
Cryptanalysis of the Light-Weight Cipher A2U2
First Draft version

Mohamed Ahmed Abdelraheem, Julia Borghoff, Erik Zenner

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
{M.A.Abdelraheem,J.Borghoff,E.Zenner}@mat.dtu.dk

1 Introduction

At IEEE RFID 2011, David et al. proposed a new cryptographic primitive for use
with RFID [2]. The design is a stream cipher called A2U2. Shortly afterwards, an
attack was published on IACR Eprint by Chai et al. [1], claiming to break the ci-
pher in a chosen-plaintext attack using extremely little computational resources.
Regrettably, this attack is wrong since it works with an erroneous description of
the cipher. In this paper, we show why the attack is wrong and how it can be
repaired (Section 4).

Furthermore, in Section 5 we describe a guess-and-determine attack which
applies in a known plaintext scenario.

A special design feature of A2U2 is that the number of initialization rounds
varies and depends on an internal counter. The number of rounds varies from 9
to 126. In Section 6 we proposed a differential style attack which first enables
us to find the counter value determining the number of initialization rounds.
Moreover we present an attack that recovers the masterkey in the case that only
9 initialization rounds are used.

2 Description of the Cipher

The cipher’s inner state consists of a counter LFSR C (7 bit), two non-linear
feedback shift registers A and B (NFSRs, 17 and 9 bit), and a key register K
(56 bit). Thus, the total inner state size is 89 bit. Note that we use a different
notation than in the original paper, our being more suitable for cryptanalysis.

Updating the counter: In the following, we denote the state of the counter LFSR
at time t by Ct = (Ct, Ct−1, . . . , Ct−6), for t = 0, 1, . . .. The starting state after
initialisation is C0 = (1, 1, . . . , 1), see below under “Initialisation”. The LFSR
then uses the feedback recurrence

Ct = Ct−7 + Ct−4

for updating the state for t ≥ 1. It is a standard LFSR with maximal period
(i.e., 27 − 1).



Updating the NFSRs We denote the state of the NFSRs by At = (At, . . . , At−16)
and by Bt = (Bt, . . . , Bt−8). The update uses an auxiliary variable ht (defined
below under “Updating the key register”) and the following non-linear feedback
recurrences:

Bt = At−17 +At−15At−14 +A12 +At−10Ct−7 +At−7At−6At−5 +At−4At−2

At = Bt−9 +Bt−8Bt−7 +Bt−6 +Bt−3 + ht + 1,

again for t ≥ 1.

Updating the key register The key register is a rotation register, i.e. the state
in time t is a rotated version of the initial state. If we denote the key bits by
(k0, . . . , k55), then each state of the key register is defined as

Kt = (k5t, k5t+1, . . . , k5t+55),

where all indices are computed modulo 56.
For each round, the first five bits of the register are stored in a buffer

St = (St0, . . . , S
t
4) = (k5t, . . . , k5t+4), and they are used to compute the aux-

iliary variable ht as follows:

ht = MUXCt−5(St0, S
t
1) ·MUXCt−1(St4, At−2) + MUXCt−3(St2, S

t
3) + 1,

where MUXz(x, y) is the multiplexer function that selects x if z = 0 and y
otherwise.

Initialisation: The A2U2 cipher has a 61-bit key split into two parts: A 5-bit
“counter key” and a 56-bit “register key”. In addition, the cipher receives a 32-
bit random number. Key and random number are written into the registers as
follows:

– Counter register: The 5 least significant key and random bits are xored.
The resulting 5-bit vector is written into the 5 least significant bits of the
counter LFSR (using the above notation). The second MSB is set to 1, the
MSB is set to 0.

– NFSRs: The next 26 key and random bits are xored and written into the
NFSR cells.

– Key register: The 56 register key bits (to some extend the same that were
used for NFSR initialisation) are stored in the key register.

Now the cipher is clocked until the counter register reaches the all-one state.
This happens after 9-126 clockings. The resulting state is called the initial state.

Output generation: The cipher deploys a form for irregular output mechanism;
it outputs either encrypted plaintext bits or pseudo-random bits depending on
the content of NFSR cell At. Plaintext bits have to “wait” until At = 1 before
being encrypted. If we denote the plaintext string by P = (P0, P1, . . .) and if we

define σ(t) =
∑t−1
i=0 At with σ(0) = 0, then the output of the cipher in round t

is:
Yt = MUXAt

(Bt + Ct, Bt + Pσ(t)).



3 Cryptanalysis

3.1 Useful Properties

In the following, we point out some properties of the cipher that will be used by
our attacks.

Known counter: Since the counter has the all-one state after initialisation, the
attacker can compute all successive counter states and does know the bit Ct for
any t ≥ 0. This simplifies significantly some of the algebraic equations described
above.

Chosen randomisation vector: Instead of using a nonce that is chosen solely by
the encrypting party as is common practice with stream ciphers, the random
vector used for initialisation is generated in collaboration between sender and
receiver. According to [2], both sender and receiver each choose a 32-bit random
number which is then sent over the communication channel. Both inputs are then
combined by xor into the actual randomisation vector. Note that this procedure
enables an active attacker to choose the randomisation vector: He waits for the
legitimate party’s input and chooses his own such that the xor sum will be the
desired number. In particular, he can introduce arbitrary differences between
randomisation vectors and even force the encryption device to use the same
randomisation vector twice, thus violating an important design principle for
stream ciphers.

Chosen plaintext: Due to the unusual output generation, a chosen plaintext
attack is more powerful than a known plaintext attack. This is another difference
to traditional stream cipher designs, where no extra information is gained if the
attacker is allowed to choose the plaintext himself.

4 A Chosen Plaintext Attack

4.1 Disproving the Chai/Fan/Gong Attack

In [1], a very efficient chosen plaintext attack against A2U2 is proposed. However,
as we are going to show in this section, the attack contains a flaw that makes it
unapplicable against the real A2U2 cipher.

Attack Idea: If the attacker could freely choose one plaintext bit for each clock,
then he can write the output equation as follows:

ct = MUXAt
(Bt + Ct, Bt + pt)

= MUXAt
(Ct, pt) +Bt.

Depending on the amount of knowledge the attacker has about the plaintext, he
can now learn more about the inner state.



If the attacker can choose the plaintext, he can start by encrypting a plain-
text that is identical to the counter sequence. In this case, the above equation
simplifies to

ct = MUXAt
(Ct, p) +Bt

= p+Bt,

meaning that the attacker can learn the whole sequence (Bt)t≥0.
Next, he encrypts a plaintext that is the bitwise inverse of the counter se-

quence. This allows him to distinguish for every ciphertext bit whether Ct or p
was encrypted, providing the attacker with the full sequence (At)t≥0.

Now he has the sequences produced by the LFSR and by both NFSRs. All
that remains is to test for each round which key bit gives the correct NFSR
update. This can be done in unit time, yielding an extremely efficient attack.

The Catch: However, the initial assumption of the above attack is wrong, in-
validating the whole cryptanalysis. The problem is that plaintext is not used at
a rate of 1 bit per round. It is not possible to choose a plaintext bit for each
round, because (1) some plaintext bits are used in several rounds and (2) with-
out knowledge of the sequence (At)t≥0, it is impossible to say in which rounds
a plaintext bit will be used.

4.2 A Leak in the Output Function

However, as it turns out, this attack can be repaired. In the following, we will
demonstrate a leak in the output function that can even be used for general
known-plaintext attacks and will then expand this weakness into a chosen plain-
text attack that reminds of the one described above but is actually functional.

Known plaintext: Assume that the inner sequences At and Bt are statistically
close to random. Then in particular, Pr(At = 0) = 1/2 for all t. We can now
consider two cases for the output function:

– If At = 0, then Yt = Bt + Ct. Since we know Ct, we can rewrite this as
Bt = Yt + Ct. For At = 0, this is always true.

– If At = 1, we have Yt = Bt + Pσ(t), with Pσ(t) unknown. If we assume that
Pσ(t) = Ct with probability 1/2, then the equation Bt = Yt +Ct is also true
with probability 1/2.

In total, the equation Bt = Yt +Ct is thus met with probability 1/2 + (1/2)2 =
3/4, i.e. by observing the keystream and knowing the behaviour of the counter
LFSR, we can predict the inner stream (B0, B1 . . .) with probability 3/4 per bit.

Chosen plaintext: Note that when we can choose the plaintext, we can increase
the probability of Pσ(t) = Ct and thus the probability of the equation Bt =
Yt + Ct being correct.



As an example, consider the first 5 output bits of the LFSR, which are
(1, 0, 0, 0, 0). Thus, if we choose a plaintext (1, 0, 0, 0, 0), then Pσ(t) = Ct is true
with probability 1 for the first bit, 1− 1/2 for the second, 1− 1/4 for the third,
1 − 1/8 for the fourth, and 1 − 1/16 for the fifth bit. Thus, we can predict the
inner state bits (B0, . . . , B4) with probabilities (1, 3/4, 7/8, 15/16, 31/32).

The most useful plaintexts for this kind of analysis seem to be (0, 0, ...) and
(1, 1, ...), since for them, the attacker knows exactly the bit Pσ(t) for every time
slot t. Let us start with the all-zero sequence. The attacker knows that the
plaintext sequence (Pσ(t))t≥0 consists only of zeros. He now looks at all time
slots t with Ct = 0. For those time slots, it holds that Bt = Yt, independent of
the choice of At. Thus, he learns about half of the bits of the sequence B.

The remaining bits can be learned using the all-one sequence. In this case,
in all positions where Ct = 1, the attacker learns Bt = Yt + 1, also independent
of At. Thus, he has fully reconstructed the sequence B.

What is more, he can also use this new information to learn the sequence A
as well. For every time slot, he either picks the ciphertext bit Yt corresponding
to the plaintext bit Pσ(t) 6= Ct. If it holds that Bt = Yt + Ct, then At = 0,
otherwise At = 1.

After this step, the attacker knows the sequences generated by all three reg-
isters A, B, and C. The remaining attack proceeds as follows. Knowing the
sequences A, B and C the attacker can determine the values ht because

ht = Bt−9 +Bt−8Bt−7 +Bt−6 +Bt−3 +At + 1.

Furthermore, it holds that

ht = MUXCt−5
(St0, S

t
1) ·MUXCt−1

(St4, At−2) + MUXCt−3
(St2, S

t
3) + 1,

where Ct−i for i = 1, 3, 5 and At−2 are known. This equation is at most quadratic
and in about half of the cases (when Ct−1 = 1) it is linear. Determining 56 values
of ht yields a fully determined quadratic Boolean equation system, which can be
solved by e.g., using Gröbner basis techniques. As about half of the equation are
linear, a linear equation system can be obtained after determining 112 values
of ht. After 11 clockings of the algorithm the key register is rotated once and
the key bits are reused, thus it can happen that the same equation is generated
twice. However, experiments showed that this does not happen frequently, thus
we expect that observing around 120 values of ht is sufficient to generate a fully
determined linear equation systems in 56 unknowns.

Effort: The attack requires two chosen plaintext of length around 120 bits which
are encrypted using the same key and the random number in the initialization in
order to recover secret key bits (excluding the 5 bits which are used to initialize
the counter). The main computational effort consists in solving a linear Boolean
equation system which can be done in well under a 1 second. Thus, in the chosen
plaintext scenario, the cipher must be considered as completely broken.



5 Guess-and-Determine attack

In this section a we discuss known plaintext attack which is in general a more
likely scenario than a chosen plaintext attack. When we know but are not allowed
to choose the plaintext we cannot use the same trick as in Section 4 to deter-
mine the sequence (Bt)t≥0. We cannot simply calculate this sequence for a given
plaintext/ciphertext pair because we do not know which bits of the ciphertext
correspond to the plaintext bits. This is controlled by register A. The idea of this
attack is to guess the sequence of (At)t≥0, meaning we guess at which positions
of the ciphertext a plaintext bit was used. These guesses are used to determine
additional bits of register B and then later on the value of ht. As we know the
value of the counter at any time during the encryption process, given ht and
At−2 we obtain a Boolean equation in the key bits which is at most quadratic
and contains at most three variables. If we are able to collect sufficiently many
of those equations we will be able to recover the key bits by solving the equation
system.

We denote by A0 the content of the last cell of the first NFSR at the time
when the ciphertext generation starts.The attack is divided into three parts of
guessing bits.

In the first part we guess the value At for t = 0, . . . , 8 for 8 consecutive
clockings of the algorithms. Depending on our guess we know if the counter bit
or a plaintext bit was used to generate the corresponding ciphertext bit and we
can determine the value of Bt for t = 0, . . . , 8. After guessing 9 bits we know the
full second NFSR and about the lower half of the first NFSR.

In the next part we continue guessing the value of At for t = 9, . . . , 16 and
determine the value of Bt for t = 9, . . . , 16. Additionally, we obtain the value
of ht for t = 9, . . . , 16 and the corresponding Boolean equation in the key bits
because it holds that

ht := At +Bt−9 +Bt−8Bt−7 +Bt−6 +Bt−3 + 1, (1)

the full register B is known and we guessed the value of At. After the second
part of the attack both registers are known and we have already obtained 8
equations.

In the third part we want to determine the value of ht for further clockings
of the cipher. The full register A is known and in order to update register B only
bits of register A are used. This means we can update register B and know the
value which was use to encrypt next ciphertext bit (bit 17, 18 etc). Furthermore,
we know the counter value Ct and the plaintext bit p that might have been
used (according to our guess). As mentioned before we want to determine the
value of ht and obtain the corresponding equation. Using equation (1) we need
to determine At in order to obtain ht. This can be done in two ways. Either we
have to guess At as we did before, or we can simply calculate the value of At.
This can be done when Ct 6= Pσ(t) because it holds that

Yt +Bt + Ct = At(Ct + Pσ(t)).



Effort: We need to collect at least 56 equations to determine a unique solution in
56 key variables. In the first two parts of the attack we guess 17 bits and obtain
8 equations. We expect that we have to guess every second value for At in the
third part of the attack. Thus, we expect that we have to guess 24 further bits
in the third part of the attack in order to obtain a fully determined equation
system. This leads to a complexity of 241.

This equation system is non-linear and therefore it might not have a unique
solution even though is is fully determined. However, it is often sufficient to
add a few extra equations to get a unique solution. This will slightly raise the
complexity of the attack.

However, in order to give an more precise estimate of the complexity an
implementation is necessary (work in progress) because of the fact that the key
register is rotate once after 11 clockings of the algorithm and thus key bits
are reused. This property will on the one hand increase the complexity of the
attack for the correct guess but on the other hand enable us to discard wrong
guesses in an early stage. After producing 11 ciphertext bits the key register has
been rotated once, that means the key bits will be reused when generating more
equations. This leads to rounds where we guess or determine the value of At
but do not get a new equation, thus do not gain extra information about the
key. This is especially true for the correct guess and means that it is necessary
to guess extra bit in order to obtain a fully determined system. For a wrong
guess however this might be to our advantage because it is very likely that when
the same polynomial is generated the RHS differs. Thus, we get contradicting
equations and can abort the guess.

In general, for a wrong guess the equation system will not have a solution.
The inconsistency might be very obvious as mentioned above, but it might also
be necessary to solve a non-linear Boolean equation system. Therefore, we have
to make a trade-off how often we want to check if the system is still solvable.

Experiments to estimate the actual attack complexity are currently carried
out and the paper will be updated as soon as we ran a sufficient number of tests.

6 Targeting the low number of initialization rounds

6.1 Recovering the last five key bits

A2U2 has a secret number of initialization rounds. There are 32 possible choices
for the number of initialization rounds that varies from 9 to 126 where each
choice is specified by the 5 LSBs of the tag’s random number and the reader’s
random number. The attack requires for each of the possible 32 initialization 29

state pairs with a good difference (sparse characteristic). Under these states we
encrypt a single bit of plaintext which is equal to the first bit of the counter,
C0, at the time when the encryption starts. Then we can distinguish the 29

state pairs corresponding to 9 rounds of initialization by observing a bias in the
difference of the first bit of the corresponding 29 ciphertext pairs, ∆(Y0), which
is equal to the difference in ∆(B0).



Experiments show that Pr(∆(B0) = 0) > 0.7 for 9 initialization rounds when
the differences ∆(A) = 10000000000000000 in A and ∆(B) = 100000100 in B
are used. The bias is smaller when more initialization rounds are applied. We
observe the strong bias in B0 for 9 rounds because in only 9 rounds the difference
cannot propagate through state and does not spread out sufficiently. After having
distinguished the 29 state pairs corresponding to 9 rounds of initialization, we
can consequently find the five last secret key bits.

6.2 Recovering subkey bits and master key bits

The following attack targets plaintext/ciphertext generated using 9 rounds of
initialization and exploits the key scheduling used to generate the subkey bits,
ht. The attacker starts by guessing the 26 master key bits used in initializing
registers A and B and then at each round he guesses one subkey bits if Ct−1 = 0,
or two master key bits if Ct−1 = 1 (since At−2 will then be used to generate ht)
or no bits when all the key bits involved in the generation of the round subkey
bit are from the 26 master key bits used in initializing registers A and B. The
cipher is initialized using 9 rounds and then a 5-bit plaintext is encrypted, so in
total the cipher runs for 14 rounds. Without loss of generality we assume that
the starting key position is 2, so the key bits at positions 2 to 27 are used in
initializing registers A and B. Table 1 shows the key bits positions used from
round 0 to round 13, the value of Ct−1 and the number of guessed subkey/key
bits. The table also shows that we have to guess 12 subkey/key bits plus the
26 master key bits used in initializing the registers. So in total we have a time
complexity equal to 238 to recover 32 master key bits and 6 subkey bits and when
using plaintexts of length 5-bit we need only b 385 c = 7 plaintext/ciphertext pairs
to find the right key guess. The remaining master key bits can be recover using
a brute force search. In order for the above attack to work we need to find only 7
plaintext/ciphertext pairs whose initial state pairs are initialized with position 2
as a starting key position and are generated using 9 initialization rounds which
we can easily find using the last five secret key bits recovered in the previous
attack.

r S0 S1 S2 S3 S4 Ct−1 G r S0 S1 S2 S3 S4 Ct−1 G

0 28 29 30 31 32 0 1 7 7 8 9 10 11 1 0
1 33 34 35 36 37 0 1 8 12 13 14 15 16 1 0
2 38 39 40 41 42 0 1 9 17 18 19 20 21 1 0
3 43 44 45 46 47 1 2 10 22 23 24 25 26 0 0
4 48 49 50 51 52 1 2 11 27 28 29 30 31 0 1
5 53 54 55 0 1 1 2 12 32 33 34 35 36 0 1
6 2 3 4 5 6 1 0 13 37 38 39 40 41 0 1

Table 1. List of the masterkey bits used in the subkey generation of each round,
together with the counter value and the number of require guesses. r ≡ round no, G ≡
number of subkey/key bits that are guessed.



References

1. Q. Chai, X. Fan, and G. Gong. An ultra-efficient key recovery attack on the
lightweight stream cipher A2U2. http://eprint.iacr.org/2011/247, 2011. Version
published: 20110518:133751 (posted 18-May-2011 13:37:51 UTC).

2. M. David, D.C. Ranasinghe, and T. Larsen. A2U2: A stream cipher for printed
electronics RFID tags. In Proceedings of IEEE RFID 2011, pages 240–247, 2011.
to appear.


