gentry’s original blueprint,
we obtain a pure FHE scheme by assuming circular security. At present, our new approach does
not improve efficiency, aside from the optimization that reduces the ciphertext length.

1.1 Our Main Technical Innovation

Our main technical innovation is a new way to evaluate homomorphically the decryption circuits
of the underlying SWHE schemes. Decryption in these schemes involves computing a threshold
function, that can be expressed as a multilinear symmetric polynomial. Previous works [Gen09b,
vDGHV10, SV10, GH11] evaluated those polynomials in the “obvious way” using boolean circuits.
Instead, here we use Ben-Or’s observation (reported in [NW97]) that multilinear symmetric poly-
nomials can be computed by depth-3 (

∑∏∑
) arithmetic circuits over Zp for large enough prime

p. Let ek(·) be the n-variable degree-k elementary symmetric polynomial, and consider a vector
~x = 〈x1, . . . , xn〉 ∈ {0, 1}n. The value of ek(~x) is simply the coefficient of zn−k in the univari-
ate polynomial P (z) =

∏n
i=1(z + xi). This coefficient can be computed by fixing an arbitrary

set A = {a1, . . . , an+1} ⊆ Zp, then evaluating the polynomial P (z) at the points in A to obtain

1In a “leveled” FHE scheme, the size of the public key is linear in the depth of the circuits to evaluate. A “pure”
FHE scheme (with a fixed-sized public key) can be obtained by assuming “circular security” – namely, that it is safe
to encrypt the leveled FHE secret key under its own public key.

1

tj = P (aj), and finally interpolating the coefficient of interest as a linear combination of the tj ’s.
The resulting circuit has the form

ek(~x) =
n+1∑
j=1

λjk

n∏
i=1

(aj + xi) (mod p), (1)

where λjk’s are the interpolation coefficients, which are some known constants in Zp. Any multi-
linear symmetric polynomial over ~x can be computed as a linear combination of the ek(~x)’s, and
thus has the same form (with different λ’s).

By itself, Ben-Or’s observation is not helpful to us, since (until now) we did not know how to
bootstrap unless the polynomial degree of the decryption function is low. Ben-Or’s observation
does not help us lower the degree (it actually increases the degree).2 Our insight is that we can
evaluate the

∏
part by temporarily working with a MHE scheme, such as Elgamal [ElG85]. We

first use a simple trick to get an encryption under the MHE scheme of all the (aj + xi) terms in
Ben-Or’s circuit, then use the multiplicative homomorphism to multiply them, and finally convert
them back to SWHE ciphertexts to do the final sum. Conversion back from MHE to SWHE is
done by running the MHE scheme’s decryption circuit homomorphically within the SWHE scheme,
which may be expensive. However, the key point is that the degree of the translation depends only
on the MHE scheme and not on the SWHE scheme. This breaks the self-referential requirement
of being able to evaluate its own decryption circuit, hence obviating the need for the squashing
step. Instead, we can now just increase the parameters of the SWHE scheme until it can handle
the MHE scheme’s decryption circuit.

1.2 An Illustration of an Elgamal-Based Instantiation

Perhaps the simplest illustration of our idea is using Elgamal encryption to do the multiplication.
Let p = 2q + 1 be a safe prime. Elgamal messages and ciphertext components will live in QR(p),
the group of quadratic residues modulo p. We also use a SWHE scheme with plaintext space Zp.
(All previous SWHE schemes can be adapted to handle this large plaintext space). We also require
the SWHE scheme to have a “simple” decryption function that can be expressed as a “restricted”
depth-3 arithmetic circuit. These terms are defined later in Section 2, for now we just mention that
all known SWHE schemes [Gen09b, vDGHV10, SV10, GH11] meet this condition

For simplicity of presentation here, imagine that the SWHE secret key is a bit vector ~s =
(s1, . . . , sn) ∈ {0, 1}n, the ciphertext that we want to decrypt is also a bit vector ~c = (c1, . . . , cn) ∈
{0, 1}n, and that decryption works by first computing xi ← si · ci for all i, and then running
the

∑∏∑
circuit, taking ~x as input. Imagine that decryption simply performs something like

interpolation – namely, it computes f(~x) =
∑n+1

j=1 λj
∏n
i=1(aj + xi), where the aj ’s and λj ’s are

publicly known constants in Zp.
To enable bootstrapping, we provide (in the public key) the Elgamal secret key encrypted under

the SWHE public key, namely we encrypt the bits of the secret Elgamal exponent e individually
under the SWHE scheme. We also use a special form of encryption of the SWHE secret key under
the Elgamal public key. Namely, for each secret-key bit si and each public constant aj , we provide

2The degree of P (z) is n, whereas in the previous blueprint Gentry’s squashing technique is used to ensure that
the Hamming weight of ~x is at most m� n, so that it suffices to compute ek(~x) only for k ≤ m.

2

an ElGamal encryption of the value aj + si ∈ Zp. The public values aj ’s are chosen so that both
aj , aj + 1 ∈ QR(p), so that aj + si is always in the Elgamal plaintext space.3

Now let ~c ∈ {0, 1}n be a SWHE ciphertext that we want to decrypt homomorphically. First,
for each (i, j), we obtain an Elgamal ciphertext that encrypts aj + (si · ci) as follows: if ci = 0 then
aj + (si · ci) = aj , so we simply generate a fresh encryption of the public value aj . On the other
hand, if ci = 1 then aj + (si · ci) = aj + si, so we use the encryption of aj + si from the public key.
(Note how the “restricted” form of these sums aj + xi makes it possible to put in the public key
all the Elgamal ciphertexts that are needed for these sums.)

Next we use Elgamal’s multiplicative homomorphism for the
∏

part of the circuit, thus getting
Elgamal encryptions of the values λj · P (aj) (where P (z) =

∏
i(z + xi)). We then convert these

Elgamal encryptions into SWHE encryptions of the same values in Zp by homomorphically eval-
uating the Elgamal decryption, using the SWHE encryption of the Elgamal secret exponent from
the public key. Denote by ei the i’th bit of the secret exponent e (so the public key includes an
SWHE encryption of ei), and let (y, z) = (gr,m · g−er) be an Elgamal ciphertext to be converted.
We compute y2

i − 1 mod p for all i, then compute SWHE ciphertexts that encrypt the powers

yei·2
i

= eiy
2i + (1− ei)y0 = ei(y

2i − 1) + 1,

and then use multiplicative homomorphism of the SWHE scheme to multiply these powers and
obtain an encryption of ye. (This requires degree dlog qe). Finally, inside the SWHE scheme, we
multiply the encryption of ye by the known value z, thereby obtaining a SWHE ciphertext that
encrypts m.

At this point, we have SWHE ciphertexts that encrypt the results of the
∏

operations – the
values λj ·P (aj). We now use the SWHE scheme’s additive homomorphism to finish off the depth-
3 circuit, thus completing the homomorphic decryption. We can now compute another MULT or
ADD operation, before running homomorphic decryption again to “refresh” the result, ad infinitum.

As explained above, using this approach the SWHE scheme only needs to evaluate polynomials
that are slightly more complex than the MHE scheme’s decryption circuit. Specifically, for Elgamal
we need to evaluate polynomials of degree 2 dlog qe. We can use any of the prior SWHE schemes
from the literature, and set the parameters large enough to handle these polynomials. The security
of the resulting leveled FHE scheme is based on the security of its component SWHE and MHE
schemes.

We also show that by a careful choice of the constants aj , we can set things up so that we
always have P (aj) = wj · P (a1)

ej for some known constants ej , wj ∈ Zp. Hence we can compute
all the Elgamal ciphertexts at the output of the Π layer given just the Elgamal ciphertext that
encrypts P (a1), which yields a compact representation of the ciphertext.

1.3 Leveled FHE Based on Worst-Case Hardness

We use similar ideas to get a leveled FHE scheme whose security is based entirely on the (quantum)
worst-case hardness of ideal-SIVP. At first glance this may seem surprising: how can we use a lattice-
based scheme as our MHE scheme when current lattice-based schemes do not handle multiplication
very well? (This was the entire reason the old blueprint required squashing!) We get around this

3An amusing exercise: Prove that the number of aj ’s with aj , aj + 1 ∈ QR(p) is (p− 3)/4 when p = 3 mod 4 and
(p− 5)/4 when p = 1 mod 4. See Lemma 5 for the answer.

3

apparent problem by replacing the MHE scheme with an additively homomorphic encryption (AHE)
scheme, applied to discrete logs.

In more detail, as in the Elgamal-based instantiation, the SWHE scheme uses plaintext space
Zp for prime p = 2q+1. But p is chosen to be a small prime, polynomial in the security parameter,
so it is easy to compute discrete logs modulo p. The plaintext space of the AHE scheme is Zq,
corresponding to the space of exponents of a generator g of Z∗p. Rather than encrypting in the
public key the values aj + si (as in the Elgamal instantiation), we provide AHE ciphertexts that
encrypt the values DLg(aj + si) ∈ Zq, and use the same trick as above to get AHE ciphertexts
that encrypt the values DLg(aj + (si · ci)). We homomorphically add these values, getting an AHE
encryption of DLg(λj · P (aj)). Finally, we use the SWHE scheme to homomorphically compute
the AHE decryption followed by exponentiation, getting SWHE encryption of the values λj ·P (aj),
which we add within the SWHE scheme to complete the bootstrapping.

As before, the SWHE scheme only needs to support the AHE decryption (and exponentiation
modulo the small prime p), thus we don’t have the self-reference problem that requires squashing.
We note, however, that lattice-based additively-homomorphic schemes are not completely error
free, so once must set the parameters so that it supports sufficient number of summands. Since the
dependence of the AHE noise on the number of summands is very weak (only logarithmic), this
can be done without the need for squashing. See Section A.3 for more details on this construction.

2 Decryption as a Depth-3 Arithmetic Circuit

Recall that, in Gentry’s FHE, we “refresh” a ciphertext c by expressing decryption of this cipher-
text as a function Dc(s) in the secret key s, and evaluating that function homomorphically. Below,
we describe “restricted” depth-3 circuits, sketch a “generic” lattice based construction that encom-
passes known SWHE schemes (up to minor modifications), and show how to express its decryption
function Dc(s) as a restricted depth-3 circuit over a large enough ring Zp. We note that Klivans
and Sherstov [KS06] have already shown that the decryption functions of Regev’s cryptosystems
[Reg04, Reg09] can be computed using depth-3 circuits.

2.1 Restricted Depth-3 Arithmetic Circuits

In our construction, the circuit that computes Dc(s) depends on the ciphertext c only in a very
restricted manner. By “restricted” we roughly mean that the bottom sums in the depth-3 circuit
must come from a fixed (polynomial-size) set L of polynomials, where L itself is independent of the
ciphertext. Thus, the bottom sums used in the circuit can depend on the ciphertext only to the
extent that the ciphertext is used to select which and how many of the polynomials in L are used
as bottom sums in the circuit.

Definition 1 (Restricted Depth-3 Circuit). Let L = {Lj(x1, . . . , xn)} be a set of polynomials, all
in the same n variables. An arithmetic circuit C is an L-restricted depth-3 circuit over (x1, . . . , xn)
if there exists multisets S1, . . . , St ⊆ L and constants λ0, λ1, . . . , λt such that

C(~x) = λ0 +
t∑
i=1

λi ·
∏
Lj∈Si

Lj(x1, . . . , xn),

The degree of C with respect to L is d = maxi |Si| (we also call it the L-degree of C).

4

Remark 1. In all our instantiations of decryption circuits for known SWHE schemes, the Lj’s
happen to be linear. However, our generic construction in Section 3 does not require that they be
linear (or even low degree).

To express decryption as restricted circuit as above, we use Ben-Or’s observation that multilinear
symmetric polynomials can be computed by restricted depth-3 arithmetic circuits that perform
interpolation. Recall that a multilinear symmetric polynomial M(~x) is a symmetric polynomial
where, for each i, every monomial is of degree at most 1 in xi; there are no high powers of xi.
A simple fact is that every multilinear symmetric polynomial M(~x) is a linear combination of the
elementary symmetric polynomials: M(~x) =

∑n
i=0 `i · ei(~x), where ei(~x) is the sum of all degree-i

monomials that are the product of i distinct variables. Also, for every symmetric polynomial S(~x),
there is a multilinear symmetric polynomial M(~x) that agrees with S(~x) on all binary vectors
~x ∈ {0, 1}. The reason is that xki = xi for xi ∈ {0, 1}, and therefore all higher powers in S(~x)
can be “flattened”; the end result is multilinear symmetric. The following lemma states Ben-Or’s
observation formally.

Lemma 1 (Ben-Or, reported in [NW97]). Let p ≥ n + 1 be a prime, let A ⊆ Zp have cardinality

n+ 1, let ~x = (x1, . . . , xn) be variables, and denote LA
def
= {(a+ xi) : a ∈ A, 1 ≤ i ≤ n}. For every

multilinear symmetric polynomial M(~x) over Zp, there is a circuit C(~x) such that:

• C is a LA-restricted depth-3 circuit over Zp such that C(~x) ≡M(~x) (in Zp).

• C has n+ 1 product gates of LA-degree n, one gate for each value aj ∈ A, with the j’th gate
computing the value λj · P (aj) =

∏
i(aj + xi) for some scalar λj.

• A description of C can be computed efficiently given the values M(~x) at all ~x = 1i0n−i.

The final bullet clarifies that Ben-Or’s observation is constructive – we can compute the re-
stricted depth-3 representation from any initial representation that lets us evaluate M . For com-
pleteness, we prove Lemma 1 in Appendix B.

In some cases, it is easier to work with univariate polynomials. The following fact, captured
in Lemma 2, will be useful for us: Suppose f(x) is an arbitrary univariate function and we want
to compute f(

∑
bi · ti), where the bi’s are bits and the ti’s are small (polynomial). Then, we can

actually express this computation as a multilinear symmetric polynomial, and hence a restricted
depth-3 circuit in the bi’s.

Lemma 2. Let T, n be positive integers, and f(x) a univariate polynomial over Zp (for p prime,
p ≥ Tn + 1). Then there is a multilinear symmetric polynomial Mf (·) on Tn variables such that
for all t1, . . . , tn ∈ {0, . . . , T},

f(b1 · t1 + · · ·+ bn · tn) = Mf (b1, . . . , b1︸ ︷︷ ︸
t1 times

, 0, . . . , 0︸ ︷︷ ︸
T−t1 times

, b2, . . . , b2︸ ︷︷ ︸
t2 times

, 0, . . . , 0︸ ︷︷ ︸
T−t2 times

, . . . , bn, . . . , bn︸ ︷︷ ︸
tn times

, 0, . . . , 0︸ ︷︷ ︸
T−tn times

)

for all ~b ∈ {0, 1}n. Moreover, a representation of Mf as a LA-restricted depth-3 circuit can be
computed in time poly(Tn) given oracle access to f .

Proof. Define a Tn-variate polynomial g : ZTnp → Zp as g(~x) = f(
∑
xi), then g is symmetric and

we have

f(b1 · t1 + · · ·+ bn · tn) = g(b1, . . . , b1︸ ︷︷ ︸
t1 times

, 0, . . . , 0︸ ︷︷ ︸
T−t1 times

, b2, . . . , b2︸ ︷︷ ︸
t2 times

, 0, . . . , 0︸ ︷︷ ︸
T−t2 times

, . . . , bn, . . . , bn︸ ︷︷ ︸
tn times

, 0, . . . , 0︸ ︷︷ ︸
T−tn times

).

5

As noted above, there is a multilinear symmetric polynomial Mf (~x) that agrees with g(~x) on all
0-1 inputs, By Lemma 1, for any A ⊆ Zq of size Tn+ 1 we can compute an LA-restricted depth-3
circuit representation of Mf (~x) by evaluating g(~x) over the vectors ~x = 1i0Tn−i, which can be done
using the f -oracle.

2.2 Lattice-Based Somewhat-Homomorphic Cryptosystems

In GGH-type [GGH97] lattice-based encryption schemes, the public key describes some lattice L ⊂
Rn and the secret key is a rational matrix S ∈ Qn×n (related to the dual lattice L∗). In the
schemes that we consider, the plaintext space is Zp for a prime p, and an encryption of m is a
vector ~c = ~v + ~e ∈ Zn, where ~v ∈ L and ~e is a short noise vector satisfying ~e ≡ ~m (mod p). It
was shown in [Gen09a] that decryption can be implemented by computing ~m← ~c− d~c · Sc mod p,
where d·c means rounding to the nearest integer. Moreover the parameters can be set to ensure
that ciphertexts are close enough to the lattice so that the vector ~c ·S is less than 1/2(N + 1) away
from Zn.

Somewhat similarly to [Gen09b], such schemes can be modified to make the secret key a bit
vector ~s ∈ {0, 1}N , such that S =

∑N
i=1 si · Ti with the Ti’s public matrices. For example, the

si’s could be the bit description of S itself, and then each Ti’s has only a single nonzero entry,
of the form 2j or 2−j (for as many different values of j as needed to describe S with sufficient
precision). Differently from [Gen09b], the Ti’s in our setting contain no secret information – in
particular we do not require a sparse subset that sums up to S. The ciphertext ~c from the original
scheme is post-processed to yield (~c, {~ui}Ni=1) where ~ui = ~c ·Ti, and the decryption formula becomes

~m← ~c−
⌈∑N

i=1 si · ~ui
⌋

mod p.

Importantly, the coefficients of the ~u’s are output with only κ = dlog(N + 1)e bits of precision
to the right of the binary point, just enough to ensure that the rounding remains correct in the
decryption formula. For simplicity hereafter, we will assume that the plaintext vector is ~m =
〈0, . . . , 0,m〉 – i.e., it has only one nonzero coefficient. Thus, the post-processed ciphertext becomes
(c, {ui}) (numbers rather than vectors).

2.3 Decryption Using a Restricted Depth-3 Circuit

For the rest of this section, the details of the particular encryption scheme E are irrelevant except
insofar as it has the following decryption formula: The secret key is ~s ∈ {0, 1}N , and the ciphertext
is post-processed to the form (c, {ui}), and each ui is split into an integer part and a fractional
part, ui = u′i•u

′′
i , such that the fractional part has only κ = dlog(N + 1)e bits of precision (namely,

u′′i is a κ-bit integer). The plaintext is recovered as:

m ← c−
∑

si · u′i︸ ︷︷ ︸
“simple part”

−
⌈
2−κ ·

∑
si · u′′i

⌋
︸ ︷︷ ︸
“complicated part”

modp. (2)

We now show that we can compute Equation (2) using a LA-restricted circuit.
Lemma 3. Let p be a prime p > 2N2. Regarding the “complicated part” of Equation (2), there is
a univariate polynomial f(x) of degree ≤ 2N2 such that f(

∑
si · u′′i) = d2−κ ·

∑
si · u′′i c mod p.

Proof. Since p > 2N2, there is a polynomial f of degree at most 2N2 such that f(x) = d2−κ · xc mod
p for all x ∈ [0, 2N2]. The lemma follows from the fact that

∑
si ·u′′i ∈ [0, N ·(2κ−1)] ⊆ [0, 2N2].

6

Theorem 1. Let p be a prime p > 2N2. For any A ⊆ Zp of cardinality at least 2N2 + 1,
E’s decryption function (Equation (2)) can be efficiently expressed as and computed using a LA-
restricted depth-3 circuit C of LA-degree at most 2N2 having at most 2N2 +N + 1 product gates.

Proof. First, consider the “complicated part”. By Lemma 3, there is a univariate polynomial f(x)
of degree 2N2 such that f(

∑
si · u′′i) = d2−κ ·

∑
si · u′′i c mod p. Since all u′′i ∈ {0, . . . , 2N}, by

Lemma 2, there is a multilinear symmetric polynomial Mf (~x) taking 2N2 inputs such that

f
(∑

i

si · u′′i
)

= Mf

(
s
u′′1
1 02N−u

′′
1 , . . . , s

u′′N
N 02N−u

′′
N
)

for all ~s ∈ {0, 1}N , and moreover we can efficiently compute Mf ’s representation as a LA-restricted
depth-3 circuit C. By Lemma 1, C has LA-degree at most 2N2 and has at most 2N2 + 1 product
gates. We have proved the theorem for the complicated part. To handle the “simple part” as an
LA-restricted circuit, we can re-write it as (c+ a1 ·

∑
u′i)−

∑
(a1 + si) · u′i mod p with the constant

term λ0 = (c + a1 ·
∑
u′i). The circuit for the simple part has LA-degree 1 and N “product”

gates.

In Section 4.2, we show how to tweak the “generic” lattice-based decryption further to allow a
purely multilinear symmetric decryption formula. (Above, only the complicated part is multilinear
symmetric.) While not essential to construct leveled FHE schemes, this tweak enables interesting
optimizations. For example, in 4.1 we show that we can get a very compact leveled FHE ciphertext
– specifically, at one point, it consists of a single MHE ciphertext – e.g., a single Elgamal ciphertext!
This single MHE ciphertext encrypts the value P (a1), and we show how (through a clever choice
of ai’s) to derive MHE ciphertexts that encrypt P (ai) for the other i’s.

3 Leveled FHE from SWHE and MHE

Here, we show how to take a SWHE scheme that has restricted depth-3 decryption and a MHE
scheme, and combine them together into a “monstrous chimera” [Wik11] to obtain leveled FHE. The
construction works much like the Elgamal-based example given in the Introduction. That is, given
a SWHE ciphertext, we “recrypt” it by homomorphically evaluating its depth-3 decryption circuit,
pre-processing the first level of linear polynomials Lj(~s) (where ~s is the secret key) by encrypting
them under the MHE scheme, evaluating the products under the MHE scheme, converting MHE
ciphertexts into SWHE ciphertexts of the same values by evaluating the MHE’s scheme’s decryption
function under the SWHE scheme using the encrypted MHE secret key, and finally performing the
final sum (an interpolation) under the SWHE scheme. The SWHE scheme only needs to be capable
of evaluating the MHE scheme’s decryption circuit, followed by a quadratic polynomial. Contrary to
the old blueprint, the required “homomorphic capacity” of the SWHE scheme is largely independent
of the SWHE scheme’s decryption function.

3.1 Notations

Recall that an encryption scheme E = (KeyGen,Enc,Dec,Eval) with plaintext space P is somewhat-
homomorphic (SWHE) with respect to a class F of multivariate functions4 over P, if for every

4The class F may depend on the security parameter λ.

7

f(x1, . . . , xn) ∈ F and every m1, . . . ,mn ∈ P, it holds (with probability one) that

Dec(sk,Eval(pk, f, c1, . . . , cn)) = f(m1, . . . ,mn),

where (sk, pk) are generated by KeyGen(1λ) and the ci’s are generated as ci ← Enc(pk,mi). We
refer to F as the “homomorphic capacity” of E . We say that E is multiplicatively (resp. additively)
homomorphic if all the functions in F are naturally described as multiplication (resp. addition).

Given the encryption scheme E , we denote by CE(pk) the space of “freshly-encrypted ciphertexts”
for the public key pk, namely the range of the encryption function for this public key. We also
denote by CE the set of freshly-encrypted ciphertexts with respect to all valid public keys, and
by CE,F the set of “evaluated ciphertexts” for a class of functions F (i.e. those that are obtained
by evaluating homomorphically a function from F on ciphertexts from CE). That is (for implicit
security parameter λ),

CE
def
=

⋃
pk∈KeyGen

CE(pk), CE,F
def
=
{
Eval(pk, f,~c) : pk ∈ KeyGen, f ∈ F , ~c ∈ CE(pk)

}
3.2 Compatible SWHE and MHE Schemes

To construct “chimeric” leveled FHE, the component SWHE and MHE schemes must be compatible:

Definition 2 (Chimerically Compatible SWHE and MHE). Let SWHE be an encryption scheme
with plaintext space Zp, which is somewhat homomorphic with respect to some class F . Let MHE
be a scheme with plaintext space P ⊆ Zp, which is multiplicatively homomorphic with respect to
another F ′.

We say that SWHE and MHE are chimerically compatible if there exists a polynomial-size set
L = {Lj} of polynomials and polynomial bounds D and B such that the following hold:

• For every ciphertext c ∈ CSWHE,F , the function Dc(sk) = SWHE.Dec(sk, c) can be evaluated
by an L-restricted circuit over Zp with L-degree D. Moreover, an explicit description of this
circuit can be computed efficiently given c.

• For any secret key sk ∈ SWHE.KeyGen and any polynomial Lj ∈ L we have Lj(sk) ∈ P. I.e.,
evaluating Lj on the secret key sk lands us in the plaintext space of MHE.

• The homomorphic capacity F ′ of MHE includes all products of D or less variables.

• The homomorphic capacity of SWHE is sufficient to evaluate the decryption of MHE followed
by a quadratic polynomial (with polynomially many terms) over Zp. Formally, the number of
product gates in all the L-restricted circuits from the first bullet above is at most the bound B,
and for any two vectors of MHE ciphertexts ~c = 〈c1, . . . cb〉 and ~c′ =

〈
c′1, . . . c

′
b′
〉
∈ C≤BMHE,F ′,

the two functions

DAdd~c,~c′(sk)
def
=

b∑
i=1

MHE.Dec(sk, ci) +

b′∑
i=1

MHE.Dec(sk, c′i) mod p

DMul~c,~c′(sk)
def
=

(b∑
i=1

MHE.Dec(sk, ci)
)
·
(b′∑
i=1

MHE.Dec(sk, c′i)
)

mod p

are within the homomorphic capacity of SWHE – i.e., DAdd~c,~c′(sk),DMul~c,~c′(sk) ∈ F .

8

We note that the question of whether two schemes are compatible may depend crucially on the
exact representation of the secret keys and ciphertexts in both. Consider for example our Elgamal
instantiation from the introduction. While a naive implementation of exponentiation would have
exponential degree, certainly too high to be evaluated by any known SWHE scheme, we were able
to post-process the Elgamal ciphertext so as to make the degree of decryption more manageable.

We also note that we can view “additively-homomorphic encryption of discrete logarithms” as
a particular type of multiplicative-homomorphic scheme, where encryption include taking discrete-
logarithm (assuming that it can be done efficiently) and decryption includes exponentiation.

3.3 Chimeric Leveled FHE: The Construction

Let SWHE and MHE be chimerically compatible schemes. We construct a leveled FHE scheme as
follows:

FHE.KeyGen(λ, `): Takes as input the security parameter λ and the number of circuit levels ` that
the composed scheme should be capable of evaluating. For i ∈ [1, `], run(

pk
(i)
SW , sk

(i)
SW

)
R← SWHE.KeyGen ,

(
pk

(i)
MH , sk

(i)
MH

)
R← MHE.KeyGen .

Encrypt the i’th MHE secret key under the (i+1)’st SWHE public key, sk
(i)
MH ← SWHE.Enc(pk

(i+1)
SW ,

sk
(i)
MH). Also encrypt the i’th SWHE secret key under the i’th MHE public key, but in a particular

format as follows: Recall that there is a polynomial-size set of polynomials L such that SWHE

decryption can be computed by L-restricted circuits. To encrypt sk
(i)
SW under pk

(i)
MH , compute

mij ← Lj(sk
(i)
SW) for all Lj ∈ L, and then encrypt it cij ← MHE.Enc(pk

(i)
MH ,mij). Let sk

(i)
SW denote

the collection of all the cij ’s. The public key pkFH consists of (pk
(i)
SW , pk

(i)
MH) and the encrypted

secret keys (sk
(i)
SW , sk

(i)
MH) for all i. The secret key skFH consists of sk

(i)
SW for all i.

FHE.Enc(pkFH ,m): Takes as input the public key pkFH and a message in the plaintext space of

the SWHE scheme. It outputs SWHE.Enc(pk
(1)
SW ,m).

FHE.Dec(skFH , c): Takes as input the secret key skFH and a SWHE ciphertext. Suppose the

ciphertext is encrypted under pk
(i)
SW . It is decrypted directly using SWHE.Dec(sk

(i)
SW , c).

FHE.Recrypt(pkFH , c): Takes as input the public key and a ciphertext c that is a valid “evaluated

SWHE ciphertext” under pk
(i)
SW , and outputs a “refreshed” SWHE ciphertext c′, encrypting the

same plaintext but under pk
(i+1)
SW . It works as follows:

Circuit-generation. For a SWHE ciphertext c, generate a description of the L-restricted circuit
C over Zp that computes the decryption of c. Denote it by

Cc(sk) = λ0 +

t∑
k=1

λk
∏

Lj∈Sk

Lj(sk) mod p (= SWHE.Dec(sk, c))

Products. Pick up from the public key the encryptions under the MHE public key pk
(i)
MH of the

values Lj(sk
(i)
SW). Use the homomorphism of MHE to compute MHE encryptions of all the terms

λk ·
∏
Lj∈Sk Lj(sk

(i)
SW). Denote the set of resulting MHE ciphertexts by c1, . . . , ct.

9

Translation. Pick up from the public key the encryption under the SWHE public key pk
(i+1)
SW of the

MHE secret key sk
(i)
MH . For each MHE ciphertext ci from the Products step, use the homomorphism

of SWHE to evaluate the function Dci(sk) = MHE.Dec(sk, ci) on the encrypted secret key. The

results are SWHE ciphertexts c′1, . . . c
′
t, where c′j encrypts the value λk ·

∏
Lj∈Sk Lj(sk

(i)
SW) under

pk
(i+1)
SW .

Summation. Use the homomorphism of SWHE to sum up all the c′j ’s and add λ0 to get a ciphertext

c∗ that encrypts under pk
(i+1)
SW the value

λ0 +

t∑
k=1

λk
∏

Lj∈Sk

Lj(sk
(i)
SW) mod p = SWHE.Dec(sk

(i)
SW , c)

Namely, c∗ encrypts under pk
(i+1)
SW the same value that was encrypted in c under pk

(i)
SW .

FHE.Add(pkFH , c1, c2) and FHE.Mult(pkFH , c1, c2): Take as input the public key and two cipher-

texts that are valid evaluated SWHE ciphertexts under pk
(i)
SW . Ciphertexts within the SWHE

scheme (at any level) may be added and multiplied within the homomorphic capacity of the SWHE
scheme. Once the capacity is reached, they can be recrypted and then at least one more operation
can be applied.

Theorem 2. If SWHE and MHE are chimerically compatible schemes, then the above scheme FHE
is a leveled FHE scheme. Also, if both SWHE and MHE are semantically secure, then so is FHE.

Correctness follows in a straightforward manner from the definition of chimerically compatible
schemes. Security follows by a standard hybrid argument similar to Theorem 4.2.3 in [Gen09a].
We omit the details.

4 Optimizations

In the Products step of the Recrypt process (see Section 3), we compute multiple products homo-
morphically within the MHE scheme. In Section 4.1, we provide an optimization that allows us
to compute only a single product in the Products step. In Section 4.2, we extend this optimiza-
tion so that the entire leveled FHE ciphertext after the Products step can consist of a single MHE
ciphertext.

4.1 Computing Only One Product

For now, let us ignore the “simple part” of our decryption function (Equation 2), which is linear
and therefore does not involve any “real products”.

The products in the “complicated part” all have a special form. Specifically, by Theorem 1 and
the preceding lemmas, for secret key ~s ∈ {0, 1}N , ciphertext (c, {ui}), set A ⊂ Zp with |A| > 2N2,
and fixed scalars {λj} associated to a multilinear symmetric polynomial Mf , the products are all
of the form λj · P (aj) for all a ∈ A, where

P (z) =
∏
i

(z + si)
u′′i · (z + 0)2N−u

′′
i .

10

We will show how to choose the aj ’s so that we can compute P (aj) for all j given only P (a1). This
may seem surprising, but observe that the P (aj)’s are highly redundant. Namely, if we consider
the integer v =

∑
si=1 u

′′
i (which is at most 2N2), then we have

P (aj) = (aj + 1)v · (aj + 0)2N
2−v.

Knowing a1, the value of P (a1) contains enough information to deduce v, and then knowing aj
we can get P (aj) for all j. To be able to compute the P (aj)’s efficiently from P (a1), we choose the
aj ’s so that for all j > 1 we know integers (wj , ej) such that:

aj = wj · a
ej
1 and aj + 1 = wj · (a1 + 1)ej .

We store (wj , ej) in the public key, and then compute P (aj) = w2N2

j · P (a1)
ej .

Importantly for our application to chimeric FHE, we can compute an encryption of P (aj) from
an encryption of P (a1) within the MHE scheme – simply use the multiplicative homomorphism to
exponentiate by ej (using repeated squaring as necessary) and then multiply the result by w2N2

j .
Generating suitable tuples (aj , wj , ej) for j > 1 from an initial value a1 is straightforward:

We choose the ej ’s arbitrarily and then solve for the rest. Namely, we generate distinct ej ’s,
different from 0,1, then set aj ← a

ej
1 /((a1 + 1)ej − aej1) and wj = aj/a

ej
1 . Observe that aj + 1 =

(a1 + 1)ej/((a1 + 1)ej − aej1) – i.e., the ratio (aj + 1)/aj = ((a1 + 1)/a1)
ej , as required.

Some care must be taken to ensure that the values aj , aj + 1 are in plaintext space of the MHE
scheme – e.g., for Elgamal they need to be quadratic residues. Recall the basic fact that for a safe
prime p there are (p− 3)/4 values a for which a, a+ 1 ∈ QR(p) (see Lemma 5). Therefore, finding
suitable a1, a1 + 1 ∈ QR(p) is straightforward. Since a

ej
1 , (a1 + 1)ej ∈ QR(p), we have

aj , aj + 1 ∈ QR(p) ⇔ (a1 + 1)ej − aej1 ∈ QR(p) ⇔ ((a1 + 1)/a1)
ej − 1 ∈ QR(p).

If (a1 + 1)/a1 generates QR(p) (which is certainly true if p is a safe prime), then (re-using the
basic fact above) we conclude that aj , aj + 1 ∈ QR(p) with probability approximately 1/2 over the
choices of ej .

Observe that the amount of extra information needed in the public key is small. The ej ’s need
not be truly random – indeed, by an averaging argument over the choice of a1, one will quickly
find an a1 for which suitable ej ’s are O(1)-dense among very small integers. Hence it is sufficient
to add to the public key only O(log p) bits to specify a1.

4.2 Short FHE Ciphertexts: Decryption as a Pure Symmetric Polynomial

Here we provide an optimization that allows us to compress the entire leveled FHE ciphertext
down to a single MHE ciphertext – e.g., a single Elgamal ciphertext! (The optimization above only
compresses only representation of the “complicated part” of Equation 2, not the “simple part”.)
Typically, a MHE ciphertext will be much much shorter than a SWHE ciphertext: a few thousand
bits vs. millions of bits.

The main idea is that we do not need the full ciphertext (c, {u′i}, {u′′i }) to recover m if we know
a priori that m is in a small interval – e.g., m ∈ {0, 1}. Rather, we can choose a “large-enough”
polynomial-size prime r, so that we can recover m just from ([c]r, {[u′i]r}, {[u′′i]r}), where [x]r denotes
x mod r ∈ {0, . . . , r − 1}. Moreover, after reducing the ciphertext components modulo r, we can
invoke Lemma 2 to represent decryption as a purely multilinear symmetric polynomial, whose
output after the product step can be represented by a single product P (a1) (like the complicated
part in the optimization of Section 4.1).

11

Lemma 4. Let prime p = ω(N2). There is a prime r = O(N) and a univariate polynomial f(x)
of degree O(N2) such that, for all ciphertexts (c, {u′i}, {u′′i }) that encrypt m ∈ {0, 1}, we have
m = f(tr) mod p where

tr
def
= [2κ · c]r +

∑
isi · [−2κ · u′i − u′′i]r. (3)

Proof. Let t = 2κ
(
c−

∑
si · u′i

)
−
∑
si · u′′i . The original decryption formula (Equation 2) is

m = c−
∑

si · u′i − b2−κ ·
∑

si · u′′i e = b2−κ · te mod p

Thus, m can be recovered from t. Since there are only 2 possibilities for m, the (consecutive)
support of t has size 2κ+1 = O(N). Set r to be a prime ≥ 2κ+1. Since the mapping x 7→ [x]r has
no collisions over the support of t, t can be recovered from [t]r. Note that [t]r = [tr]r. Thus m can
be recovered from tr (via [tr]r = [t]r, then t). Since there are O(N · r) = O(N2) possibilities for tr,
the lemma follows.

Theorem 3. Let prime p = ω(N2). There is a prime r = O(N) and a multilinear symmetric
polynomial M such that, for all “hashed” ciphertexts ([2κ · c]r, {[−2κ · u′i − u′′i]r}) that encrypt
m ∈ {0, 1}, we have

m = M(1, . . . , 1︸ ︷︷ ︸
[2κ·c]r

, 0, . . . , 0︸ ︷︷ ︸
r−[2κ·c]r

, . . . s1, . . . , s1︸ ︷︷ ︸
[−2κ·u′1−u′′1]r

, 0, . . . , 0︸ ︷︷ ︸
r−[−2κ·u′1−u′′1]r

, . . . sN , . . . , sN︸ ︷︷ ︸
[−2κ·u′N−u

′′
N]r

, 0, . . . , 0︸ ︷︷ ︸
r−[−2κ·u′N−u

′′
N]r

) mod p

Proof. This follows easily from Lemmas 4 and 2.

Thus, decryption can be turned into a purely multilinear symmetric polynomial M whose
product gates output λj · P (aj) (for known ciphertext-independent λj ’s), where P (z) is similar
to the polynomial described in Section 4.1. Using the optimization of Section 4.1, we can compress
the entire leveled FHE ciphertext down to a single MHE ciphertext that encrypts P (a1).

Acknowledgments This material is based on research sponsored by DARPA under agreement
number FA8750-11-C-0096. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of DARPA or the
U.S. Government. Distribution Statement “A” (Approved for Public Release, Distribution Unlim-
ited)

References

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption for ring-
lwe and security for key dependent messages. In Advances in Cryptology - CRYPTO
2011, Lecture Notes in Computer Science. Springer, 2011.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Advances in Cryptology – CRYPTO ’84, volume 196 of Lecture Notes
in Computer Science, pages 10–18. Springer-Verlag, 1985.

12

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. http://crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
41st ACM Symposium on Theory of Computing – STOC 2009, pages 169–178. ACM,
2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness.
In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume 6223 of Lecture
Notes in Computer Science, pages 116–137. Springer, 2010.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Burton S. Kaliski Jr., editor, Advances in Cryptology -
CRYPTO 1997, volume 1294 of Lecture Notes in Computer Science, pages 112–131.
Springer, 1997.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Advances in Cryptology - EUROCRYPT’11, volume 6632 of Lecture Notes
in Computer Science, pages 129–148. Springer, 2011. Full version available on-line
from http://eprint.iacr.org/2010/520.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC’08, pages 197–206. ACM, 2008.

[KR] Richard M. Karp and Vijaya Ramachandran. A survey of parallel algorithms for
shared-memory machines. Chapter 17 of Handbook of Theoretical Computer Science,
Volume A: Algorithms and Complexity, MIT Press, 1990, pages 869-941.

[KS06] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning
intersections of halfspaces. In FOCS, pages 553–562. IEEE Computer Society, 2006.

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial
derivatives. Computational Complexity, 6(3):217–234, 1997. Cites “M. Ben-Or, Private
communication”.

[Pei11] Chris Peikert, 2011. Private communication.

[Reg04] Oded Regev. New lattice-based cryptographic constructions. JACM, 51(6):899–942,
2004.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
JACM, 56(6), 2009.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Masayuki
Abe, editor, Advances in Cryptology - ASIACRYPT 2010, volume 6477 of Lecture
Notes in Computer Science, pages 377–394. Springer, 2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval,
editors, Public Key Cryptography - PKC 2010, volume 6056 of Lecture Notes in Com-
puter Science, pages 420–443. Springer, 2010.

13

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In Advances in Cryptology - EUROCRYPT’10,
volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer, 2010. Full
version available on-line from http://eprint.iacr.org/2009/616.

[Wik11] Wikipedia. Chimera. http://en.wikipedia.org/wiki/Chimera, Accessed on August
2011.

A Instantiations of Chimeric FHE

A.1 The Homomorphic Capacity of SWHE Schemes

Our instantiations are mildly sensitive to the tradeoff between the parameters of the SWHE scheme
and its homomorphic capacity. Recall that when used with plaintext space Zp, the SWHE schemes
that we consider have secret key ~s ∈ {0, 1}N and decryption formula5 for post-processed ciphertexts
(c, {u′i}, {u′′i }):

m = c+
N∑
i=1

si · u′i +
⌈
2−κ ·

N∑
i=1

si · u′′i
⌋

mod p, (4)

with κ = dlog(N + 1)e, u′i ∈ Zp and u′′i ∈ {0, 1, . . . , 2κ}. Below we say that a scheme has threshold-
type decryption if it has this decryption formula.

We are interested in the tradeoff between the number N of secret-key bits and the degree
of the polynomials that the scheme can evaluate homomorphically. For our instantiations, we
only need the number of key-bits to depend polynomially on the degree. Specifically, we need a
polynomial bound K, such that the scheme with plaintext space Zp with security parameter λ can
be made to support α-degree polynomials with up to 2β terms using secret keys of no more than
N = K(λ, log p, α, β) bits.

Below we say that a SWHE scheme is “homomorphic for low-degree polynomials” if it has a
polynomial bound on the key-size as above. It can be verified that all the known lattice-based
SWHE schemes meet this condition.

A.2 Elgamal-based Instantiation

In the Introduction, we specified (in a fair amount of detail) an instantiation of chimeric leveled
FHE that uses Elgamal as the MHE scheme. Here, we provide a supporting lemmas and theorems
to show that Elgamal is chimerically compatible with known SWHE schemes, as needed for the
chimeric combination to actually work.
Theorem 4. Let p = 2q + 1 be a safe prime such that DDH holds in QR(p), and let SWHE be
an encryption scheme with message space Zp, which is homomorphic for low-degree polynomials
and has threshold-type decryption. Then SWHE is chimerically compatible with Elgamal encryption
modulo p over plaintext space QR(p).

Proof. Denote the security parameter by λ and let α = poly(λ) be another parameter (to be set
later) governing the degree of polynomials that can be homomorphically evaluated by the scheme.

5This formula differs from Equation (2) in that we add rather than subtract the sums. This change was done to
simplify notations in some of the arguments below, and it entails only a slight modification of the scheme.

14

The scheme SWHE can then be set to support polynomials of degree up to α having at most 2α

terms, using a secret key ~s ∈ {0, 1}N of size N = K(λ, log p, α) for a polynomial K, with decryption
formula Equation (4). Since p must be super polynomial in λ (for DDH to hold), then in particular
2N2 < p and we can use Theorem 1.

We thus conclude that the for any A ⊆ Zp of cardinality 2N2 + 1, given a SWHE ciphertext
(c, {u′i}, {u′′i }) we can compute efficiently a LA-restricted depth-3 circuit C of LA-degree at most
2N2 and at most 2N2 +N + 1 product gates, such that C(~s) = SWHE.Dec~s (c, {u′i}, {u′′i }). We will
thus use D = 2N2 and B = 2N2 +N + 1 as the bounds that are needed for Definition 2.

Next we need to establish that one can choose A so that, for any sk ∈ SWHE.KeyGen and any
polynomial Lj ∈ LA, Lj(sk) is in the plaintext space of our multiplicatively homomorphic scheme.
In Lemma 5 below, we show that there are q − 1 = (p− 3)/4 values a such that a, a+ 1 ∈ QR(p).
Since N is polynomial and 2N2+1� q, we can populate A with N2+1 such values efficiently. The
value aj + xi for aj ∈ A and secret key bit xi is always in QR(p), which is the Elgamal plaintext
space.

In this construction we trivially get the property that the MHE scheme (i.e., Elgamal) can
evaluate the D multiplications needed by the circuits C, since the multiplicative homomorphic
capacity of Elgamal is infinite.

It remains to show that the homomorphic capacity of the SWHE scheme is sufficient to evaluate
Elgamal decryption followed by one operation (i.e., the last bullet in Definition 1). It suffices to
show that Elgamal decryption can be computed using a polynomial of degree α with at most 2α

monomials, so our degree parameter α. To prepare for decryption, we post-process each Elgamal
ciphertext as follows: Given a ciphertext (y = gr, z = m ·g−er) ∈ Z2

p, we compute yi = y2
i−1 mod p

for i = 0, 1, . . . , dlog qe − 1, and the post-processed ciphertext is 〈z, y0, . . . , yτ−1〉 with τ = dlog qe.
Given an Elgamal secret key e ∈ Zq with binary representation eτ−1 . . . e1e0 (where τ = dlog qe,
decryption of the post-processed ciphertext becomes

MHE.Dec(e; z, y0, . . . , yτ−1) = z ·
τ−1∏
i=0

(ye·2
i
) = z ·

τ−1∏
i=0

(ei · yi + 1) (5)

Being overly conservative and treating z, y0, . . . , yτ−1 as variables; then the degree of the polynomial
above is 2τ + 1, and it has 2τ monomials. Hence the degree parameter α as α = 4 dlog qe + 2, we
get a scheme whose homomorphic capacity is sufficient for Elgamal decryption followed by one
operation.

If remains to see that this choice of parameters is consistent. Note that the only constraints
that we use in this proof are that p = λω(1) (so that DDH is hard), (p − 1)/2 = q > 2N2 + 1 =
poly(λ, log q, α) (in order to be able to use Theorem 1) and α > 4 dlog qe + 2 (to get sufficient
homomorphic capacity). Clearly, if p is exponential in λ (so α is polynomial in λ) then all of these
constraints are satisfied.

Lemma 5. Let p be a prime, and let S = {(X,Y) : X = Y + 1;X,Y ∈ QR(p)}. Then, |S| =
(p− 3)/4 if p = 3 mod 4, and |S| = (p− 5)/4 if p = 1 mod 4.

Proof. Let T = {(u, v) : u 6= 0, v 6= 0, u2 − v2 = 1 mod p}. Since X and Y each have exactly
two nonzero square roots if they are quadratic residues, we have that |T | = 4 · |S|. It remains to
establish the cardinality of T .

For each pair (u, v) ∈ T , let auv = u + v. We claim that distinct pairs in T cannot have the
same value of auv. In particular, each auv completely determines both u and v as follows. We

15

have u2 − v2 = 1 → (u − v)(u + v) = 1 → u − v = 1/auv, and therefore u = (auv + a−1uv)/2, and
v = (auv − a−1uv)/2. We therefore have |U | = |T |, where U = {a 6= 0 : a+ a−1 6= 0, a− a−1 6= 0}.

We have that a ∈ U , unless a = 0, a2 = −1 mod p, or a = ±1. If p = 1 mod 4, then −1 ∈ QR(p),
and therefore there are 5 prohibited values of a – i.e., |U | = p−5. If p = 3 mod 4, then −1 /∈ QR(p),
and therefore |U | = p− 3.

A.3 Leveled FHE Based on Worst-Case Hardness

We next describe an instantiation where both the SWHE and the MHE schemes are lattice-based
encryption schemes with security based (quantumly) on the hardness of worst-case problems over
ideal lattices, in particular ideal-SIVP. This scheme could be Gentry’s SWHE scheme [Gen09b,
Gen10] one of its variants [SS10, SV10, GH11], or one of the more recent proposals based on the
ring-LWE problem [BV11, Pei11]. All these schemes are homomorphic for low-degree polynomials
and have threshold-type decryption, in the sense of Section A.1.

The main idea of this construction is to use an additively homomorphic encryption (AHE)
scheme (e.g., one using lattices) as our MHE scheme, by working with discrete logarithms. For
a multiplicative group G with order q and generator g, we can view an additively homomorphic
scheme AHE with plaintext space Zq as a multiplicative homomorphic scheme MHE with plaintext
space G: In the MHE scheme, a ciphertext c is decrypted as MHE.Decrypt(c) ← gAHE.Decrypt(c).
The additive homomorphism mod q thus becomes a multiplicative homomorphism in G. We can
therefore use MHE as a component in chimeric leveled FHE, assuming it is compatible with a
suitable SWHE scheme. One caveat is that MHE’s Encrypt algorithm is not obvious. Presumably,
to encrypt an element x ∈ G, we encrypt its discrete log using AHE’s Encrypt algorithm, but this
requires computing discrete logs in G. Fortunately, in our instantiation we can choose a group G
of polynomial size, so computing discrete log in G can be done efficiently.

The main difficulty is to set the parameters so that the component schemes each have enough
homomorphic capacity to do their jobs.

This sort of compatibility was easy for the Elgamal-based instantiation, since the parameters
of the Elgamal scheme do not grow with the multiplicative homomorphic capacity required of the
Elgamal scheme; Elgamal’s multiplicative homomorphic capacity is infinite, regardless of parame-
ters. On the other hand, the additive homomorphic capacity of a lattice-based scheme is limited, as
system parameters must grow (albeit slowly) to allow more additions. What makes it possible to
set the parameters is the fact that such schemes can handle a super-polynomial number of additions.

Below let us fix some SWHE construction which is homomorphic for low-degree polynomials and
has threshold-type decryption (e.g., Gentry’s scheme [Gen09b, Gen10]). For our construction we
will use a polynomial-size plaintext space, namely Zp for some p = poly(λ). In more detail, we will
use two instances of the same scheme, a “large instance”, denoted Lrg, as the SWHE of our Chimeric
construction and a “small instance”, denoted Sml for the MHE of our Chimeric construction. The
plaintext space for Lrg is set as Zp for a small prime p = poly(λ), and the plaintext space for Sml
is set as Zq for q = p− 1.

We will use the small instance as a multiplicative homomorphic encryption scheme with plaintext
space Z∗p. Below let g be a generator of Z∗p. Encryption of a plaintext x ∈ Z∗p under this MHE
scheme consists of first computing the discrete logarithm of x to the base g, i.e., e ∈ Zq such
that ge = x (mod p), then encrypting e under Sml. Similarly, MHE decryption of a ciphertext
c consists of using the “native decryption” of Sml to recover the “native plaintext” e ∈ Zq, then
exponentiating x = ge mod p.

16

The homomorphic capacity of Lrg must be large enough to evaluate the decryption of Sml
followed by exponentiation mod p and then a quadratic polynomial. The parameters of Sml can be
chosen much smaller, since it only needs to support addition of polynomially many terms and not
even a single multiplication.6

A.3.1 Decryption under Sml

The small instance has n bits of secret key, where n is some parameter to be determined later
(selected to support large enough homomorphic capacity to evaluate linear polynomials with poly-
nomially many terms.) Since native decryption of Sml is of the form of Equation (4), decryption
under the MHE scheme has the following formula

MHE.Decsk(c) = gc · g
∑n
i=1 u

′
isi · gd2−κ

∑n
i=1 u

′′
i sic mod p (6)

where (c, {u′i•u
′′
i }) is the post-processed ciphertext (with u′i ∈ Zq and u′′i ∈ Z2κ , and κ = dlog(n+ 1)e).

Below we show how this formula can be evaluated as a rather low-degree arithmetic circuit.

The complicated part. To evaluate the “complicated part”, d2−κ
∑n

i=1 u
′′
i sic, as an arithmetic

circuit mod p (with input the bits si), we will construct a mod-p circuit that outputs the binary
representation of the sum. We have n binary numbers, each with κ bits, and we need to add
them over the integers and then ignore the lower κ bits. Certainly, each bit of the result can be
expressed mod-p as a multilinear polynomial of degree only n · κ over the n · κ bits of the addends.
It is challenging, however, to show that these low-degree representations can actually be computed
efficiently.

In any case, we can compute the sum using polynomials of degree n · κc for small c, easily as
follows: Consider a single column ~x ∈ {0, 1}n of the sum. Each bit in the binary representation of
the Hamming weight of ~x can be expressed as a mod-p multilinear symmetric polynomial of degree
n over ~x. After using degree n to obtain the binary representation of the Hamming weight of
each column, it only remains to add the κ κ-bit Hamming weights together (each Hamming weight
shifted appropriately depending on the significance of its associated column) using degree only κc.
Adding numbers κ κ-bit numbers is in NC1, and in particular can be accomplished with low degree
using the “3-for-2” trick (see [KR]), repeatedly replacing each three addends by two addends that
correspond to the XOR and CARRY (and hence have the same sum), each replacement only costing
constant degree, and finally summing the final two addends directly. Over Zp, the 3-for-2 trick is
done using the formulas

XOR(x, y, z) = 4xyz − 2(xy + xz + yz) + x+ y + z

CARRY (x, y, z) = xy + xz + yz − 2xyz

The simple part and exponentiation. Although it is possible to compute the simple part
similarly to the complicated part, it is easier to just push this computation into the exponentiation
step. Specifically, we now have a κ-bit number v0 that we obtained as the result of the “complicated
part”, and we also have the dlog qe-bit numbers vi = u′isi for i = 1, . . . , n (all represented in

6The “small” scheme could also be instantiated from other additively homomorphic lattice-based schemes, e.g.,
one of Regev’s schemes [Reg04, Reg09], or the GPV scheme [GPV08], etc.

17

binary), and we want to compute gc · g
∑n
i=0 vi · modp. Denote the binary representation of each vi

by (vit . . . vi1vi0), namely vi =
∑

j vij2
j . Then we compute

gc+(
∑n
i=0 vi) = gc+(

∑
i,j vij2

j) = gc ·
∏
i,j

(g2
j
)vij = gc ·

∏
i,j

(
vi,j · g2

j
+ (1− vij) · 1

)

=

κ∏
j=0

(
1 + v0,j · (g2

j − 1)
)

︸ ︷︷ ︸
“complicated part′′

· gc ·
n∏
i=1

dlog qe∏
j=0

(
1 + vi,j · (g2

j − 1)
)

︸ ︷︷ ︸
“simple part′′

The terms gc and (g2
j − 1) are known constants in Zp, hence we have a representation of the

decryption formula as an arithmetic circuit mod p.
To bound the degree of the complicated part, notice that v0 has κ bits, each a polynomial of

degree at most n ·poly(κ), hence the entire term has degree bounded by n ·poly(κ). For the simple
part, all the vi’s together have n dlog qe bits (each is just a variable), so the degree of that term is
bounded by just n dlog qe. Hence the total degree of the decryption formula is Õ(n), assuming q is

quasi-polynomial in n. One can also verify that the number of terms is 2Õ(n). (Known lattice-based
SWHE schemes have n = Õ(λ), in which case Sml’s decryption has degree Õ(λ).)

A.3.2 The SWHE scheme Lrg.

The large instance has N bits of secret key, where N is some parameter to be determined later,
selected to support large enough homomorphic capacity to be compatible with Sml. As explained
in Section 2, the decryption of Lrg can be expressed as a restricted depth-3 circuit of degree at
most 2N2 and with at most 2N2 + N + 1 product gates. Note that the number of summands in
the top addition is at most 2N2 +N + 1 < 3N2.

A.3.3 Setting the parameters.

Lemma 6. Let Lrg and Sml be as above. We can choose the parameters of Lrg and Sml so that Lrg
is chimerically compatible with the MHE derived from Sml.

Proof. Denoting the security parameter by λ, below we choose the plaintext spaces and parameters
α, β, where Lrg can support polynomials of degree up to α with 2α terms, Sml can support linear
polynomials with up to 2β terms, so as to get chimerically compatible schemes. Note that making
the plaintext spaces of the two schemes compatible is simple, all we need to do is choose a prime p
and set q = p− 1, and let the plaintext spaces of Lrg, Sml be Zp and Zq, respectively. In terms of
size constraints on the parameters, we have the following:

• p > 2N2, so that we can use Theorem 1.

• p = poly(λ), so that we can compute discrete logs modulo p efficiently.

• β ≥ log(2N2) = 2 logN + 1, since the restricted depth-3 circuits for the decryption of Lrg all
have degree at most 2N2, hence we need an MHE scheme that supports 2N2 products, which
means that Sml should support linear functions with 2N2 terms.

18

• α is at least twice the degree of Sml’s decryption, so that we can compute a multiplication
within Lrg after evaluating Sml’s decryption function.

Up front, we are promised polynomial bounds KSml,KLrg such that the key-size of Sml is bounded
by n ≤ KSml(λ, log q, β) and the key-size of Lrg is bounded by N ≤ KLrg(λ, log p, α).

Assuming N = poly(λ) (we establish this later), we can meet the first three constraints by
choosing a prime p ∈ [2N2 + 1, 4N2] (such a prime must exist and can be found efficiently) and
β = log p. Then KSml(λ, log q, β) = o(λcSml+ε) for any ε > 0 and some constant cSml. We argued that
before that when Sml has n-bit keys, decryption can be computed with degree Õ(n ·(logc2 n+log q))
for some constant c2. Therefore, still assuming that N = poly(λ), all of the constraints can be
satisfied with α = θ(λcSml+ε) for any ε > 0. But then of course N can be poly(λ) since it is bounded
by KLrg(λ, log p, α).

Using Gentry’s scheme and proof [Gen09b, Gen10] we get:
Corollary 1. There exists a leveled FHE, whose security is reducible via quantum reduction to the
worst-case hardness of S(I)VP in ideal lattices, ideal-SIVP. �

B Proof of Lemma 1

Proof. (Lemma 1) Every multilinear symmetric polynomial M(~x) is a linear combination of the
elementary symmetric polynomials: M(~x) =

∑n
i=0 `i ·ei(~x). Given the evaluation M(~x) over binary

vectors ~x = 1i0n−i, we can compute the `i’s as follows. We obtain the constant term `0 · e0(~x) = `0
by evaluating M at 0n. We obtain `k recursively via

M(1k0n−k) =

n∑
i=0

`i · ei(1k0n−k) = `k +

k−1∑
i=0

`i · ei(1k0n−k)

⇒ `k = M(1k0n−k)−
k−1∑
i=0

`i · ei(1k0n−k) = M(1k0n−k)−
k−1∑
i=0

`i ·
(
k

i

)
At this point, it suffices to prove the lemma just for the elementary symmetric polynomials. This
is because we have shown that we can efficiently obtain a representation of M(~x) as a linear
combination of the elementary symmetric polynomials, and we can clearly use the known `j values
to “merge” together the depth-3 representations of the elementary symmetric polynomials that
satisfy the constraints of Lemma 1 into a depth-3 representation of M that satisfies the constraints.

For each i, the value ei(~x) is the coefficient of zn−i in the polynomial P (z). We can compute the
coefficients of P (z) via interpolation from the values P (a), a ∈ A. Therefore, each value ei(~x) can
be computed by a LA-restricted depth-3 arithmetic circuit as follows: using n + 1 product gates,
compute the values P (a), a ∈ A, and then (as the final sum gate), interpolate the coefficient of
zn−i from the P (a) values.

19

