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Abstract

We present an algorithm for solving the discrete logarithm problem on

hyperelliptic curves defined over finite field when the cyclic group can be

represented by special form. On the general case, we design a method to

attack on hyperelliptic curve cryptosystems. As an example, we illustrate

an attack on the Twin Diffie-Hellman key agreement scheme[5]. As a

byproduct, we enumerate the isomorphism classes of genus 2 hyperelliptic

curves which satisfy some special conditions over a finite field.
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1 Introduction

In 1996 a fault analysis attack was introduced by Boneh et al. [4]. Biehl

et al.[2] proposed the first fault-based attack on elliptic curve cryptography

[11, 16]. Karabina and Ustaoglu[10] demonstrated that invalid-curve attacks

can be successfully mounted on protocols based on genus 2 hyperelliptic curves

if the appropriate public-key validation is not performed. They illustrated their

attacks on two recently-proposed discrete logarithm protocols the Twin Diffie-

Hellman key agreement scheme[5] and the XCR signature scheme [12]. Their
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basic idea is to change the input points, elliptic curve parameters, or the base

field in order to perform the operations in a weaker group where solving the

elliptic curve discrete logarithm problem (ECDLP) is feasible. A basic assump-

tion for this attack is that one of the two parameters of the governing elliptic

curve equation is not involved for point operations formulas. In this way, the

computation could be performed in a cryptographically less secure elliptic curve.

In this paper, we consider the hyperelliptic curves of genus 2 which is given

by the following Weierstrass equation

H : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0. (1)

The divisor classes D ∈ JH(Fq) are in one-to-one correspondence with the pairs

of polynomials (u, v) with u, v ∈ Fq[x], deg(v) < deg(u) ≤ g, u monic, and

u|(v2 + hv − f).

Our work are based on the facts that the two parameters f1, f0 of the hy-

perelliptic curve equation does not involved for point operations formulas. If

deg(u) = 1, we can convert the HCDLP in JH(Fq) into the HCDLP in JĤ(Fq),
where Ĥ is another hyperelliptic curve of genus 2 defined over Fq. This is the

key ingredient of our attack method. If all prime factors of ]JĤ(Fq) are small,

one can solve the HCDLP in group JH(Fq).
If deg(u) = 2, we design a method to attack cryptosystems based on HCDLP.

As an example, we illustrate the attacks on the Twin Diffie-Hellman key agree-

ment scheme[5].

The efficiency our attack method is depend on the number of Ĥ over Fq. In

Section 3, we research the isomorphism classes of the elliptic curves expressed by

form (1). The analysis of our method in this paper shows that the performance

of the algorithm is largely determined by the density of numbers built up from

small primes in the neighborhood of q2 + 1 and the number of isomorphism

classes of the hyperelliptic curves which can be expressed by form (1).

The paper is organized as follows. In Section 2, some basic knowledge are

described. In Section 3, we discuss the isomorphism class of hyperelliptic curves

expressed by form (1). Then in Section 4, we give the main idea of the algorithm.

In section 5, the efficiency of the attack algorithm is considered.

2 Preliminaries

2.1 Hyperelliptic curve

A hyperelliptic curve H of genus g over a finite field Fq is defined by a non-

singular Weierstrass equation

H : Y 2 + h(x)y = f(x),
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where f, h ∈ Fq[x], f is monic, deg(f) = 2g+ 1, and deg(h) ≤ g. If Char(Fq) 6=
2, the transformation y 7→ y − h(x)/2 leads to an isomorphic curve given by

H : Y 2 = f(x).

If additionally Char(Fq) is coprime to 2g, a transformation allows to give

H : y2 = f(x),

where

f(x) = x2g+1 +

2g−1∑
i=0

fix
i.

Let H be an affine hyperelliptic curve of genus g with function field Fq(H)

and coordinate ring O = Fq[H]. The group of O-ideal classes is denoted by

Cl(O). The Jacobian JH(Fq) of H over Fq is the quotient group of the degree

zero divisors defined over Fq by the group of principal divisors defined over Fq.

Lemma 1 We use the notation from above. There exists a surjective homo-

morphism from JH(Fq) to Cl(O).

Assume that there is a cover

ϕ : H → P1,

in which one point P∞ is totally ramified and induces the place v∞ in the

function field Fq(x1) of P1. Then φ is an isomorphism. In this paper, we

consider this type of hyperelliptic curves H.

Lemma 2 Let H be a hyperelliptic curve over finite field Fq of genus g and let

ω denote the nontrivial automorphism of Fq(H) over Fq(x) with a Fq-rational

Weierstrass point P∞ lying over the place x∞ of Fq[x]. Let O = Fq[x, y]/(y2 +

h(x)− f(x)).

1. In every nontrivial ideal class c of Cl(O) there is exactly one ideal I ⊆ O
of degree t ≤ g with the property: the only prime ideals that could divide

both I and ω(I) are those resulting from Weierstrass points.

2. Let I be as above. Then I = Fq[x]u(x) +Fq[x](v(x)− y) with u(x), v(x) ∈
Fq[x], u monic of degree t, deg(v) < t and u divides v2 + h(x)v − f(x).

3. The polynomial u(x) and v(x) are uniquely determined by I and hence by

c. So [u, v] can be used as coordinates for c.

The divisor classes D ∈ JH(Fq) are in one-to-one correspondence with the pairs

of polynomials (u, v) with u, v ∈ Fq[x], deg(v) < deg(u) ≤ g, u monic, and

u|(v2 + hv − f).
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In this paper, we consider the hyperelliptic curves of genus 2 which is given

by the following Weierstrass equation of form (1). In genus 2 setting, we will

use the affine formulae for the group law as described in [1], and refer to these

formulae as F2a throughout the paper. The formulae F2a depends only on f2
and f3.

3 The attack algorithm

3.1 attack algorithm if deg(u) = 1

Let H be a hyperelliptic curve of genus 2 defined over a finite field Fq, and

g ∈ JH(Fq). The discrete logarithm problem asks, given h ∈ 〈g〉, for the integer

k such that h = kg. Let [ug, vg] and [uh, vh] be the Mumford representation of

the divisors g, h respectively.

If the order of the divisor g contain only small prime factor, then it is possible

to use the Silver-Pohlig-Hellman algorithm [18] to solve the DLP as presented

in Algorithm 1. Let n be the order of the base point P with a prime factor

n =
∏j−1
i=0 p

ei
i , where pi < pi+1.

Algorithm 1 Silver-Pohlig-Hellmans algorithm for solving the DLP

Input: g ∈ JH(Fq), h ∈ 〈g〉, n =
∏j−1
i=0 p

ei
i , where pi < pi+1.

Output: An integer k with h = kg

1. For i = 0 to j − 1 do

1.1 h′ ← O, ki ← 0.

1.2 gi ← (n/pi)g.

1.3 For t = 0 to (ei − 1) do

1.3.1 ht,i ← (n/pt+1
i )(h+ h′).

1.3.2 Wt,i ← loggi ht,i. {DLP in a subgroup of order ord(gi).}
1.3.3 h′ ← h′ −Wt,ip

t
ig.

1.3.4 ki ← ki + ptiWt,i.

2. Use the CRT to solve the system of congruences k ≡ ki mod peii .

This gives us k mod n

3. Return (k)

Without losing generalization, we assume that the order of the base point P

is a large prime number.

The following result is the key ingredient of our attack method.

Theorem 1 Let H be a hyperelliptic curve of genus 2 defined over a finite field

Fq, and g, h ∈ JH(Fq) such that h = kg. Let [ug, vg] and [uh, vh] be the Mumford

representation of the divisors g, h respectively. If deg(ug) = 1, then there exist a

hyperelliptic curve Ĥ defined over Fq and divisors ĝ, ĥ ∈ JĤ(Fq) whose Mumford

representations are [ug, vg] and [uh, vh] respectively, such that ĥ = kĝ.
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Proof. Without losing generalization, we assume that the divisor g is a reduced

divisor in JH(Fq). If deg(ug) = 1, then there is a point P ∈ H(Fq) such that

the divisor g can be uniquely represented by g =< P > − < P∞ >. Put

P = (xP , yP ), then

y2P = x5P + f3x
3
P + f2x

2
P + f1xP + f0,

and [ug, vg] = [x− xP , yP ]. For any fixed f̂1 ∈ Fq, let

f̂0 = y2P − (x5P + f3x
3
P + f2x

2
P + f̂1xP ).

Define

Ĥ : y2 = x5 + f3x
3 + f2x

2 + f̂1x+ f̂0,

obviously P = (xP , yP ) ∈ Ĥ(Fq) and

ĝ =:< P > − < P∞ >∈ JĤ(Fq).

It is easy to see the Mumford representation of ĝ equals to [ug, vg]. Since the

formulae F2a depends only on f2 and f3, we have kg = kĝ. Therefore, by the

Mumford representation of divisor h, we can find a divisor ĥ ∈ JĤ(Fq) such that

ĥ = kĝ. This complete the proof of the theorem.

Having the points pair ĝ, ĥ ∈ JĤ(Fq), one can obtain k mod n, where n =

ord(ĝ). This would be possible if all the prime factors of n are smaller than

order of g. The complete attack procedure is presented as Algorithm 2.

Algorithm 2 Basic attack on F2a algorithm

Input: Hyperelliptic curve H defined over Fq,
g ∈ JH(Fq), h ∈ 〈g〉, h = kg, w a parameter to be chosen later.

the Mumford representations [ug, vg], [uh, vh] of g, h with deg(ug) = 1.

Output: Scalar k partially with a probability.

1. By [ug, vg], find P = (xP , yP ).

2. Randomly choose f̂1 ∈ Fq.
2.1 Compute f̂0 = y2P − (x5P + f3x

3
P + f2x

2
P + f̂1xP ).

3. Define Ĥ : y2 = x5 + f3x
3 + f2x

2 + f̂1x+ f̂0.

3.1 Obtain n = ord(< P > − < P∞ >) in JĤ(Fq).
4. If all the prime factors of n are smaller than w, then

4.1 Utilize Algorithm 1 on JĤ(Fq)
with ([ug, vg], [uh, vh], n) to obtain k mod n.

5. Return (k mod n)

By repeating Algorithm 2, then applying CRT, we can get k from the con-

gruences k mod n.

Remark. In theorem 1, the divisors of g, h and ĝ, ĥ have the same rep-

resentations [ug, vg] and [uh, vh] respectively. Since the same polynomials can
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generate different ideals in the rings K[H] and K[Ĥ]. Therefore the ideal pair

corresponding to the pair (g, h) in JH(Fq)
⊗
JH(Fq) is different from the ideal

pair corresponding to the pair (ĝ, ĥ) in JĤ(Fq)
⊗
JĤ(Fq).

3.2 Attack algorithm when deg(ug) = 2

Cash, Kiltz and Shoup [5] proposed and analyzed a simple Diffie-Hellman type

protocol depicted in the following. The security of TDH relies on the twin Diffie-

Hellman assumption which is equivalent to the computational Diffie-Hellman

assumption. This is in contrast with many other key agreement protocols, where

security has only been proven with respect to the gap Diffie-Hellman assumption.

We design a small subgroup attacks on the static Diffie-Hellman protocol

to the TDH protocol in the genus 2 setting. We show how an adversary can

successfully break the protocol should honest parties fail to obtain assurances

that the static public keys of their peers were validated.

The twin Diffie-Hellman protocol: A cyclic group < g > which the

discrete logarithm is infeasible.

1. Party Â compute X = xg, and A = ag, send X,A to party B̂.

2. Party B̂ compute Y = yg, and B = bg, send Y,B to party Â.

3. Â and B̂ compute

k = H(Â, B̂,CDH(A,B),CDH(A, Y ),CDH(X,B),CDH(X,Y )).

We now describe an attack that allowsM to recover the static private key of

an honest party. Suppose that the underlying group is a prime-order subgroup

of JH, where H is the hyperelliptic curve over finite field Fq defined by the

polynomial

H : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0.

Suppose also that honest parties use group addition formula F2a, Recall that

F2a does not explicitly use the coefficients f1 and f0. in this case M chooses

curves Ĥ over finite field Fq represented by the equation

Ĥ : y2 = x5 + f3x
3 + f2x

2 + f̂1x+ f̂0,

according to H and a random point P ∈ H(Fq), such that Ĥ(P ) = 0 and

H(P ) = 0. M choose x, a according the order of the divisor h =:< P > − <

P∞ >. Then M compute X = xh, A = ah such that the order of X,A are

small number u, v respectively, with gcd(u, v) = 1. Then M initiates a session

with B̂ and obtains the session key

k = H(Â, B̂, bA, yA, bX, yX).

Now M computes

k′ = H(Â, B̂, i1A, i2A, i3X, i4X),
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where i1, i2 range over Zv and i3, i4 over Zu, until k′ = k in which case M
obtain the following congruence equations{

b ≡ i1(modv),

b ≡ i3(modu),{
y ≡ i2(modv),

y ≡ i4(modu).

After repeating the procedure, M can recover B̂’s static private key (b, y).

4 Analysis of the attack

4.1 Isomorphism classes of hyperelliptic curves over Fq

Let

Pf2,f3 = {Pf̂1,f̂0 = x5 + f3x
3 + f2x

2 + f̂1x+ f̂0 : f̂1, f̂0 ∈ Fq}.

In this section, we count the number polynomial satisfying some conditions in

Pf2,f3 over Fq. To analysis the attacks, the following results are needed.

Theorem 2 Let H be a hyperelliptic curve defined over finite field Fq which is

represented as (1) and P = (xP , yP ) ∈ H(Fq). There exist subset SP of Pf2,f3 ,

for any Pf̂1,f̂0 ∈ SP satisfying

y2P = Pf̂1,f̂0(xP ).

The cardinality of the set SP is q.

Proof. Since P = (xP , yP ) ∈ H(Fq), we have

y2P = x5P + f3x
3
P + f2x

2
P + f1xP + f0.

For any fixed f̂1 ∈ Fq,we can compute f̂0 by

f̂0 = y2P − (x5P + f3x
3
P + f2x

2
P + f̂1xP ).

Obviously y2P = Pf̂1,f̂0(xP ), this gives the desired result.

Theorem 3 Let H be a hyperelliptic curve defined over finite field Fq which is

represented as (1) and P ∈ H(Fq). There exist subset S of Pf2,f3 , such that for

any Pf̂1,f̂0 ∈ S, we can find a point P ∈ H(Fq) satisfying

y2P = Pf̂1,f̂0(xP ),

where P = (xP , yP ). The cardinality of the set S is
]H(Fq)+T2−1

2 (q − 1) + 1,

where T2 is the number of points P ∈ H(Fq) satisfying P = −P .
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Proof. By Theorem 2, we have S =
⋃
P∈H(Fq)

SP . We claim that for any

P1, P2 ∈ H(Fq), if P1 = ±P2 then SP1 = SP2 , and if P1 6= ±P2 then SP1

⋂
SP2 =

{Pf1,f0}.
Since H is a hyperelliptic curve represented by equation (1), if P1 = −P2,

then we have xP1
= xP2

and yP1
= −yP2

. This gives y2P1
= (−yP2

)2, by the

argument of Theorem 2, we have SP1 = SP2 . If P1 6= ±P2, then we have

xP1 6= xP2 and yP1 6= ±yP2 . Let

Ai = y2Pi
− (x5Pi

+ f3x
3
Pi

+ f2x
2
Pi

), i = 1, 2.

P1, P2 ∈ H(Fq) implies that{
f1xP1

+ f0 = A1,

f1xP2 + f0 = A2.

Since the rank of the coefficient matrix

(
xP1

1

xP2
1

)
is 2. Hence there is an

unique solution the following equations set{
f1xP1 + f0 = A1,

f1xP2
+ f0 = A2.

So we have SP1

⋂
SP2 = {Pf1,f0}. It is noticed that SP∞ = ∅. This shows that

the cardinality of the set S is
]H(Fq)−T2−1

2 (q − 1) + T2(q − 1) + 1 which can

complete the theorem.

4.2 Efficiency of the attack method

A hyperelliptic curve H′ of form (1) isomorphic to H if and only if there exists

an admissible transform {
x′ = u2x,

y′ = u2g+1y,

where u ∈ F∗q . Let

H′ : y2 = x5 + f3x
3 + f2x

2 + f̂1x+ f̂0.

Therefore, H ∼= H′ if and only if there exists u ∈ F∗q such that u4 = 1, u6 = 1.

By the Hasse-Weil Theorem, |]H(Fq) − q − 1| ≤ 4
√
q. Let T2 be defined as

in Theorem 2, then T2 is the number of the solutions in Fq of Pf1,f0(x) = 0, and

T2 ≤ 5. Let

SHP = {y2 = f(x) : f(x) ∈ SP }, SH = {y2 = f(x) : f(x) ∈ S}.

where SP and S is defined as in Theorem 2 and Theorem 3 respectively. Then

we have ]SHP ≥ q/6 and ]SH ≥ q2/12.
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For 0 ≤ α ≤ 1, let Lx(α, c) denote

exp(c(log x)α(log log x)1−α),

where c is a constant. A theorem of Canfield, Erdös and Pomerance [6] implies

the following result. Let α be a positive real number. Then the probability that

a random positive integer s < x has all its prime factors less than Lx(1/2, 1)α

is Lx(1/2, 1)−1/2α+o(1) for x → ∞. The conjecture we need is that the same

result is valid if s is a random integer in the interval (x+ 1− x 3
2 , x+ 1 + x

3
2 ).

It follows that we have to consider subexponentially many random hyper-

elliptic curves until one of them has subexponentially smooth order. Thus the

expected number of trials of the attack with random hyperelliptic curves Ĥ(Fq)
until we find that ]JĤ(Fq) is a subexponentially smooth integer and can deter-

mine the secret multiplier k is subexponential again.

References

[1] R. Avanzi, H. Cohen, C. Docke, G. Frey, T. Lange, K. Nguyen and F. Ver-

cauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman

and Hall/CRC, Boca Raton, FL, USA, (2005).

[2] I. Biehl, B. Meyer and V. Müller, Differential fault attacks on elliptic curve

cryptosystems, In CRYPTO 2000, LNCS 1880, (2000), 131-146.

[3] B. J. Birch, How the number of points of an elliptic curve over a fixed prime field

varies, J. London Math. Soc. 43 (1968), 57-60.

[4] D. Boneh, R.A. DeMillo and R.J. Lipton, On the importance of eliminating errors

in cryptographic computations, J. Crypto. 14(2), (2001), 101-119.

[5] D. Cash, E. Kiltz and V. Shoup, The twin Diffie-Hellman problem and applica-

tions, in Advances in Cryptology-EUROCRYPT 2008, (2008), 127-145.

[6] E. R. Canfield, P. Erdös and C. Pomerance, On a problem of Oppenheim con-

cerning ” Factorisatio Numerorum”, J. Number Theory 17 (1983), 1-28.

[7] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkbrper,

Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272.

[8] G. Frey and H. Ruck, A remark concerning m-divisibility and the discrete log-

arithm in the divisor class group of curves, Mathematics of Computation, 62

(1994), 865-874.

[9] P. Gaudry, F. Hess and N. Smart, Constructive and destructive facets of Weil

descent on elliptic curves, Journal of Cryptology, 15 (2002), 19-46.

9



[10] K. Karabina, B. Ustaoglu, INVALID-CURVE ATTACKS ON (HY-

PER)ELLIPTIC CURVE CRYPTOSYSTEMS, Advances in Mathematics

of Communications, Vol 4, No.3, (2010), 307-321.

[11] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177)(1987), 203-209.

[12] H. Krawczyk, HMQV: A high-performance secure Diffie-Hellman protocol, in

Advances in Cryptology-CRYPTO 2005, (2005), 546-566.

[13] H. W. Lenstra, Mathematics Factoring Integers with Elliptic Curves, Annals of

Mathematics, Second Series, Vol.126, No. 3 (1987), pp. 649-673.

[14] H. W. Lenstra, Jr., J. Pila, and C. Pomerance, A hyperelliptic smoothness test.

I, Phil. Trans. R. Soc. Lond. (A) 345 (1993), pp. 397-408.

[15] A. Menezes, T. Okamoto and S. Vanstone, Reducing elliptic curve logarithms to

logarithms in a finite field, IEEE Transactions on Information Theory, 39 (1993),

1639-1646.

[16] V. Miller. Use of elliptic curves in cryptography. In CRYPTO 86, LNCS

263(1987), 417-426..

[17] P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factoriza-

tion. Math. Comput. 48 (1987), 243-264.

[18] S. Pohlig, M. Hellman, An improved algorithm for computing logarithms over

GF (p) and its cryptographic significance. IEEE Trans. Inf. Theory 24, (1978),

pp. 106-110.

[19] J.M. Pollard, Monte Carlo methods for index computation (mod p). Math. Com-

put. 32,(1978), 918-924.

[20] T. Satoh and K. Araki, Fermat quotients and the polynomial time discrete log

algorithm for anomalous elliptic curves, Commentarii Mathematici Uni- versitatis

Sancti Pauli, 47 (1998), 81-92.

[21] R. J. Schoof, Nonsingular plane cubic curves over finite fields, Journal of Combi-

natorial Theory, Series A, Vol 46, No. 2, (1987), 183-211.

[22] R. J. Schoof, Elliptic curves over finite fields and the computation of square roots

modp, Math. Comp. Vol 44(1985), 483-494.

[23] D. Shanks, Class number, a theory of factorization, and genera, in Proceedings

of the Symposium in Pure Mathematics, vol. 20 (1971), pp. 415-440.

[24] I. Semaev, Evaluation of discrete logarithms in a group of p-torsion points of

an elliptic curve in characteristic p, Mathematics of Computation, 67 (1998),

353-356.

[25] N. Smart, The discrete logarithm problem on elliptic curves of trace one, Journal

of Cryptology, 12 (1999), 193-196.

10



[26] W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Ecole Norm. Sup.

(4) 2 (1969), 521-560.

11


