Outsourcing Multi-Party Computation

SENY KAMARA * PAYMAN MOHASSEL | MARIANA RAYKOVA ¥

Abstract

We initiate the study of secure multi-party computation (MPC) in a server-aided setting, where the
parties have access to a single server that (1) does not have any input to the computation; (2) does not
receive any output from the computation; but (3) has a vast (but bounded) amount of computational
resources. In this setting, we are concerned with designing protocols that minimize the computation of
the parties at the expense of the server.

We develop new definitions of security for this server-aided setting that generalize the standard
simulation-based definitions for MPC and allow us to formally capture the existence of dishonest but
non-colluding participants. This requires us to introduce a formal characterization of non-colluding
adversaries that may be of independent interest.

We then design general and special-purpose server-aided MPC protocols that are more efficient (in
terms of computation and communication) for the parties than the alternative of running a standard
MPC protocol (i.e., without the server). Our main general-purpose protocol provides security when
there is at least one honest party with input. We also construct a new and efficient server-aided protocol
for private set intersection and give a general transformation from any secure delegated computation
scheme to a server-aided two-party protocol.

*Microsoft Research. senyk@microsoft.com.
TUniversity of Calgary. pmohassel@cspc.ucalgary.ca. Work done while visiting Microsoft Research.
#Columbia University. mariana@cs.columbia.edu. Work done as an intern at Microsoft Research.

senyk@microsoft.com
pmohassel@cspc.ucalgary.ca
mariana@cs.columbia.edu

Contents

1 Introduction
1.1 Our Contributions o s
1.2 Overview of Protocols

2 Related Work
3 Preliminaries and Standard Definitions

4 Non-Collusion in Multi-Party Computation
4.1 Formalizing Non-Collusion With Respect to Semi-Honest Adversaries
4.2 Formalizing Non-Collusion With Respect to Deviating Adversaries

5 Efficiency in the Server-Aided Setting
5.1 Evaluating the Efficiency Gain e

5.2 Comparison with Secure Delegated Computation
5.3 Why Non-Collusion Helps o

6 An Efficient Protocol for Non-Colluding Semi-Honest Parties

7 Protecting Against Deviating Circuit Garblers
7.1 What goes wrong in the server-aided setting?o 0oL
7.2 Extending to Multiple Parties

8 Server-Aided Computation From Delegated Computation
9 Private Set Intersection in the Server-Aided Model
References

A Garbled Circuits

B Secure Delegated Computation

=~

15
15
16
16

17

20
21
27

28

31

36

39

40

1 Introduction

It is often the case that mutually distrustful parties need to perform a joint computation but cannot afford
to reveal their inputs to each other. This can occur, for example, during auctions, data mining, voting,
negotiations and business analytics. Secure multi-party computation (MPC) allows a set of n parties, each
with a private input, to securely and jointly evaluate an n-party functionality f over their inputs. Roughly
speaking, an MPC protocol guarantees (at least) that (1) the parties will not learn any information from
the interaction other than their output and what is inherently leaked from it; and (2) that the functionality
was computed correctly.

Early feasibility results in MPC showed that any functionality can be securely computed [Yao82, Yao86,
GMW8T7, CCD88|. Since then, there has been a large number of works improving the security definitions,
strengthening the adversarial model, increasing the number of malicious parties tolerated and studying
the round and communication complexity (we refer the reader to [Gol04] and the references therein).
Most of these works, however, implicitly assume that the computation will be executed in a homogeneous
computing environment where all the participants play similar roles, have the same amount of resources
and, if corrupted, all collude with each other. In practice, however, computation does not always take place
in such a setting. In fact, it is often the case that distributed computations are carried out by a diverse
set of devices which could include high-performance servers, large-scale clusters, personal computers and
even weak mobile devices. Furthermore, there are many instances in practice where collusion between
participants is unlikely to occur. This can happen either because it is not feasible, is too costly, or because
it is prevented by other means, e.g., by physical means, by the Law or due to conflicting interests. Non-
collusion can also occur if the parties in the system are compromised by independent adversaries that
simply do not have the capacity or the opportunity to compromise the same system (e.g., on one hand
malware spreading through a network and on the other a dedicated attacker).

An important example of such a heterogeneous environment — and the main motivation for our work
— is cloud computing, where a computationally powerful service provider offers (possibly weaker) clients
access to its resources “as a service”. In particular, we consider the problem of secure computation in a
setting where, in addition to the parties evaluating the functionality, there is an untrusted server that (1)
does not have any input to the computation; (2) does not receive any output from the computation; but
(3) has a vast (but bounded) amount of computational resources. We refer to this setting as server-aided
MPC and our aim is to design protocols that minimize the computation of the parties with inputs at the
expense of the server.

Multi-party computation in the server-aided setting is interesting for several reasons. From a practi-
cal perspective, it can enable more efficient and scalable implementations of MPC. Until recently, MPC
protocols were too inefficient to be used in practice but recent advances suggest that MPC could become
practical [MNPS04, BDJ*06, LP07, LPS08, BDNP08, BCD*09, PSSW09]. Many of the improvements
in efficiency, however, rely on new and more efficient instantiations of the cryptographic primitives and
protocols underlying the general MPC results. While these improvements in efficiency are substantial, even
the most efficient solutions cannot scale to handle the kind of massive datasets available today. Indeed, at
a certain point, most algorithms (even non-secure ones) become impractical so the prospect of executing
any MPC protocol is unreasonable. By allowing parties to securely outsource their computation to a cloud
provider, server-aided MPC offers a different, but complimentary approach to making MPC practical and
scalable.

In addition to its practical significance, server-aided MPC is also of theoretical interest. First, it is not
a-priori clear that secure computation can be securely and efficiently outsourced to a single server. While
fully-homomorphic encryption [Gen09] might seem like a natural approach, we note that: (1) it does not
guarantee correctness of the computation; and (2) known constructions are currently not efficient enough
for practice (especially not for large-scale data). Secure delegated computation [GGP10, CKV10, ATK10],

which allows a client to outsource computation to a single worker without revealing the input can also
guarantee the correctness of the computation but known constructions only work for a single client and
are not practical.

Finally, while MPC has been considered in a client/server model before [FKN94, IK97, NPS99, DI05,
BCD™09], most previous work either requires (at least) two servers or does not provide any efficiency gain
for the clients. One notable exception is the work of Feige, Killian and Naor [FKN94] which also considers
a setting with a single server and which presents a protocol (from now on referred to as the FKN protocol)
that allows the clients’ work to be reduced at the expense of the server. Though this was not the original
motivation of [FKN94], the setting considered in that work differs only slightly from ours and we show
that, with minor modifications, the FKN protocol is a two-party server-aided protocol in our model.

1.1 Owur Contributions

We initiate the study of MPC in the server-aided setting, where the parties have access to a single server
with a large amount of computational resources that they can use to outsource their computation. In this
setting, we are concerned with designing protocols that minimize the computation of the parties at the
expense of the server. Server-aided MPC is well motivated in practice due to the increasing popularity of
cloud computing and can enable practical and scalable MPC. We make several contributions:

1. We formalize and define security for server-aided MPC. Our security definition is in the ideal/real-
world paradigm and guarantees that, in addition to the standard security properties of MPC, the
server learns no information about the client’s inputs or outputs and cannot affect the correctness of
the computation.

2. We consider a new adversarial model for MPC in which corrupted parties do not necessarily collude.
Non-collusion in heterogeneous computing environments often occurs in practice and therefore is
important to consider. To address this question, we generalize the standard security definition for
MPC to allow for a finer-grained specification of collusion between the parties. This requires us to
introduce formal characterizations of non-colluding adversaries which may be of independent interest.
Also, as we will see, by considering non-colluding adversaries we are be able to obtain highly efficient
protocols.

3. We explore the connection between server-aided MPC and secure delegated computation. Roughly
speaking, a server-aided MPC protocol can be viewed as a (interactive) delegated computation scheme
for multiple parties. We show how to transform any secure delegated computation scheme into a
server-aided MPC protocol.

In addition to the theoretical contributions discussed above, we also describe two efficient general-
purpose server-aided MPC protocols based on Yao’s garbled circuits [Yao82], and an efficient special-
purpose protocol for private set intersection (which has been the subject of much recent work):

4. The first protocol we consider is (a slight variant of) the FKN protocol [FKN94]. We show that it is
secure against a malicious server and semi-honest parties that do not collude with the server. It allows
all but one of the parties to outsource their computation to the server; making their computation
only linear in the size of their inputs (which is optimal). In addition, the protocol does not require
any public-key operations (except for a one time coin-tossing protocol).

5. Our second protocol extends the FKN protocol to be secure even when all but one of the parties is
malicious. Our construction uses cut-and-choose techniques from [MF06, LP07], but requires us to
address several subtleties that do not exist in the standard two-party setting. One main problem we

need to solve is how to allow an untrusted server to send the majority output of multiple circuits to the
parties without learning the actual output or modifying the results. We achieve this by constructing
a new oblivious cut-and-choose protocol that allows the verifier in the cut-and-choose mechanism to
outsource its computation to an untrusted server.

6. Our third protocol is a new and efficient server-aided protocol for private set intersection. Our
construction provides security against a malicious server as well as malicious participants. The bulk
of computation by each participant is a number of PRF evaluations that is linear in the size of its
input set. In comparison, the most efficient two-party set intersection protocol [HN10] with equivalent
security guarantees, requires O(m + n(loglog m + p)) exponentiations where m and n are the sizes of
the input sets and p is the bit length of each input element, which is logarithmic in the input domain
range. Protocols that provide security in weaker adversarial models (e.g., the random oracle model,
the CRS model, and limited input domain) and achieve linear computational complexity in the total
size of the input sets still require a linear number of public key operations.

Our solution generalizes to the case of multi-party set intersection, preserving the same computational
complexity for each participant. The best existing solution for this case [DSMRY 11] has computation
cost of O(Nd?logd) in the case of N parties with input sets of size d.

The above-mentioned protocols are significantly more efficient than the existing MPC protocols for the
same problems. In order to provide a better sense of the efficiency gain obtained by these server-aided
constructions, we initiate in Section 5 an informal discussion on efficiency in the server-aided model. In
particular we outline different ways of quantifying the efficiency of a server-aided MPC protocol, each
of which is suitable for a specific setting or application. We also provide some intuition for why any
noticeable improvement in the efficiency of our general-purpose constructions is likely to yield considerably
more practical secure delegated computation schemes. We note that a more formal study of efficiency in
the server-aided model is an interesting research direction.

1.2 Overview of Protocols

In this overview and throughout the rest of the paper, we mostly focus on server-aided two-party computa-
tion (two parties and a server). However, as we discuss in future sections, our constructions easily extend
to the multi-party case as well.

The first two protocols are based on Yao’s garbled circuit construction. In both protocols, the only
interaction between the two parties, denoted by P; and P, is to generate a set of shared random coins to
be used in the rest of the protocol. This step is independent of the parties’ inputs and the function being
evaluated and can be performed offline (e.g., for multiple instantiations of the protocol at once). Moreover,
the coin-tossing needs to be performed exactly once to share a secret key. In all future runs of the protocol,
P, and P can use their shared secret key and a pseudorandom function, to generate the necessary coins.
After this step, the two parties interact directly with the untrusted server until they retrieve their final
result.

The FKN protocol. In the (modified) FKN protocol (described in Section 6), after generating the
shared random coins, each party sends a single message to the server and receives an encoding of his own
output. The parties then individually use their local coins to recover their outputs. For P, and P, this
protocol is significantly more efficient than using a standard secure two-party computation protocol. First,
none of the parties (including the server) have to perform any public-key operations, except to perform
the coin-tossing which as discussed above is only performed once. This is in contrast to standard MPC
where public-key operations (which are considerably more expensive than their secret-key counterparts)

are a necessary. Second, one of the parties (P in our case) only needs to do work that is linear in the size
of his input and output, and independent of the size of the circuit being computed.

The server and P; will do work that is linear in the size of the circuit. If the server-aided protocol is
run multiple times for the same or different functionalities, it is possible to reduce the online work of P;
by performing the garbling of multiple circuits (for the same or different functions) in the offline phase.
The online work for P; will then be similar to P> and only linear to the size of his input and output.

We prove the protocol secure against a number of corruption and non-collusion scenarios. Particularly,
the protocol can handle cases where the server, or P, are malicious while the other players are either
honest, or semi-honest but non-colluding.

Making FKN robust. The security of the modified FKN protocol breaks down when party P; is
malicious. We address this in Section 7 by augmenting it with cut-and-choose techniques for Yao’s two-
party protocol (e.g., see [MF06, LP07]). First, note that the cut-and-choose procedure no longer takes
place between P; and P» since this would require P» to do work linear in the circuit size (significantly
reducing his efficiency gain). Instead, P, outsources his cut-and-choose verification to the server. However,
a few subtleties arise that are specific to the server-aided setting and require modifications to the existing
techniques. At a high level, the difficulty is that, unlike the standard setting, the server only learns the
garbled outputs and therefore cannot determine the majority output on his own. One might try to resolve
this by having the server send the garbled outputs to P; and P> and have them compute the majority but,
unfortunately, this is also insecure.

We take the following approach. Instead of treating the garbled output values as the garbling of
the real outputs (as prescribed by the translation table), we use them as evaluation points on random
polynomials that encode (as their constant factor) the “ultimate” garbled values corresponding to the real
outputs. This encoding can be interpreted as a Reed-Solomon encoding of the ultimate garbled values
using the intermediate ones returned by the circuit evaluation. Intuitively, as long as the majority of
the garbled evaluation points are correct, the error correction of Reed-Solomon codes guarantees correct
and unambiguous decoding of the majority output by the server. Further care is needed to ensure that
the server performs the decoding obliviously, and that for each output bit he is only able to decode one
Reed-Solomon codeword without learning the corresponding output. For this purpose, it turns out that
we need the polynomials used for the Reed-Solomon encoding to be permutations over the finite field. To
achieve this goal, we sample our polynomials uniformly at random from the family of Dickson polynomials
of an appropriate degree.

Delegation-based protocol. We show how to construct a server-aided two-party computation protocol
based on any secure non-interactive delegated computation scheme. A delegated computation scheme
allows a client to securely outsource the computation of a circuit C on a private input x to an untrusted
worker. The notion of secure delegated computation is closely related to that of verifiable computation
[GKRO08, GGP10, CKV10], with the additional requirement that the client’s input and output remains
private. Our construction is interesting in the sense that, it formalizes the intuitive connection between
the problems of server-aided computation and verifiable computation by interpreting server-aided protocols
as a means for verifiably and privately outsourcing a secure two-party computation protocol to an untrusted
worker. The resulting protocol inherits the efficiency of the underlying delegated computation scheme.

Set intersection protocol. We present a construction for outsourced computation for the problem of
set intersection where two or more parties want to find the intersection of their input sets. The main idea
of our protocol is that to have the server compute the set intersection of the input sets but since we want
to preserve the privacy of the inputs, he is only given PRF evaluations on the elements under a key that

all parties have agreed on. Then each party will be able to map the returned intersection PRF values
to real elements. In order to protect against a malicious server, we augment this approach by mapping
each input value to several unlinkable PRF evaluations. Now the server will be asked to compute the set
intersection on the new expanded sets and will be able to cheat without being detected only if he guesses
correctly which PRF evaluations correspond to the same input value. This approach, however, introduces
a new security issue in that it allows the parties to be malicious by creating inconsistent PRF values. We
fix this by requiring each party to prove that he has computed correctly the multiple PRF evaluations for
each of his input elements by opening them after the server has committed to the output result. In order
not to lose the privacy guarantees for the inputs, however, we apply another level of PRF evaluations.

2 Related Work

We already mentioned early feasibility results in MPC so we focus on work more closely related to our
own.

Server-aided computation with a single server. Similar settings to our own have been considered
in the past. Most notably, Feige, Killian and Naor [FKN94] consider a setting that includes two parties
with private inputs and a server without input. In this setting, the parties send a single message to the
server who then learns the output. The main differences between [FKN94] and our work are that in our
setting: (1) interaction is allowed; (2) the server is not allowed to learn the output of the evaluation; (3)
the server is not assumed to be semi-honest; and (4) we wish to outsource the computation of the parties
at the expense of the server. Though our motivation is quite different from [FKN94], the settings vary
only slightly and we show that one of the protocols proposed in [FKN94] can be used in our setting with
only minor modifications. We recall the protocol in Section 6 and prove its security with respect to our
new adversarial models and definitions.

Another similar setting is that of Naor, Pinkas and Sumner [NPS99] who propose a protocol based on
Yao’s garbled circuit construction [Yao82] for secure auctions. Here, an auction issuer prepares an auction
to be executed between an auctioneer and a set of bidders. The protocol guarantees that the auctioneer
and the auction issuer do not learn any information about the bids as long as they do not collude. This
is similar to our setting in that the auctioneer has no input to the computation and evaluates the auction
“on behalf” of the bidders and of the auction issuer. The main differences between the setting of [NPS99]
and our own is that in our setting: (1) the server is not allowed to learn the output; and (2) the parties
with input are not assumed to be semi-honest.

Server-aided computation with multiple servers. Server-aided computation with multiple servers
has also been considered [DI05, BCDT09]. Similar to our own motivation, previous work in this multi-
server setting is explicitly concerned with saving work for the clients at the expense of the servers. Catrina
and Kerschbaum [CKO08] suggest a setting in which there are additional parties that do not have any
inputs but assist the execution in different ways, e.g., with coordination and communication, correctness of
computation, or distributed trust among multiple additional parties. It is also noted that solutions where
a single additional party could assist the computation in an efficient way is an open problem since most
MPC protocols rely on secret sharing techniques.

Collusion in MPC. The problem of collusion in MPC was first explicitly considered in the work Lep-
inski, Micali and Shelat [LMs05], where they defined and gave constructions of collusion-free protocols.
Roughly speaking, an MPC protocol is collusion-free if it meets all the standard security properties and,

in addition, it cannot be used as a covert channel. While the protocol of [LMs05] relies on physical as-
sumption (e.g., ballot boxes and secure envelopes), recent work by Alwen, Shelat and Visconti [ASV08]
and Alwen, Katz, Lindell, Persiano, Shelat and Visconti [AKL"09] shows how to construct collusion-free
protocols that rely only on a trusted mediator. Unlike this line of work, our goal is not to design protocols
that prevent collusion, but to formally define non-colluding parties for MPC.

Delegated computation. A verifiable computation scheme allows a client to verify the correctness of
an outsourced computation performed by an untrusted worker. In the random oracle model, Micali’s CS
proofs [Mic94] can be used. In the standard model, Gennaro, Gentry and Parno propose an offline/online
protocol [GGP10] based on Yao’s garbled circuits and fully homomorphic encryption (FHE) [Gen09]. Their
scheme requires the client to produce a public-key during the offline phase but has the added property
that the worker learns nothing about the input. Chung, Kalai and Vadhan [CKV10] show how to remove
the need for the public-key (though still making use of FHE) and suggests an interactive approach to
delegate the offline phase using universal arguments. Applebaum, Ishai and Kushilevitz [AIK10] show how
to efficiently convert the secrecy property of MPC protocols into soundness for a VC scheme via the use
of randomizing polynomials and message authentication codes.

3 Preliminaries and Standard Definitions

Notation. We write x < x to represent an element x being sampled from a distribution x, and x & x
to represent an element = being sampled uniformly from a set X. If f is a function, we refer to its domain
as Dom(f) and to its range as Ran(f). The output x of an algorithm A is denoted by = < A. If Ais a
probabilistic algorithm we sometimes write y <— A(z;7) to make the coins r of A explicit. [n] denotes the
set {1,...,n}. We refer to the ith element of a sequence v as either v; or T[i]. Throughout k will refer to
the security parameter. A function v : N — N is negligible in £ if for every polynomial p(-) and sufficiently
large k, v(k) < 1/p(k). Let poly(k) and negl(k) denote unspecified polynomial and negligible functions
in k, respectively. We write f(k) = poly(k) to mean that there exists a polynomial p(-) such that for all
sufficiently large k, f(k) < p(k), and f(k) = negl(k) to mean that there exists a negligible function v(-)
such that for all sufficiently large k, f(k) < v(k).

Private key encryption. A private-key encryption scheme is a set of three polynomial-time algorithms
(Gen, Enc, Dec) that work as follows. Gen is a probabilistic algorithm that takes a security parameter k in
unary and returns a secret key K. Enc is a probabilistic algorithm that takes a key K and an n-bit message
m and returns a ciphertext c¢. Dec is a deterministic algorithm that takes a key K and a ciphertext ¢ and
returns m if K was the key under which ¢ was produced. Informally, a private-key encryption scheme
is considered secure against chosen-plaintext attacks (CPA) if the ciphertexts it outputs do not leak any
useful information about the plaintext even to an adversary that can adaptively query an encryption oracle.

Functionalities. An n-party randomized functionality is a function f : ({0,1}*)" x {0,1}* — {0,1}*,
where the first input is a sequence of n strings T, the second input is a set of random coins and the output
is a sequence of n strings y. We will often omit the coins and simply write 7 < f(T). If we do wish to make
the coins explicit then we write y <— f(Z;7). We denote the ith party’s output by f;(Z). A functionality
is deterministic if it only takes the input string T as input and it is symmetric if all parties receive the
same output. It is known that any protocol for securely computing deterministic functionalities can be
used to securely compute randomized functionalities (cf. [Gol04] Section 7.3) so in this work we focus on
the former. A basic functionality we will make use of is the coin tossing functionality Fe(1¢,1%) = (r,7),
where |r| = ¢ and 7 is uniformly distributed.

Garbled circuits. Yao’s garbled circuit construction consists of five polynomial-time algorithms Garb =
(GarbCircuit, Garbln, Eval, GarbOut, Translate) that work as follows. We present GarbCircuit, Garbln and
GarbOut as deterministic algorithms that take a set of coins r as input. GarbCircuit is a deterministic
algorithm that takes as input a circuit C' that evaluates a function f, and a set of coins r € {0,1}* and
returns a garbled circuit G(C). Garbln is a deterministic algorithm that takes as input a player index
i € {1,2}, an input z , coins r € {0,1}*, and returns a garbled input G(x). Eval is a deterministic
algorithm takes as input a garbled circuit G(C) and two garbled inputs G(z) and G(y) and returns a
garbled output G(o). GarbOut is a deterministic algorithm that takes as input a random coins r € {0, 1}*
and returns a translation table T. Translate is a deterministic algorithm that takes as input a garbled
output G(o) and a translation table T and returns an output o.

We note that it is possible to arrange the above five functions in such a way that the computational
complexity of Garbln is linear in the input size, the computational complexity of GarbOut and Translate is
linear in the output size, while the complexity of GarbCircuit and Eval are linear in the circuit size. We use
this important property when discussing efficiency of our protocols.

Informally, Garb is considered secure if (G(C), G(z), G(y)) reveals no information about z and y. An
added property possessed by the construction is verifiability which, roughly speaking, means that, given
(G(C),G(z), G(y)), no adversary can output some G(o) such that Translate(G(o), T) # f(z,y). We discuss
these properties more formally in Appendix A.

Delegated computation. A delegated computation scheme consists of four polynomial-time algorithms
Del = (Gen, ProbGen, Compute, Verify) that work as follows. Gen is a probabilistic algorithm that takes as
input a security parameter k and a function f and outputs a public and secret key pair (PK, SK) such that
the public key encodes the target function f. ProbGen is a probabilistic algorithm that takes as input a
secret key SK and an input x in the domain of f and outputs a public encoding o, and a secret state 7.
Compute is a deterministic algorithm that takes as input a public key PK and a public encoding o, and
outputs a public encoding o,. Verify is a deterministic algorithm that takes as input a secret key SK, a
secret state 7, and a public encoding o, and outputs either an element y of f’s range or the failure symbol
L. Informally, a delegated computation scheme is private if the public encoding o, of x reveals no useful
information about z. In addition, the scheme is verifiable if no adversary can find an encoding oy/, for
some y' # f(x), such that Verifyy (7,,0,) # L. We say that a delegated computation scheme is secure if
it is both private and verifiable. We provide formal definitions in Appendix B.

4 Non-Collusion in Multi-Party Computation

The standard ideal/real world definition for MPC, proposed by Canetti [Can01] and building on [Bea92,
GL91, MR92], compares the real-world execution of a protocol for computing an n-party functionality f to
the ideal-world evaluation of f by a trusted party. In the real-world execution, the parties run the protocol
in the presence of an adversary A that is allowed to corrupt a subset of the parties. In the ideal execution,
the parties interact with a trusted party that evaluates f in the presence of a simulator S that corrupts
the same subset of parties.

Typically, only a single adversary A is considered. This monolithic adversary captures the possibility of
collusion between the dishonest parties. One distinguishes between passive corruptions, where the adver-
sary only learns the state of the corrupted parties; and active corruptions where the adversary completely
controls the party and, in particular, is not assumed to follow the protocol. Typically, adversaries that
make passive corruptions are semi-honest whereas adversaries that make active corruptions are malicious.
In this work, we will make a distinction between malicious adversaries who make active corruptions and
can behave arbitrarily and deviating adversaries who make active corruptions but whose behavior may

not be arbitrarily malicious (i.e., their behavior may be limited to a certain class of attacks). Another
distinction can be made as to how the adversary chooses which parties to corrupt. If it must decide this
before the execution of the protocol then we say that the adversary is static. On the other hand, if the
adversary can decide during the execution of the protocol then we say that the adversary is adaptive. We
only consider static adversaries in this work.

Roughly speaking, a protocol II is considered secure if it emulates, in the real-world, an evaluation of
f in the ideal-world. This is formalized by requiring that the joint distribution composed of the honest
parties’ outputs and of A’s view in the real-world execution be indistinguishable from the joint distribution
composed of the honest parties’ outputs and the simulator S’s view in the ideal-world execution. As
mentioned above, the standard security definition for MPC models adversarial behavior using a monolithic
adversary. This has the advantage that it captures collusion and thus provides strong security guarantees.
There are, however, many instances in practice where collusion does not occur. This can happen either
because it is not feasible, too costly, or because it is prevented by other means (e.g., by physical means,
by the Law or due to conflicting interests). This is particularly true in the setting of cloud computing
where one can think of many scenarios where the server (i.e., the cloud operator) will have little incentive
to collude with any of the other parties.

This naturally leads to the two following questions: (1) how do we formalize secure computation in
the presence of non-colluding adversaries? and (2) what do we gain by weakening the security guarantee?
In particular, can we design protocols that are more efficient or that remain secure even if all parties are
corrupted? Note that while the standard definition becomes meaningless if all parties are corrupted (since
the monolithic adversary then knows all the private information in the system), this is not so if the parties
are corrupted by non-colluding adversaries.

4.1 Formalizing Non-Collusion With Respect to Semi-Honest Adversaries

Intuitively, we think of collusion between participants in a MPC protocol as an exchange of “useful informa-
tion”, where by useful information we mean anything that allows the colluding parties to learn something
about the honest parties’ inputs that is not prescribed by the protocol. For our purposes, a non-colluding
adversary is therefore:

“an adversary that avoids revealing any useful information to other parties.”

As we will see, formalizing this intuition is not straight-forward. In the following discussion, we divide
the messages sent by a party into two types: protocol and non-protocol messages. Assuming the protocol
starts with a “start” message and ends with an “end” message, a protocol message is one that comes after
the start message and before the end message, and a non-protocol message is one that comes either before
the start message or after the end message. To formalize our intuition we need to make two crucial changes
to the standard definition which we discuss below.

Independent adversaries. First, in addition to the monolithic adversary (which corrupts multiple
parties) we include a set of non-monolithic adversaries that corrupt at most one party and have access
only to the view of that party. We also assume that all the adversaries are independent in the sense that
they do not share any state !. Intuitively, this essentially guarantees that these adversaries do not send
any non-protocol messages to each other and therefore that they can only collude using protocol messages.
Throughout the rest of this work all adversaries are independent.

When working with independent adversaries, we will consider three possible adversarial behaviors:
semi-honest, malicious and non-cooperative. Semi-honest and malicious behavior refer to the standard

!This idea already appears in work on collusion-free protocols [LMs05, ASV08, AKL™"09].

10

notions: a semi-honest adversary follows the protocol while a malicious adversary can deviate arbitrarily.
Informally, a non-cooperative adversary is one that deviates from the protocol as long as he does not
(willingly) send useful information to another party. We will discuss how to formalize this intuition in
section 4.2, and for now we focus on semi-honest adversaries. Note that, intuitively, if an adversary is
independent and semi-honest, then it is non-colluding in the sense outlined above because it will send only
protocol messages (by independence) and because these messages will reveal at most what is prescribed by
the protocol (due its semi-honest behavior).

Partial emulation. Our second modification is a weakening of the notion of emulation to only require
that indistinguishability hold with respect to the honest parties’ outputs and a single adversary’s view.
In other words, we require that for each independent adversary A;, the joint distribution composed of the
honest parties’ outputs and A4;’s view in the real-world, be indistinguishable from the joint distribution
composed of the honest parties’ outputs and the simulator S!’s output in the ideal world. Roughly speaking,
this implies that the protocol remains private (i.e., the parties do not learn information about each other’s
inputs) as long as the parties do not share any information.

To see why partial emulation is needed in our setting, consider two independent adversaries A; and
Ao whose outputs are correlated based on some protocol message exchanged between them. Under the
standard notion of emulation, the simulators S&; and Sy would also have to output correlated views. The
problem, however, is that because 8] and S} are independent they cannot exchange any messages and
a-priori it is not clear how they could correlate their outputs 2.

We are now ready to introduce our security definition for non-colluding semi-honest adversaries. Like
the standard definition of security with abort, we do not seek to guarantee fairness or guaranteed output
delivery and this is captured by allowing the adversaries to abort during the ideal-world execution. In
addition, however, we also allow the server to select which parties will and will not receive their outputs.
This weakening of the standard definition was first proposed by Goldwasser and Lindell in [GL02] and has
the advantage of removing the need for a broadcast channel.

Real-world execution. The real-world execution of protocol II takes place between players (P, ..., P,),
server P, and adversaries (Aj,..., Am+1), where m < n. Let H C [n + 1] denote the honest parties,
I C [n+1] denote the set of corrupted and non-colluding parties and C C [n+ 1] denote the set of corrupted
and colluding parties. Since we only consider static adversaries these sets are fixed once the protocol starts.

At the beginning of the execution, each party (P,..., P,) receives its input z; and an auxiliary input
z; while the server P, 11 receives only an auxiliary input z,4;. Each adversary (Ay,...,A,,) receives an
index ¢ € I that indicates the party it corrupts, while adversary A,,+1 receives C indicating the set of
parties it corrupts.

For all ¢ € H, let ouT; denote the output of P; and for i € I U C, let oUT; denote the view of party
P; during the execution of II. The ith partial output of a real-world execution of II between players
(Pi,...,Pyt1) in the presence of adversaries A = (Ay, ..., Ap41) is defined as

: N .
REALY 4 1 o2(k, %) & {our;: j € H} Uour.

Ideal-world execution. In the ideal-world execution, all the parties interact with a trusted party that
evaluates f. Asin the real-world execution, the ideal execution begins with each party (P, ..., P,) receiving

its input z; and an auxiliary input z;, while the server P, receives only an auxiliary input z,+1. Each
party (P, ..., DP,) sends z to the trusted party, where 2} = z; if P; is semi-honest and 2’ is an arbitrary

2This could potentially be addressed using a setup assumption, but here we restrict ourselves to the plain model.

11

value if P; is malicious. If any a2} = L, then the trusted party returns L to all parties. If this is not the
case, then the trusted party asks the server to specify which of the corrupted parties should receive their
outputs and which should receive L. The trusted party then returns f;(z],...,z]) to the corrupted parties
P; that are to receive their outputs and L to the remaining corrupted parties. The trusted party then asks
the corrupted parties that received an output whether they wish to abort. If any of them does, then the
trusted party returns L to the honest parties. If not, it returns f;(z},...,z],) to honest party P;.

For all © € H, let ouT; denote the output returned to P; by the trusted party, and for ¢ € T U C let
ouUT; be some value output by F;. The ¢th partial output of an ideal-world execution between parties
(Pi,...,Pyt1) in the presence of independent simulators S = (Si,...,Sn+1) is defined as

IDEAL 5029 _(k,7) < {our; : j € H} Uour,.

Security. Informally, a protocol II is considered secure against non-colluding semi-honest adversaries if
it partially emulates, in the real-world, an evaluation of f in the ideal-world.

Definition 4.1 (Security against semi-honest adversaries). Let f be a deterministic n-party functionality
and II be an n-party protocol. Furthermore, let1 C [n+1] and C C [n+1] be such that INC = 0 and |I| = m
We say that I1 (I, C)-securely computes f if there exists a set {Sim;};c|y,11) of PPT transformations such
that for all semi-honest PPT adversaries A = (Ai1,..., Am+1), for all T € ({0,1}*)" and z € ({0, 1}*)" 1,
and for all i € [m + 1],

{REAL%?AI’CJ(k,x)} ~ {IDEA ;?S ~(k, x)} ,
keN keN
where S = (81, ...,Sm+1) and S; = Sim;(A;).

4.2 Formalizing Non-Collusion With Respect to Deviating Adversaries

While non-collusion in the semi-honest model can be formalized via independent adversaries and partial
emulation, this is not sufficient when the adversaries are allowed to deviate from the protocol. The difficulty
is that such adversaries can use protocol messages to collude since they can send arbitrary messages. Of
course, collusion can be prevented through physical means (e.g., using ballot boxes as in [LMs05]) or
trusted communication channels (e.g., the mediator model used in [ASV08, AKLT09]) but our goal here
is not to obtain (or define) protocols that prevent adversaries from colluding but to formally characterize
adversaries that do not wish to or cannot collude.

Towards formalizing our intuition, we introduce the notions of non-cooperative and isolated adversaries.
Let (Ajp,..., Amnt1) be a set of independent adversaries. Informally, an adversary A; is non-cooperative
with respect to another adversary A; (for j # i) if it does not share any useful information with A;. An
adversary A; is isolated if all adversaries {.A;};.; are non-cooperative with respect to A;. In other words,
A; is isolated if no one wants to share any useful information with him. We formalize this intuition in the
following definitions.

Definition 4.2 (Non-cooperative adversary). Let f be a deterministic n-party functionality and II be
an n-party protocol. Furthermore, let H, I and C be pairwise disjoint subsets of [n + 1] and let A =
(A1, ..., Apmt1), where m = |I|, be a set of independent PPT adversaries. For any i,j € [m + 1] such that
i # j, we say that adversary A; is non-cooperative with respect to A; if there exists a PPT simulator V; ;
such that for all T € ({0,1}*)" and z € ({0,1}*)"*L, and all y € Ran(f;) U {L},

c . 3 —
{Vi,j(y, zz)} ~ {wewi’j ‘ output; =y : {OUTy}p + REAL%?A,LC’E(k, x)}
keN keN

12

whenever Proutput; =y] > 0. Here view; ; denotes the messages between A; and Aj; in the real-world
ezecution and output, =y s the event that party P; receives output value y.

Note that with the notion of non-cooperation, we are restricting the behavior of the non-cooperating
adversary. In particular, we are assuming it will deviate from the protocol but in such a way that it will not
disclose any useful information to the isolated adversary A;. Therefore, one has to be careful in specifying
the isolated party’s behavior (i.e., whether it is semi-honest or malicious) so that the non-cooperation
assumption is not so strong as to imply the security of the protocol. In particular, requiring that the
simulator V; ; work with respect to a malicious A; seems too strong. Similarly, requiring that it work with
respect to an honest A; seems too weak as honest adversaries can always be simulated. A more useful and
reasonable notion seems to follow from requiring that V; ; work with respect to semi-honest adversaries.
This can be interpreted as saying that the non-cooperative adversary does not intentionally disclose useful
information to an isolated adversary. In particular, this means that the non-cooperative adversary will
not take actions such as sending its private input to the isolated party. It does not, however, restrict the
isolated adversary from trying to “trick” the non-cooperative adversary into revealing this information.

As described above, an isolated adversary is one with which no other adversary wants to cooperate.
Roughly speaking, we formalize this intuition by requiring that there exist an emulator for the isolated
adversary A; that, given only A;’s output value f;(Z), returns A;’s view from a real-world execution.
Intuitively, the notion of isolation restricts the behavior of the other adversaries towards A; by allowing
them to behave arbitrarily as long as their collective actions do not result in A; learning any useful
information in the sense discussed above. This informal description neglects some important subtleties
that we address below.

Definition 4.3 (Isolated adversary). Let f be a deterministic n-party functionality and I1 be an n-party
protocol. Furthermore, let H, I and C be pairwise disjoint subsets of [n + 1] and let A= (Aq,..., Ant1),
where m = |1|, be a set of independent PPT adversaries. For anyi,j € [m+1] such that i # j, we say that a
semi-honest adversary A; is isolated if there there exists a PPT emulator & such that for all @ € ({0,1}*)"
and z € ({0,1}*)"*, and all y € Ran(f;) U {L},

{é} (v, z,)} ~ {OUT,- | output; =y : {OUTe}, + REAL%?A’LQZ(k,x)}
keN keN

whenever Pr[output, = y| > 0. Here output, = y is the event that party P; receives output value y.

Towards understanding Definition 4.3, it is perhaps instructive to consider how we will make use of
it. Recall that to prove the security of a protocol II against independent adversaries (A, ..., Ap+1), we
need, for all i € [m + 1], to describe a simulator S; whose output in an ideal execution is indistinguishable
from A;’s output in a real execution. To achieve this, we consider a simulator S; that works by simulating
A; so that it can recover A;’s output and return it as its own. Now suppose that, in the real world, II
requires A; to interact with some other adversary A;. It follows that S; will somehow have to simulate this
interaction, i.e., S; will have to simulate the (protocol) messages from A;. These messages, however, could
be “colluding messages” in the sense that they could carry information that helps A; in learning more that
what is prescribed by the protocol and it may be impossible for §; to simulate them as they could include
information known only to A; and A; (e.g., this information could be hardwired in A; and A;). This is
the main reason that simply requiring that the real and ideal adversaries be independent (together with
partial emulation) is not enough to capture non-collusion with respect to deviating adversaries.

Our approach here will be to “strengthen” the simulator S; by assuming that the adversaries {A;};;
are non-cooperative with respect to A;. In Lemma 4.4 below, we will show that this implies that A; is
isolated and, therefore, there exists an emulator & that will return a view that is indistinguishable from
A;’s view when interacting with {4}, in a real-world execution.

13

Lemma 4.4. Let f be a deterministic n-party functionality and I1 be an n-party protocol. Furthermore,
let A= (A1,...,Anq1) be a set of independent PPT adversaries. For any i,j € [m + 1], if {A;}j2; are
non-cooperative with respect to A;, then A; is isolated.

Proof sketch: Consider the emulator & that, given y and z;, computes v;; < V;;(y,2;) for all j # i
and returns the view ouT; composed of {v;;}iz;. Let {A;,..., A} be the adversaries that are non-
cooperative with respect to A; and let {V;;,...,V;;,} be their corresponding simulators (which are
guaranteed to exist by the fact that they are non-cooperating with respect to A;). We show that &’s
output is indistinguishable from the view of A; in a real execution using the following sequence of games.
Gamey consists of running {OUT;}; REALE?ALC’EU{:,E) and outputting ouT;. For all £ € [m], Gamey
is similar to Gamey_; except that the messages between A; and A;, in OUT; are replaced with messages
generated by V; j,(y, z;). Note that the output of Game,, is distributed exactly as the output of &;.

The indistinguishability of the outputs of Gamey and Game; follows directly from the non-cooperation
of A;, with respect to A; so we show that, for all 2 < ¢ < m, if there exists a PPT distinguisher D, that
distinguishes the output of Game, from that of Game,;_;, then there exists a PPT distinguisher B, that
distinguishes the messages exchanged between A; and A, in a real-world execution from the messages
generated by V; j,. Given a set of messages v;j, (generated either from a real-world execution or from
Vije.), Be works as follows. It first runs {OUT;}; < REAL 41,cz(k,T) and, for 1 < ¢ < £ —1, it replaces
the messages between A; and Aj, in ouT; by v; j, < Vi j, (v, zi). It then replaces the messages between A;
and Aj, in ouT; with v; j, and simulates D(OUT;). It returns “real” if D outputs ¢ and “simulated” if D
outputs £+ 1. Notice that if v; j, was generated from a real-world execution then B constructs ouT; exactly
as in Gamey_; whereas if v; j, is generated from V; j, then B constructs OUT; as in Gamey. It follows then
that D’s advantage is equal to B’s advantage in distinguishing between the outputs of Game,_; and Gamey
which, by our initial assumption, is non-negligible.

Since, in our setting, we will consider multiple adversaries with different adversarial behaviors it will
be convenient to specify the behavior of each adversary using the following notation. If A; is semi-honest
we will write A;[sh]| and if A; is malicious we write A;j[m]. If A; is non-cooperative with respect to Ay
then we write A;[ncp]. Throughout, we will often need to describe classes of adversarial behaviors. We
refer to such classes as adversary structures and describe them as follows. Consider, for example, a three
party protocol between players P, P> and P3. A protocol with security against the adversary structure

ADV = { <A1 [m], Az [m], As [sh]>, (A1 [sh], Aa[sh], As[ncy, ncz]> }

is secure in the following two cases: (1) A; and Ay are malicious while A3 is semi-honest; and (2) A; and
As are semi-honest while A3 is non-cooperating with respect to both A; and As,.

We now present our security definition for non-colluding deviating adversaries. It is based on the real-
and idea-world executions defined in section 4.

Definition 4.5 (Security against deviating adversaries). Let f be a deterministic n-party functionality
and II be an n-party protocol. Furthermore, let I C [n+ 1] and C C [n+ 1] be such that INC = 0 and
|[I| = m and let ADV be an adversary structure. We say that I1 (I, C, ADV)-securely computes f if there
exists a set {Sim; }ic(m41] of PPT transformations such that for all PPT adversaries A = (Ax, ..., Ami1)
that satisfy ADV, for all T € ({0,1}*)" and z € ({0,1}*)"*, and for all i € [m + 1],

{REAL%?AI’C’Z(k,x)}k . ~ {IDEALS}ZS’LQZ(]C,J:)}
S

where S = (81, ...,Sm+1) and S; = Sim;(A;).

keN

14

Notice that the standard security definitions of secure MPC in the presence of a semi-honest and
malicious adversary can be recovered from Definition 4.5 by setting I = () and letting the adversary in ADV
be semi-honest or malicious.

5 Efficiency in the Server-Aided Setting

Having introduced the server-aided model for secure computation, it is natural to ask:

Is it possible to gain efficiency in this setting? and if so how can one quantify such a gain
in efficiency?

In this section we discuss these issues, informally. Formalizing these discussions accompanied with feasi-
bility and impossibility results is an interesting direction for future research.

5.1 [Evaluating the Efficiency Gain

Our main motivation for considering MPC in the server-aided setting is to allow (possibly) heterogeneous
parties to outsource their computation to a server (that they do not necessarily trust). Hence, a natural
way of measuring the efficiency of a server-aided protocol H?AC between n parties (Py, ..., P,) and a server
P,+1 that wish to compute a function f, is to compare the work performed by these parties with the
work they would have to do in the most efficient “standard” MPC protocol H}“PC (where the server is not
present). Even if given a secure MPC protocol HI}’[PC as a point of reference, there are multiple ways of
quantifying the gain in the server-aided model each of which might be suitable for a particular computing
environment.

Max/min efficiency. In cases where one party has significantly lower computational resources (e.g.,
a mobile phone executing a protocol with high-performance servers) we would like the weakest device to
outsource as much of its computation as possible. A natural measure then is to consider only the maximum
(over the parties) efficiency achieved by H;AC. Furthermore, when comparing to a standard MPC protocol,
one should compare the total work of the party P; that does the least amount of work in HI}‘PC with the
total work of the party P; that does the least amount of work in H?f‘c. If the gap is significant enough, the
weak device will see an improvement in efficiency if it plays the role of P; in H?AC 3. Similarly, one could
consider the minimum efficiency, i.e., the total work of the party that does the most amount of work in
H?AC.

We note that a sizable maximum efficiency might mean a less impressive reduction in the work of other
players (or even an increase). For example, in the server-aided variant of Yao’s garbled circuit protocol
we design in Section 6, one player’s computation is reduced significantly (the work is independent of the
circuit size), while the second player has to do work proportional to the circuit size (though his work is
still less than than what it would be in Yao’s original protocol).

Average efficiency. Alternatively, one might be interested in a noticeable gain in the total work required
by the players (excluding the server) regardless of the way this work is divided between the players. In
this case one should try to optimize the average efficiency over by all the parties. To ensure some level
of fairness, one can additionally enforce a limit on the variance in the efficiency of different parties. One
example of a protocol with better average efficiency compared to standard two-party computation is briefly
mentioned in Section 7. This protocol provides security against a malicious circuit garbler by utilizing the
honest server for verification. In the resulting protocol, both players still have to compute a garbled

3We note that in the case of special-purpose protocols, the roles that a party can play may be restricted.

15

circuit once, but can avoid the cut-and-choose and/or zero-knowledge proof techniques which would add a
significant overhead.

Combined efficiency. Finally, there may be cases where a combination of different efficiency measures
may be appropriate. Consider, for example, a computation that occurs between a mobile device and
a server running “in the cloud”. As discussed above, the maximum efficiency of HchC is an important
consideration for the weakest device (i.e., the mobile device). But the minimum efficiency of IT}*“ may be
important as well since computation “in the cloud” has an economic cost and the client may have a limited
budget.

More generally, taking extra costs into account (e.g., the cost of a cloud service) for some players it may
only make sense (economically) to take part in a server-aided protocol if the gain in efficiency is greater
than a threshold while other players may be happy with more modest gains. In such cases a combination
of the maximum, minimum and average efficiency might be appropriate.

5.2 Comparison with Secure Delegated Computation

An alternative way of measuring efficiency is to compare the work the parties have to perform in the
server-aided protocol to their work if they were to take part in an insecure protocol for evaluating the same
function. This measure of efficiency is closely related to those considered for secure delegated computation
(see Appendix B). In fact, it is not hard to show that any server-aided protocol for computing a function f
that achieves reasonable efficiency compared to an insecure protocol for the same task can easily be turned
into an efficient and secure delegated computation.

For example, consider our server-aided variant of Yao’s protocol from Section 6. As mentioned above,
this protocol reduces P»’s work significantly, making it independent of the circuit size for f while P;’s work
is still linear in the circuit size. Now consider a construction that would improve our protocol by making
P;’s work sublinear in the circuit size. One could then transform P; and P» into a single client, and let
the server be the worker in a securely delegated computation scheme. This would yield a scheme that is
more efficient than existing general-purpose secure delegation schemes in the literature [GGP10, CKV10]
since they all take advantage of heavy machinery (e.g., fully homomorphic encryption) and only provide
amortized improvements over insecure protocols.

This connection with secure delegated computation schemes is bi-directional. In fact in Section 8, we
formally show how to transform any secure delegated computation scheme into an efficient server-aided
secure computation protocol.

5.3 Why Non-Collusion Helps

Our last note on efficiency is an intuitive explanation of why non-collusion helps. In particular, consider a
security definition for server-aided computation where a player (e.g., P;) could collude with the server S.
In that case, we could combine P; and S into a single party P;g and our security definitions would reduce to
the standard definitions for secure two-party computation between P;g and P». Then, any general-purpose
protocol for server-aided computation where P»’s work is sublinear in the circuit size, would automatically
yield a general-purpose secure two-party computation where one of the parties performs sublinear work in
the size of circuit. To the best of our knowledge, the only known way of achieving this goal (even in the
case of semi-honest adversaries) is via use of a fully-homomorphic encryption scheme.

On the other hand, our non-collusion assumption between P; and S allows us to design a general-
purpose protocol where the work of P, is independent of the circuit size.

16

Inputs: P,’s input is z, P»’s input is y, and S has no inputs. All parties know the circuit C which computes
the functions f.
Outputs: P; and P, learn the output f(z,y).

1. P, and P, execute a coin tossing protocol to generate coins 7. As a result, both players learn r.

2. P; computes G(C) < GarbCircuit(C;r), G(z) + GarbIn(C,1,z;7) and T + GarbOut(r). It sends G(C)
and G(z) to S.

3. P, computes G(y) < GarbIn(C,2,y;r) and T < GarbOut(r). It then sends G(y) to S.
4. S computes G(o) + Eval(G(C), G(z), G(y)) and sends it to P; and Ps.

5. P; and P, separately compute o < Translate(G(o), T).

Figure 1: The (modified) FKN protocol.

6 An Efficient Protocol for Non-Colluding Semi-Honest Parties

In this Section, we describe a slight variation of the protocol by Feige, Killian and Naor from [FKN94]
(from now referred to as the FKN protocol). The protocol makes use of Yao’s garbled circuit construction
as a black-box. We provide a high level description of Yao’s construction in Appendix A.

At a high level, the FKN protocol works as follows. P; and P are assumed to share a set of random
coins. P; then uses these coins to generate a garbling of the circuit, the translation table and a garbling
of its own input. P; sends the garbled circuit, its garbled input and the translation table to the server.
P, uses the same coins, but only computes its own garbled input and the translation table. P» sends its
garbled inputs to the server. The server evaluates the garbled circuit using the garbled inputs, translates
the garbled output and returns the evaluation to both parties.

We slightly modify the FKN protocol to adapt it to our setting in which the server is not allowed to
learn the output and where we do not assume the parties share a set of random coins. For this purpose,
it suffices that (1) the parties execute a coin tossing protocol to generate the random coins; and (2) that
P not send the translation table to the server. The server can still evaluate the garbled output which the
parties can translate on their own. Intuitively, the privacy and verifiability properties of the garbled circuit
construction (see Appendix A) and the coin-tossing protocol guarantee that a malicious server cannot
return the wrong result or learn anything about the inputs of P, and P, if he does not collude with either
party.

We formally describe this variant of the FKN protocol in Figure 1 and in Theorem 6.2 below we show
that it is secure against the following adversary structure:

ADV; = {<AS [sh], Ay [sh], As [sh]>,
(Aslm). A 1] 28]).
(AS (et nea], Ar[sh], As [sh]) |
(s8], A1 0], Aaf]).
(Ag [sh], Aq [sh], A2 [n05]> }

Before proving the security of the FKN protocol in our model, we present a simple Lemma that we will
use throughout this work and that will simplify our proofs significantly.

17

Lemma 6.1. If a multi-party protocol I1 between n players P, ..., Py, securely computes f = (f1,..., fn),
(1) in presence of semi-honest and independent parties and (2) in presence of a malicious Pj and honest
Py for k € [n] —{j}, then the protocol is also secure in presence of (3) a P; who is non-cooperative with
respect to all other parties who are semi-honest.

Proof. We need to prove that protocol II is secure when the adversary A; corrupting P; is non-cooperative
with respect to all other parties. Since A; is non-cooperative, and all other parties are semi-honest (and
hence non-cooperative), based on Lemma 4.4, we can assume that Ay is isolated for k € [n] — {j}. Hence,
we can use the definition of isolation in our simulation of such A’s.

We first need to provide a simulator Sim; for simulating a non-cooperative P; in the ideal world.
However, since II is secure against a malicious P; when all other parties are honest, we already know that
a simulator Simj: exists that simulates P; in that case. Sim; imitates Sim; completely.

We also need to describe a simulator Simy, for k € [n] — {j}. The simulator Simy, runs the adversary
Ay controlling P in the real world, on input zp. It sends zp to the trusted party and receives back
fe(z1, ..., x,). Since Ay is isolated, according to Definition 4.3, there exists an emulator & that takes
fr(z1,...,2,) as input and can be used to simulate a semi-honest Ax’s output. Simy, feeds fi(z1,...,2,)
to & and plays the role of semi-honest Py in interaction with it. At the end of this interaction, Simy
outputs what the semi-honest P, would, and halts. According to the Definition 4.3, Simy, will successfully
simulate the output of A in this way.

O

Since we present all our proofs in the Fg-hybrid model, we need to make sure that a coin-tossing
protocol with security in all adversary structures we consider in fact exists. However, any two-party coin-
tossing protocol (between P and P») with security against malicious adversaries would be sufficient in our
server-aided setting. Such a protocol can easily be proven secure when all three parties are semi-honest
and independent. It is also secure, by definition, when either P; or P, are malicious. It is also secure
when the server is malicious and the other two parties are honest since the server is not involved in the
protocol, in any way. Finally, Lemma 6.1 guarantees that the same coin-tossing protocol is also secure in
all adversary structures where one party is malicious and the rest are semi-honest and isolated.

We are now ready to state and prove the security of the FKN protocol with respect to ADV;.

Theorem 6.2. The (modified) FKN protocol described in Figure 1 securely computes any function f in
the Fet-hybrid model for the adversary structure ADV1.

Proof. We consider each case in ADV; separately.

Claim. The protocol (Ag [sh] Al [sh] , As [sh])—securely computes f in the Fe-hybrid model.

We describe three independent transformations Simg, Sim; and Sims:

e Simg simulates Ag as follows: it computes (st, G(C), T) + GarbCircuit(C), G(z') < GarbIn(st,C, 1, 2")
and G(y') « Garbln(st,C,2,y’) for random 2’ and y/; and sends G(C), G(2') and G(v') to Ag. If
Ag outputs L, then Simg tells the trusted party to abort. In either case, Simg outputs Ag’s entire
view.

The privacy property of garbled circuits (see Definition A.2) guarantees that G(z) and G(y) are
indistinguishable from 2’ and 3’ to Ag who does not know the coins r. In addition, in both the real

18

and ideal execution the semi-honest Ag does not abort since he is given valid garbled inputs (in the
real world this is true since the other two parties are also semi-honest). Therefore, the views of Ag
in the real and the ideal executions are indistinguishable.

e Sim; receives z as input and sends it to the trusted party in order to receive f(z,y). It then
simulates A; as follows. It answers A;’s F¢ query by returning random coins . Sim; then computes
(st, G(C),T) < GarbCircuit(C;r) and uses the translation table to find a garbling G(o) of f(z,y).
Finally, it returns G(o) to A; and outputs A;’s entire view.

The view of A; consists of the garbled circuits it creates and the garbled outputs it receives. In both
the real and the ideal execution he receives the garbled output values corresponding to f(z,y). In
the real world this is guaranteed by the fact that S and P, are honest and the correctness property of
garbled circuits (see Definition A.1). Therefore, the views of A; in the real and the ideal executions
are indistinguishable.

e Sim, works analogously to Sim;.

Claim. The protocol (.AS [m] ,Ag [h] , As [h])- securely computes f in the Fe-hybrid model.

Consider the simulator Simg that simulates Ag as follows. It chooses coins r and computes G(C) «+
GarbCircuit(C; 7). Simg chooses random inputs z’ for P; and y' for P,. Then he sends G(C') together with
garbled input labels G(z') < GarbIn(C, 1,2;r) and G(y') < GarbIn(C,2,y/;7) to As. Simg receives the
garbled outputs that Ag returns for P; and P,. If any of the outputs does not correspond to the correct
value, the simulator instructs the trusted party to return L to that party. The view of Ag consists of the
garbled circuits and the garbled input values that he receives. The garbled values that correspond to zero
and one are indistinguishable for the adversary since he does not know the seed for the PRG (correctness
property in definition A.1). Therefore the garbled labels for the real inputs x and y in the real execution
and the random values 2’ and 3’ in the ideal execution are indistinguishable for the Ag. It follows the
views of the adversary in the real and the ideal execution are also indistinguishable. The outputs of P;
and P, are also indistinguishable in the real and the ideal execution. They receive the correct output,
if Ag computes and returns the result honestly. Otherwise, in the ideal execution they receive 1 from
the trusted party, and in the real execution .Ag cannot produce with all but negligible probability garbled
output values for any other output but the correct evaluation of the garbled circuit by the verifiability
property of garbled circuits (see Definition A.3).

O

Claim. The protocol (Ag [ncl, TlCQ] Al [sh] , Ao [sh])—securely computes f in the F-hybrid model.

The proof of this claim is automatically implied given the last two claims and Lemma 6.1.

Claim. The protocol (Ag [h] , Al [h] , Ag [m])—securely computes f in the F-hybrid model.

Sims simulates the view of adversary As. The simulator answers As’s query to Fe with random coins
r. He receives the garbled values G(y) + GarbIn(C,2,y;r) corresponding to the input of A,. Using the
coins r, Simy extracts As’s input value y. If extraction fails he returns 1 to As. Otherwise, the simulator
obtains the output f(z,y) from the trusted party, computes the corresponding garbled output values and

19

sends them to As. The view of A, which consists of the output he receives, is indistinguishable in the real
and the ideal execution. If the garbled input is contructed correctly, in both cases he gets f(z,y) (in the
real world this is true since the other two parties are honest). If he submits invalid garbled values for his
input, he receives L from the simulator in the ideal execution, and in the real world with high probability
S will fail to evaluate the circuit and will return L. Similarly, the output of P; will be indistinguishable
in the real and the ideal execution.

0

Claim. The protocol (.AS [sh] ,Aq [sh] , As [ncs])-securely computes f in the Fe-hybrid model.

Once again the above claim is automatically implied given the proof of previous claims and Lemma 6.1.

Efficiency. First note that neither Pi, P, nor the server S have to perform any public key operations
(i.e. no oblivious transfers are needed) with the exception of the initial coin-tossing between P; and P,
which either requires the existence of a secure channel between them or public-key operations. Moreover,
the coin-tossing needs to be performed exactly once to share a secret key. In all future runs of the protocol,
P, and P can use their shared secret key and a pseudorandom function, to generate the necessary seeds.
This is a considerable improvement since public key operations are significantly more expensive compared
to secret-key ones. Second, P, only needs to do work that is linear in the size of his input and the output,
and independent of the circuit size since he only computes the Garbln, GarbOut and Translate algorithms
and the computational cost of these algorithms do not depend on the circuit size. Finally, note that the
interaction between P; and P, is minimal and only takes place in the context of coin tossing (Step 1 of
the protocol). In addition, since this interaction is independent of the function f and of the parties’ inputs
x and y, it can be performed off-line and for many instances of the protocol at once. The server and Py
will do work that is linear in the size of the circuit. If the server-aided protocol is run multiple times for
the same or different functionalities, we can reduce the online work of P; by performing the garbling of
multiple circuits (for the same or different functions) in the offline phase. The online work for P; would
then be similar to P, and only linear to the size of his input and output.

Extending to multiple parties. Our protocol can be easily extended to multiple parties as follows.
All the parties, except for the server, begin by executing a coin-tossing protocol which results in them
sharing a set of coins. The coins are then used by one of parties to garble the circuit and all the parties
to garble their inputs. The garbled circuit and inputs are then sent to the server who evaluates the circuit
and returns the garbled outputs to the parties.

It is not difficult to show that this extended protocol is secure when either: (1) the server is malicious
and the other parties are semi-honest; or (2) the server is isolated and semi-honest, the garbler is semi-
honest and the remaining parties are malicious.

7 Protecting Against Deviating Circuit Garblers

The security of the FKN protocol critically relies on the circuit garbler being honest (or semi-honest) and
breaks down completely if this is not the case. To add robustness, we augment the protocol to handle the
case where player P; deviates from the protocol but is non-cooperative (with respect to S).

20

Using the semi-honest server for verification. If we assume that the server is semi-honest, there
is a simple strategy for protecting against deviating but non-cooperative circuit garblers: similar to the
protocol of the previous section, P; and P run the coin-tossing protocol and as before P; uses the retrieved
randomness to generate a garbled circuit. This time, however, P, also generates the garbled circuit (using
the same randomness) and sends his version of the circuit to the server. The server then verifies that the
two garbled circuits he receives are the same, and if so, proceeds with the rest of the computation. Note
that as long as one of the players is semi-honest, dishonestly garbled circuits are detected by the honest
server. This approach yields a server-aided protocol with a significantly better average efficiency gain (see
Section 5 for an overview of different notions of efficiency gain) compared to the standard two-party Yao
protocol with security against malicious adversaries, since it avoids the cut-and-choose steps.

Our goal, however, is to design a protocol that maintains the benefits of the previous protocol (i.e.,
security against a non-cooperative server) and simultaneously provides protection in cases where the circuit
garbler P; is non-cooperative with respect to S.

To protect against a non-cooperative P;, we use the existing cut-and-choose techniques for Yao’s garbled
circuit protocol (e.g. see [MF06, LP07]). Note that here the cut-and-choose step cannot take place between
P, and P, since that would significantly increase the work of P, and, to a large extent, diminish our
ultimate goal of gaining efficiency. Hence, we construct a cut-and-choose protocol between P, and an
untrusted server instead. Note that some subtleties arise that are specific to our server-aided setting and
require modifications to the way the cut-and-choose steps are performed.

The computational cost of the resulting protocol increases by a factor of A (the number of circuits) for
the players and the server. However, the new protocol inherits the two important efficiency advantages of
the previous one, i.e., the computation still only consists of secret-key operations and P»’s computation is
only linear in the size of his input and output and, in particular, is independent of the circuit size.

Standard cut-and-choose. In astandard cut-and-choose, P; sends multiple copies of the garbled circuit
to S. S then asks P; to open the secrets related to a subset of those circuits. S verifies the correctness of the
opened circuits, evaluates the remaining circuits (called evaluation circuits) and outputs the majority result
as the final output. Note that it is essential to compute the majority output and not abort immediately
after seeing an inconsistent output. As discussed in previous work (e.g. see [MF06, LP07]), abort in
this situation would reveal additional information to a deviating P; about P,’s input. Furthermore, to
enable P, to compute the correct majority output, additional care is needed to make sure P; provides the
same input to most of the circuits evaluated by S. Avoiding this extra equality-check would undermine
both the correctness (by returning the wrong answer to P,), and the privacy (by allowing P to learn a
different function of the inputs) of the protocol. In [LP07] and [MF06], additional consistency-checking
mechanisms are added to the cut-and-choose step in order to guarantee the equality of inputs to most of
the circuits. Since the techniques from the two papers are similar, and both would work for our server-
aided construction, we give a general description of the mechanism that includes both approaches as a
special case. More precisely, in addition to the garbled circuits a collection of input-equality widgets are
also computed by P; and sent along with the garbled circuits to .S. During the opening phase of the
cut-and-choose, a subset of these input-checking widgets are also opened and verified. This step ensures
that unless the majority of P;’s garbled inputs (to the evaluation circuits) are the same, his deviation from
the protocol will be detected with high probability during the opening phase.

7.1 What goes wrong in the server-aided setting?

We need to address three issues with the above cut-and-choose strategy when it is applied in the server-
aided model.

21

1. First, since P; and P» independently compute and send to S their garbled inputs for the evaluation
circuits, and since we still want to protect against a deviating P», P, needs to generate the input-
checking widgets for Py’s input wires as well. This modification could potentially introduce a new
security problem. Particularly, for one pair of circuits, P, can issue a bad equality-check for a specific
bit value of P»’s input wires (e.g. 0) and a correct equality-check for the other bit value (e.g. 1).
In the case that the pair of circuits are chosen for evaluation (which happens with non-negligible
probability), if S aborts, P concludes that P’s input is 0 and if he does not, he concludes that Py’s
input bit is a 1. However, this problem is easy to address. In fact, S need not abort if the input keys
for two circuit he is evaluating do not pass the checks. He can simply evaluate the subset of remaining
circuits that pass the checks and assign “invalid” outputs to the rest (without aborting). The final
majority output is also computed, by taking this “invalid” outputs into consideration. In the rest of
this section, whenever we talk about retrieving the majority output, we refer to this approach.

2. Second, a more subtle issue arises when the server tries to send the majority output as the final result
to the parties. In the standard cut-and-choose, the circuit evaluator learns the actual outputs to all
the evaluation circuits and therefore can easily determine the majority. In the server-aided setting,
however, we do not allow the server to learn the actual output values. S only learns the garbled
outputs and therefore cannot determine the majority output on his own.

First attempt. Initially, one might try to resolve this issue by sending the computed garbled outputs
to P} and P and requiring them to compute the majority output on their own (note that P, and P,
know the translation table). Unfortunately, this solution compromises the security of the protocol.
For instance, this allows a deviating P; to learn “too much” information, by sending only a constant
number of bad circuits (e.g. circuits that compute a function other than the agreed one), and learning
multiple functions of P»’s input with a non-negligible probability of not getting caught.

Second attempt. An alternative solution is not to reveal to the server the mapping of output keys to
their actual bit values, but to map them to two random values kg and k; corresponding to 0 and 1,
respectively. While this would prevent the server from learning the output of computation, it makes
the protocol insecure in the scenario where the server is the dishonest party. In particular, this allows
a deviating server to return either kg or k1 as the correct output of computation even if it is not the
right output.

As mentioned earlier, we are interested in a solution that allows a semi-honest server to compute the
majority output without learning the output itself (output privacy) and at the same time can provide
a guarantee that a deviating server would not be able to modify the result of the computation.

Our oblivious cut-and-choose method. The high level idea behind our solution is as follows.
After the opening phase, A\/2 unopened circuits remain. For each output wire, P; and P, generate two
polynomials gg and g; of degree \/4 over the finite field GF(2}). go and g; are chosen uniformly from
the space of permutation polynomials of a special form which we will discuss shortly. Let ko = go(0)
and k1 = ¢1(1). ko and k; are used as keys corresponding to 0 and 1, respectively.

P, and P, evaluate go at keys corresponding to 0 in the A/2 evaluation circuits, and g; at keys
corresponding to 1. These evaluations along with two ciphertexts cg = EkO(O)‘) and ¢; = By, (0/\) are
sent to S and the same process is repeated for all output wires.

These evaluations can be seen as Reed-Solomon encoding of the keys kg and k. S then evaluates
the remaining A/2 circuits and uses a Reed-Solomon decoding algorithm to recover one of ko, or ki
(S obliviously decodes both but only one of the keys decrypts the corresponding ¢; to 0*). Let b
be the correct output for the wire we are discussing. In case of a deviating P;, the error correcting

22

property of the Reed-Solomon codes ensures that as long as a “sufficiently large” fraction of the
garbled outputs are correct, the decoding algorithm correctly decodes the correct key k; (and hence
this fulfils the servers’ search for the majority output). On the other hand, in the adversarial scenario
where the server is dishonest, we argue that he does not learn anything about k;_;. This is exactly
where we need go and ¢; to be randomly chosen permutation polynomials (Dickson polynomials) of a
special form. Intuitively, if g1_p is a permutation over the finite field, the knowledge of its evaluations
at uniformly random evaluation points does not reveal any information about the polynomial itself
(and specifically its constant coefficient) to S since all the permutation polynomials of the same form
as g1_p can be evaluated to the same values given the right evaluation points, and hence are equally
likely to have been chosen. This intuition is formalized in the proof of security for the case when the
server is deviating.

How to sample go and gi. A Dickson polynomial of degree n denoted by D, (x,) is given by

[n/2] n In—i ‘ A
Do) =3 (M) e
=0
Dickson polynomials have the nice property of acting as permutations of finite fields. More accurately,
we have the following lemma about them.

Lemma 7.1. The Dickson polynomial Dy (z,a) is a permutation polynomial for a finite field of size
q if n is coprime to ¢ — 1.

Hence, in order for gp and g; to be permutation polynomials, we require that \/4 is coprime to
2M1 1. In addition, for gy and g; to have constant coefficients, \/4 needs to be even (due to the
way Dickson polynomials are defined). Finally, we require that if « is chosen uniformly at random in
GF(2"), the constant coefficient of Dy /4(7,) is a uniformly random element of the field too. The
reason for this last requirement is so that we can use the constant coefficients as random keys ko
and k; in the protocol. Since the constant coefficient of D) 4(z,), for an even value of \/4, is of
the form 208, we essentially need that a® be a permutation over the field as well. Once again,
according to Lemma 7.1 this is case if A/8 is coprime to 2*™! — 1 since D, j5(z,0) = M8 s itself a

Dickson polynomial.

To summarize, we sample gg and g; by choosing A such that A/4 is even and coprime to 2’1 —1 (this
already implies that \/8 is coprime to 2**! — 1); generating two random elements ag, a; € GF(2%);
and letting go = D) /4(z, a0) and g1 = D) j4(z, a1).

Finally, we note that choosing a A that satisfies the above properties is fairly easy. For example, any
A\ = 8p where p is a prime number is coprime to 2’1 — 1 and hence can be used in our protocol. To
obtain a A close to 80, one could let p = 11. For a A close to 128, once could let p = 17, and so on.

. A third issue in our setting is that a deviating P; can cheat by agreeing on a seed r; with P, but using
a different seed r] to generate the garbled circuit which he sends to S. More specifically, consider the
two garbled circuits G;(C) < GarbCircuit(C;r;) and G}(C) < GarbCircuit(C;r}) generated by the
two different seeds. A dishonest P; can potentially choose the seed 7 such that for a particular input
wire of Ps, the key k corresponds to a 0 in G;(C) but corresponds to a 1 in G}(C). In other words,
Py can flip P»’s input bit without P, or S detecting it. This issue does not arise in the standard
two-party variant of Yao’s protocol against malicious adversaries, due to the existence of the OTs. In
the two-party case, P; and P, engage in a series of OTs (before the cut-and-choose step) as a result of
which P» learns his garbled inputs for all circuits. In the opening phase, P> can verify that the OTs

23

were performed honestly for the opened circuits, and hence gain confidence about the correctness of
his garbled inputs in the majority of the unopened circuits too. Since we no longer invoke OTs in
our server-aided protocols, we need a different mechanism for resolving this issue.

First attempt. One may try to solve this problem by making S ask both P; and P» to send him the
seeds for the opened circuits, and verify that the two sets of seeds are equal. However, this creates
a new vulnerability for the case when S is dishonest since he could ask for two different subset of
circuits to be opened by each of P; and P». This allows S to learn either P; or P»’s input values.

The correct solution is to have S send the set of seeds he receives from P;, to P, who can verify that
they are equal to his own seeds and abort the protocol, otherwise (see step 5 of the protocol).

In Theorem 7.2 below we show that our protocol is secure against the following adversary structure:

ADV, = ADV; | | { (AS [h], A1 [m], A [h]), (As [sh], A1 [ncs], As [sh]> }

Theorem 7.2. The protocol in Figure 2 securely computes the function f in the Fe-hybrid model against
the adversary structure ADVs.

Proof. The proof for the first adversarial model of ADV; (where all three parties are semi-honest) is almost
identical to the proof for the same model in Theorem 6.2 and hence is omitted here. Next, we prove
security against the remaining adversarial scenarios in the adversary structure.

Claim. The protocol (Ag [m] ,Ap [h] , As [h])—securely computes f in the F-hybrid model.

Consider the simulator Simg that simulates Ag as follows. It chooses coins 71,...,75, 7" and computes
G;(C) «+ GarbCircuit(C;r;) for 1 <i < A. Simg then sends G;(C) for all 1 <i < X to Ag. Ag returns a
subset T of size A/2. For each i € T', Simg returns r; to Ag.

Simg then chooses random inputs z’ for P, and 3y’ for P». He then sends the garbled input labels
G;(2") + GarbIn(C,1,2';r;) and G;(y’) + GarbIn(C,2,y';7;) to Ag for all i € S — T. Denote by £y, the
number of output wires in each circuit. For each 1 <7 < /,, Simg use the seed 7’ to generate two random
Dickson polynomials g} and gl of degree A /4, and evaluates them at the \/2 keys for output wire i. Denote
the constant coefficients of g and gj by k:o and k! respectively. Simg then sends the evaluations along
with the ciphertexts cf = Ek,z(M) and ¢} = Ek,z (O)‘) on behalf of P; and P, to Ag. For each 1 <1 < /£,

Simg receives a key k:Z If k’ is not a valid key, the simulator instructs the trusted party to return L to
P, and P,. Simg then outputs whatever Ag does and halts.

The view of Ag consists of the garbled circuits, the opened seeds, the garbled input values, and
evaluations of the Dickson polynomials at the output keys. The garbled input values that correspond to
zero and one are indistinguishable for the adversary since he does not know the seed for the unopened
circuits (correctness property in definition A.1). Therefore the garbled labels for the real inputs z and y in
the real execution and the random values 2’ and 3 in the ideal execution are indistinguishable for Ag. All
the other messages Ag receives are the same things he would see in the real protocol and hence it follows
the views of the adversary in the real and the ideal execution are therefore indistinguishable.

The remaining issue is to prove that the outputs of P, and P, are also indistinguishable in the real
and the ideal execution. Note that they receive the correct output, if Ag computes and returns the result,
honestly. Otherwise, in the ideal execution they receive L from the trusted party. In the real execution,
for Ag to return an incorrect output key kifb for a specific output wire ¢, he needs to guess the constant
coeflicient of the corresponding polynomial gi_b. But, the only knowledge .Ag has of this polynomial is the
fact that it is a uniformly random Dickson polynomial of degree \/4 that evaluates to values y1, ...,y /2 at

24

Inputs: P,’s input is z, P»’s input is y, and S has no inputs. All parties know the circuit C which computes
the functions f. They also agree on an integer A such that \/8 is coprime to 2* ! — 1.
Outputs: P; and P, learn the output f(z,y).

1. P; and P; execute a coin tossing protocol to generate A + 1 sets of coins r,...,7ry, and 7’.

2. Py computes A garbled circuits (G;(C) + GarbCircuit(C'; r;) and garbled inputs G;(z) + GarbIn(C, 1, z;r)
for 1 <4 < A. X is chosen such He sends the computed garbled circuits and inputs to S. He also sends
the input-equality widgets corresponding to those garbled circuits to S.

3. S randomly chooses a subset T' C [1...] of size A/2 and asks P; to send the coins r; for i € T, and also
reveal the secrets or the equality-checkers corresponding to the opened circuits.

4. S verifies that the opened circuits and input-equality widgets were generated correctly. If the verification
fails for any circuit, S aborts.

5. S also sends the coins r; for i € T to P, who checks if the coins are what he agreed on with P, in the
coin-tossing phase or not. If not, he aborts the protocol.

6. P, and P, separately send their garbled inputs for the remaining circuits to S. S uses the remaining
input-equality widgets to determine the subset of the circuits in S that pass the input-equality checks. In
what follows, the evaluation result for those circuits that fail the checks is set to “invalid” by the server
(without aborting).

7. At this point, ¢ = \/2 circuits remain to be evaluated. Renumber the remaining circuits as Ci,...,C}.
Denote by £, the number of output wires in each circuit, and let (wf o, w}), -, (wf g, w}) the keys
corresponding to the output wire 1 < ¢ < £, in the ¢ circuits. For all 1 <1 < /¢,, P; and P, use the coins
r’ to independently generate the following

e Two uniformly random elements af,ai € GF(2}), and the corresponding Dickson polynomials
96(x) = Dy/a(w,af), and gi(z) = Dy/a(x,af) over GF(2*). Denote their corresponding constant
coeflicients by kj and ki, respectively.

e P and P, also compute two ciphertexts cf = Ey (0*) and ¢} = Eyi (0*) using a symmetric-key
encryption scheme F.

8. Py and P, then independently compute Yy = (gi(w}), ..., g6(wi o)) and Yi = (g} (w}), .., g} (we1))
for 1 < i < 4, and send ((Y¢,c}), (Y{,ct)) to S. Each pair will be sent in a randomly permuted order
so that S does not learn which one corresponds to 0 and which one corresponds to 1. The randomness
for the permutation will also be derived from the coins r’, and hence P; and P, will both do the same
permutations.

9. S checks that the permuted ((Y{,ch), (Y{,c%)) pairs he receives from P; and P, are in fact the same. If
not, he aborts. Else, S evaluates the remaining ¢ circuits and for each output wire 1 < i < /,, retrieves
the keys X = (w},,...,w},) for a bit b € {0,1} where b is the actual output value for wire i. (With
high probability, only a small fraction of these keys will be corrupted or “invalid” or else S would catch
them in the opening phase).

10. For every 1 <i < {,, S runs the Reed-Solomon decoding algorithm on both pairs (X{, Yoi)_ and (X}, YY)
to recover the decodings df and dj. S uses djj to decrypt ¢ and uses dj to decrypt c¢j. With high
probability, only the decryption with d} returns the message 0*. S returns di for 1 <i </, to P, and
Ps.

11. P; and P, use their translation tables to separately recover the actual output values.

Figure 2: A server-aided two-party protocol robust against a deviating P;

A/2 uniformly random points that are unknown to him. The fact that these evaluation points are unknown
to Ag is implied by the verifiability property of Yao’s garbled circuit (see Definition A.3).

25

It remains for us to show that seeing y1, ...,y /2 does note leak any information about the underlying
polynomial ¢gj_, (and particularly its constant coefficient). However, since gj_, is a permutation and
the evaluation points are uniformly random values from GF(2*, y;’s essentially constitute A/2 uniformly
random values in GF(2), and hence do not contain any information about gi_b. Put differently, for any
Dickson polynomials of degree A\/4 p(x), there exist a unique set of evaluation points 1, ...,y o such that
p(xz;) = y; for 1 < i < A/2. This completes our argument.

]
Claim. The protocol (Ag [h] , Al [m] , As [h])—securely computes f in the F-hybrid model.

We construct a simulator Sim; for 4;. Before describing the simulation, however, we give a Lemma
implied by the security of the cut-and-choose variants of Yao’s protocol (we refer the reader to [LP07]
where the Lemma is implicitly proved). We point out, however, that in our setting, the role of the honest
verifying party is divided between an honest server and an honest P», and hence the Lemma goes through
since their verification mechanisms combined is equivalent to the verification mechanism performed by the
single honest party in the standard two-party case of malicious Yao. In particular, it is essential for both
the server to check the correctness of the opened circuits and the input-equality widgets in steps 3 and 4,
and for the honest P» to check the correctness of the revealed seeds in step 5. This point is also dircetly
related to the third issue we explored in the discussion above.

Lemma 7.3 ([LP07]). There exists an expected polynomial time extractor Ext, that takes Pi’s input x
and runs and rewinds Ay. If Ay creates more than 3/4 of the evaluation circuits honestly (a total of 3\/8
circuits), and provides the same input &’ for all of those correct circuits, w.h.p., Ext extracts and outputs
x'. Else, Ext will output L with all but negligible probability. Furthermore, the probability of Ext outputting
L when interacting with Ay is exactly the same as the probability of an honest server outputting L in the
real protocol.

The fraction 3/4 in the above Lemma is adjustable to any constant fraction greater than 1/2. Changing
the constant fraction affects the extractor’s probability of error in the Lemma, but that probability still
remains negligible in the security parameter. In order to ensure correct decoding, we need a constant
fraction of 3/4 or higher in our proofs.

Our transformation Sim; works as follows:

1. it makes a query to Fe, and Ay answers back with r1,...,ry, and 7.

2. it runs the extractor Ext from Lemma 7.3 to either obtain the input 2’ that A; has provided for the
majority of the circuits, or to receive the abort signal L. For the latter, Sim; simulates the server
aborting and outputs whatever A; does.

3. it uses 7’ to generate the permutation polynomials g} (x) and ¢t (z) with constant coefficients kf, k¢ €
{0,1}*, for 1 <i < 4,

4. it sends 2’ to the trusted party and obtains z = f(a/,y). For bits b; of the output z, he selects the
corresponding key kéi, (for 1 <1i < {,) and returns them to P;.

We show that A; cannot distinguish his interaction with an honest S and P, in the real world from
his interaction with Sim; in the ideal world. The view of the adversary consists of the garbled circuits he
submits and the output he receives. Therefore, it is enough to show that the output that A; receives in
the real execution is the same as what he receives in the above simulation. Based on the existence of the
extractor Ext from Lemma 7.3, we are assured that in case of an abort, the view of Ay in the simulation

26

is indistinguihsable from when he interacts with the honest server. Furthermore, in the case that Ext
extracts an input 2/, we know that with high probability 3/4 of the evaluation circuits (i.e., 3\/8 circuits)
constructed by A; are correct and use the same input z’. Let z = f(2/,y). We now have that for every
bit b; of z, the honest server in the real execution, receives \/2 evaluation points for polynomial g, of
degree \/4 and that 3\/8 of those are correct. In other words, the error in the Reed-Solomon codeword
is less than A\/8 < (A\/2 — A\/4)/2. Hence, the Reed-Solomon decoding algorithm run by the honest server
unambiguously recovers the garbled inputs ks, for all 1 < ¢ < ¢,. Since the server runs the decoding
obliviously on both polynomials, however, we also need to show that for polynomials g;_,, the decoding
will always fail to return a valid key k1_p,. However, this is the case since for each polynomial g;_;, at most
A/8 = A\/2 — 3)\/8 of the evaluation points are correct while the degree of the polynomial is A/4. Hence,
the RS decoding algorithm either fails or returns a key & # k;_, for all 1 < i < /,. Consequently, S will
not be able to correctly decrypt cﬁ_b to the message 0* using the key k. This completes our argument.

Claim. The protocol (.AS [h] ,Aq [h] , As [m])-securely computes f in the F-hybrid model.

The simulation for this case is very similar to the case of malicious P;. In fact, note that P, can only per-
form a subset of cheating strategies of P;, by sending bad or inconsistent garbled inputs (but not garbled
circuits). Hence, a simpler variant of the extractor Ext in Lemma 7.3 can be used to simulate Ay in the
ideal world. Given Ext, the remainder of Simy’s strategy will be identical to that of Sim; described above,
and the same analysis goes through.

0

Claim. The protocol (.,45 [sh] Al [ncs] , As [sh])-securely computes f in the Fe-hybrid model.

The proof of this claim is automatically implied given the proofs of the above claims and Lemma 6.1.

7.2 Extending to Multiple Parties

We describe, at a high level, how our protocol can be extended to the multi-party setting. All parties
engage in the coin-tossing protocol and learn the necessary seeds. Then, the circuit garbler and the server
proceed as they would in the the two-party case. All other parties (clients) who need to send their garbled
inputs to the server, engage in a MPC protocol between themselves and the server, wherein their inputs is
the seeds they hold and their own input keys, and the server’s output is the input key for all parties. Note
that this MPC protocol needs to be secure against non-cooperative parties (except for one semi-honest
party and a semi-honest server), and hence, the naive solution of having each party send their input key to
the server would not be sufficient. Nevertheless, due to the particular setting we work in, a very efficient
construction for implementing this MPC protocol exists, but we defer a more detailed description of this
step to a more complete version.

In addition to sending their garbled inputs, we require all the parties to send the server the evaluations
of the polynomials g? and gi1 at the garbled output values of the garbled circuits used in the protocol. The
server then checks that all the parties sent the same evaluations for g? and gi1 and if so, uses those values
for the interpolation of the garbled outputs. Otherwise, the server aborts.

27

In addition to security against ADVi, this protocol also provides security when all but one of the
parties are non-cooperative with respect to the server and the server and a single party are semi-honest.
Furthermore, if we modify the coin tossing protocol to include the server but without providing him with
the result of the coin-toss, the protocol can also handle an adversarial structure where all parties (except
for the server) are non-cooperative with respect to the server. We note that an adversarial structure where
all parties (except the server) are non-cooperative is meaningful since this corresponds to cases where each
party can deviate from the protocol but does not share any private information or coordinate its behavior
with other parties.

8 Server-Aided Computation From Delegated Computation

We describe a general construction for server-aided two-party computation based on any non-interactive
delegated computation scheme and any secure two-party computation protocol. The resulting server-aided
construction inherits the efficiency of the underlying protocols.

Informally, a delegated computation scheme allows a client to outsource the computation of a circuit
C on a private input z to an untrusted worker such that: (1) the client’s work is substantially smaller
than evaluating C(x) on his own; (2) the worker does not learn any information about the client’s input or
output; and (3) the worker cannot return an incorrect answer without being detected. The notion of secure
delegated computation is closely related to that of verifiable computation [GKR08, GGP10, CKV10], with
the additional requirement that the client’s input and output remain private.

Our protocol. Our protocol, described in detail in Figure 3, works as follows. Let Del = (Gen, ProbGen,
Compute, Verify) be a secure delegated computation scheme. The parties P, and P, use Del to outsource
the evaluation of f on their combined inputs (i.e., the concatenation of z and y) to the server. However,
since P; and P» do not want to reveal their inputs to each other, they use secure two-party computation to
simulate the client in a delegated computation interaction. More precisely, they run the Gen, ProbGen and
Verify algorithms of Del via secure two-party computation. The server S performs the same functionality
as that of the worker in the delegated computation interaction. Put differently, we use Del to outsource a
two-party computation protocol between P; and P to the server S.

Intuitively, our protocol is secure since: (1) the verifiability of Del guarantees that a malicious server
cannot change the outcome of the computation; and (2) the privacy property Del guarantees that the server
cannot learn any useful information about the parties’ inputs. Furthermore, even if a malicious server
colludes with either P} or P, the colluding parties will not learn any information about the remaining
party’s input since the interaction between P, and P» is done via a secure two-party computation. We
prove this intuition in Theorem 8.1 using the following adversary structure:

ADV — { <AS [sh], Ar[sh], As w) ,
(Aslm). A 1] 28]).
(AS (ner, nes], Ay [sh], Ao [sh]> }

Theorem 8.1. If Del is secure, then the server-aided two-party protocol described in Figure 3 is secure in
the Fopc-hybrid model against the adversary structure ADVy.

Proof. We sketch the proofs for each item in ADV, separately.

28

Inputs P;’s input is z and P,’s input is y. Server S does not have any input.
Output P, and P, want to learn the function F' on their inputs. Without loss of generality we assume that F'
takes x and y as one concatenated input, i.e., the parties are computing F'(z||y).

1. P, and P, use the ideal functionality]:2pr’ where f takes as input = and y, computes (PK,SK) <«
Gen(1%, F) and (04(y, T4|jy) < ProbGeng(x||y) and outputs

1 1 2 2
((PK,Jzy,Txy,SK), (PK,UmHy,TxHy,SK)),

where 7, = T;Hy P Tflly and SK = sk! @ sk?. In essence P, and P, both learn PK and Og||ly While they
each only learn a random share of 7|, and SK.

2. Py and P, each send o,), and PK to the server S but keep their shares of 7., to themselves. Server
checks to see that the two values received from the parties are the same and aborts otherwise.

3. Server S computes Compute,, (0,,) — 0. where z = F(z||y) and sends o, to P; and P.

4. P; and P, use the ideal functionality]-'2ng where g takes as input T; sk! and sk? and outputs

2
lly? Telly?
(z,2) where z = VerifySKl@SKz((T;Hy ® Tzl‘y), o). Py and P, output z as their final output.

Figure 3: A server-aided two-party protocol from any delegated computation scheme
Claim. The protocol (.,45 [Sh] Al [sh] , As [sh])-securely computes F' in the Fopc-hybrid model.

We describe three independent transformations Simg, Sim; and Sims:

e Simg runs Ag. Simg then generates two arbitrary inputs 2,4/, computes (PK,SK) < Gen(1¥, F)
and (07|, Tar|jy) < ProbGeng(2'[|y') and sends o, to Ag. The privacy property of Del ensures
that Ag’s view is indistinguishable from its view in the real-world execution with semi-honest P; and
P, (where they use their real inputs = and y). At some point, Ag sends the output o,. Simg then
outputs whatever Ag does and halts. Since, Ag is semi-honest in this case, this will be the correct
output.

e Sim; runs A;. Note that since we prove the security of the protocol in the Fopc-hybrid model, A,
will send his input x to Fopc. Simy forwards x to the trusted party of the ideal execution and gets
back F(x,y). Sim; generates an arbitrary input 3’ for P, runs (PK,SK) < Gen(1* F), and runs
ProbGengy (z[|y’) to compute oy, Ty, He then sends o, and random values 7';| , and sk! to
Ai. The privacy property of Del guarantees that in A;’s view, 0,/ is indistinguishable from o,
for any vy and y’. The same is true for 7';‘ Y and Sk' which are simply random shares. It is worth
noting that the privacy property of Del requires that o,,, hide all partial information about the
encoded input. Therefore, the tuple (z,0,,) is also indistinguishable form the tuple (z,0,,) for
any y. Hence, we safely assume that A;’s view so far is indistinguishable from his view in the real
execution with semi-honest P, and S.

Sim; then computes o,/ <— Computey (0,),/) and sends o/ to A; on behalf of the server. Note that
for the same reason as above and due to the privacy property of Del, A; cannot distinguish o, from
o.. A; eventually sends sk! and ’7’; y a3 his input to the trusted party of the Fopc-functionality for
the second run of MPC that runs the Verify function. Since A5 is semi-honest, Sim; simply returns
the value F'(x,y) that he received from the trusted party of the ideal-world execution to A;. Sim;
then outputs whatever A; does and halts.

29

e Simy’s strategy is identical to Sim;’s since their roles in the protocol are symmetric.

Claim. The protocol (.AS [m] , Ag [h] , As [h])-securely computes F' in the Fop-hybrid model.

We describe a transformation Simg for the adversary Ag. Note that since S does not have any in-
puts to the protocol, there is no need for input extraction during the simulation. Simg only needs to
simulate Ag’s view correctly and make sure that in the case of an abort, or other types of cheating by Ag,
P and P»’s output in the ideal execution is an abort as well.

Simg runs Ag. Simg then generates two arbitrary inputs z’,%/, computes (PK, SK) < Gen(1*, F) and
(02/|y'> Tar||y) < ProbGengg(2'[|y") and sends o, to Ag. The privacy property of Del ensures that Ag’s
view is indistinguishable from his view in the real execution with honest P; and P, (where they use their
real inputs). At some point, Ag will either abort or send the output o,/ to the two parties. Simg computes
2" < Verifyg (To |y, 02). If 2/ = L, Simg sends an abort message to the trusted party and simulates Py
and P» aborting. Simg then outputs whatever Ag does and halts.

Note that the verifiability property of Del (see definition B.2) ensures that if 2’ # F(2/,y’) then 2/ = L
with high probability. Also note that the probability that z/ = L in the simulation with inputs =’ and 3/
is (all but negligibly) close to the same probability for any other inputs including inputs x and y of P;
and P in the real execution. If this was not the case, once again we could use Ag to break the privacy
property of Del. These two facts combined demonstrate that the joint distribution of outputs of Ag, P;
and P, in the real execution are computationally indistinguishable from those of Simg, Sim; and Sim,
in the ideal execution.

O

Claim. The protocol (.AS [ncl, nCQ] , Ap [sh] , As [sh])—securely computes F' in the Fop-hybrid model.

The proof of this claim follows from the previous two claims and Lemma 6.1.

Efficiency. Note that in the above protocol P; and P, only simulate the client in the delegated com-
putation interaction and not the server. Using general-purpose protocols such as Yao’s protocol [Yao82],
the computation performed by P; and P, will be linear in that of client in the delegated computation
interaction. Given the efficiency properties of delegated computation, this will be significantly lower than
P, and P running their own secure two-party computation protocol to compute F' on their private inputs.
The server’s computation is identical to that of the worker in the delegated computation interaction.

We know of two non-interactive delegated computation schemes in the literature. The first is the
construction of [GGP10] based on Yao’s garbled circuits and fully homomorphic encryption. When instan-
tiated using their protocol, P; and P, would need perform O(k - |C|) computation in the preprocessing
stage, where C is the circuit that computes the function F' and k is the security parameter. In the online
stage however, the work of P, and P, is O(n + m) where n is the size of their inputs and m the size of
their outputs. Hence, the amortized complexity of the work by the players is O(n+m). The server’s work
will be O(|CY).

The second instantiation is based on the construction of [CKV10] which uses non-interactive proofs
with soundness amplification, as well as a fully homomorphic encryption scheme. When instantiated using
their protocol, the offline cost of computation for P; and P, would be poly(k,|C|) while the online and
hence the amortized cost is poly(k,log(|C|)). The servers computation is poly(k,|C|). The main advantage
of the latter instantiation is that the public key of the scheme will be significantly smaller.

30

9 Private Set Intersection in the Server-Aided Model

The setting for the problem of set intersection includes two parties that have private input sets and wish
to compute the intersection of the elements in their sets. This problem has numerous applications in
practice and has been considered in a series of works [FNP04, HL08, KS05, JL09, DSMRY09, CKT10,
HN10, DSMRY11]. These papers offer protocols addressing various adversarial models under different
assumptions with a range of efficiency characteristics. In the semi-honest adversarial model, the protocols
for set intersection have linear complexity in the size of the inputs. The goal of many of these works
is to approach this complexity in stronger adversarial models. For instance, Cristofaro et al. [CKT10]
achieve linear complexity in the malicious case in the random oracle model. Jarecki et al. [JL09] propose
a protocol with linear complexity secure in the standard model in the presence of malicious parties, based
on the Decisional g-Diffie-Hellman Inversion assumption (in the CRS model), where a safe RSA modulus
is generated by a trusted third party, and the input domain is of size polynomial in the security parameter.

We consider the problem of set intersection in the setting of outsourced computation where we would
like to enable the computationally powerful server to execute the majority of the work involved comparing
the values in the two input sets. Essentially we are interested in a solution where each of the two parties
performs work that is linear in the size of his/her input set to preprocess the data in their sets and send
the results to the server who will compute the final intersection result.

A simple solution for the case when all parties are semi-honest. In the case of a semi-honest server
we can obtain such a protocol as follows: the two input parties agree on a PRF key, and submit to the
server the result of the evaluation of the PRF under this key on each of the points in their input sets.
Subsequently the server computes the set intersection of the two sets of PRF values he received, and sends
the output to the two parties, who can map the PRF values back to the real input points. As long as the
server follows the protocol honestly the two parties will receive the correct output without being able to
learn anything about their private data due to the security guarantees of the PRF.

Protecting against a malicious server. The above protocol fails to guarantee correctness of the
output in the case of a malicious server who can deviate from the prescribed protocol since he can return
an arbitrary result without the parties being able to detect this. We adopt the following technique in order
to enable the parties to detect misbehavior on the server’s side: each party computes ¢ copies of each of
his inputs of the form z|i for 1 < ¢ < ¢, and submits the PRF evaluations on the resulting values in a
randomly permuted order. The server then computes the set intersection based on these PRF values and
returns the answer. Now, we require that the set intersection contains all ¢ copies for each element in the
intersection. If it does not, then the parties will detect misbehavior on server’s side and will abort. Thus in
order to cheat without being detected, the server will need to guess what values correspond to the copies
of the same element. The probability for this is negligible except in the following two cases (1) the server
returns empty intersection (does not need to return any value) or (2) claims to each party that all elements
from his/her input set are in the intersection (returns all PRF values provided by that party). To address
these last issues we need to guarantee that the set intersection is neither empty nor contains all submitted
elements. We achieve this in the following way: the parties agree on three elements d,e; and e2 outside
the range of possible input values. Then, the first party adds d and e; to his/her input set and the second
party adds d and ez to his/her input set. Now the set intersection has to be non-empty since d will be
in it, and at the same time cannot consist of all submitted input elements for either party since both ey
and eg are not in the intersection. The protocol in Figure 4 presents the details of the the approach that
we just outlined. We also note that for the purposes of the simulation, we need to use a pseudorandom
permutation rather than any pseudorandom function.

31

Let m and n be the sizes of the inputs sets for parties P; and P, with elements in the domain R. Let F be a
pseudo-random permutation. Let t be a security parameter.

Inputs: P; has input set X; P, has input set Y
Outputs: P; and P, receive X (Y

Protocol:

1. P, and P, run a coin tossing protocol to choose a PRP key K.

2. Py and P; choose three elements d,e1,es ¢ R. Py adds d and e; to his set X. P, adds d and e to his
set Y.

3. For each z; € X, P; computes a; ; = Fg(z;|j) for 1 < j <t. P; sends the set A = {a; ;}1<i<m,1<j<¢ in

a randomly permuted order to S.

T, I]) >

randomly permuted order to S.
5. S computes the set A B and sends it to P, and Ps.

6. P; checks that the PRP values corresponding to d are present in A () B and those corresponding to e; are
not. He also checks that if F(z;]j) € A B for some j € [1,%], then Fx(z;|j) € A B for all j € [1,1].
If either of these checks fails, P; aborts the protocol. P; runs a similar check.

7. Using K, P, and P, recover the values in X NY.

Figure 4: Security against malicious server

Theorem 9.1. The protocol in Figure 4 securely computes the 2-party set intersection functionality in the
Fer-hybrid model for the adversary structure ADVs defined as follows:

ADV;5 = { (As[sh],A1 [sh], Ag[Sh]), (As (m], A1 [R], As [h}), (Ag[ncl, ney), Ai[sh), Ag[Sh]) }

Proof. We consider the different adversarial models in the following claims.

Claim. The protocol (Ag[sh], A1[sh], Az[sh])-securely computes the 2-party set intersection functionality
in the F¢-hybrid model.

We describe three independent transformations Simg, Sim; and Sims. The simulator Sim; simulates A
as follows:

1. Sim; queries F¢ to receive the common random string r used to derive K;, Ko and d,e1,es and
answers Aj’s queries to F¢ correspondingly.

2. Sim; calls the trusted party submitting the input it has for the semi-honest A; and obtains the
output for A

3. The simulator computes the corresponding PRP values for the output and sends those to Aj;.

We construct a simulator Sims that simulates As analogously to Sim;. The simulator Simg that
simulates Ag as follows:

1. Simg generates two random sets X and Y of size m and n.

32

2. Simg chooses K7, Ko and d, e, ea, computes honestly the PRP values for X and Y and submits
them to Ag.

The indistinguishability of the simulated and the real execution views follows easily from the pseudo-
random properties of the PRP.

0

Claim. The protocol (Ag[m], A1[h], Az[h])-securely computes the 2-party set intersection functionality in
the Fei-hybrid model.

We construct a simulator Simg that simulates the adversary Ag as follows:
1. Simg generates two random sets X and Y of size m and n.

2. Simg chooses s1, s2 and d, e1, e2, computes honestly the PRP values for X and Y and submits them
to Ag.

3. Simg receives the output computed by Ag. If the returned set is not the correct set of intersection
PRP vales, the simulator sends an abort message to the trusted party and to Ag.

The views of the adversary Ag in the real and the ideal execution are indistinguishable because of the
properties of the PRP function and the fact that P, and P, are honest. In the ideal execution P; and
P, receive as output the set intersection of their inputs if and only if Ag has computed it correctly (i.e.,
Simg has not submitted abort to the trusted party). Thus we need to show that in the real execution
the probability that the parties will not abort, when the set returned by Ag is not the correct result, is
negligible. A misbehavior of Ag will not be detected, if the intersection set that he returns contains all
PRP values for the element d, does not contain any of the PRP values for e; and es, and for every PRP
value in the returned set all the other t — 1 PRP values that correspond to the respective element are also
in the claimed intersection set. Let r be size of the set intersection. The probability that Ag removes k < r
values from the set intersection without being detected is (i.e., guesses the PRP values that correspond to
the element d and then guesses kt PRP values that correspond to k input elements):

(r+1)t\ "1/ (rt\
t k)\kt)
The probability that Ag adds s < m —r (s < n —r) values from the set intersection returned to P;

(P2) without being detected is (i.e., guesses the t PRP values corresponding to e; (e2) and then guesses st
PRP values corresponding to s elements):

((n — Z+ 1)t> ! ((n ; 7«)) <(n ;)t) *1_
-1

The value ((Hl)t) is maximized when r = 1 (if » = 0, Ag cannot remove intersection values).

t
Therefore,
(P _ 20\ 1 _1
t —\t 2t (t+1)---2t 2t
Since (2) (Zi) s 1, it follows that the probability that Ag removes any values from the set intersection
without being detected is negligible. Similarly we get that the probability of that Ag adds any values from
the set intersection without being detected is also negligible. Therefore, the probability that the set

intersection that a party accepts as answer is not the correct result is negligible.

33

O

Claim. The protocol (Ag[nei,nes), Ai[sh], Az[sh])-securely computes the 2-party set intersection function-
ality in the Fe-hybrid model.

The proof of the claim follows from the above two claims and Lemma 6.1.

Protecting against malicious parties. While the above protocol allows the two parties to detect a
malicious server, it introduces a way for a malicious party to submit incorrectly processed input that would
cause the other party to abort after receiving an invalid set intersection result, while the misbehaving party
will learns the real output. Furthermore, the fact that the honest party aborts can itself leak additional
information about his inputs. In order to enable detection of misbehavior on the side of either party, we
augment the protocol again. If we did not want to provide privacy of the input data from the server but still
wanted to guarantee the correctness of the output result, we could solve this problem as follows: the server
commits to the intersection set that he computes from the PRF values, then the parties reveal the key for
the PRF to him so that he can verify the correctness of the submitted input sets and notify the two parties
while not being able to change the computed output because of the commitment. In order to maintain the
privacy for the input sets we can introduce an additional layer of PRF invocation where the first layer will
account for the privacy guarantee and the second layer will allow for detection of the correctness of the
input sets submitted by each party. We provide the details of the construction in Figure 5.

Theorem 9.2. The protocol in Figure 4 securely computes the 2-party set intersection functionality in the
Fer-hybrid model for the adversary structure ADVg defined as follows:

AV, = ADVs [{ (Aslnl A, Aol). (slstl Aslnes]. Aalst]). (Aslal, Al Ao
(As [sh], A1[sh], As]ncg, ncl]> }

Proof. We consider only the cases in the adversarial structure that were not covered in the proof of
Theorem 9.1.

Claim. The protocol (Ag[h], A1[m], As[h])-securely computes the 2-party set intersection functionality in
the Fei-hybrid model.

We construct a simulator Sim; that simulates the adversary A; as follows:

1. Sim; queries F¢ to receive the common random string r used to derive K;, Ko and d,e1,es and
answers A;’s queries to F¢ correspondingly.

2. Sim; receives from A; the PRP values that he submits, and uses K7 and K5 to extract the inputs.
If he fails to extract these values, Sim; submits abort to the TP. Otherwise, Sim; submits the
extracted values to the trusted party and receives back the set intersection.

3. The simulator verifies that A4; has submitted exactly ¢ PRP values for each of his inputs. If the
verification fails, he instructs the TP to send abort to the Ps.

34

1.
2.

o

© ® N

10.
11.
12.

13.

Let m and n be the sizes of the inputs sets for parties P, and P, with elements in the domain R. Let G and
F' be pseudo-random permutation. Let ¢ be a security parameter. Let com be a commitment scheme.

Inputs: P; has input set X; P, has input set Y
Outputs: P; and P, receive X (Y

Protocol:

P; and P, run a coin tossing protocol to choose two key K and K.

Py and P, choose three elements d,e1,e2 ¢ R. Py adds d and e; to his set X. Py adds d and es to his
set Y.

Py, computes X' = {Gg, (z) | z € X}.
Py computes Y’ = {Gk, (y) |y € Y}.

For each 2} € X', 1 <1 <m P; computes a; ; = Fg,(x;|j) for 1 <j <t. P; sends the set A = {a;;} to
S.

Foreach y, € Y', 1 < i <n P, computes b; ; = Fg,(y;|7) for 1 < j <t. P, sends the set B = {b; ;} to S.
S computes the set A B and sends a commitment com(A() B) to both P; and Ps.
P; sends the set X’ and K5 to S and P, sends Y’ and K5 to S.

S verified that he received the same key from both parties and that the sets A and B have been computed
correctly, namely contain exactly ¢ PRF values for each input element. If the verification fails, S aborts
the protocol.

S opens the the commitment com(A () B) and sends the intersection set A(B to P; and Px.
Both P; and P, verify the open commitment. If the verification fails, they abort the protocol.

Py checks that the PRP values corresponding to d are present in A(| B and e; is not. He also checks
that A B contains t corresponding PRP values for each element of X’ in the intersection A B. If
either of these checks fails, P, aborts the protocol.

Using K7 and Ky P; and P, recover the values in X NY.

Figure 5: Security against any one malicious party.

4. Sim; sends to 4; a commitment of the PRP values from the input set sent by .4; corresponding to
the elements in the set intersection.

5. Sim; and A; execute the verification where A; proves he has submitted exactly ¢t PRP values for
each of his inputs. If the verification fails, the simulator aborts the protocol.

6. The simulator opens his commitment and sends the corresponding PRP values to A;.

The view of A; in the simulated and the real executions are identical. In both the real and the simulated
execution Py receives the correct output if the set submitted by A; was formed correctly and otherwise

aborts.

0

Claim. The protocol (Ag(sh], Ai[ncs], Az[sh])-securely computes the 2-party set intersection functionality
in the F¢-hybrid model.

35

The proof of this claim follows from the previous claim and Lemma 6.1.

The proofs for the two remaining case when P, is malicious have analogous proofs.

Multiparty Set Intersection. We observe that both of our protocols can be generalized to setting
where multiple parties want to find the intersection of their input sets. In this case the parties agree on
common PRF key and then submit the PRF evaluations on their input sets to the server who computes
the final intersection. We can apply the same techniques in order to protect against malicious server and
malicious parties.

Efficiency. Our set intersection protocol requires that each party performs as many PRF evaluations
as the size of his input set. The only works that give two party solutions to the set intersection problem
with linear computation complexity in the total size of the input sets are [CKT10] and [JL09], however,
the former is in the random oracle model (ROM) and the latter works for input sets of limited size,
polynomial in the security parameter and requiring a common random string (CRS). The computation
work in both of these solutions includes a linear number of exponentiations equivalent to public key
operations. The solution of [HN10] has the best computational complexity while achieving security against
malicious adversaries and it requires O(m + n(loglog m + p)) exponentiations where m and n are the sizes
of the input sets and p is the bit length of each input element, which is logarithmic in the input domain
range. In the multiparty case computation complexity for each party remains the same which improves
the computation cost of O(Nd?logd) in the case of N parties with input sets of size d of the most efficient
existing solution [DSMRY11].

Acknowledgements

The authors are grateful to Seung Geol Choi for pointing out a mistake in an earlier eprint version of this
work. The authors would also like to thank Ben Riva for very helpful discussions, pointers to previous
work and suggestions on presentation.

References

[ATIK10] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verifi-
cation via secure computation. In International Colloquium on Automata, Languages and
Programming (ICALP ’10), pages 152-163, 2010.

[AKLT09] J. Alwen, J. Katz, Y. Lindell, G. Persiano, a. Shelat, and I. Visconti. Collusion-free multiparty
computation in the mediated model. In Advances in Cryptology - CRYPTO 09, pages 524—
540. Springer-Verlag, 2009.

[ASV08] J. Alwen, a. Shelat, and I. Visconti. Collusion-free protocols in the mediated model. In
Advances in Cryptology - CRYPTO 08, pages 497-514. Springer-Verlag, 2008.

36

[BCD+09)

[BDJ+06]

[BDNPOS]

[Bea92]

[Can01]

[CCD88]

[CKOS]

[CKT10]

[CKV10]

[DI05]

[DSMRY09]

[DSMRY11]

[FKN94]|

[FNP04]

P. Bogetoft, D. Christensen, I. Damgard, M. Geisler, T. Jakobsen, M. Krgigaard, J. Nielsen,
J. B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Secure multiparty com-
putation goes live. In Financial Cryptography and Data Security (FC ’09), pages 325-343.
Springer-Verlag, 2009.

P. Bogetoft, I. Damgard, T. P. Jakobsen, K. Nielsen, J. Pagter, and T. Toft. A practical
implementation of secure auctions based on multiparty integer computation. In Financial
Cryptography and Data Security (FC °06), volume 4107 of Lecture Notes in Computer Science,
pages 142-147. Springer, 2006.

A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-party compu-
tation. In ACM Conference on Computer and Communications Security (CCS 2008), pages
257-266. ACM, 2008.

D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology —
CRYPTO 91, pages 377-391. Springer-Verlag, 1992.

R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
IEEE 42" Annual Symposium on the Foundations of Computer Science (FOCS 2001), pages
111-126. TEEE, 2001.

D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. In
ACM symposium on Theory of computing (STOC '88), pages 11-19. ACM, 1988.

O. Catrina and F. Kerschbaum. Fostering the uptake of secure multiparty computation in
e-commerce. In Conference on Awvailability, Reliability and Security, pages 693-700. IEEE
Computer Society, 2008.

Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private set intersec-
tion protocols secure in malicious model. In ASIACRYPT, pages 213-231, 2010.

K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using fully
homomorphic encryption. In Advances in Cryptology - CRYPTO ’10, volume 6223 of Lecture
Notes in Computer Science, pages 483-501. Springer-Verlag, 2010.

I. Damgard and Y. Ishai. Constant-round multiparty computation using a black-box pseudo-
random generator. In Advances in Cryptology - CRYPTO 05, volume 3621 of Lecture Notes
in Computer Science, pages 378-394, 2005.

Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient robust private
set intersection. In ACNS, pages 125-142, 20009.

Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient robust private
set intersection. In ACNS, pages 130146, 2011.

Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure computation (extended
abstract). In ACM symposium on Theory of Computing (STOC ’94), pages 554-563, New
York, NY, USA, 1994. ACM.

Michael Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set
intersection. In Proceedings of EUROCRYPT’04, 2004.

37

[Gen09]

[GGP10]

[GKROS]

[GLO1]

[GL02]

[GMWS7]

[Gol04]

[HLOS]

[HN10]

[IK97)

[JL09]

[KSO05]

[LMs05]

[LPO7]

[LPS08]

C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium on Theory
of Computing (STOC ’09), pages 169-178. ACM Press, 2009.

R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: outsourcing
computation to untrusted workers. In Advances in Cryptology - CRYPTO 10, volume 6223
of Lecture Notes in Computer Science, pages 465-482. Springer-Verlag, 2010.

S. Goldwasser, Y. Kalai, and G. Rothblum. Delegating computation: interactive proofs for
muggles. In Proceedings of the 40th annual ACM symposium on Theory of computing (STOC
'08), pages 113-122, New York, NY, USA, 2008. ACM.

Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence of
immoral majority. In Advances in Cryptology — CRYPTO 90, pages 77-93. Springer-Verlag,
1991.

S. Goldwasser and Y. Lindell. Secure computation without agreement. In International
Conference on Distributed Computing (DISC ’02), pages 17-32. Springer-Verlag, 2002.

O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In ACM
Symposium on the Theory of Computation (STOC ’87), pages 218-229. ACM, 1987.

O. Goldreich. The Foundations of Cryptography — Volume 2. Cambridge University Press,
2004.

Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern match-
ing with security against malicious and covert adversaries. In T'CC, pages 155-175, 2008.

Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adver-
saries. In Public Key Cryptography PKC 2010, pages 312-331, 2010.

Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with applications.
In Israel Symposium on the Theory of Computing Systems (ISTCS ’97), page 174, Washing-
ton, DC, USA, 1997. IEEE Computer Society.

Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with appli-
cations to adaptive ot and secure computation of set intersection. In TCC, pages 577-594,
20009.

Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In CRYPTO, pages
241-257, 2005.

Matt Lepinksi, Silvio Micali, and abhi shelat. Collusion-free protocols. In Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing, STOC ’05, pages 543-552,
New York, NY, USA, 2005. ACM.

Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the
presence of malicious adversaries. In Proceedings of the 26th annual international conference
on Advances in Cryptology (Eurocrypt '07), pages 52-78, Berlin, Heidelberg, 2007. Springer-
Verlag.

Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation efficiently with
security against malicious adversaries. In Proceedings of the 6th international conference on
Security and Cryptography for Networks (SCN ’08), pages 220, Berlin, Heidelberg, 2008.
Springer-Verlag.

38

[MF06] P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party computation. In
Conference on Theory and Practice of Public-Key Cryptography (PKC ’06), volume 3958 of
Lecture Notes in Computer Science, pages 458-473. Springer, 2006.

[Mic94] S. Micali. Cs proofs. In IEEE Symposium on Foundations of Computer Science (FOCS 94),
pages 436-453. IEEE Computer Society, 1994.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure two-party computation
system. In USENIX Security Symposium, pages 20-20. USENIX Association, 2004.

[MR92] S. Micali and P. Rogaway. Secure computation (abstract). In Advances in Cryptology -
CRYPTO 91, pages 392-404. Springer-Verlag, 1992.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism
design. In ACM Conference on Electronic Commerce (EC ’99), pages 129-139, New York,
NY, USA, 1999. ACM.

[PSSWO09] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is practical.
In Advances in Cryptology - ASIACRYPT 09, pages 250-267. Springer-Verlag, 2009.

[Yao82] A. Yao. Protocols for secure computations. In IEEE Symposium on Foundations of Computer
Science (FOCS ’82), pages 160-164. IEEE Computer Society, 1982.

[Yao86] A. Yao. How to generate and exchange secrets. In IEEE Symposium on Foundations of
Computer Science (FOCS '86), pages 162-167. IEEE Computer Society, 1986.

A Garbled Circuits

Informally, Garb is considered secure if (G(C), G(z), G(y)) reveals no information about = and y. An
added property possessed by the construction is verifiability which, roughly speaking, means that, given
(G(C), G(z), G(y)), no adversary can output some G(o0) such that Translate(G (o), T) # f(z,y). We discuss
these properties more formally in Appendix A.

We recall the properties of Yao’s garbled circuit construction which we make use of. These include
correctness, privacy and verifiability.

Definition A.1 (Correctness). We say that Garb = (GarbCircuit, Garbln, Compute, GarbOut, Translate) is
correct if for all functions f, for all circuits C' computing f, for all coins v € {0,1}*, and for all z and y
in the domain of f

Translate (Eval (GarbCircuit(C;r), GarbIn(C, 1, z; 1), GarbIn(C, 2, y; 7)), GarbOut(r)) = f(x,y).

Informally, Garb is considered private if the garbled circuit and the garbled inputs reveal no useful
information about z and y.

Definition A.2 (Privacy). We say that Garb = (GarbCircuit, Garbln, Compute, GarbOut, Translate) is pri-
vate if for all functions f, for all circuits C computing f, for all inputs x, y, ' and y' in the domain of
f, the following distributions are computationally indistinguishable:

{GarbCircuit(C’; r), Garbln (C, 1,x; r), Garbln (C, 2,9; 7“) }

39

and

{GarbCircuit (C; r'), Garbln (C, 1,2; r’), Garbln (C, 2,9 r’) },

where v and v’ are chosen uniformly at random.

Finally, we consider verifiability which, roughly speaking, means that, given a garbled circuit and
two garbled inputs, no adversary can find a garbled output that will result in the translation algorithm
returning an incorrect output.

Definition A.3 (Verifiability). We say that Garb = (GarbCircuit, Garbln, Compute, GarbOut, Translate) is
verifiable if for all functions f, for all circuits C' computing f, for all inputs x and y in the domain of
f, for a uniformly random seed r € {0,1}*, and for all PPT adversaries A, the following probability is
negligible in k:

Pr | Translate(o’, GarbOut(s)) # f(z,y) : o' < A(GarbCircuit(C;r), GarbIn(C, 1, z; 1), GarbIn(C, 2, y; 7))

where the probability is over the coins of A.

B Secure Delegated Computation

A delegated computation scheme consists of four polynomial-time algorithms Del = (Gen, ProbGen, Compute,
Verify) that work as follows. Gen is a probabilistic algorithm that takes as input a security parameter k
and a function f and outputs a public and secret key pair (PK, SK) such that the public key encodes the
target function f. ProbGen is a probabilistic algorithm that takes as input a secret key sk and an input
z in the domain of f and outputs a public encoding o, and a secret state 7,. Compute is a deterministic
algorithm that takes as input a public key PK and a public encoding o, and outputs a public encoding
oy. Verify is a deterministic algorithm that takes as input a secret key SK, a secret state 7, and a public
encoding o, and outputs either an element y of f’s range or the failure symbol L.

We recall the formal definitions of correctness, verifiability and privacy for a delegated computation
scheme.

Definition B.1 (Correctness). A delegated computation scheme Del = (Gen, ProbGen, Compute, Verify) is
correct if for all functions f, for all PK and SK output output by Gen(1¥, f), for all x in the domain of f,
for all o, and 7, output by ProbGengk(x), for all o, output by Compute, (o), Verifyy (7, 0y) = f(x).

A delegated computation scheme is verifiable if a malicious worker cannot convince the client to accept
an incorrect output. In other words, for a given function f and input x, a malicious worker should not be
able to find some ¢’ such that the verification algorithm outputs y’ # f(x). This intuition is formalized in
the following definition.

Definition B.2 (Verifiability). Let Del = (Gen,ProbGen, Compute, Verify) be a delegated computation
scheme, A be an adversary and consider the following probabilistic experiment Verpe a(k):

1. the challenger computes (PK, SK) < Gen(1*, f),

2. let O(SK,-) be a probabilistic oracle that takes as input an element x in the domain of f, computes
(0,7) < ProbGeng(x) and outputs o,

3. given PK and oracle access to O(SK,-), A outputs an input z,

40

/.

the challenger computes (o, 1,) < ProbGeng (),

5. given oy, the adversary A outputs an encoding o',

6.

if Verifyg (1,0") € { L, f(x)} then output 1 else output 0.

We say that Del is verifiable if for all PPT adversaries A,

Pr[Verpe, (k) = 1] < negl(k)

where the probability is over the coins of Gen, O, A and ProbGen.

Informally, a delegated computation scheme is private if its public encodings reveal no useful information
about the input z.

Definition B.3 (Privacy). Let Del = (Gen, ProbGen, Compute, Verify) be a delegated computation scheme,
A be a stateful adversary and consider the following probabilistic experiment Privpe 4(k):

1.

2.

5.
0.

the challenger computes (PK, SK) < Gen(1*, f),

let O(SK,-) be a probabilistic oracle that takes as input an element x in the domain of f, computes
(0,7) < ProbGengk(z) and outputs o,

given PK and oracle access to O(SK,-), A outputls two inputs xo and x1,
the challenger samples a bit b at random and computes (op,) < ProbGengy (),
given oy, the adversary A outputs a bit V,

if b = b output 1 else output 0.

We say that Del is private if for all PPT adversaries A,

Pr [PI’iVDeLA(k‘) = 1] < negl(k:)

where the probability is over the coins of Gen, O, A and ProbGen.

41

	Introduction
	Our Contributions
	Overview of Protocols

	Related Work
	Preliminaries and Standard Definitions
	Non-Collusion in Multi-Party Computation
	Formalizing Non-Collusion With Respect to Semi-Honest Adversaries
	Formalizing Non-Collusion With Respect to Deviating Adversaries

	Efficiency in the Server-Aided Setting
	Evaluating the Efficiency Gain
	Comparison with Secure Delegated Computation
	Why Non-Collusion Helps

	An Efficient Protocol for Non-Colluding Semi-Honest Parties
	Protecting Against Deviating Circuit Garblers
	What goes wrong in the server-aided setting?
	Extending to Multiple Parties

	Server-Aided Computation From Delegated Computation
	Private Set Intersection in the Server-Aided Model
	References
	Garbled Circuits
	Secure Delegated Computation

