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Abstract. In this paper, we prove that the degree of regularity of the family of Square systems, an HFE
type of systems, over a prime finite field of odd characteristics q is exactly q, and therefore prove that

• inverting Square systems algebraically is exponential, when q = O(n), where n is the number of
variables of the system.

1. Introduction

In 1994 Peter Shor [21] showed that quantum computers could break all public key cryptosystems based on
these hard number theory problems. Recently significant efforts have been put into the search for alternative
public key cryptosystems, post-quantum cryptosystems, which would remain secure in an era of quantum
computers. Multivariate public key cryptosystems (MPKC)[7] are one of the main families of cryptosystems
that have the potential to resist quantum computer attacks.

Research into MPKC’s started in the middle of 1980s in the works of Diffie, Fell, Tsujii, Shamir. However
the success of this work was limited and the real breakthrough was the cryptosystem proposed by Matsumoto
and Imai [19], which however was broken by Patarin [20]. The Hidden Field Equation (HFE) cryptosystems
are a family of cryptosystems proposed by Patarin based on the same fundamental idea of quadratic functions
on extension fields [20].

Fixing a finite field F of characteristic 2 and cardinality q, they suggested using an almost bijective map
P defined over K, an extension field of degree n over F. By identifying K with Fn, P induces a multivariate
polynomial map P ′ : Fn −→ Fn. One then ”hides” this map by composing on the left by L1 and on the right
by L2, where the Li : Fn −→ Fn are invertible affine maps. This composition gives a map P̄ : Fn −→ Fn

defined by
P̄ (x1, . . . , xn) = L1 ◦ P ′ ◦ L2 (x1, . . . , xn) = (y1, . . . , yn) .

For the Hidden Field Equations (HFE) [20], P is given as a univariate polynomial in the form:

P (X) =
∑

qi+qj≤D

aijX
qi+qj

+
∑

qi≤D

biX
qi

+ c ,

where the coefficients are randomly chosen. Here the total degree D of P should not be too large since the
decryption process involves solving the single variable polynomial equation given by P (X) = Y ′ for a given
Y ′ using Berlekamp-Massey algorithm.

Faugère and Joux showed that these systems can be broken rather easily in the case when q = 2 and D is
small [13] using the Gröbner basis algorithm F4. Furthermore the experimental results suggested that such
algorithms will finish at degree of order O(logq(D)), where the highest degree polynomials we deal with are
of the degree of order O(logq(D)), and, therefore that the complexity of the algorithm is nO(logq(D)). Even
though, the authors did not say it explicitly, the claims seem to imply such a statement is valid for any q
even or odd, and therefore one can break any HFE cryptosystems with small D or asymptotically for any
fixed D, which we will disprove in this paper.
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A key concept in the complexity analysis of these algorithms is that of degree of regularity. The degree of
regularity of the component functions of P , p1(x1, . . . , xn), . . . , pn(x1, . . . , xn) is the lowest degree at which
non-trivial polynomial relations between the pi occur. Experiments show that this is the degree at which
the algorithm will terminate and therefore determines the complexity. Bardet, Faugère and Salvy defined
(in a different interpretation) the degree of regularity of random or generic systems and gave an asymptotic
estimate formula for this degree. However since the systems arising from HFE polynomials were far from
generic, the BFS bound does not yield useful information about the complexity of solving HFE systems
algebraically, which is based on counting of dimensions of spaces with linear independence assumptions.
Granboulan, Joux and Stern outlined a new way to bound the degree of regularity in the case q = 2. Their
approach was to lift the problem back up to the extension field K, an idea that originated in the work of
Kipnis and Shamir [16] and Faugère and Joux [13]. They sketched that one can connect the degree of
regularity of the HFE system to the degree of regularity of a lifted system over the big field. Assuming
this assertion, the semi-regularity of a subsystem of the lifted system, and that the degree of regularity of
a subsystem is greater than that of the original system, and using some asymptotic analysis of the degree
of regularity of random systems found in [2], they derived heuristic asymptotic bounds for the case q = 2,
which implied that if D is chosen to be O(nα) for α ≥ 1, then the complexity of Gröbner basis attacks is
quasi-polynomial. While the results derived from this method match well with experimental results, the
asymptotic bound formula has not yet been proven rigorously. It relies on a formula that holds for a class
of over-determined generic systems but it is not yet clear how to prove their systems belong to this class.
Therefore to derive any definitive general bounds on the degree of regularity for general q and n, or on the
asymptotic behavior of the degree of regularity remained an open problem.

The security of HFE systems in the case when the characteristic of the field is odd has been the subject
of much less study. The notions of degree of regularity and semi-regularity in [2] can be generalized to the
case when q is odd. However, the asymptotic analysis on which the results of [15] depend, has not yet been
generalized to this situation. The work in [11] seemed to suggest that HFE systems over a field of odd
characteristic could resist the attack of Gröbner basis algorithms even when D is small. Their rational is
that when q is large the field equations Xq

1 −X2, ..., X
q
n −X1 cannot be used effectively and this limits the

efficiency of the Gröbner basis algorithms, because one actually tries to solve the equations over the algebraic
closure of the finite field. A breakthrough in case of general q came in the recent work of Dubois and Gama
[12]. They first refined and gave a rigorous mathematical foundation for the arguments in [15]. They then
derived a new method to compute the degree of regularity over any field similar to that in [2]. This led to
an algorithm that can be used to calculate a bound for the degree of regularity for any choice of q, n and
D. However it is not clear how to derive a closed form for their bound from their algorithm and therefore
they were not able to answer the question of whether the complexity was quasi-polynomial in this case.

Inspired by the work of [12], and using a similar idea to that used in [15] - roughly that one can bound
the degree of regularity of a system by finding a bound for certain simpler subsystems, in [8], a new closed
formula was found for the degree regularities for all HFE systems for any field. However this bound is
derived using a very different approach. Previously all estimates on the degree of regularity were based on a
dimension counting argument, while the new approach constructively proves the upper bound of the degree
of regularity as an explicit function of q and D. Such explicit formulas enable [8] to draw conclusions about
the upper bound complexity of inverting the system using Gröbner basis methods.

1.1. The contribution of this paper. In the paper[8], a very strong conjecture was presented on the lower
bound of the degree of regularity for the case of that q is odd and q is the size of Ω(n), which implies that
to invert the related systems algebraically is actually exponential.

Follows the same mathematical approach, we actually prove in this paper that in the case of the Square
system, which was proposed in [3], namely, when the HFE system is given by:

P (X) = X2,
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the degree of regularity is exactly q for odd prime q.
This theorem therefore allow us to draw the following conclusions about the complexity of inverting an

Square polynomial using a Gröbner basis algorithm.

Inverting Square systems algebraically is exponential, when q = Ω(n), where n is the number of variables
of the system.

This proves the conjecture in [8], though it does not answer the question about the cases other than
Square systems. However the common senses tells us that the conjecture is very likely to be true for all
generic HFE cases, since Square systems are the simplest among all.

As far as we know, our work is the first to give a lower bound for degree of regularity for HFE cryptosystems
and therefore show a lower bound for the complexity of the related algebraic attacks. Clearly from the
point view of cryptography, this result could have profound impact in many related areas, in particular, in
understanding the complexity of algebraic attacks and in designing new cryptosystems.

The results of this paper strongly suggest, as speculated in [11] that using odd characteristics is indeed
a very good idea to resist algebraic attacks, and therefore confirms the idea that we should move to filed of
odd characteristics. Also this works points the possibility to provide certain provablely secure property for
MPKCs. Indirectly, this work also points to new directions in terms of algebraic immunity for function that
should be used in symmetric cryptosystems.

Here, we would also like to point out that Square scheme itself is broken[1], but with a totally different
method than algebraic attacks. Algebraic attacks were considered as the most powerful tool in attack the HFE
systems before due to its effectiveness in breaking the HFE Challenge 1. The result of this paper, however,
shows that algebraic attacks is not something we should worry too much about in general for the HFE family
once we use odd characteristics q and q = Ω(n).

This paper is organized as follows. We will first introduce briefly HFE and Square cryptosystems in the
section below. In Section 3, we review the definition and basic properties of the degree of regularity from
[12][8]. In Section 4, we will prove and main theorem that degree of regularity of Square systems is indeed
q and derive that the complexity of the Gröbner basis attacks on Square systems is indeed exponential.

2. Square systems

2.1. HFE systems and Square systems. In this paper, the cases we will study are that q is an odd prime
number, which also implies that q > 2.

Let F be a finite field of order q and K an degree n extension of F.
Any map P from K to K can be expressed uniquely as a polynomial function with coefficients in K and

degree less than qn, namely

P (X) =
qn−1∑
i=0

aiX
i, ai ∈ K.

The degree of P (X) is the highest degree of the monomial above with non-zero coefficients.
There is an standard map φ, which identifies K as Fn:

Fn φ→ K,

K φ−1

→ Fn.

Then we can build a new map

P ′(x0, .., xn−1) = (p0(x0, .., xn−1), ..., pn−1(x0, .., xn−1)) = φ−1 ◦ P ◦ φ(x0, .., xn−1),

which is essentially P but viewed from the perspective of Fn.
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In this case, again each component pi(x0, ..., xn−1) can be expressed uniquely as a polynomial of the
variables xi such that the highest power of xi(i = 0, ..., n − 1) is not more than q, which is due to the fact
that xq

i = xi over F. Then the degree of the map P ′ is the highest degree of all the p′i components.
In some way, we can say that these are two different way of defining the degree for P , the degree over K

and the degree over F. The degree over K, denoted by degK(P ) is the degree of P (X).The degree of P over
F, denoted degF(P ) is the degree of P ′. For example, the functions Xqi

are all linear viewed from the point
of Fn. Thus

degF(P ) = 1.

The degree of the monomial Xd will be the sum of the digits in the base q expansion of d. The degree of P
over F, denoted degF(P ) is the same as the maximum of the Hamming weight of the degree of the monomial
terms of P (X).

An F-degree 2 or F-quadratic function from K to K is thus a polynomial all of whose monomial terms
have exponent qi + qj or qi for some i and j. The general form of an F-quadratic function is

P (X) =
n−1∑
i,j=0

aijX
qi+qj

+
n−1∑
i=0

biX
qi

+ c.

The function P (X) with a fixed low K degree is used to build the HFE multivariate public key cryptosystems
and originally the q is selected as 2, which is very different from what considered here, namely q is an odd
primes.

The simplest form of an F-quadratic function is

P (X) = X2,

which is what we will study in this paper. Surely if q = 2, this map is of actually degree one over F as
explained above.

In a Square HFE-type of system, just like an HFE system itself, we build a system P̄ from an F-quadratic
map P , where the nature of P is further hidden by pre- and post-composition with invertible affine linear
maps L1, L2 : Fn → Fn:

P̄ = L1 ◦ P ′ ◦ L2.

2.2. Algebraic solvers – Gröbner basis attacks. The question we will address here is how difficult it is
to find directly the solution of a system of quadratic multivariate equations

p̄1 = b1, . . . , p̄n = bn.

The most successful attacks on HFE systems is to apply the improved Gröbner basis algorithms F4 and
F5 to solve the system p̄1 = b1, . . . , p̄n = bn.

Without loss of generality, and due to the fact that what L1 does is an transformation of deriving a set
of new polynomials from linear combination of the old ones and what L2 does is nothing but a change of
basis of the variables of the polynomials, and those transformations do not change the degree of regularity of
the systems, therefore we only need to consider the case p1 = 0, . . . , pn = 0 where the pi are the component
functions of P ′ = φ ◦ P ◦ φ−1.

A key component of the Gröbner basis algorithm involves searching through combinations of multiples
of the pi by polynomials of a fixed degree for new polynomials of lower degree that this fixed degree. If
the combination

∑
i gipi has smaller degree then the corresponding combination of leading terms

∑
i g

h
i p

h
i

is zero. The key moment in the calculation is when non-trivial such combinations occur. These non-trivial
relations will very likely generate what is called mutant [6, 18, 18], which are instrumental in solving the
system. Obviously the combinations

ph
i p

h
j − ph

j p
h
i
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are tautologically zero and the equation

((ph
i )q−1 − 1)pi = 0

is a result of the identity aq = a in F. A non-trivial relation is one that does not follow from these trivial
identities (see details in Section 3 below). The degree at which the first non-trivial relation occurs is called
the degree of regularity. Extensive experimental evidence has shown that the algorithm will terminate at
or shortly after the degree of regularity, in particular, for the case of HFE. The algorithm will never finish
before dealing with polynomials at the degree of regularity. Thus the calculation of the degree of regularity
is crucial to understanding the complexity of the algorithm.

3. Degree of Regularity

We will present the definition of degree of regularity as defined in [12] and and the main results in [12][8].
Let

nA = F[x1, . . . , xn]/ 〈xq
1 − x1, . . . , x

q
n − xn〉 .

This is the algebra of functions over Fn. Let p1, . . . , pn be a set of quadratic polynomials in nA. Denote by
nAk the subspace of nA consisting of functions representable by a polynomial of degree less than or equal
to k.

For all j we have a natural map ψj : nAj
n → nAj+2 given by

ψj(a1, . . . , an) =
∑

i

aipi,

where
nAj

n = nAj × nAj × ...× nAj .

The key here is the non-trivial ”degree falls”; a degree fall occurs when the ai have degree j but
∑

i aipi has
degree less than degree j + 2. Obviously we can have trivial degree falls of the form

pjpi + (−pi)pj = 0

or
(pq−1

i − 1)pi = 0.

The degree of regularity of the set {p1, . . . , pn} is the first degree at which such a degree fall occurs.
Obviously we can restrict our attention to the highest degree terms in the polynomials, namely the highest
degree homogeneous components of the polynomials. Mathematically this means working in the associated
graded ring

nB = F[x1, . . . , xn]/ 〈xq
1, . . . , x

q
n〉 .

The degree of regularity of the {p1, . . . , pn} in nA will be the first degree at which we find non-trivial
relations among the leading component ph

1 , . . . , p
h
n (considered as elements of nB). By leading component,

we mean the highest degree homogeneous component of a multivariate polynomial.
Denote by nBk the subspace of nB consisting of homogeneous elements of degree k. Consider an arbitrary

set of homogeneous quadratic elements {λ1, . . . , λn} ∈ B2, which are linear independent. For all j we have
a natural map ψj : nBn

j → nBj+2 given by

ψj(b1, . . . , bn) =
∑

i

biλi,

where
nBn

j = nBj × nBj × ...× nBj ,

the direct product of n copies of nBj .
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Let nRj(λ1, . . . , λn) = kerφj ; this is the subspace of relations of the form:∑
i

biλi = 0.

The key here is that nR(λ1, . . . , λn) = ∪jnRj(λ1, . . . , λn) as usual is also a module of the ring nB, where
each elements of nB acts on the module by multiplying to each component of elements in nB:

a(b1, ..., bn) = (ab1, ..., abn),

where a ∈ nB and (b1, ..., bn) ∈ nR. Inside nRj(λ1, . . . , λn),nZj(λ1, . . . , λn) is the subspace of trivial relations,
which is a submodule generated by elements of the form:

(1) b(0, . . . , 0, λj , . . . , 0 − λi, 0 . . . , 0) for 1 ≤ i < j ≤ n where b ∈ nBj−2; λj is in the i-th position and
−λi is in the j-th position;

(2) b(0, . . . , 0, λq−1
i − 1, 0 . . . , 0) for 1 ≤ i ≤ n and b ∈ nBj−2(q−1); where λq−1

i is in the i-th position;

The space of non-trivial relations is the quotient space nRj(λ1, . . . , λn)/nZj(λ1, . . . , λn).
Following standard definition, we have

Definition 3.1. The degree of regularity of {λ1, . . . , λn} is defined by

Dreg({λ1, . . . , λn}) = min{j | nZj−2({λ1, . . . , λn}) ( nRj−2({λ1, . . . , λn})}

The degree of regularity is dependent only on the subspace generated by the λi assuming that the linear
independence of λi, so we can simplify the notation a little by denoting the space generated by the λi by V
and writing Dreg(V ) for Dreg({λ1, . . . , λn}).

There are two important properties of the degree of regularity were observed in [12].

Property 1. Let V ′ be a subspace of V . Then Dreg(V ) ≤ Dreg(V ′).

Property 2. Let K be an extension of F. Then Dreg(VK) = Dreg(V ).

Here VK corresponding to the space of polynomials spanned by elements in V but over the extension field
K as the base field.

The second property tells us that the degree of regularity is invariant under field extension.
Define BK = K[x1, . . . , xn] and let VK be the K-vector space generated by the λi. If we look at the

situation where P be a quadratic map with component functions p1, . . . , pn ∈ A from it associated map P ′.
Let V and V h be the vector spaces generated by the p1, . . . , pn and their leading component, namely the
component of all their respective quadratic terms: ph

1 , . . . , p
h
n. Our goal is to find a bound for DregV

h. We
begin by extending the base field to K. When we extend the base field in nA, we pass from functions from
Fn to F to functions from Fn to K:

Fn pi→ F emdedding→ K.
Then via the linear isomorphism φ−1 : K → Fn, we can show that this algebra is isomorphic to the algebra
of functions from K to K which is simply K[X]/

〈
Xqn −X

〉
[8].

From elementary Galois theory [8] we know that the space VK corresponds under this identification with
the space generated by P, P q, . . . , P qn−1

.
Further more, if we filter the algebra K[X]/

〈
Xqn −X

〉
by degree of functions over F, then the linear

component is spanned by X,Xq, . . . , Xqn−1
. We then can show easily [8] that the associated graded ring will

then be the algebra nBK = K[X0, . . . , Xn−1] where Xi corresponds to Xqi

and Xq
i = 0. This is naturally

isomorphic to the algebra nBK with coefficients extended to K: nBK =n B ⊗F K.
We will denote this new ring as:

nBK = K[X1, . . . , Xn]/ 〈Xq
1 , . . . , X

q
n〉 .
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Let Pi denote the leading component of P qi

in BK. If P is defined as above for the Square system, then

Pi = X2
i .

The space generated by the Pi is exactly V h
K , the subspace of nBK generated by the ph

i , which is the highest
degree homogeneous component of pi. Putting all the above together we get the following important theorem.

Theorem 3.2. [12] Dreg({p1, . . . , pn}) = Dreg({ph
1 , . . . , p

h
n}) = Dreg({P0, . . . , Pn−1})

In [8], inspired the work by [12], for the first time, there is a rigorous proof for the following much expected
important theorem:

Theorem 3.3. Let P be a quadratic operator of degree D. If Q-Rank(P ) > 1, the degree of regularity of the
associated system is bounded by

(q − 1)(blogq(D − 1)c+ 1)
2

+ 2 ,

where Q-Rank(P ) of a quadratic operator P (X) is the minimal rank of all quadratic forms spanned by V h
K

generated by P0, . . . , Pn−1. If Q-Rank(P ) = 1, then the degree of regularity is less than or equal to q.

It is clear that this theorem gives an upper bound of the degree of regularity, and with some reasonable
assumptions on the termination conditions, this gives us the upper bound of the complexity ot break the
related HFE systems algebraically. But to ensure the security of the systems from algebraic attacks, what we
actually need is a lower bound, which is what we are going to prove in the next section for Square systems.

4. The Degree of regularity of Square systems

To prove the main theorems, we will first present some basic results on nB.

Lemma 4.1. In

nB = K[X0, . . . , Xn−1]/ 〈Xq
1 , . . . , X

q
n〉 ,

the monomials
n−1∏

i

Xai
i , ai < q,

n∑
i

ai = k,

are linearly independent and form a basis of nBk.

This follows from definition.

Lemma 4.2. There is a natural ring embedding of nB into n+1B, which we denote as En, where

En(Xi) = Xi,

for i=0,...,n-1.

The proof also follows from definition and the lemma above.

Lemma 4.3. n+1B is a direct sum of two subspaces:

n+1B = nB
∗ ⊕ Cn+1,

where

nB
∗ = En(nB),

which is the image space of nB in n+1B under En; and

n+1C = {The space spanned by monmials, which must include a nonzero power of Xn in n+1B}.
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We call this lemma the inductive decomposition lemma.
This is a very natural decomposition of the ring namely into the sum a space contains monomials of

variable X0, .., Xn−1, which is nB
∗, and the space of monomials involving Xn, which is n+1C.

This lemma can be easily proved by showing that the following ring homomorphism sequence is exact:

0 → Cn+1
In→ n+1B

Pn→ nB → 0,
where In is a ring embedding, Pn is a ring homomorphism such that

Pn(Xi) = Xi, i = 0, ..., n− 1; Pn(Xn) = 0,

and
Pn ◦ En = Id,

where Id stands for identity map on nB.

Theorem 4.4. Let fi(X0, ..., Xn−1), i = 0, .., n− 1 be elements in nBj , j < q − 2, if

φj(f0(X0, ..., Xn−1), ..., fn−1(X0, ..., Xn−1)) =
∑

fi(X0, ..., Xn−1)X2
i = 0,

then

F = (f0(X0, ..., Xn−1), ..., fn−1(X0, ..., Xn−1))
belongs to

nZj(X2
0 , . . . , X

2
n−1),

the subpage of degree j elements in the space of trivial syzygies.

We prove this by induction on n.
First, it is straightforward that when n = 1, the claim is true,since

X2
0 × f(X0) = 0,

implies that
f(X0) = Xq−2

0 F ′(x0).
Now, let us assume that the statement is true for the case n, we will try to show the case n+ 1 is also

true.
Assume that j < q − 2 and

φj(f0(X0, ..., Xn, Xn), ..., fn(X0, ..., Xn)) =
n∑
1

fi(X0, ..., Xn)X2
i = 0,

where fi(X0, ..., Xn) are homogeneous of degree j.
Then we will rewrite for each i < n:

fi(X0, ..., Xn) = f∗i (X0, ..., Xn) +Xnf
′(X0, ..., Xn),

which follows from decomposition lemma above and

f∗i (X0, ..., Xn) = En ◦ Pn(fi(X0, ..., Xn)).

Then we have that
n∑
0

fi(X0, ..., Xn−1)X2
i =

n−1∑
0

f ∗i (X0, ..., Xn−1)X2
i +Xn

n−1∑
0

X2
i f

′
i(X0, ..., Xn) +X2

nfn(X0, ..., Xn) = 0,

where
n−1∑

1

f ∗i (X0, ..., Xn−1)X2
i = En ◦ Pn(

n∑
1

fi(X0, ..., Xn−1)X2
i ).
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Due to the Inductive Decomposition lemma, this implies that

n−1∑
0

f∗i (X0, ..., Xn−1)X2
i = 0,

and

Xn

n−1∑
1

X2
i f

′
i(X0, ..., Xn) +X2

nfn(X0, ..., Xn) = 0,

Due to the induction assumption, we know that

(f∗0 (X0, ..., Xn−1), ..., f∗n−1(X0, ..., Xn−1)) ∈ nZj(X
2
0 , . . . , X

2
n−1)

and therefore we have (I):

(f∗0 (X0, ..., Xn−1), ..., f∗n−1(X0, ..., Xn−1), 0) ∈ n+1Zj(X
2
0 , . . . , X

2
n−1, X

2
n).

Follow further decomposition by using the Inductive Decomposition lemma, we have that

Xn

∑n−1
1 X2

i f
′
i(X0, ..., Xn) +X2

nfn(X0, ..., Xn)

= Xn(
∑n−1

1 X2
i (f

′∗
i (X0, ..., Xn−1) +Xnf

′′
i (X0, ..., Xn))

+X2
nfn(X0, ..., Xn) = 0,

where
f
′∗
i (X0, ..., Xn−1) = En ◦ Pn(f ′i(X0, ..., Xn)).

This induces that

Xn(
n−1∑

1

X2
i (f

′∗
i (X0, ..., Xn−1) +X2

n(
n−1∑

1

X2
i f

′′
i (X0, ..., Xn) + fn(X0, ..., Xn)) = 0.

Then from the first lemma in this section, we know that

Xn(
n−1∑

1

X2
i (f

′∗
i (X0, ..., Xn−1)) = 0

and

X2
n(

n−1∑
1

X2
i f

′′
i (X0, ..., Xn) + fn(X0, ..., Xn)) = 0.

Xn(
n−1∑

1

X2
i (f ′ ∗i (X0, ..., Xn−1)) = 0

implies that

(
n−1∑

1

X2
i (f ′ ∗i (X0, ..., Xn−1)) = 0

following from the first lemma in this section.
Since the degree of f ′ ∗i (X0, ..., Xn−1) for i < n is j − 1 < q − 2, following from induction assumption,

therefore we have

(f
′∗
0 (X0, ..., Xn−1), ..., f

′∗
n−1(X0, ..., Xn−1)) ∈ nZj−1(X

2
0 , . . . , X

2
n−1)
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and therefore we have (II)

(f
′∗
0 (X0, ..., Xn−1), ..., f

′∗
n−1(X0, ..., Xn−1), 0) ∈ n+1Zj−1(X

2
0 , . . . , X

2
n−1, X

2
n),

and therefore we have (II):

(Xnf
′∗
0 (X0, .., Xn−1), .., Xnf

′∗ ∗n−1 (X0, .., Xn−1), 0) ∈ n+1Zj(X
2
0 , . . . , X

2
n−1, X

2
n).

Then again following from the first lemma in this section and the fact that the annihilator of X2
n is

generated by Xq−2
n , we have that

X2
n(

n−1∑
1

X2
i f

′′
i (X0, ..., Xn) + fn(X0, ..., Xn)) = 0,

imples

n−1∑
1

f ′′i X
2
i (X0, ..., Xn) + fn(X0, ..., Xn) = 0,

and therefore

fn(X0, ..., Xn) = −
n−1∑

1

X2
i f

′′
i (X0, ..., Xn).

This means that

(X2
nf

′′
0 (X0, ..., Xn), ..., X2

nf
′′
n−1(X0, ..., Xn), fn(X0, ..., Xn))

= (X2
nf

′′
0 (X0, ..., Xn), ..., X2

nf
′′
0 (X0, ..., Xn),−

∑n−1
1 X2

i f
′′
i (X0, ..., Xn))

= (X2
nf

′′
0 (X0, ..., Xn), 0, ..., 0,−X2

0f
′′
0 (X0, ..., Xn)) +

(0, X2
nf

′′
1 (X0, ..., Xn), 0, ..., 0,−X2

1f
′′
1 (X0, ..., Xn)) + ...+

(0, .., 0, X2
nf

′′
n−1(X0, ..., Xn),−X2

n−1f
′′
1 (X0, ..., Xn))

= f ′′0 (X0, ..., Xn)(X2
n, 0, ..., 0,−X2

0 ) +
f ′′1 (X0, ..., Xn)(0, X2

n, 0, ..., 0−X2
1 ) + ...+

f ′′n−11(X0, ..., Xn)(0, .., X2
n,−X2

n−1).

This means that (III):

(X2
nf

′′
0 (X0, .., Xn), .., X2

nf
′′
n−1(X0, .., Xn), fn(X0, .., Xn) ∈ n+1Zj(X

2
0 , . . . , X

2
n−1, X

2
n).

Since

(f0(X0, ..., Xn−1, Xn), ..., fn(X0, ..., Xn))
= (f∗0 (X0, ..., Xn−1), ..., f∗n−1(X0, ..., Xn−1), 0) +

(Xnf
′∗
0 (X0, ..., Xn−1), ..., Xnf

′∗
n−1(X0, ..., Xn−1), 0) +

(X2
nf

′′
0 (X0, ..., Xn), ..., X2

nf
′′
n−1(X0, ..., Xn), fn(X0, ..., Xn)),

with (I), (II), (III), we have that

(f0(X0, ..., Xn, Xn), ..., fn(X0, ..., Xn)) ∈ n+1Zj(X
2
0 , . . . , X

2
n−1, X

2
n).

This gives us the proof for our theorem.

Lemma 4.5. (Xq−2
0 , 0..., 0) does not belong to Zq−2(X2

0 , . . . , X
2
n−1, X

2
n).
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This surely follows from the main theorem above ffrom [8]
But, we give a different but direct proof also by induction.
It is obvious that for n=1, the case is true since Zq−2(X2

0 , . . . , X
2
n−1, X

2
n). contains only the zero element.

Assume our claims is true for the case n, we now proceed to prove the case for n+ 1.
Assume that (Xq−2

0 , 0..., 0) does belong to Zq−2(X2
0 , . . . , X

2
n−1, X

2
n), since 2(q − 1) > q − 2 then we have

(Xq−2
0 , 0..., 0) =

n∑
i<j

fij(X0, ..., Xn)(0, .., X2
i , 0, ..., 0,−X2

j , 0, ..., 0).

Then we have

En ◦ Pn(Xq−2
0 , 0..., 0) = (Xq−2

0 , 0..., 0)
= En ◦ Pn(

∑n
i<j fij(X0, ..., Xn)(0, .., X2

j , 0, ..., 0,−X2
i , 0, ..., 0)) =

(
∑n−1

i<j f
∗
ij(X0, ..., Xn−1)(0, .., X2

j , 0, ..., 0,−X2
i , 0, ..., 0)) +

(
∑n−1

i<n f
∗
i,n(X0, ..., Xn−1)(0, .., 0, ..., 0, 0, 0, ...,−X2

i )).

Then if we only look at the first n components, we have

(Xq−2
0 , 0..., 0) =

n−1∑
i<j

f ∗ij (X0, ..., Xn−1)(0, .., X2
j , 0, ..., 0,−X2

i , 0, ..., 0)),

where (Xq−2
0 , 0..., 0) is of size n. This implies that all f∗ij are zero follows from induction assumption.

We therefore have that
fij(X0, ..., Xn) = Xnf

′
ij(X0, ..., Xn)

for i < j < n.
Then have that

(Xq−2
0 , 0..., 0) =∑n−1

i<j Xnf
′
ij(X0, ..., Xn)(0, .., X2

j , 0, ..., 0,−X2
i , 0, ..., 0) +

(
∑n−1

i<n fi,n(X0, ..., Xn−1)(0, .., X2
n, ..., 0, 0, 0, ...,−X2

i )) =∑n−1
i<j Xnf

′
ij(X0, ..., Xn)(0, .., X2

j , 0, ..., 0,−X2
i , 0, ..., 0) +

(f0,n(X0, ..., Xn−1)X2
n, .., 0, ..., 0, 0, 0, ...,−f0,n(X0, ..., Xn−1)X2

i ) +

(
∑n−1

0<i<n fi,n(X0, ..., Xn−1)(0, .., X2
n, ..., 0, 0, 0, ...,−X2

i )).

Let us look at the first component, we have

Xq−2
0 = Xn(

n−1∑
n0<jXnf

′
0j(X0, ..., Xn)X2

j ) +X2
nf0,n(X0, ..., Xn−1),

which is impossible since the LHS can factor our Xn, while the right can not.
This prove our lemma.

This lemma implies that
Dreg({P0, . . . , Pn−1}) ≤ q,

while the theorem above implies that

Dreg({P0, . . . , Pn−1}) ≥ q,

therefore we have
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Theorem 4.6. For a Square system,

Dreg({P0, . . . , Pn−1}) = q

Theorem 4.7. For a square systems,

Dreg({p1, . . . , pn}) = q

There is also a possibility to prove this theorem in a more abstract way. This proof can be sketched as
follows:

1) the first step is to prove that:
over the polynomial ring A = K[X1, ..., Xn], the polynomial system {X2

1 , .., X
2
n} does not have any non-

trivial syzygies, due to the fact that {X2
1 , .., X

2
n} are algebraically independent over A ;

2) let ψ be the map: ψ : An → nB given by

ψ(b1, . . . , bn) =
∑

i

biX
2
i ,

where
An = A×A× ...×A,

the direct product of n copies of A, then the second step is to prove that:
the syzygy module of the polynomial system {X1

12, .., X2
n} over nBK = K[X1, . . . , Xn]/ 〈Xq

1 , . . . , X
q
n〉 is

isomorphic to kernal(ψ)/T , where T = (t1, .., tn), where t = Ideal < Xq
1 , ..., x

q
n >;

3) the last step is to use a filtration of module argument to show that there is no non-trivial syzygies
before the degree of q − 1 and this proves also our main theorem.

We omit the details of this proof since the detailed proof in this paper is straightforward and easy to
understand.

Theorem 4.8. For a Square systems with n variables and q = Ω(n), the complexity to invert the system
algebraically is exponential.

If we look at a Gröbner basis attack on a Square system with the assumption that these algorithms will
terminate at degree equal to the degree of regularity or shortly after this, the running time of this algorithm
will be roughly n3Dreg/6, which is clearly exponential.

Remark If one pays close attention, one can reach an easy conclusion that our theorems works also in
the case of any odd characteristic field including composite field, however the situation of composite field is
a little subtle in terms of complexity analysis due to the fact that we can work on smaller filed ( the prime
field ) with more variables. We will deal with this case in a subsequent paper.

5. Conclusion

Following the previous works of [15], [12],[8], this paper proves that in the case of the Square system,
which was proposed in [3], namely, when the HFE system is given by:

P (X) = X2,

the degree of regularity is exactly q.
This theorem proves a very strong conjecture in [8] on the lower bound of the degree of regularity for the

case of q is odd and q is the size of Ω(n), which implies that to invert the related systems algebraically is
actually exponential.

This work is the first ever to give a lower bound for degree of regularityof HFE systems and therefore
show a lower bound for the complexity of the related algebraic attacks. Clearly from the point view of
cryptography, this result could have profound impacts in many related areas, in particular, in understanding
the complexity of algebraic attacks and in designing new cryptosystems. The results of this paper strongly
suggest, as speculated in [11], that using odd characteristics is indeed a very good idea to resist algebraic
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attacks, and therefore confirms the idea that we should move to filed of odd characteristics. Also this
works points to the possibility to design provablely secure MPKCs. Indirectly, this work also points to new
directions in terms of algebraic immunity for function that should be used in symmetric cryptosystems.
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